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FINITE MORPHISMS BETWEEN FANO HYPERSURFACES * 

INSONG CHOEt 

Abstract.    Let X and X be smooth Fano hypersurfaces in Pn+1, n > 3.   We show that if 
deg(X) < 2deg(X) then there are no nontrivial finite morphisms / : X —*• X. 

1. Introduction. For a complex projective manifold X, the index of X is defined 
by the largest positive integer r such that there is a line bundle L on X with Kx = rL. 
For the morphisms between Fano manifolds, T. Peternell made the following 

CONJECTURE([P]). Let X and X be Fano manifolds and assume 62 {X) = 1. 
Suppose there is a surjective holomorphic map / : X —► X. Then index(X) < 
index(X). 

This is a generalization of the following theorem of Lazarsfeld's and its quadric ana- 
logue. 

THEOREM 1.1. ([La]) Let X be a compact manifold other than a point and let 
f : Pn —» X be a surjective morphism. Then X = Pn. 

THEOREM 1.2. ([CS], [PS]) LetQ be a smooth quadric hypersurface of dimension 
at least 3, Y a smooth variety and f : Q —> Y a finite surjective morphism. Then 
either f is an isomorphism or Y = Pn. 

In this paper, we are concerned with the related question for Fano hypersurfaces. 
The above conjecture can be rephrased as follows: 

QUESTION: Let X and X be smooth Fano hypersurfaces in Pn+1 of degree d, d 
respectively and / : X —* X a finite morphism. Is then d < d? 

Note that the order is reversed since Kx = Ox(d — n — 2) and d < n + 1. In view of 
above two theorems, the answer is Yes if either d or d is less than 3. For d,d>3, the 
answer is also Yes. We prove the following stronger result. 

MAIN THEOREM. Let X and X be smooth Fano hypersurfaces in Pn+1, n > 3, of 
degree d, d respectively, d, d>3. Suppose that there is a finite morphism f : X —» X. 
Then either 2d < d or f is an isomorphism possibly except for the case (n = 4, d = 5 
and d = 3/ Also, the degree of f is bounded by some number which is determined by 
d andn, (see (I) of Lemma 3.1, 3.2 and 3.3 for the explicit expression of the bound). 

Obviously, there exist nontrivial finite morphisms / : X —► X for some pair of 
hypersurfaces X and X, if d divides d. In this sense, the conclusion 2d < d is sharp. 
The exceptional case (n = 4, d = 5 and d = 3) lies on a sharp boundary for which 
our computational method cannot be applied. We believe that there are no finite 
morphisms in this case, but its proof seems to require another line of argument. 

For general hypersurfaces, E. Amerik observed the following 

THEOREM 1.3. ([A], Corollary 2.2) Let X be a general hypersurface in Pn+1 

which is not a quadric or a 2-dimensional cubic, X a smooth projective variety (not a 
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point) and f : X —> X a surjective morphism. Then the Hodge numbers of X coincide 
either with that of X or with that ofFn. 

Combined with this, our result has the following 

COROLLARY_1.1. Let X be a general hypersurface in Pn+1, n > 3, of degree 
d>3}f:X-^Xa finite morphism to any hypersurface X in Pn+1

; other than Fn. 
Then f is an isomorphism. 

Proof Two hypersurfaces of different degree have different n-th Betti numbers 
bn except for the pair Pn and the quadric Qn (see [Le], pp. 193-194). Prom above 
Theorem 1.3, we have deg(X) = deg(X). If d > n + 2, then by Hurwitz formula 

f is an isomorphism. If d < n + 2, /is also an isomorphism by the Main Theorem. 
D 

The main tool for our proof is the Hurwitz-type formula devised by E. Amerik, M. 
Rovinsky, and A. Van de Ven ([ARV]). Recently A. Beauville used this to prove that a 
smooth projective hypersurface of dimension greater than 2 admits no endomorphisms 
of degree greater than 1 ([B]). He applied the Hurwitz-type formula to maps of 
arbitrarily large degree by using iteration of given endomorphism. Here we apply the 
same formula with a direct computation to arbitrary finite morphisms. 

In section 2, the Hurwitz-type formula is discussed. It will be presented in an 
explicit form adapted to our case. The section 3 is devoted to the proof of Main 
Theorem. The main tools is the Hurwitz-type formula , But we take care of some 
boundary cases by different methods, because the Hurwitz-type formula no longer 
works for them. 

