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THE GROMOV NORM OF THE KAEHLER CLASS AND THE 
MASLOV INDEX* 

JEAN-LOUIS CLERCt AND BENT ORSTED* 

Abstract. Let V be a Hermitian symmetric space of the non-compact type, w its Kaehler form. 
For A a geodesic triangle in £>, we compute explicitly the integral J a;, generalizing previous results 

(see [D-T]). As a consequence, if X is a manifold which admits V as universal cover, we calculate 
the Gromov norm of [u>] E /f2(X)R). The formula for f. u is extended to ideal triangles. Precise 
estimates are given and triangles for which the bound is achieved are studied. For tube-type domains 
we show the connection of these integrals with the Maslov index we introduced in a previous paper 
(see [C-0]). 

0. Introduction. Let M be a Hermitian symmetric space of the non-compact 
type, which for simplicity, we assume to be irreducible. Let G be the neutral com- 
ponent of the group of biholomorphic automorphisms of M. The space M admits a 
natural (G-invariant) Kaehler form UJ. This real differential form of degree 2 is closed 
and hence can be integrated along any 2-cycle, in particular geodesic triangles (to 
mean triangles the sides of which are geodesic segments). When M is of type 1,11 or 
III (in E. Cartan's classification), the integral /Aa; (the symplectic area of the geodesic 
triangle A) was computed in [D-T]. By using their techniques, we give the result in 
the general case. It turns out that these quantities have an upper bound, and with the 
appropriate normalization, the bound depends only on the rank r of M. We extend 
these computations to ideal triangles, and we prove (new) sharp estimates for the 
areas. In particular, we determine precisely the triangles for which the upper bound is 
achieved. This turns out be of great geometric significance, as the summits of such an 
extremal triangle are contained in the image of a tight holomorphic totally geodesic 
imbedding of the complex unit disc into M (Theorem 4.7). Generally speaking, our 
study of the integrals /A u requires the fine structure of Hermitian symmetric spaces 
: special role played by the tube-type case, behaviour of geodesies at infinity and 
structure of G-orbits in the boundary, use of partial Cayley transforms. 

This study is also related to a previous work (see [C-0]) where we extended the 
notion of Maslov index to the Shilov boundary S of a Hermitian symmetric space 
of tube-type. The Maslov index is (up to a factor TT) nothing but the symplectic 
area of ideal triangles with summits in 5, and in some sense the present work can be 
understood as a continuation of [C-0]. 

The computation of the integrals was used in [D-T] to calculate the Gromov norm 
of the Kaehler class of a compact Hermitian locally symmetric manifold X = r\M, 
where M is of type I and F a discrete, torsion-free, co-compact subgroup of the group 
G. They observed that it has a nice topological corollary. Let S be a Riemann surface 
of genus g > 1 and / : S —> X a continuous map. Then 

/. 
/*u; \<4r(g- l)n . 
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These results are valid for the general case. 

Let us mention other connections of this work which could yield further develop- 
ments. First, the integral fA UJ gives a concrete realization of a bounded 2-cohomology 
class of G. The space H%(G) (and more generally bounded cohomology) has been 
intensively studied by several authors (see references in [M]). Second, the new infor- 
mation on this cocycle could help to investigate rigidity problems in Kaehler geometry 
(in the spirit of [T2]) and also the space of representations of the fundamental group 
of a surface of genus g > 1 in G (see [Got] for a most recent reference). More specifi- 
cally, our results could be used to study the maximal representations of surface groups 
in bounded symmetric domains, generalizing Hernandez's work (see [H], and recently 
[B-G-G]). In fact M. Burger, A. lozzi and A. Wienhard informed us that they obtain 
new results (cf [B-I-W]) in this direction by combining their own techniques (see e.g. 
[B-I]) with some of the results of the present paper. 

Section 1 introduces the geometry of the Hermitian symmetric spaces, with a few 
technical results (e.g. on the (normalized) Bergman kernel) which will be needed in 
section 3 and 4. Section 2 is the computation of the integrals /A LJ where we follow 
[D-T]. Section 3 gives the corresponding estimate of these integrals, and our method 
of proof is different from that in [D-T]. In section 4 we introduce the ideal triangles, 
extend the definition, establish sharp estimates and discuss the extrema of JA UJ for 
these triangles. These results are new even in the classical cases. This is the most 
technical part, as it requires to realize the Hermitian space M as a Siegel domain of 
type III. Section 5 follows [D-T] closely to give some topological consequences of the 
estimates. 

The authors would like to thank J. Faraut, who, after reading [C-0], indicated the 
reference [D-T] which was crucial for the development of the present work, and Anna 
Wienhard, whose challenging questions contributed to a reformulation of Theorem 
4.7. 

1. Geometric setting. Our main references for this section are [S] and part 
III of [F-al]. Let M be an irreducible Hermitian symmetric space of the non-compact 
type. Let G be the neutral component of the group of biholomorphic mappings of M. 
Fix a base point o £ M, and let K be the stabilizer of o in G. Then K is a maximal 
compact subgroup of G. Denote by 6 the associated Cartan involution of G, and let 

be the corresponding Cartan decomposition of Q. Let J be the complex structure on 
p, and let HQ be the (unique) element in the center of £ such that adiJojp = J- The 
complexification pc splits aspc = P-f©P- (eigenspace decomposition with respect to 
J), and let 

gc = P+ © *c © P- 

the corresponding grading of gc- Let Gc be a connected Lie group with Lie algebra 
Qc and let P+^K^P- be the analytic subgroups of Gc corresponding to p+,Ec>P-' 
The map 

(p+, &,£>-)"—► p+fcp-       P+ x K<c x P_ —> Gc 

is injective with dense open image, and we denote the corresponding decomposition 
of an element g G G by 

9 = (fl)+ (0)o (#)- • 
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For g e Gc and z G p+ such that gexp(z) £ P+KcP-, define g(z) G p+ and J(g,z) G 
Kc by 

exp^(2:) = (gexpz)+,     J(g,z) = (^exp2:)o . 

The expression J(g,z) is the canonical automorphy factor (see [S]). 

The automorphy factor satisfies a cocycle formula : 

J(99,^) = J{g,gf(z))J(g\z). 

Denote by a the conjugation of Gc with respect to G. Observe that 

a(P±)cP^    a(Kc)cKc. 

For z,w € p+ such that exp(—cr(w)) exp z G P+KcP- define K(z,w) by 

K(z,w) = J(exp(—cr('w)),z)-1 = ((exp(—(T(W)) exp z)o) 

The automorphy kernel K(z,w) satisfies the following relations : 

K{w,z)^a(K(z,w))-1 

K{g(z),a(g)(w)) = J(g,z)K(z,w)(j(J(a{9),w))-1 

for z,w € p-f ,g G Gc, whenever the expressions are defined. 

The space M can be realized as a bounded domain V in p+ by the Harish Chandra 
imbedding 

^^exp-i (<?+),    G/tf—>p+    • 

When z eV and # G G, the automorphy factor J(<7, z) is always defined, and similarly, 
if z, w G £>, then the automorphy kernel K(z,w) is defined. 

For 2: G D, K(z,z) is well-defined and satisfies (7(^(2;, z)) = if (2:,z)_1. As the 
restriction of a to i^c is a Cartan involution, this shows that K(z, z) belongs to exp it 
so that there is a well-defined square root K(z,z)z in Kc- Set 

gz = exp(z)K(z, z)i exp(a(z)) . 

The element gz belongs to G and satisfies ^(0) = z. It is in fact the only element 
g G exp(p) such that #(0) = z (see [S] p. 71). 

