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ROUGH MARCINKIEWICZ INTEGRALS RELATED TO 
SURFACES OF REVOLUTION * 

HUSSAIN AL-QASSEM+ AND AHMAD AL-SALMANt 

Abstract. In this paper, we present a systematic treatment of Marcinkiewicz integrals with block 
space function kernels and prove the Lp boundedness of several classes of Marcinkiewicz integrals 
along surfaces of revolution. The results in this paper extend as well as improve previously known 
results. 

1. Introduction and results. Let Rn, n > 2 be the n—dimensional Euclidean 
space and S71-1 be the unit sphere in Rn equipped with the normalized Lebesgue 
measure da. 

For a suitable mapping * : Rn —♦ Rm, we define the Marcinkiewicz integral 
operator M^^h by 

(1.1) M*,a,hf(x) = ([ \(t,*m\2dt)K 

where 

CiVfix) = yt [        f(x- *(y))h(\y\)^dy, 
2 J\y\<2* \y\ 

h(') is a measurable function on R+, and f2 is a homogeneous function of degree 0, 
integrable over S71-1, and satisfies 

(1.2) [      £l(x)da(x) = 0. 
jsn-1 

If h = 1, m = n, and ^f(y) — (yi,... ,2/n) we shall denote the operator .M#,a,/i 
by MQ. 

E. M. Stein introduced the operator JWQ and showed that if Q G Lip^S71'1), 
(0 < a < 1), then MQ, is of type (p,p) for p G (1,2] and of weak type (1,1) (see 
[Stl]). Subsequently, A. Benedek, A. Calderon, and R. Panzone proved that MQ is 
of type (p,p) for p G (l,oo) if Q G C1 (S71"1) (see [BCP]).Very recently, the study of 
the more general class of operators Mv^h for various mappings \I> and under various 
conditions on Q has attracted the attention of many authors (see, for example, [AsAq], 
[CFP], [DFP], [DP]). 

On the other hand, there has been a considerable amount of research concerning 
the Lp boundedness of singular integrals along surfaces of revolution. For relevant 
results one may consult [AqP], [AsP], [CF], [KWWZ], [LPY], among others. 

In this paper, we shall investigate the Lp boundedness of Marcinkiewicz integrals 
along surfaces of revolution * = ^ = {(y,(j)(\y\)) : y G Rn} for various mappings 0 
and when fi G B°'0(Sn"1), q > 1, where B^iS71'1) represents a special class of block 

spaces which will be recalled in Section 3. Here our Marcinkiewicz integral operator 
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Mi&f&^h will be denoted by M^^Q^- It should be remarked that Bq,0(Sn~1) contains 

L^S71-1) as a proper subspace for each q > 1 and 

q>l q>l 

For a measurable real valued function h on R+, we say that h € A7 (R
+), 7 > 1, 

if 

2R 

< 00. = sup{i?-1 /      |/i(*)f dt}^ 
i?>0 JH 

Our main results are the following: 

THEOREM 1.1.    Assume that ft e B°'0(Sn"1), ft G A^ (R+) /or some 9,7 > 1 

and </> 25 m C2([0,00)), convex, and increasing. Then for every p satisfying 
\l/p — 1/2| < min{l/2,1/77}, there exists a constant Cv such that 

(i-S) WM^^H (/)||Lp(R»+i) < Cp H/ILP^.+I) 

for every f G Lp (Rn+1) . 

THEOREM 1.2. Suppose that ft G ^^(S"-1), and ft G A^ (R+) /or 5ome 

^,7 > 1. Suppose that (j) is a continuous function on [0,00) and (j) G ^((0,00)) such 
that (i) (j) is strictly increasing function on [0,00); (ii) (j) (t) > C^p- for t > 0 and 
C > 0, and (in) (j)(2t) < c(j){t) for t > 0 and c > 0. Then (1.3) holds for every 
feLp (Rn+1). 

THEOREM 1.3. Assume that ft G B^0(Sn-1)} ft G A^ (R+) for some 4,7 > 1 and 

(j): (0, 00) —> R 25 a smooth function which satisfies the following growth conditions: 
(i) |0(t)| < Citd, (ii) Ca^"1 < l^'WI < Cs^"1, (iiOI^WI < C^"2, /or 5ome d^ 0 
and t G (0, 00), wftere Ci, C2, ^3, and C4 are positive constants independent of t. 
Then (1.3) holds for every f G Lp (Rn+1). 