2. Hurwitz-type formula . Let X and X be smooth hypersurfaces in Pn+1 of 
degree d and d, respectively. We assume n > 3. Then Pic(X) = Pic(X) = Z and 
they are generated by the hyperplane section classes Hx and iJ^-, respectively. Then 
the following Hurwitz type inequality holds. 

LEMMA 2.1. ([ARV], [B]) Let f : X —> X be a finite map between hypersurfaces 
X and X as above, and let m be the number satisfying f*H^ = rnHx-  Then 

-~cn{n\{2)) < -Lc^pm)). (2-1) 

Proof. Note that fipTl+1(2) is globally generated, hence so is SI1- (2). By [ARV] 
Corollary 1.2, 

^/.Cn(^(2))<Cn(^(2m)). 

Hn d 
The inequality (2.1) follows from degf = mn—^- = mn-.     D 

Hx d 

To compute both sides in (2.1) explicitly, we use the Euler sequence and the 
conormal sequence twisted by 2mHx' 

0 -> Q1
n+1(2m)\x -> ((2m - l)Hx)n+2 -+ 2mHx -> 0, 

0 -> (2m - d)Hx -> QpTl+i(2m)|x -► ^1x(2m) -> 0. 
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Prom these we get 

c(ftJr(2m)) = (1 + (2m - l)#x)n+2(l + 2m#x)~1(l + (2m - djffx)"1. 

By using residue theorem, for d ^ 2m we get 

!                2m(d - 1)"+2 - d(2m - 1)"+2 + (-l)"(d - 2m) 
Cn(fix(2m)) = 2m(d_2m) • (2-2) 

In particular, 

c m1 r^ - 2(rf-ir2-d+(-ir(d-2) 
Cn(^(2))- 2(d_2) (2.3) 

For d = 2m,we have 

Mnj^p-t**'*1*'-'>•" +<-'>•■ (2.4) 

For convenience, we will use the following bounds: 

LEMMA 2.2.    For any hypersurface X in Pn+1 of degree d and for a positive 
integer m, we have 

cn{n1
x(2m))  <   { 

-——7- '—r-      for   d<2m 
2m(2m - d) 

(n-f 2)(d-l)n+1    for    d = 2m (2.5) 
(dr ^^ for   <i>2m 

a — 2m 

anrf 

cn(n1
x(2))>d{d-l)n. (2.6) 

Proo/. (2.5) is direct from (2.2) and (2.4). Since (d - I)2 = d(d - 2) + 1, we get 
the bound (2.6) from (2.3).     D 

3. Proof of Main Theorem. The basic strategy of proof is the repeated ap- 
plication of the Hurwitz-type inequality (2.1). Frequently we will invoke the bounds 
(2.5) and (2.6). Throughout this section we work under the following Situation (*): 

• X and X are smooth Fano hypersurfaces in P714"1 (n > 3) of degree d and d respec- 
tively (3<d,d<n + l). 
• / : X —> X is a finite morphism. 
• Hx and Hx are the hyperplane section classes generating Pic(X), Pic(X) respec- 
tively. 
• m is the number satisfying f*Hx — mHx, and so deg(f) = mnd/d.  From (2.1) 

and (2.6), we get 

(d-l)"<^5cB(^(2m)), (3.1) 

where the righthand side has upper bound given by the inequality (2.5). 
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We divide the degree range into several cases and investigate each of them. First 
we prove 

LEMMA 3.1.  Under the situation (*), assume d>S.  Then 
/n 2(d-l) 

(II) if d <2d— 1, then f is an isomorphism (hence d = d) and 
(III) ifd = 2d- 1, then m = 2. 

Proof of (I),   (i) First suppose m > d. Then from (2.5) and (3.1), 

4n     _2_   d(2m-ir+2      J_   (2m)"+2 = ^ 
mnd    2m(2m-d)       mn       2m2 

which is impossible. 
(ii) Next if m < d < 2m, then 

4n        1      rf(2m -1)"+2 ^ 2n+1 <     _     ^ 2n+1 <    ^ 2n+1^ 
mnd 2m _ v        / _ 

This is also impossible, 
(hi) If d = 2m, then 

^ < ^d •(n + 2)(rf ' 1)ra+1 < ^ +22^r+1 = (" + 2> • 2n' 

which is impossible. 
From (i), (ii) and (hi), we get 2m < d. 