On p+ there is a standard Hermitian inner product associated to the Killing form 
B of g. There corresponds a Lebesgue measure on p+ and a Bergman space for V. 
The corresponding Bergman kernel is given by 

kv(Z)W) = c(det Ad\p+K(z,w))~ 

where c is a positive real number which will play no role in this paper. In fact we ignore 
this and set c = 1, so that in particular kT>{z,z) = 1 for z G U. Its transformation 
law under the action of G is given by 

kv(gz, gw) = j(g, z)-1 kv{z, w) j(g, w) 



272 JEAN-LOUIS CLERC AND BENT 0RSTED 

where j(g,z) = detAd|p+ J(g,z). To the Bergman kernel is associated the Bergman 
metric, which turns V into a complex Hermitian symmetric space. 

Let f) be a maximal abelian subalgebra of 6, and let A(gc, fyc) be the corresponding 
set of roots. As Ho belongs to f), the space p+ is stable by ad f). The roots 7 G A(QC, he) 
such that 07 C p-f are said to be positive non-compact, and we denote by $ the set 
of such roots. Let 76$. Then on may choose elements if7 G I), E7 E 07, £"-7 G 0-7, 
such that 

7(ff) 
ByHy, Hry) 

[Esy, E—ryj   =   JLLy    , (7{E>y)   =   £_7 

Let 
X37   =  2X27, -A7   =  JE'7  -f- xl/_7, J^y   =   —lyE<y  — E—^J 

The element iJ7 belongs to f), and the elements Xy and 3^ belong to p. They satisfy 
the relations 

[/i7,-A7j = —21^,     [ii, Kyj = 2-A7,     [-^7? ^J := 2/z7 . 

LEMMA 1.1.  TAere ea^'ste a set F = {71,... ,7r} m $ such that 

a-221^7* 

is a Cartan subspace of the pair (g, 8). 

This is the classical Harish Chandra construction by induction, using a maximal 
set of strongly orthogonal roots in $. For simplicity, let us set for 1 < j < r 

Hj = Hlj, Ej — Eli, Xj = Xlj, Yj = Yyj . 

Let a* denote the dual of a and let {^1,^2, • • • ,£r} be the basis of a* dual to 
{Xi, X2, • • •, Xr}. The restricted root system of g relative to a is of type Cr or BCr 
given by 

±2^- each with multiplicity 1 

and possibly 

±£j ± £k {j 7^ k) each with multiplicity a, 

±£7 with multiplicity 6 . 

Let 

a+ = 0R£?iCp+ 

J=I 

As X 1—> ^(X — iJX) is a (real) iiT-isomorphism from p onto p.}-, any element of 
p+ is conjugate under K to an element of a-f..   Hence a if-invariant polynomial on 



THE GROMOV NORM OF THE KAEHLER CLASS AND THE MASLOV INDEX 273 

p+ is determined by its restriction to a+. Denote by h(z) the (unique) if-invariant 
polynomial on p+ such that 

(i.i) ME*i^)=n(i-*i)- 

The existence of such a polynomial is a consequence of Chevalley's theorem. As h is 
real-valued, we may polarize it to get a polynomial on p+ x p+, denoted by h(z,w), 
holomorphic in z and antiholomorphic in w such that h(z, z) = h(z). In terms of this 
polynomial, the Bergman kernel for V is given by the following formula 

kv{z,w) = /i(;z,u;)-P 

where p = {r - l)a + b + 2 (see [F-al] III, prop. V.3.7). 

For further purpose, it is better to use a different normalisation for the Hermitian 
metric, so that the sectional holomorphic curvature has minimal value —1. Let us 
compute this minimal value for the Bergman metric. 

From the choices made for Ha.Ea, E-a,Xa, Ya, we get easily that 

B(Ea)E-(X) = -B(Ha,Ha), B(Xa,Xa) = B(Ya,Ya) = B(Ho(^Ha) 

for any non-compact positive root a. For a = 7^, let us compute B(Xj,Xj). As Xj 
belongs to p, 

B(XJ,Xj)=2tr((adXj)*)\p). 

As (&dXj)2 = (adEj +ad E-j)2, it is useful to use the complexification pc = p+ ©p- 
to compute this trace. The contribution to the trace is obtained from two terms 
corresponding to p+ and p_. On p+, the contribution is merely given by the trace of 
adEj o ad E-j restricted to p+. But this operator coincides on p+ with the operator 
ad Ej o ad E-j — ad E-j o ad Ej = ad[i£j, E-j] = ad Hj. The computation of tr ad Hj 
is easy from the knowledge of the system of restricted roots so that 

tradflj|p+ =p . 

The computation for p_ is similar, so that eventually B(Xj,Xj) = Ap for any j, 1 < 
j < r. 

We identify the tangent space at o with p. Then, the quadratic form corresponding 
to the Bergman metric on p is qo = ^B\p (see [S] p. 74). The corresponding curvature 
tensor is 

R(X,Y,Z,T) = ^B([[X,Y],Z\,T) 

and the holomorphic sectional curvature at o is given by 

H(U) = ±BmJU],U],JU) = ±B([U,JU},{U,JU}) 

for U a vector of length 1 in p. Because of invariance of the curvature, it is sufficient to 
calculate the holomorphic sectional curvature on an element in the Cartan subspace 
a. So let U = Si=itjXj. As the Xj are mutually orthogonal, we get 

qo(U) = J2t']qo(Xj) = 2pjrt2
j. 

3=1 j=l 
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Note that JXj — Y}, \X^JXj\ = \X^Yj\ = —2iHj.  Hence, from this and the 
strong orthogonality of the roots 7j, we get 

r r r 

j=l j=l ~ .7=1 

so that 

H(U) = -28(^2^,^2^) = -2^ijS(^)^) = -8p][>4 . 
j=l j=l j = l j=l 

Under the constraint ^o(^) = 1, the holomorphic sectional curvature reaches its min- 
imal value for all tj equal to 0 except (say) ti = (2p)~21 so that the minimal value 

2 
of the curvature is —. Its maximal value is obtained for all fy's equal and an easy 

computation shows that it is . 
rp 

If one multiplies the metric by a factor c > 0, then the holomorphic sectional 
1 2 

curvature is multiplied by -. So the proper normalization for the metric is to use - 
c p 

times the Bergman metric. It amounts to use the normalized Bergman kernel 

2 

(1.2) k(z,w) = kv(z,w)p = h(Z)W)-2 

instead of fcp(z, w). 

The corresponding transformation law under G is 

(1.3) k(gz,gw)=j(g,z)   pk(z,w)j(g,w)   p. 

Observe that for a given g G G the expression nj(g,z) p" can be defined as V is 
simply connected, and the choice depends on a factor of modulus 1, so that there is 
no ambiguity in (1.3). 

There is a further property of the kernel k which will be needed. This is a subtle 
relation with the corresponding kernel kT for a subddomain of tube type VT of Z> to 
be defined below. 

Let Yr = X^=i Yj an(^ define the Cay ley transform 

c = cr = exp — iYr . 
4 

Then Ad(c4) is an involution of gc which preserves g and commutes with 9. 
Denote by gT its fixed points. Then Q

T
 = £T © pT is a Cart an decomposition, and 

the corresponding symmetric space is still Hermitian, and now of tube-type. As a 
bounded domain, it can be realized as VT = V fl p^. 

The relation to be explained is a special case of a more general result for K- 
invariant polynomials on p. Denote by V the space of real-valued polynomials on p-f, 
and by KV the subspace of iif-invariant polynomials.  Now let H — ^(p-i- x p+) be 
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the set of polynomials q(z, w) on p+ x p+ holomorphic in z and antiholomorphic in 
w, satisfying the symmetry condition 

Q(u>,z) =q(z,w) . 

If h € W, then z i—> q(z,z) defines a real-valued polynomial Q on £+, and any real- 
valued polynomial Q on p+ is obtained from a unique element q of W by this process. 
If Q is X-invariant, then q is if-invariant on p+ x £+, because the action of if on 
p+ is holomorphic and commutes with the conjugation cr, thus preserving Tt. So the 
space KV is isomorphic to ^W, the space of if-invariant elements in H. The same 
construction can be used for p^, thus giving isomorphisms between VT and HT one 
one hand and KTrpT ancj KT^T on ^ 0ther (with obvious notation). 