THEOREM 1.4. ^55^me ffta^ ft G B^^71^1), ft G A^ (R+) for some g,7 > 1 

and (j) is a polynomial.  Then (1.3) holds for every f £ Lp (Rn+1). 

It is worth pointing out that using the same argument as in [DFP] we are only 
able to obtain Theorems 1.1-1.3 under the stronger condition ft G Z^S71-1), q > 1. 

Therefore, it is imperative to attack the problems under considerations through a 
proper decomposition of our operators along with keeping track of certain constants. 
In fact, the proof of our results will be a consequence of two general theorems stated 
in Section 2. We shall present a systematic method which not only allows us to obtain 
the Lp boundedness of Macinkiewicz integral operators under considerations, but also 
has shown to be useful in handling some other problems in this area which will appear 
in forth coming papers. 
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2. General results. Given a family of measures {at : t £ R}, we define the 
maximal operator a* by cT*(f) = sup \\at\ * /|. Also, we write t±a = inf {ta,t~a} and 

ten 
|or| for the total variation of cr, which is a positive measure. 

LEMMA 2.1.  Le£ {dt : t G R} 6e a family of Borel measures on Rn such that 
IWtW ^ !• Assume that 

(2.1) lk*(/)llg < B \\f\\q for some ^ > 1 and B > 1. 

Then the inequality 

/•OO || 

(2.2) (/     Wt * gt\2 dt)1* 
Po 

/oo 

IStl'dt)* 
-OO Po 

holds for \l/po — 1/2| = l/(2q) and for arbitrary measurable functions g{t,x) = gt(x) 
defined on R x Rn. 

Proo/. We use a similar argument as in [Du]. Since \\<rt\\ < 1 we immediately get 

(2.3) 
II         f00 

II   J—OO 
kt* ^|^ - 

Il        II 

/•OO 

/     l5t l<ft 
11 

On the other hand, 

(2.4) SUp|crt*0t| 
|t€R                  1 

< 
In          1 

LT*(SI 
1        *€ 

^Plftl) 
ER        1 

<B\ 
lo               ' 

sup(|pt|) 
|t€R          I 

By interpolation between (2.3) and (2.4) we get (2.2) when 1/po = (1/2)(1 +'l/q). 
The case po > 2 follows by duality. 

THEOREM 2.2. Let L : Rn —> Rm be a linear transformation and {at : t € R} 
6e a family of Borel measures on Rn such that 

(*)IM<1; 
(«) 1^(01 < (0*1^(01)** 
for some constants a > 2 and B > 1. i4sstzrae £/ia£ /or 5ome po > 2 and /or 

arbitrary functions gt(x) defined on R x Rn, we Zia^e 

(2.5) (m) 
/OO 11 || /•OO 

kt*Si|2<ft)*       <JB\\(        \9t\2dt)i 
-oo llp0 II   J—OO Po 

Then for p'0 <p <po, there exists a positive constant Cp such that 

(2.6) 
/OO 

l<W|2<fc)* 
-oo 

<^S||/|I 

/or all f G Lp(Rn). T/ie constant Cp is independent of B and the linear transforma- 
tion L. 

Proof   Clearly, we may assume that 0 < a < 1.   By the arguments in the 
proof of Lemma 6.2 in [FP], we may assume without loss of generality that m < n 
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and L = TT^. By an elementary procedure choose a collection of smooth functions 
{$£,£}t€R on (0, oo) with the following properties: for each t G R, 

0<*tfB<l,      X^-K,B(U) = 1, 

fcez 

supp *t>B C {n : a"^1)5 < u < a"*'-1)*} , d**^ (w) 
d^s <£ 

where C can be chosen to be independent of the constant B. 
Let T(f)   =   (/^k**/!2*)*  and Tk%B{f)  =   (/^ 1^ * */b+tfB * /|2dt)* 

where ^,5(0 = ^BGTTJJJ ^|). Then it is easy to see that the following inequality 

Tf{x)<y/BY,Tk,Bf{x) 

holds for / € 5(Rn). Therefore, to prove (2.6), it suffices to prove 

(2-7) l|Tfc,B(/)||p < CpVl2-^(lfcl-1) \\f\\p 

for some positive constants j3p and Cp and for all p^ <p < PQ. 

The proof of (2.7) follows by interpolation between a sharp L2 estimate and a 
cruder LPo estimate. 