Now suppose m > —= . Then from (2.5) and (3.1) again, 
d — 1 

(d-1)» < J_. (rf-1)n+2 < ffLi)». ^-1)2 

^ ;        mnd      d-2m    -K   m   ) d 

and so 

2,<{=iL^)r<(^i)!< ,_!,„, 
a — 1 a 

which is a contradiction.     D 

Proof of (II) and (III). Suppose d < 2d. From (I), we have d > 2m and 

(d - ir < (d-1)w+2 < (2rf~-2)n. (rf-1)2 

mnrf      ~       mn d      ' 

m (d-1)2 

hence (-^-)n < -—-r-^- < d — 1 < n, which shows m < 2. 

Furthermore, if d < 2d — 1 and m = 2 (hence d > 4), then 

Hence for d > 7, 

(^<(^ir<^-^^. (3.2) 

^d-V d6(d-4) 
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and this is a contradiction. Also for d = 5 or 6, the second inequality of (3.2) with 
d>5 yields contradiction. Therefore, m = 1 for d < 2d-1. Since deg(f) — mnd/d < 
2, / is an isomorphism, which shows (II). 

For d = 2d — 1, it is shown that m < 2. But if m = 1 then / is an isomorphism 
as before, which is impossible. This proves (III).     □ 

Next we treat the case d = 4.   The computation is basically the same, but it 
requires some care. 

LEMMA 3.2.  Under the situation (*), assume d = 4. Then 
(I) 2m < d and 
(II) if d < 2d = 8, then f is an isomorphism (hence d—4), except the possibility 
(d = 4, d — 7 and m = 2). 

Proof,   (i) First suppose |m > d Then from (2.5) and (3.1), 

3n<    1      d(2m-l)"+* <   1     (2m)"+2
=3  2n 

mnd    2m(2m - d)      mn   2m * |m ' 

which is impossible. 
4 
3 (ii) Next if |m < d < 2m, then 

3n <    1    . ^(2m^   l)^2 ^^ m ^ 2n+1     3^ ^ 2n+1 ^ T_K 

mnd 2m 4 ^   v / v     / 

This is impossible for n > 6.  Now for n < 6, we have d < 6 from Fano condition. 
Hence there are 4 possible cases within our degree bounds: 
(m = 2, d = 3), (m = 3, d == 5), (m = 4, d - 6) and (m - 4, d = 7). 
But all these yield contradictions to the first inequality of (3.3). 
(iii) If d = 2m, then 

^ < ^5 •(n + 2)(d - 1)tt+1 < ^^'m^""1 ^ (n + 2) • 2n'        (3'4) 

which is impossible for n > 5. For n < 5, there is only one possibility: {m — 2,d — 4). 
But this also yields a contradiction to the first inequality of (3,4). 
From (i), (ii) and (iii), we get 2m < d, which shows (I). 

Now to prove (II), assume d < 2d = 8,  Since 2m < d, we get m < 3,  But if 
m = 3, then d = 7 and deg{f) — mnd/d is a non-integer, which is absurd, 
If m = 2, then there are three possibilities: d ^ 5, 6 or 7. But the former two cases 
(d = 5 or 6) yield contradictions to the inequality 

r < J_. (^-i)n+2 

mn<i      d - 2m 

Hence we conclude m = 1, except for the possibility (m = 2, d — 7). Since deg(f) — 
mndjd < 2, / should be an isomorphism.     D 

Now for d = 3, we prove the following 

LEMMA 3.3.  Under the situation (*), assume d = 3. Then 
(I) m < 3d and 
(II) ifd < 2d = 6; then f is an isomorphism, except the possibility (n = 4, d = 5, d = 3 
and m = 3). 
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Proof.   To show (I), suppose d < |m. Then from (2.1), (2.3) and (2.5), we get 

1   2-2n+2-3 + (-l)n        1      d(2m - l)n+2     _!_   (2m)n+2 

3 ' 2 mnd '  2m(2m - d)       mn ' 2m • fra' 

1 3 
Hence ~(2n+2 - 2) < — • 2n+2, which is a contradiction. 

Now to show (II), assume d < 2d = 6. 
(i) d = 3: If m > 2, then d < 2m and 

2n     __]_   d(2m-l)"+2 

mnc/     2m(2m-3) ' 

Hence 

2m       _3       (2m-I)2       2m - 1 3 
4m-1; 2m(2m-3)   ^    2m    ; 

which is a contradiction. Hence m = 1 and / is an isomorphism as before. 
(ii) d = 4: Since deg(f) = mnd/d is an integer, m is a multiple of 3 and 2m > d. Now 
we have 

1 071+2 _ 9 r ic»(nje(2))>2-_2>f-2... 