LEMMA 1.2. Le£ ^ e KV, and Q € KW ^fte associated element. Let qT the 
element of KT

V
T
 whose restriction to a+ is q\a , and QT the associated element in 

KTT-IT   Then, for any zT G p^ and w € p+, 

(1.4) Q{zT,w) = QT(zT,Pw) 

where P is the projection of p+ on p^ with respect to eigenspaces of the involution 
Ad(c4). 

Proof. Although not stated, the lemma is a consequence of the results obtained 
in [F-al] part III, sections V and VI. We use freely the notation from [F-al]. Let 
Er = 53j=i Ej- This is an element in p^, such that the orbit S (resp. 5T = S fl p^) 
of £^r under K (resp. KT) is the Shilov boundary of V (resp. VT). Let L (resp. 
LT) be its stabilizer in K (resp. KT). Then consider the function defined for w € p+ 
by (p(w) = Q(Er,w). This is an anti-holomorphic polynomial on p+, invariant by L. 
Hence it is a (finite) linear combination of the L-invariant polynomials {v?m('^)} and 
hence 

Q(Er,w) = QT(Er,Pw) 

(see theorem V.2.1 and lemma VI.4.5 in [F-al] Part III). Now by i^T-invariance, and 
the fact that the action of KT commutes with the projection P, we easily get 

Q(kEr,w) = QT(kEr,Pw) 

for k G KT. As the orbit of £7 under KT is the Shilov boundary ST of PT, 

Q(a,w) = QT((T,Pw) 

for a G 5T. As Q(zT,w) and QT(zT,Pw) are holomorphic in zT, they must coincide 
everywhere on DT, hence on p^.     □ 

Applied to the invariant polynomial /i2, we obtain the following formula 

(1.5) k(zT,w) = kT(zT,Pw) 

for all zT G p^ and w G p+. 
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PROPOSITION 1.3. Let zeV. Then Pz e VT. 

Proof. Consider on 0c the (standard) Hermitian inner product given by 

<X,Y >=-B(X,aeY > 

where B is as before the Killing form of g extended by C-linearity to gc and for z G p+, 
let $lz = \{z-\- (j{z)) £ p. Then the domain T> admits the following description 

V = {zep+ | ||ad3te|| < 1} 

where the norm refers to the operator norm on End(gc) (see [S] ch. II, Prop. 4.6). 
There is of course a similar description for VT, namely 

2>r = {zG^|||ad|1,rSJz||T  <  1} • 

Here the norm is the operator norm on End(£|T)5 where gr is equipped with the 
standard inner product < ., . >T coming from the Killing form BT of QQ. The 
following lemma gives the relation between the two inner products. 

LEMMA 1.4. The restriction of the inner product <  ., . > to gT is a (non-zero) 
multiple of <  ., . >T. 

The space a is a Cartan subspace for both pairs g,t and gT,tT. The set 
{XiiX2, •. •, Xr} is an orthogonal basis for both inner products, and we showed that 
B(Xj,Xj) = Ap. The same computation can be done for gT and gives BT(Xj,Xj) = 
4pT where PT = (r — l)a -f 2. Hence the two inner product are proportional on a. By 
KT invariance, they are proportional on pT, and hence on QT as QT has no compact 
factor. 

The lemma allows us to compute the operator norm on g^ by using the inner 
product <  ., . >. 

Now consider the decomposition of g with respect to Ad(c4) 

g = gT © flP),    t = tT® q(2),    p = pT 0 p(2) 

and let X = XT -f X(2) be the decomposition of an element in p. Let Y G g^. Then 

adX(y)) = [XT,Y] + [X(2),F] . 

But [XT, Y] belongs to gj* and [X(2), y] belongs to g(2\ As g^ and g^' are orthogonal, 
we get 

||admy||<||ad(X)y||. 
Assume now that X = <$t,z for some z e V. Then || ad(X)y||   < ||y|| and hence 

||ad(XT)y||<||r||. 

As Y is arbitrary in g^ we get || ad(XT)|| < 1. But the projection on p^ commutes 
with "taking the real part", so that we get || ad(3ffcPz)|| < 1, proving that Pz € VT. 
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PROPOSITION 1.5. LetaeS and assume that Pa e ST. Then a e ST. 

Proof. As KT acts transitively on ST we may assume that Pa = E = Y?j=i Ej- 
Let L be the real affine hyperplane through E which is orthogonal to the line RE. 
Then one has V fl L = {25}. Now L contains E + p^, so that no point of E + p+ 
can belong to S except E. 

2. Computation of the integrals JA LJ. The Hermitian symmetric space T> is 
a Kaehler manifold. Its (normalized) Kaehler form UJ is given by 

(2.1) u = iddlogk(z,z) . 

see ([S]). It is a closed 2-form of type (1,1). If A is a geodesic triangle (i.e. the sides 
of which are geodesic segments) in D, we may consider any smooth surface E which 
has the geodesic triangle as its boundary. As u is closed, Js u does not depend on E, 
but merely on A. Hence we denote this integral by /A CJ, and call it occasionally the 
symplectic area of the (geodesic) triangle A. 

THEOREM 2.1. Let A = (^1,^2,^3) be an (oriented) geodesic triangle in V. 
Then 

(2.2) /  UJ = <p(wi,W2,W3) = — (arg k(wi,W2) + arg k(w2,W3) + arg k(w3,wi)) . 

where arg k(z,w) is the (unique) continuous determination of the argument such that 
arg k(z, z) = 0 for any z £ T>. 

For the proof we follow [D-T] and use Stokes formula. This is better explained 
by introducing the operator dc on differential forms (see e.g. [Gol] section 2.4). Let J 
denote the complex structure operator in the tangent bundle. It induces an operator 
on the cotangent bundle (still denoted by J) defined by 

Jt(X) = Z(JX) 

which has then a natural extension to the exterior bundle. On forms of type (p, q) it 
coincides with ifo-p). The operator dc is defined by 

dcip = J-1dJip 

where cp is a differential form. Then dc = —i(d — 9), ddc = 2idd. For a holomor- 
phic function / on V, the Cauchy-Riemann equations have the following equivalent 
formulation 

dc$lf = dQf       dc9/ = -d»/. 

The computation uses appropriate potentials for the Kaehler form. Let us first consider 
the base-point o. Then set 

(2.3) p0{z) = logk(z,z) . 

PROPOSITION 2.2. The function po satisfies the following properties 

i) ddcp0 = 2UJ . 

ii) p0(o) = 0 
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iii)po is invariant under K 

iv)dcpo vanishes on tangent vectors to any geodesic through o. 

Let us only prove iv) since the other properties are obvious. Let us consider a 
geodesic t h-» 7(t) which for t = 0 passes through o. By if-invariance, we may assume 
that its tangent vector 7(0) at o is in a. Let assume first that 7(0) is regular, i.e. 
a(7(0) 7^ 0 for all restricted roots a. As a is flat, the geodesic will remain in exp a and 
7(£) is for every t ^ 0 a regular point in exp a. Now if X G a, then JX is orthogonal 
to a as 

B{JX,Y) = B{[H^X\,Y) = B(Ho, [X,Y]) = 0 

for any Yea. Hence J7W € a~L' But at the regular point m = 7(t),t ^ 0, the 
orthogonal of a in the tangent space at m is exactly the tangent space to the iiT-orbit 
at m. Hence in) implies that dpo^J'yit)) = 0 for any t G R. The case of a non regular 
geodesic is obtained by continuity. 

Now let w G V. Let g G G such that w = g(0). Then define 

(2.4) pw(z) = po(g-1z). 

Observe that the definition does not depend on the choice of g. By invariance under 
G of the Kaehler form, the function pw satisfies 

i) ddcpw — 2a; . 

ii) pw(w) = 0 

iii)pw is invariant under the stabilizer of w in G 

iv)dcpw vanishes on tangent vectors to any geodesic through w. 