First, 

\\TkMf)\\ Po -ll<f 
^    V-c VB 

at*$ 

rOO   - 

<     (/ *Jb+i,B*/ 
II   J—CO ' 

2 

d*)i 
Po 

dty 
Po 

(2.8) ^^V^l "Po 

The first inequality follows by (2.5) and the second inequality follows by a trivial 
change of variable and the same argument as in the proof of (20) in [St2], page 27. 

On the other hand, the L2 boundedness of T^B is provided by a simple application 
of Plancherel's theorem. If k > 0, 

/oo     p 2 

/ \$k+t,B(\<m2\6Btm2 m <%* 
-oo ./R™ 

< /     /(0    (/ (a*BK£|)fldt)de 
^R71 ' '      J(\c "   " /(loga^)-1 logfo-^+^^lTr" Ol"1) 

(2.9) <2a-2a(;c-1)||/||2. 

Similarly, if k < 0, we get 

(2-10) l|rfc,B(/)ll2<\^aao«* ||/||s 

By combining (2.9) and (2.10), we obtain 

(2.11) ||Tfe,B(/)||2<V2aQa-^l||/| 2 ' 
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By (2.8), (2.11) and applying the Riesz-Thorin Interpolation Theorem for sublinear 
operators we get (2.7). This finishes the proof of our theorem. 

Let us now establish the following theorem on maximal functions. 
For given two families {/it : t G R} and {TJ : t e R}   of non negative Borel mea- 

sures on  Rn we define the corresponding maximal functions fi* and r* by 

/i* (/) = sup \fit * /| and r* (/) = sup |T£ * f\. 
ten ten 

We have the following theorem. 

THEOREM 2.3. Let {fit} t€R and {r^} £€R be families of non negative Borel 
measures on Rn. Let L: Rn —► Rm be a linear transformation. Suppose that for all 
t e R, ££ Rn

; for some a > 2, a, C > 0 and for some constant B > 1 we have 

(t) W < i; INI < i; 
(tf)|£t(OI<c(a*|£(0l)-*; 
(m)|At(0-Tt(OI<C(a'|£(£)l)*; 
(iv) For any nonnegative function f,x£ Rn, the function hx(t) = a* |/it * f(x)\ 

is an increasing function in t; 

(v) For all 1< p < oo and f G Lp(Rn), 

(2.12) l|r*(/)||p<5||/||p. 

T/zen ^fee inequality 

(2-13) K(/)llp<B||/llp 

holds for all 1 <p < oo and f in Lp('Rn). The constant Cp is independent of B and 
the linear transformation L. 

Proof Without loss of generality we may assume that m < n, L = TT^ and 
0 < a < 1. Let I/J G S (Rm) be a Schwartz function such that T/J (X) = 1 for |a;| < 1/2 

and -0 (x) = 0 for |a;| > 1. Define the family of measures {At : t G R} by 

(2-14) At(0 = At(0-^(a*COTt(0- 

By (z)-(m) and (2.14) we get 

(2.15) |At(0| < C(a* |7r^|)±f for f G Rn. 

Let 

/OO ! 

|At*/(x)|2dt)5 andA*(/) = sup||At|*/|. 
-oo ten 

Then by condition (iv) and (2.14) we have 

(2.16) /x* (/) (x) < g, (/) (x) + C(MRm ® idRn-m)(T* (/) (x)), 
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(2.17) A* (/) (a;) < g, (/) (a;) + 2C(MRm ® idR„-m)(r* (/) (x)) 

where Mum is the classical Hardy-Littlewood maximal function on Rm which is 
bounded in Lp (Rm) for 1 < p < oo. By (2.15) and Plancherel's theorem we obtain 

(2-18) IM/)II2<CVB||/||2 

which when combined with (2.12) and (2.17) gives that 

(2-19) l|A*(/)||2<CS||/||2 

with C independent of B. Thus, by applying Lemma 2.1 with po = 4 and q — 2, we 
have 

IpOO POO 

(        \<rt*9t\2dt)l      <C\fB  (/     |ft|2dt)i 
J—OO Tin J— OO PO PO 

for arbitrary functions gt{x) defined on R x Rn.   By taking p^ = 4 and invoking 
Theorem 2.2, we get that 

(2-21) ll0*(/)llp<Cp2?||/||p 

for 4/3 < p < 4 and / € Lp(Rn) with a positive constant Cp   independent of B, A 
new application of Theorem 2.2 gives 

(2-22) \\9Amp<CPB\\f\\p 

for 8/7 < p < 8. By repeating this process, we obtain that 

(2.23) lk(/)llp<CpB||/||p 

for 1 < p < oo and / € Lp(Rn). Therefore, by (2.12), (2.16) and (2.23) we obtain 
(2.13) for 1 < p < oo and / e Z,p(Rn). The proof of our theorem in now complete. 