Hence from (2.1) and (2.5), 

5   2n<   1     (2m-ir+2 

4 m71    2m(2m - 4) 

and 

r_2m_r-3     4     (2m-I)2       2m-1 3 
4m-r 5   2m(2m-4)   ^    2m    ; 

which is a contradiction. This proves d ^ 4. 
(iii) d = 5: As before m is a multiple of 3 and 2m > d. Now we have 

5 ^       1     (2m -1)*+2 

4 mn    2m(2m-5) ^ ' ; 

and 

_2m_      3      4      (2m-I)2       2m - 3 3 

4m -1; 5    2m(2m-5)   K    2m    ) 

for m > 6 and thus m = 3. 
Putting m = 3 in (3.5), we have (6/5)n < 10/3, hence n < 6. It can be checked 

that the remaining cases {d = 3, d = 5, m = 3 and 5 < n < 6) are also impossible by 
using the full inequality (2.1), (2.2) and (2.3). Therefore dy^b. Note that this line of 
arguments do not work for (d — 3, d = 5, m = 3 and n = 4).     D 

Proof of Main Theorem. By (I) of Lemma 3.1, 3.2 and 3.3, deg(f) = mnd/d is 
bounded by some number which is determined by d and n. By (II), (III) of Lemma 
3.1 and (II) of Lemma 3.2 and 3.3, if d < 2d — 1 then / is an isomorphism. Also it is 
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shown that if d = 2d— 1, then m = 2. The following lemma rules out this possibility 
and the Main Theorem is proved.     D 

LEMMA 3.4. Let X and X be smooth hypersurfaces in Pn+1, n > 3, of degree d, 
d respectively, where d>2. Let f : X —> X be a finite morphism and m the number 
satisfying f*H^ = mHx. Then md — d ^ 1. 

Proof. (This is a repetition of C. Schuhmann's argument in [Sch], which concerned 
about the morphisms from cubic hypersurf ace to the quadric with m = 2.) 
Suppose there is a morphism / with md — d = l. In homogeneous coordinates, / can 
be written as 

/ = {<f>o(xo>'- jEn+i)*--- ,(j)n+1(xor" ,a;n+i))» 

where ^'s are homogeneous polynomials of degree m. Let F (resp. F) be the ho- 
mogeneous polynomial of degree d (resp. d) defining X (resp. X) in Pn+1. Since 
Fof = 0 on X, we have either F(<j)o, • • • , </>n+i) = 0 or F(</>o, • • • , 0n+i) = FL, where 
L is a linear polynomial. 
If JP(</>O, • • • , 0n+i) == 0? then by restricting to a generic hyperplane, we have a non- 
constant morphism (0o, • • • ,</>n+i) : Pn -^ ^. This contradicts Lazarsfeld's theorem 
(Theorem 1.1). 

Hence we have F^o,-*' ,0n+i) = -F^- Let H be the hyperplane defined by 
L. We claim that 0o, • • • ,</>n+i have no common zeroes on H. This is obvious for 
p e X HH. Now suppose p e H\X HH and <^(p) = 0, for each i. Then 

r\ T- 

Since F(p) ^ 0, ——(p) = 0 for each j, which is a contradiction. 
OXj 

Therefore 0o, • • • , 0n+i have no common zeroes on H and (0o, • • • , 0n+i) defines a 
morphism iJ —> X. It is a nonconstant morphism since its restriction on H fl X is 
just flnnx- This again contradicts Lazarsfeld's theorem.     D 

Added in Proof After this paper was written, D. Sheppard announced his results 
for the same problem in his thesis (see [Shi], [Sh2]). Basically he used the same 
method as ours, but he also considered the case where the source hyper surf ace is al- 
lowed to be singular. Consequently, he could get a complete picture about morphisms 
between projective hypersurfaces where the target one is of general type. Also, he 
gave a different argument to prove that every morphism from a quintic hypersurface 
to a cubic hypersurface in P4 is constant. 

Acknowledgement. I thank to Prof. Jun-Muk Hwang for his encouragement 
during the research. I also thank to the referee for careful reading and pointing out 
the exceptional case in Main Theorem. 
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