Now, from (1.3) 
4 

Pw{z) = po(z) - - log {jig-1, z) 

hence 

(2.5) Po{z)-pw{z) = -\og\j{9-\z)\ = ^RlogJGr1,*) • 

We now use a specific element #, namely gw (see definition in section 1). First 
observe that as gw G G, (T{gw) = gw, and so 

gw1 = exi>(—w)K(w,w)2 exp(—a(w)). 

Hence 
gw1 exp(z) = exp(—w)K(w,w)2p+K(z1w)~1p- , 

with p+ G P+,P- G P-. As Kc normalizes P+, we get 

Jigw1^) = K(w,w)?K(z,w)-1 

and hence 
JiQw1,*) = kviw.wy^kviz^w) 

or 
j(9w ,z)p =k(w,w)-1k{z,w)2 
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Now let A be a geodesic triangle with summits 0, wi, u^- Then, by Stokes formula 

/ u) = - /  ddcpo = - / dcpo 

where nfw1,w2 denotes the geodesic arc from wi to W2. Now, thanks to (2.5) 

/ dcpQ= dcpw+ dc(-^logj(g-1,z)). 
Jlw1,W2 J/yw1,W2 J^w1,W2 & 

The first integral in the right hand-side vanishes because of property iv), and the 
second integral can be transformed using the Cauchy-Riemann equations for the holo- 
morphic function j(g~l, z), to yield 

/ UJ=  l d(-%logj(g-1,z))=-(8irgj(g-1,W2)-&rgj(g-1,w1)) 
JA        Jywl,W2    

VP P 

= arg k(w2iWi) = — arg k(wi,W2) - 

To finish the proof ot Theorem 1, we first observe that /c(o,ii;) = k(w,o) = 1, so that 
the formula for the geodesic triangle (0,^1,^2) corresponds to the statement of the 
theorem. Then we conclude by observing that both sides of the formula are invariant 
by the action of G, so that it is enough to prove it for triangle with first summit equal 
too.     D 

3. Estimate of the integrals /A u. 

THEOREM 3.1. For any geodesic triangle A 

(3.1) |/Au;|<r7r. 

REMARK. The estimate is optimal in the sense that 

sup / u = rvr,    inf /  UJ = —rvr . 
A 7A A JA 

where A runs through all geodesic triangles in V. 

The proof is divided in several steps. 

Step 1. Reduction to the tube-type case. As G is transitive on V, we may always 
assume that the first summit zi of the triangle is o. Next by using the action of if, 
we may assume that the second summit Z2 is in a+, so in particular Z2 E p^. Thanks 
to Lemma 1.2 , we loose no generality in assuming that the third summit is in pj. 

Step 2. Reduction to the Shilov boundary. Assume that we are in the tube-type 
case, and so we may drop the upper-index T. The value of the integral as expressed 
by formula (2.2) coincides (up to a constant) with the expression used in [C-0] to 
generalize the Maslov index. More precisly, in [C-0] we set 

k(wi,W2) k(w2,ws) k(w3,wi) 
c{WuW2,wi) = yT r 77 r 77 'r , 

k(W2,Wi)   k(W3,W2)   k{Wl,W3) 
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so that 

<p(wi,W2,W3) = -- arg(c(wi,W2,W3)) • 

We were interested in the limit of these expressions when the summits approach the 
Shilov boundary to form an ideal triangle with summits in 5. The estimate which we 
are looking for is obtained along the same line. First let 0 < t < 1. Then consider the 
auxiliary function ipt defined by 

<Pt{wi,W2,W3) = —(aig(k(twi,tW2) + aj:gk(tw2,tw3) + axgk(tw3,twi)) . 

As a function of wi, it is a sum of the real part of a holomorphic function and the 
real part of an anti-holomorphic function, hence it is a pluri-harmonic function. Of 
course the definition of <pt can be extended to a neighbourhood of V. The maximum 
principle for holomorphic functions with respect to the Shilov boundary S extends 
to pluri-harmonic functions. In fact, such a function (say /) is the real part of some 
holomorphic function (say F), so ef is the modulus of the holomorphic function eF, 
and ef (hence also /) reaches its maximum on S. We get 

SUP \(pt(wi,W2,W3) < SUp |¥>t(^l,W2,W3)|  • 
Wl,W2i'W3ET> <jJl€. 3^2 ,14)3 ET> 

We may apply the same argument to W2 and then W3 to get 

SUp \<Pt{w\,W2,W3)\ < SUp        |<Pt(ti;i,CJ2,W3)| 
Wi,W2,'W3E'D UJl,U>2,W3€S 

As (ft is continuous on S x S x 5, it is enough to estimate it on a dense open subset. 
Hence we may use the set Sy of triplets of mutually transverse elements (see [C-0] 
for the definition). 

Step 3. As a function oft, the function   sup   \(pt\ =      sup     \cp\ is increasing. 
SxSxS tVxtVxtV 

But for (UJI,UJ2,W3) € Sy, ^(^1,^2,^3) has a limit as t —► 1. In fact a special case of 
the results in [C-0] gives that 

— arg c(tuJi,toj2,tu3) —> ^(wij^iCJa) 
ZTT 

where ^(ci;i,a;2,^3) is the Maslov index of the triple (u;i,u;2,c*>3), an integer between 
r and —r. Hence 1^(^1,^2^3)1 < rir. As t is arbitrary in ]0,1[, the inequality 
I /A ^1 — r7r f0W0WS- The inequality is strict. It this were not the case, then the 
pluri-harmonic function (p would reach its maximum (or infimum) in the interior of 
Vs, so would be constant on D3, which is obviously not true.     D 

Actually, the proof gives a little more, namely that 

l-1 
sup I /  UJ\ = m 

where A runs through all geodesic triangles in V. 

In fact, it is enough to prove this property for tube-type domains. In this case, 
choose three points a;i,a;2»^3 mutually tranverse in S such that their Maslov index 
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equals r. Then consider for 0 < t < 1 the triangles At with summits (tui^t^^tus)- 
Clearly they satisfy 

limsup /    to = rir . 

This question will be further discussed at the end of section 4. 

4. Ideal triangles. Let £i,£2,£3 be three distinct points in the topological 
boundary dV of V, and assume there is an (infinite) geodesic with endpoints £i on 
one hand and £2 on the other, and similarly for (£2,£3) and (£3,£i). This describes an 
ideal triangle. 

If we consider two disctinct points of the boundary £1 and £2, there might exist no 
geodesic line with endpoints £1 and £2 or there might be several geodesies satisfying 
this condition. Recall that the topological boundary is a disjoint union of exactly r 
orbits under the action of G (see [S] Theorem 8.7). In fact let for 1 < k < r 

j=l 

Then Ek belongs to dV and 

where dkV = G.Ek. 

dV=[] dkV 
fc=i 

Before stating our next result we need a new definition (already introduced in the 
Jordan algebra setting in [C-0]). If two elements (z,w) of p+ satisfy h(z,w) ^ 0, we 
say that they are transverse and denote this relation by 

zTw <=> h{z,w) ^ 0 . 

Because of the properties of the kernel /i, this relation is symmetric and G-invariant. 

PROPOSITION 4.1. Two points of dV which are endpoints of some (infinite) 
geodesic belong to the same G-orbit and are transverse. 

Because of the transitivity of the action of G, we may always assume that the 
geodesic passes through the origin o, say at time 0. Similarly by using known properties 
of the stabilizer K of o, we may assume that its tangent vector 7(0) at 0 is in a specific 
Cartan subspace and even in a dominant Weyl chamber. So we may assume w.l.o.g. 
that 

r 

3=1 

with ai > 02 > ... > ar > 0. Hence the geodesic is of the form 

r 

11-> 7(£) = Y^ tanh (ajt) Ej 
3=1 

Assume that a^ > 0 but afc+i = ak+2 = ... = ar = 0. Then 

7(0 —> Tl00) = Ek    as t —> +00,    7(t) —> 7(-oo) = -Ek    as t —> -00 . 
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Clearly 7(00) belongs to the same G-orbit as y(—oo). To see the transversality relation, 
notice that by polarization of the definition of ft, one as 

r r r 

h qr sjEj, ]r tjEs) - ji(i - sjij) 

for sj,tj e C, 1 < j < r. Hence ft(7(oo),7(-oo)) = 2k ^ 0. 