3. Definitions and some basic lemmas. Let us begin by recalling the defini- 
tion of a block function on S71-1. 

DEFINITION 3.1. For 1 < q < oo we say that a measurable function &(•) on S71"1 

is a q—block if it satisfies the following: (i) supp (b) C / and (it) \\b\\Lq < l/p^7 , 
where I is an interval on S72"1; i.e., 

I = {x' £ S71-1 : \x' - x'0\ < a for some a > 0, x'Q e S
71-1} and |/| = cr(I). 

The block spaces B®*0 on Sn  1 are defined as follows: 

DEFINITION 3.2.   The function space B^0(Sn~1), 1 < q < oo, consists of all 

functions J7 6 L1(Sn~1) of the form Q, = Y^=ic^^ where c^ G C; each b^ is a 
q—block supported in an interval 1^; and 

oo 

(3.1) M°-0 (K}) = E lcJ (! +108 Kl"^ < 00- 
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The special class of functions JB^'
0
 were first introduced by Jiang and Lu in their 

study of singular integral operators of Calderon-Zygmund type (see [LTW]). 
For suitable mappings $ : [0, oo) —> R, h : R+ —> R and b : S71""1 —> R, we define 

the family of measures <at^h:t £ll> and the related maximal operator a- hon Rn+1 

by 

(3.2) /       / datM = 2-* /        / (y, ^ {\y\)) h{\y\) ^dy, 
yR«+i ^|y|<2' \y\ 

(3.3) ^B,/, (/) = SUP \\at,b,h *f 

< 

LEMMA 3.3.  Let h e AT (R
+) /or some 7,1 < 7 < 2,0(-) 25 in C1 of (0,oo) 

and b be a function on S71-1 satisfying the following conditions: (i)   b     < l/l"^7 /or 

some q > 1 and for some interval I on S71"1; (wj /Sn-i 6(iz)dcr(^) = 0; ("m^ 

1. Then there exist constants C and 0 < (3 < 1/q' such that 

<W£>T)| ^CHL, |2* l^^^n if |7| < c-i and (3.4) 

(3.5) **,5^K'T) <C| ^ i2t er if 171 > e" 

/or a// t S R,^ € Rn, and r € R.   TTie constant C is independent of t, b, ^, r and 

Proo/. We shall only prove (3.4) and the proof of (3.5) will be easier. By Holder's 
inequality and noticing that |It(s,£)| < 1 we have 

where 

;t,6,/iV 

li(s,0 

&T) <\\h\\A (/ i/t(5,or^)^ 7  Jo 

[      e^ s^-a;+r0(2*s ̂ (aOdcrfr). 

However, 

1/ I JO 

^'^•(x-y) ds <Cmin{l,|2^-(x-2/)|  '} 

<C|2^r^ir-(x-y)r/3 

and 

\lt(s,0\2 = / &(«) ^yjc*2*'^-")^ da(x)da(y) 
JS"-1xS"-1 

where £' = £/ \^\, and /? > 0 with 0 < /V < 1. Therefore, by Holder's inequality we 

&t,b,h(t>T) <C\ \n\ -& 
9   Us^-ixs^-i 

ki -yi|  ^ da(x) 
V 

Ida(y)| 
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By using (i) and noticing that the last integral is finite, one obtains that 

<W£'T) <CINIAj/r^i^r 

By combining the preceding estimate with the trivial estimate \&t^h(^T) 

we obtain (3.4) with a plus sign in the exponent. 
On the other hand, by the conditions (ii)-(iii) on 6 we obtain 

< iwk 

*t,5,fc(&T) < |2^| 

which, when combined with the trivial estimate |^t/i(^'r)   — II^11A ' yields the 

second estimate in (3.4). This finishes the proof of our lemma. 

LEMMA 3.4.   Let 0 be a function given as in any one of the Theorems 1.1-1.3. 
Define the maximal function M^ by 

2"* /   f(u-<l>(s))ds. 
Jo 

MJ(u) = sup 

Then, 

(3-6) \\M,U)\\p<CAf\\v 

for 1 < p < oo and some positive constant Cp. 