By an ideal triangle of type fc, we mean an ideal triangle A with summits in dkT>. 

For A any subset of p+, set 

^y = {(ai»02,03) I flj € A,ajTak, j ^ k} . 

Now let 
r 

©3 = (D)3.Dl?3u|J(«b2?)3.. 
A;=l 

As V is star-shaped with respect to 0, the set V3 is clearly simply connected. Moreover 
the function 

(21,22,23) ' ► M^li 22)^(22, 23)/l(23, 2i) 

is continuous and does not vanish on V3. Hence the C*-valued function 

(21,22,23) 1 > k(zi,Z2)k(z2,Z3)k(zz,Zi) 

is well-defined and continous on Vs. So there is a well-defined continuous extension to 
V3 of the function ip which was used to compute the integral of the Kaehler form on 
a geodesic triangle. We will call it occasionally the triple ratio of the corresponding 
summits of the triangle. 

If A is an ideal triangle, with summits (say) (£i,£2,£3), then (^1,^2,^3) belongs 
to X>3, and hence we may extend the definition of the symplectic area /A u by 

/ cu = <p(fi>&>6)=       lim       / 
Z2,Z3) 

Notice in particular that JA LJ depends only on the summits of the ideal triangle A 
and not of the geodesic sides which are far from unique in general. 

THEOREM 4.2. Let A be an ideal triangle of type k where 1 < k < r. Then 

Lj\ < k-K . 
'/. 

The case k = r is an easy consequence of Theorem 3.1. For k < r, the proof uses 
a realization of the domain V as a Siegel domain of type III. We follow [S] except for 
minor changes of notation. 

Let k be an integer with 1 < k < r, 

x- = J2xi'YK = X>>#* = X>; • 
3=1 j=l j=l 
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Then 

is a subalgebra of g isomorphic to sfeOR) with the following relations 

[H", X*} = -2y«,    [H«, Y"} - 2^,    [X*, Y*] = 2^^    . 

Let cK = exp(zf l^c) be the "Cayley element" in Gc and let AdcK E Ad(0c) to be 

AdcK = Ad{exp(i-YK)) = exp(— adyK) . 

One has the following elementary results 

AdcK {H«) = -iX«,    AdcK {X*) = -i^,    Adc,, (Y") = y« . 

On decomposing in irreducible components the representation (adjoint action) of 
5 into 0, only factors of dimension 1 -f d with d = 0,1,2 may appear, so that the 
isotypic decomposition is (with obvious notation) 

The map Adc« is an involution of g, and hence, the space of its fixed points 0[even] = 
gl0! 0 g[2] is a Lie subalgebra. Consider its decomposition 

g[even]=go000s 

where go is the largest compact ideal, and the Qi(i > 1) are simple and non-compact 
ideals. 

Let 
&=    0   Si- 

The Lie algebra g£ is semi-simple, Hermitian of the non-compact type, of tube type, 
with Ho-element §-#*• It is stable by Q. It has a Cart an decomposition 

a? = gf n t e g£ n p = f ? © pf 

The complexification (p5)c decomposes under the action of the complex structure as 
Pc * ^ P*,+ ® P*,-* ^^ corresponding symmetric space Ci/KS can be realized a la 
Harish Chandra as a bounded open set in p* + and appears as WZ = V n P*,-|-. The 

space 0J=1Myfc is a Cartan subspace of the pair (g*,6*). This implies in particular 
that the normalized Bergman kernel kK of 2>5f is the restriction of the (normalized) 
Bergman kernel of V. 

Let now 
0f2) = (Adc«1(ef))cn0. 

It is contained in the centralizer of XK. Let us denote by G1?^ the analytic subgroup 
of G with Lie algebra g?2y 
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Further, consider the Lie algebra 

fl?i) =   ©  «< i        S" =      0      * • 

The Lie algebra gK is semi-simple, Hermitian of the non-compact type, with HQ- 

element equal to HQ — \HK. As it is 0-stable, we have 

fl« = fl« n e e g« n p = 6K 0 p« 

and the complexification pg splits as 

Pg = p£ 0 pi . 

Let G" the analytic subgroup of G with Lie algebra g*, and let PK = GK.o C p^ its 
associated symmetric space. 

Let 

c(X*) = g(adX«; 0),    U« = 0(adX«; 2),    ^ = 0(adX*; 1) 

and 
b^ = c(XK) 0 17« 0 VK 

which is a parabolic subalgebra of g. One has 

c(^lt) = flf1)®flf2). 

On the space [/^ we define an inner product by 

< MjU7 >= -B(u,0u' >, WjW7 G l!7K 

where B is the Killing form of g. The group G^x operates trivially on UK. The element 

E* = ±(YK + HK) belongs to UK and GfeyE" = Q,K is a self-adjoint homogeneous 
cone in UK for the inner product we have defined. In fact, Gfy is (the connected 
component of) the group of linear transformations of UK which preserve £lK. 

On VK there is a complex structure IQ (given by adyx 2(Ho — ^HK), and an 
alternating bilinear map 

A : VK x VK —> UK    A(v, v') = -T[V, V
7
] 

such that the bilinear form (v, v') \—> i4(v, /QV') is symmetric and fi^-positive definite 
in the sense that A(v, IQV) G n\ {0} for all v G VK, v ^ 0. The group Gj^ acts on V* 
and preserves the bilinear map A, whereas the action of Gfy) on VK commmutes with 
the complex structure IQ. 

At this point, we will drop the index K most of the time, so that we set V = 
V^^ JJ = UK and so on. The complexification V^ splits as 

Vc = V+®V- 



THE GROMOV NORM OF THE KAEHLER CLASS AND THE MASLOV INDEX 285 

and to the alternating map A we may associate the Hermitian map 

H:V+xV+-* Uc,    H(v, v') = iA(v, v') 

which is moreover Q-positive in the sense that 

H(v,v)eTl\{o}foiveV+,v^o. 

Finally, to each t € PK there is a certain non-degenerate quasi-hermitian map (= sum 
of a Hermitian map and a C-bilinear map) Ct : V+ x V+ —> Uc which definition will 
not be needed explicitly, except for t = o, in which case 

Co{w,w') = H(w,wf),    VtV'GV+ . 

PROPOSITION 4.3. The holomorphic action of cK is defined for all z £ V and 
the map (Adc^)-1^ gives an analytic isomorphism ofV on the Siegel domain of the 
third kind SK defined by 

(4.1) S* = {(u, v, t) e Uc x y+ x V* | $(M, v, t) = Su - »£t(v, u) € J2} . 

One can define an action of G on SK in such a way that (Adcc)""1^ is equivariant 
with respect to G. 

The description of the full action of G would require more notation and will not 
be needed explicitly in the sequel. We will rather give the description of the action 
of a certain subgroup, which acts transitively and by quasi-linear maps (i.e. affine on 
any fiber of TT*, where TT* : S* —► VK is the projection on the third factor). Let BK 

be the analytic subgroup of G with Lie algebra b*. It is the semi-direct product of 
the connected component (denoted by G1) of C(XK) (the centralizer of XK in g) and 
a simply connected step-two nilpotent subgroup V associated by the exponential map 
to the Lie algebra whose underlying vector space is U © V, with the Lie bracket : 

[u + v, uf + v'] = —AA(v, v') . 

The subgroup G1 is the almost direct product of G^yG^y We denote an element of 
B* by g — (a, 6,g\) with a G CT", b e V, gi € G1, Then the map <I> is equivariant under 
the action of B* in the sense that 

$(0(u, v, t) = 0i$(u, v, t),     (u, v, t) G S* 

and similarly, the map 7rK is equivariant under the action of BK in the sense that 

7rK(g(u,v,t)) =gi(t) 

for g = (a,b,gi) G G1. 

Moreover, the action of SK is transitive on 5K, the subgroup G?2x.V is transitive 
on the fiber 

(4.2) ^ = (7r«)-1(o) = {(u,v,o) | 9u-jEf(T;,!;) G Q} 
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and stabilizes the boundary point (0,0, o) which is the image of EK by the Cayley 
transform. 

Some further information on that realization is needed. 

PROPOSITION 4.4. The fiber TK is the union of all geodesies of the domain S* 
with endpoint (0,0,o). 

Proof. The image of the geodesic s »-*• 7(5) = exp sXKo is given by 

(AdcO-ic* (7(5)) = (fe2*£",O,0) 

(see [S]). It is a geodesic which passes through (iEK, 0, o) with endpoint (0,0, o). By the 
transitivity of the action of G'LyV on J7", there is a geodesic with endpoint (0,0, o) 
through any point of that fiber, so that J7* is a union of such geodesies. Now let 
z G SK. The set {(0,0,£),£ G VK is a holomorphic boundary component, and hence 
there is a unique geodesic issued from z that has its endpoint in VK. Let t be its 
endpoint. As G1 permutes the fibers of the map TT*, it is also true that there is a 
geodesic through any point of (TT*)

-1
^) with endpoint t. So if the (unique) geodesic 

from z with endpoint in VK has (0,0, o) as endpoint, then the geodesic lies in .P*, and 
hence z G PK. 

Remark. However the space J7* is not a totally geodesic subspace of SK. It has 
a structure of "quasi-symmetric" Siegel domain of type II. 

Denote by ks the Begman kernel of the domain SK. 

PROPOSITION 4.5. The restriction of the Bergman kernel ks to TK x T* is given 
by 

(4.3) ks{(u,v,o),(u',v',o))=cKdet(j-i(u-lJ)-H(v,v>)y"K 

where VK = -r(2dimUK -f dime V+) and some cK > 0. 

Proof. The subgroup G5^ is reductive with a one-dimensional center. The center 
is in fact the one-parameter subgroup generated by XK. Hence two characters on Gfy) 

agree if and only if they agree on {exp(lntadXK)}iGR. Now, 

exp(lnta,dXK)\u =t2ldu , 

and 
exp(ln£adXK)|v = tidy . 

Also recall that G'LyV operates transitively on J7*. 

Consider the two functions on FK 

(u, v, 0) H-> ks((u, v, 0), (u, v, 0)),    (u, v, 0)) H-> det^su - H(y, v))-"* 

They are both invariant under the action of V. They both transform by a character 
under the action of G%\ : the first one because of the transformation rule of the 
Bergman kernel under the (linear) action of G^ on 17c x V+, the second because of 
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the property of the function det in the Jordan algebra U. By looking to the action 
of the center of GJ^x, we see that the exponent —uK is precisely chosen so that both 
functions transform under the same character of G^. Hence the two functions coincide 
on T*. Finally the two expressions in the proposition are holomorphic in (uyv) and 
anti-holomorphic in (uf,vf), coincide when (iz,v) = {u'^v') and hence are equal. 

Denote by T — U+iSl C Uc the tube domain associated to the Jordan algebra [/, 
which we view as a subdomain of J7, and denote by Pr the projection from Uc x V+ 
on U<c. 

COROLLARY 4.6. Let ZT G T
K
 and zr e J7*. Then 

ks{zT,z') = ks{zTjPrzf) . 

Proof. It is a consequence of the formula (4.3), as one has to apply it with 
v = y' = 0. 

REMARK. In the case where k = r, this gives an independent proof of formula 
(1.5). 

We now come back to the proof of Theorem 4.2. Let A be an ideal triangle of 
type k. As we have already seen, it is possible to assume that one of the geodesic line 
is given by 

s ►-> 7(5) = expsXK(o)■= (tanhs) Ek . 

There is a second geodesic t \-* c(t) with endpoint at c(—00) = — Ek. In order to 
estimate the symplectic area of A, it suffices to estimate the symplectic area of the 
geodesic triangle with summits 7(51),7(52),c(t) independently of si,S2 and t. Now 
we use the Cayley transform : the corresponding summits say r(si),r(s2) and C(i) 
are all three in the fiber J7* as can be seen from Proposition 4.4, and the two first are 
in the domain TK. Hence from Corollary 4.6, we see that for the computation of the 
symplectic area of the geodesic triangle (which can be computed through the Bergman 
kernel) we may replace the third point C(i) by its projection on TK. In other words, 
we could assume from the beginning that the ideal triangle had its summits in the 
disc PJ. But now we use the estimate for the symplectic area of geodesic triangles in 
a tube-type domain of rank k to conclude. O 

We now want to characterize the ideal triangles of maximal symplectic area. This 
is related to the notion of a holomorphic totally geodesic map from a hermitian sym- 
metric space into another, which we now recall, following again [S]. Let MyM' be two 
Hermitian symmetric spaces of the non-compact type, G, G' their groups of biholo- 
morphic diffeomorphisms, g, g' their Lie algebras. Let p : M —> M' be a holomorphic 
totally geodesic map. Fix o G M and choose o' = p(o) as origin in M'. To the choice 
of these origins correspond Cart an decompositions 

0 = 6 © p    0' = V 0 p' 

and corresponding ilo-elements, say HQ and H'0. Then there always exists a homo- 
morphism p : 0 —> $ such that the following condition is satisfied : 

{Hi) p{[Ha,X\) = [H^p{X)\ 
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for all X € g. Moreover, the complex extension of p induces a C-linear map from p+ 
into p^_ which maps V into W and coincides with p : M —> Mf in the Harish Chandra 
realization of the Hermitian symmetric spaces M and Mr as bounded domains. 

We will be interested in holomorphic totally geodesic imbeddings of the complex 
unit disc in V. So set V = {z £ C | \z\ < 1} and let 

8 = *u(l,l)=n£    1 LaeR./JeC 

Identify the complexification gc with $1(2, C) and let E = f j G p+. Then there 

exists a choice of a Cartan subalgebra in £ and an integer k, 1 < k < r such that 
p(z) = ZYJJ^IEJ. The imbedding will be called tight ii k = r. It corresponds to 
a diagonal imbedding of the unit disc into the r-polydisc associated to any maximal 
(real) flat in the (Riemannian) symmetric space V. 

Let A be any ideal triangle in P, with summits {cri, 0-2, as}. Its image A = p(A) 
under a tight (holomorphic totally geodesic) imbedding p is an ideal triangle with 
summits {(p(cri), p(a2), piers)}. It satisfies 

/. 
LJ = ibrTT, 

A 

the sign depending on the orientation of A. In fact, by equivariance, it is enough to 
make the computation for the case where <JI = +1,0-2 = — 1 and as = —i (for ideal 
triangles of positive orientation). Using previous notation, we get p(cri) = Er, p{<J2) = 
—Er and p(crs) = —iEr. The computation of the triple ratio is now obvious (see also 
section 5 in [C-0]). 

Needless to say, any ideal triangle A7 with same summits as A will also satisfy 
J to = dbrTr, as we observed earlier that the symplectic area only depends of the 
summits of the triangle. There is a converse statement. 

THEOREM 4.7. Let cri,<j2,cr3 e dT> be three summits of an ideal triangle A 
such that fAu) = rir. Then there exists a unique tight holomorphic totally geodesic 

imbedding p : V —» V that 

ax = p(+l),    0-2 = p(-l),    crs = p(-i) . 

The image p(V) is the set of fixed points in V of the stabilizer in Hol(V) of the three 
summits. 

The proof will be divided in several steps, with somme intermediate lemmas 
needed for the proof. 

Step 1. Reduction to tube-type domains. 