Proof. First, assume 0 is a function given as in Theorem 1.1. Without loss of 
generality, we may assume that (/>(£) > </>(0) for all t > 0. For / > 0 and u £ R, we 
have 

r^2t) ds 
MJ(u) = sup(2-< /        f(u - s) *       ). 

ten       Jcbio) <P{<P    (5)) 

Since the function 2t6'(6-1(t)) 1S non~nega^ive? decreasing and its integral over [0(0), 
0(2*)] is equal to 1 we have 

(3.7) MJ(u) < Mnfiu) 

which implies (3.6) by the boundedness of MR in Lp (R) for 1 < p < oo. This 
completes the proof of the lemma for the case that 0 is given as in Theorem 1.1. 

Next, assume 0 is given as in Theorem 1.2. Then, for / > 0, 

,2t+1 

MJ(u) < 2sup(2-* /       f(u - (f>(8))d8). 

By the conditions on 4>, we get 

/■*(2'+1) ds 
MJ{u)<CsM /(«-*)-). 

t6R ^0(2') s 

<Csup( /( 
t6R ^^(2') 

< CMRf(u) 

0(2') 
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which easily implies (3.6) 
Finally, to prove (3.6) for </> given as in Theorem 1.3, we define a family of measures 

At on R by 

r* 

Jo 

Then by the conditions on 0, it is easy to see that 

(3.8) At(C)-At(0)  <C|2^C| and   At(C)  <C|2^C| 
-i 

By (3.8) and the same argument as in the proof of Theorem 2.3 we get (3.6).  The 
lemma is proved. 

THEOREM 3.5. Let h G A7 (R
+) for some 7 > 1,0 be given as in any one 

of the Theorems 1.1-1.4 and b be as in Lemma 3.3. Then for 7' < p < 00 and 
f G Lp (Rn+1) there exists a positive constant Cp which is independent of b such 
that 

(3.9) 

(3.10) 

*lh(f)     <Clog(\in\\f\\pii\I\<e-1; 

"Ik (/) <C\ if |J| > e-1. 

Proof.  We shall only present the proof of (3.9).  Without loss of generality we 
may assume that 6 > 0 and h > 0. By Holder's inequality we have 

<h(f) <iNMwr))7 

where 

■t,b */ /      fd?t-b = 2-t [       /(u,0(|„|))-^.dU     and   T^(/)=sup 
Jn^1 J\u\<2t \u\ ten 

So we only need to prove that 

(3.11) llT^Wli^Clogd/r1)!!/^ forf <P<oo. 

If (f) is given as in any one of the Theorems 1.1-1.3, then the inequality (3.11) 
follows by Lemma 3.3, Lemma 3.4 and Theorem 2.3. 

On the other hand, if 0 is a polynomial, (3.11) follows by a theorem of Stein 
and Wainger on maximal operators along curves (see [St2], p. 477). The theorem is 
proved. 

4. Proof of theorems. Since Q G JB^S71"1), we can write ft = E^LicA> 

where each b^ is a q—block function, and Mg'0({cM }) < oo. Without loss of generality, 
we may assume that h G A7 for some 7, 1 < 7 < 2 and p satisfies \l/p - 1/2| < 1/7'. 

To prove our theorems, we shall need to decompose Q as follows: For each block 
function b , let 

(4.1) 
JS"-1 
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Then one can verify that each b^ enjoys the following properties: 

(4.2) /      bll(u)da(u) = 0, 

(4.3) 

(4.4) 

<2 J     7" 

<2. 

The new introduced functions b^ allow us to decompose Q into Q = Y^Lic^^ 
which naturally induces the following decomposition of the corresponding operators: 

(4.5) 

By Theorem 3.5 and using a similar argument as in the proof of Theorem 7.5 in 
[FP] we get 

(4.6) \L Vt^h * 9t dt) <CPA J(/l&|2*)* 
II  ^R 

for all p satisfying \l/p - 1/2| < l/i and  / G Lp (Rn+1) where A^ = log(|^ |   ^ if 
|7M| < e-1 and A^ = 1 if |jj > e"1. By (4.6), Lemma 3.3 and Theorem 2.2 we get 

(4.7) M+fiu,hf —  (/ r*>6,/i 
IMR ' 

*/ dty <CPAJf\\p., 

for allp satisfying \l/p - 1/2| < l/Y and / E Lp (Rn+1). By (3.1), (4.5) and (4.7) we 
obtain (1.3) if <p satisfies the conditions as stated in any one of the Theorems 1.1-1.4. 
This completes the proof of our theorems. 
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