Clearly, by Theorem 4.2, A must be of type r, so that the summits of A are points 
of the Shilov boundary S. Using the action of G, we may assume that the endpoints 
of one side of A are Er and —Er. The third summit, say as is a point of the Shilov 
boundary S. We make free use of notation in section 1. Recall in particular that P 
denotes the projection of p+ on pj. By Proposition (1.3), Pas belongs to VT. The 
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points {Er, —Er
1P(as)} are mutually tranverse in p^, as can be deduced from (1.5) 

and so, although they are not necessarily the summits of some ideal triangle of £>T, 
the "triple ratio" (pT(-Er, Er, Pcrs) is well-defined and equal to <p(Er, -Er, as) — rn, 
as a consequence of formula (1.5), formula (2.2) and its extension to ideal triangles. 
Hence we are reduced to a tube-type situation, for triples of the form (e, —e, z), where 
e is the unit of the Jordan algebra and z G V, z transverse to both e and — e. 

Step 2. Extremal values of the triple ratio in tube-type domains. 

As we did in [C-0], the easiest formulation of the results in the tube-type case 
is by use of the Jordan algebra formalism. So let U be a simple Euclidean Jordan 
algebra. The associated bounded domain V can be described as 

V = {z G Uc | \z\ < 1} , 

where | | stands for the spectral norm on Uc- The Bergman kernel in this context is 
(up to a positive constant which we ignore) given by 1 

kv(z, w) = Det(Id -2zDw + P(z)P(w))-1    . 

Specialize this formula to the case where w = te, where t e] — 1, +1[, and z G V. Then 

K(z, te) = Det(Id -2tL(z) + ^P^))"1 = Det(P(e - tz))-1 . 

For the normalized Bergman kernel, we have an even simpler formula. In this case 
p = ^r is an integer, and DetP(a;) = (detx)~? (see [F-K]), and hence 

(4.3) k(z,te) = det{e-tz)-1 

LEMMA 4.8. Let z G V be transverse to both e and — e. The triple ratio for the 
triangle {—e,e,z} is well-defined and has value 

2argdet(e + z)(e — z)-1 . 

Proof. As z is transverse to e, the expression (e + z)(e — z)-1 is well-defined, 
and (up to a missing factor i) is nothing but the Cayley transform of z. Moreover 
the known properties of the Cayley transform (see [F-K]) show that (e + z)(e — z)-1 

belongs to 
R = Rn = n + iUcUc 

which is of course JTQ, but the use of the right "half-plane" will make easier the 
formulation of the results to be explained now. Moreover, the point —e is mapped to 
0. As the transversality condition for two points z, w in R means det(z + w) ^ 0, the 
point (e + z)(e — z)"1 belongs to 

n = Rnug 

1The "P" used in this formula is the traditional notation for the quadratic map associated to 
the Jordan algebra structure, not to be confused with the projection of p-f on pT. 
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the set of invertible elements in the closure of R. Now if x € Ct and y £ U, then x 4- iy 
is invertible, so that R c 11, and one can easily see that 71 with the induced topology 
from Uc is simply connected. The function det z doesn't vanish on 1Z, so that one can 
define a continous determination of the argument of this function, and it is unique is 
we demand that argdetx = 0 for x G fi. We denote by argdet this determination. If 
g G Cx(fi)o and z G t/c, then 

det(g.z) =x(#)detz 

where x is a real character of G(0)o. It implies that x(p) > 0? and so the function 
argdet is invariant by G(£2)o. 

LEMMA 4.9. Let z = x + iy Gil. Then 

-r- < argdet(^) < r- . 

Proof. Assume first that z = x + iy belongs to the open right half-space R. As 
x G Q, we may write 

x + iy = P(x2)(e + iP(x~2)y) 

so that argdet(x + zy) = argdet(e-H2/0 with I/7 £ f/. Now by the spectral theorem in 
U, there is a Jordan frame {cj}i<j<r and real numbers Xj such that yf = X^J=i ^ici- 
But then for any £, 0 < £ < 1, 

r 

det(e + %') = H^1 + ^) 
i=i 

so that 
r 

arg det(e 4- iy7) = ^ arg(l -I- iAj) 
.7=1 

from which the (strict) inequality follows easily for all z € R. The lemma follows by 
continuity. 

LEMMA 4.10. Let x + iy e IZ, and assume that arg det(#4-22/) = rf. Then x = 0 
and y G fi. 

Proof. First let (^)t€E be a family of elements of U and assume that 

argdet(e4-iyt) —> r- 

as £ —» H-oo. Let /Xj(t),l < j < r be the eigenvalues (repeated with multiplicities) 
of yt. Then arg det(e + iyt) = Z)j=i arg(l + %'(*))• So the limit condition forces 
fj>j(i) —> 4-oo for every j, 1 < j < r, hence /ij(t) > 0 for £ large enough. Hence yt G fi 
for £ large enough. 

Now let z = x + iy GlZ. Let t > 0. As x G ft, the element rr 4- je is in O, and so 
we can write 

x 4- -e + iy = P((x 4- -e)i)(e 4- 2P((a; + -e)~^)y) 
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Set yt = P{(x + ie)-i)y. Then 

arg det(e + iyt) = arg det(a; + ~e + iy) —> r— 

as t —> oo. Prom the result just obtained, this forces yt G ^ for t large enough, but 
this clearly implies y G 0. But now, this implies that 

argdet(P(y_2)x-f ze) = r— . 

There is a Jordan frame (cj)i<j<r such that P{y~z)x = ^j=i^Jci' with Xj > 0. 
Then 

r r 

argdet(P(y"2 )x + ie) = argdet(^J(A + i)cj) = Y^ arg(A:/ + i) 

and this equals r^ only if Aj = 0 for every j, 1 < j < r, so that P(y~2)x = 0, and 
hence x = 0. □ 

Step 3. Proof of the existence of a tight imbedding. 

Lemma 4.10 is the key to the proof of the existence of p. In fact, set z = Pas- 
The triple ratio for {e, — e, z} is rir. Hence, Lemma 4.8. and Lemma 4.10 imply, after 
inverse Cayley tranform, that the point z has to be in ST, the Shilov boundary of 
£>T and the triple ratio for {e, -e, z} is nothing but (TT times) the Maslov index of 
{e, —e, z} in ST as defined in [C-0]. This Maslov index has value r only in the case 
where the triple {e, —e,z} is conjugate to the triple {e, —e, —ie}. For this particular 
triple, the embedding of the unit disc V in VT given by w \—> we is clearly tight and 
satisfies the desired relations. By conjugacy, this is also true for the triple {e, — e, z). 
Now, as z = P<T3 belongs to ST', Proposition 1.5 implies that Pa^ = 0-3, and this shows 
that the summits of the ideal triangle we started with are the image of 1, — 1, — i G V 
under a tight imbedding of V in V. 

Step 4. Some lemmas for the Siegel domain realization. 

To prove the uniqueness statement, it clearly suffices to characterize the image of 
the tight embedding as the set of fixed points of the stabilizer of the three summits. 
It is easier to use the realization of the domain as a Siegel domain of type II. We first 
set notation (following more or less the setting of section 4) and prove a few lemmas. 

So, let U be a Euclidean Jordan algebra, with positive cone fi, and let V be a 
complex vector space. Let H : V x V —► Uc be a Hermitian form which is f2-positive 
in the sense that H(v, v) G Q \ {0} for all v G V, v ^ 0. Consider the associated Siegel 
domain of type II 

S = {(u^v) GUcxV\Qu- H(V,V) G n}    . 

The group Aff (S) of holomorphic affine transformations of S consists of all transfor- 
mations of the form 

u\—>   gu + 2iH(b, Iv) + iff (6, b) + a 
v 1—►    Iv + b 
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where a £ U, b G V, g G £?(£}), / G GL(Vr), and ^, / satisfy the relation 

gH(v, v') = H(lv, lvr)       Vu, t;7 G V. 

Let 
G0 = {(#,/) G G(O) x GL(F) | gH{v,vr) = H(lvjv')yv,v' G V} 

and let go be the Lie algebra of the group Go • 

Now we take into account that S is a symmetric domain (for explicit necessary 
and sufficient conditions for such a Siegel domain of type II see [S] ch. V), which 
moreover is assumed to be irreducible. Let Hol(S) be the group of all holomorphic 
diffeomorphisms of S. The group Aff (5) is a maximal parabolic subgroup of Hol(S), 
and Go is its Levi component. 

LEMMA 4.11. The representation of go on U (resp. V) are irreducible as real 
representations. 

For a proof, see [S] ch III, Prop. 4.4. 

The space V has a natural inner product defined by 

h(v,v) =< H{v,v),e > 

where <, > is the standard Eulidean inner product on U. To these data is associated 
a self adjoint representation $ of the Euclidean Jordan algebra on V, defined by the 
formula 

Vv G V,        h(v,$(u)v) =<H{v,v),u >  . 

For each u G U, the map $(w) is self-adjoint and satisfies 

$(uu') = -($0)$(y) 4- $(u')$(u)) 

Notice also the following formula 

H{$(u)v,<l>(u)v') = P(u)(H(v,v')) 

for all u € U,v,vf £ V. For u G C/x, P(u) belongs to the group G(fi) (see [F-K] Prop. 
III.2.2) and hence the couple (P(u),$(u)) belongs to Go- 

LEMMA 4.12. Let I G GL(V,C). The couple (Id,/) belongs to AS(S) if and only 
if I G U(V, ft) and I commutes to the representation $. 

If (Id, I) is an element of Aff (<S), then for all v, v' G V we have 

H(v,vr)=H(lv,lv') 

By taking the inner product with the neutral element e of [/", this gives the fact that 
I is unitary. Now for u G £7, we have 

H(Jb{u)v^{u)v') = P(u)(H{v,vr)) = P(u){H{lv,lvr)) = H^ujlv^^lv') . 

Hence, by taking the inner product with the unit e 

h(§(u2)v,v') = ft($(uH$(uy) = h($(u)lv,$(u)lv') = ft(Z-1$(M2)Zv,i;/), 
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which shows that I comminutes to $>(u2). As u was arbitrary and as the set of squares 
generate [/, the element / does commute to the representation $. The proof of the 
converse statement is similar. 

LEMMA   4.13.       The  group  generated  by  {(P(x),$(x)),x    E    Ux}   and 
{(Id,/) | / G U(V,/i) | / commutes to $} is an open subgroup ofGo- 

The group generated by {P(x) \ x G Ux} is an open subgroup of G(Q) (see 
[Sp], where it is called the inner structure group of U and shown to be the neutral 
component for the Zariski topology of the structure group of U ). The statement now 
follows from this remark and Lemma 4.12. 

Step 5. Determination of the fixed points of the stabilizer of the three summits 

As a consequence of what we proved in step 3, we may assume, after a Cay ley 
transform, that the three summits of the triangle are "the point at infinity", the point 
(0,0) and the point (e,0). The stabilizer of the the point at infinity in the group 
Hol(S) is the group Aff(5). The stabilizer in Aff(5) of (0,0) is the subgroup Go, and 
the stabilizer of (e, 0) in Go is easy to determine. It is the subgroup 

C = {(Jfe, 0 G Aut(C/) x U(V, h) | kH(v, v') = H(lv, lvr),    Vv, V G V} . 

which acts linearly in U x V. 

LEMMA 4.14. The fixed points ofCinUcxV are 

{(Ce,0)|<GC}. 

Obviously, the points of the form (£e, 0) are fixed under G. Conversely, assume 
that (u, v) G Uc x V is a fixed point under the action of G. For x G U satisfying x2 = e, 
the element (P(x), $(x)) is in G. Hence for t = $lu or t = Qu, we have P(x)t = t for 
all x G U such that x2 = e. Now assume t is not a multiple of the unit e. This means 
that there exists a Jordan frame {ci}i<i<r such that t = Y^i=i tjCj, with at least one 
pair (j, k) with j ^ k such that tj ^ tk- By [F-K], prop. IV. 1.4, there exists an element 
Wj,k € V(cj+Ck, 1) such that w?k = Cj +-Cfc and P(WJ^)CJ = Ck,P{wj,k)ck = Cj. Now 
let 

™3>k = Yl Ci + w3>k ' 

Then 

w?k = e, P(wjik)ci = a for i ^ j^k, P{w^k){cj) = ck, Piutj^cu) = Cj 

and hence P(wj,k)t ^ t. This forces t to be a multiple of e, and hence there exists 
£ G C such that u = (e. Now for v, we get 

Vx G U | x2 = e,        <&(x)v = v . 

Now any idempotent element c in [/, one has (e — 2c)2 = (—e-}-2c)2 = e, so that c 
can be written as c = j(—e + 2c) — |(e —2c), and hence $(c)i; = v for any idempotent, 
so that $(x)v = v for any x £ U. Hence the space W of fixed points of G in V is 
stable by all ^(a;),x G f7. By Lemma 4.13, it is stable by an open subgroup of GQ. 

By Lemma 4.11, it means that either W = {0} or W = V. But the map x h-» $(x) is 
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injective (as U is simple), and hence W = V forces U = R. But then the commutant 
of $ is all U(V) and so W = V forces VF = V = {0}. In any case, we get W = {0}. 
Hence v = 0 and so the fixed points are all of the prescribed form. 

So, the fixed points in S of the stabillizer C of the three summits is the set 

{(Ce,0),SC>0}. 

The last statement of Theorem 4.7 follows by inverse Cay ley transform. So the image 
p(T>) is well-determined. It implies the uniqueness of p up to a right composition by an 
element of Hol(V) ~ PSU{1,1). But the stabilizer in PSU(l, 1) of the three points 
1, — 1, — i reduces to the identity. The uniqueness statement follows. 

5. The Gromov norm of the Kaehler class of a compact locally sym- 
metric Hermitian manifold. Let us recall the definition of the Gromov norm of a 
singular cohomology class. Let X be a topological space and c a singular cochain on 
X. Then define 

||c||oo=8Up{|c(A)|} 
A 

where A runs through all singular simplices in X (the quantity may be +oo). If a. is 
a singular cohomology class on X, then define the Gromov norm of a to be 

Halloo =inf{||c||oo} 
c 

where c runs through all singular cocycles representing a (it is in fact a pseudo-norm). 

Let X be a compact locally symmetric Hermitian manifold with V as universal 
covering. Then X = T>/T where F is a certain discrete, torsion-free, co-compact 
subgroup of G. The Kaehler form u induces a Kaehler form cux on X, and hence a 
real cohomology class [u>]x £ H2(X,R). 

THEOREM 5.1. Let X andco as before. Then 

|IMx||oo = r7r . 

COROLLARY 5.2. Let S be a Riemann surface of genus g > 1, X and u as above, 
and f : S —> X be a continuous map. then 

I. f*ux |<4r(0-l)7r . 
5 

The proof of the theorem and of the Corollary is the same as in [D-T]. The 
corollary is an easy consequence of the inequality ||[u;]x||oo < rn and an estimate 
of the (dual) Gromov norm of the fundamental homology class of S (see [Gr]). To 
estimate the norm, we can first use the technique of "straightification" and properties 
of the Gromov norm (see [Gr]). It follows that 

MxHoo <SUp |   /   CJ 
A       JA 
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where A runs through all geodesic triangles in P, so that the inequality follows from 
Theorem 3.1. To prove that ||[a;]||oo = rn, it is sufficient by the proportionality 
principle ([Gr]) to construct an example of a discrete torsion-free, co-compact subgroup 
of G for which the equality can be proven. The construction of such a subgroup T 
follows the construction given in [Bo]. At the same time, one constructs a holomorphic 
totally geodesic map p from the unit disc into P which is tight in our terminology, 
and a discrete co-compact, torsion-free subgroup F of P5I7(1,1) such that p gives rise 
to a map p (holomorphic, totally geodesic) from S = VjT into D/F. By computing 
Js p*u) one sees that the maximum is obtained in the corollary, which in turn implies 
that ||[u;]x||oo = rir. Details are left to the reader. 
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