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EMBEDDINGS OF THE COMPLEX BALL INTO SIEGEL SPACE *
OLIVER BULTEL?

Abstract. We study properties of a certain map from the unitary group U(1,n — 1) to the
group U((',::}), ("21))- We explain how it gives rise to a map between canonical models of Shimura
varieties and we prove that it extends to the ordinary locus of the integral model. Finally, we extend
results of Satake on the endomorphism ring of a generic image point to positive characteristics.

1. Introduction. In [14] Satake classifies embeddings of a symmetric Hermi-
tian space X into Siegel space, let us describe his results in a special case: The
bounded realization of I, ,—p is a domain in complex affine p(n — p)-space which may
conveniently be described as the set of complex valued p x (n — p)-matrices

Byn—p = {A € Mat(p,n "p)l “A”oo < 1}

where || - ||oo is the operatornorm (relative to the standard Hilbert space norms || - |2
on C? and C"P respectively). If we write S, for the bounded realization of IIT,,
then there is a natural holomorphic embedding

(1.1) Bpn—p < Sn.

In the special case p = 1 we recover the complex ball in C*~!. Surprisingly (1.1) is
not the sole symplectic embedding of B; ,,—1, as one has maps

(1.2) Bip-1<— B(::l)y(n;—l) — S(:)
which are induced by sending € C*~! to the (?71) x (";')-matrix A with entries
(-1 lzy, I=J-{i}
Apg= .
0 otherwise

where I = {i1,...,9k—1} and J = {i1, ..., ik} run through all subsets of {1,...,n—1}
with cardinalities £ — 1 and k. We want to study the effect of (1.2) to quotients of
Bj,n—1 by congruence subgroups and their canonical models. We consider, in more
modern language, a Shimura datum (G, X), such that G is a Q-form of GL(n,C) and
such that the conjugacy class p of minuscule cocharacters obtained from X is:

2z 0 ... O
o1 ... 0

C*s2zm— 1. . . . | € GL(n,C).
00 ... 1

If 1 is as above then all of the n — 1 fundamental dominant weights X satisfy Deligne’s

condition < p, A +¢(A) >= 1, c is the Weil-opposition. Thus one expects by [2, 1.3]

that (suitable Q forms of) their highest weight representations provide maps from the

Shimura datum (G, X) to a symplectic Shimura datum (GSp(2 (Z),Q),S?ﬁ,)). Such
k
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200 0. BULTEL

a symplectic representation of (G, X) gives rise to the map (1.2) of the underlying
symmetric Hermitian space, which in our case is the complex ball. Now consider a
neat level structure K C G(A*). By Deligne’s theory we obtain a Shimura variety

(1.3) M(C) = G(Q\(X x G(A®)/K)

which has weakly canonical models over all fields containing the reflex. Moreover, the
aforementioned symplectic maps provide us with certain abelian schemes Y (¥) over
M. (Here one has to allow to replace (G, X) by a certain covering Shimura datum
denoted (G1,X;) — (G,X) in [2, Proposition 2.3.10], see body of text for details.)
If one assumes that G and K are sufficiently well behaved at p, then the theory of
PEL-moduli spaces provides us with a smooth model M.

In this paper we study the extension properties of Y (¥) with respect to the model
M. Our result is that Y(*) extends to an abelian scheme at least over the ordinary
locus of M. Our result holds for all primes including 2.

In a future publication we will show that one can remove the ordinarity hypothesis
at the cost of having to restrict to primes bigger than k£ + 1 along with somewhat
stronger conditions on G and K. More general results (under similar restrictions on
the prime) have already been shown in [18].

The work is organised as follows: In section 2 we describe the Shimura datum
(G1,X1) and the abelian schemes Y(¥) using the language of Hodge structures,
we do not attempt to work with all possible Q-forms of G and of G; but rather
confine ourself to what we think is the most natural one. This allows us to give a
very down to earth (and we hope enlightening) treatment of the covering Shimura
datum (Gq,X:) (denoted (G*V), X(©*1) in body of text), and of its symplectic
representations (which we denote by V(k)). In section 3 we recall canonical
coordinates and canonical lifts, to a large extend with sketchy proof. In section
4 we show that under the usual assumptions on K the variety M has a smooth
model over the ring of integers in the local field E,, where E is a certain finite
extension of the reflex field and where p is a prime over p. In section 5 we
prove the extension theorem in two steps, we start with the construction of an
extension of the Barsotti-Tate group of Y(¥), and then we show that this determines
a well-defined extension of Y*) itself, essentially by Zariski’s main theorem. Fi-
nally, we show in section 6 how some of Satake’s work on the endomorphism ring
of Y¥) can be carried over to the points in the ordinary locus of the special fibre of M.

I thank Prof. Ivan Fesenko, Prof. Eberhard Freitag, Prof. Winfried Kohnen,
Prof. Richard Pink, Prof. Richard Taylor, and Prof. Rainer Weissauer for interesting
conversations on the topic and further thanks go to the referee.

2. Exterior powers of Hodge structures. Let V be a finitely generated tor-
sion free abelian group. It is called a (Z-) Hodge structure of weight 7 if it is equipped
with a decomposition

Ve @ vre

pt+g=r

satisfying V4P = VP4, A direct sum

V=@,

T
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of (Z-) Hodge structures V; of weight r, we want to call a pure (Z-) Hodge structure.
To give the decomposition over the reals is equivalent to give a homomorphism of
R-algebraic groups

h:C* — GLg(Vk) C GLc(Ve)

by making z € C* act on VP9 by 27Pz~9. If the only non-zero direct summands
amongst the V?9’s are V~10 and V®~! then the homomorphism above corresponds
to a homomorphism between the R-algebras C and Endg(VR), which we continue to
denote by h. In that case V is called a Hodge structure of type {(—1,0),(0,—1)},
and the C-space V~1 can set-theoretically be identified with Vi which acquires
its C-vector space structure by the corresponding algebra homomorphism h : C —
Endgr(VR). Pure Hodge structures form an additive ®-category in an obvious way.
The pure Hodge structures of type {(—1,0), (0, —1)} are an additive full subcategory
thereof.

Let O be the ring of integers in a totally imaginary quadratic extension L of a
totally real number field L*. Write * for the non-trivial involution of L/L*. A Hodge
structure V' is said to have a Op-operation if a homomorphism ¢ : Oy, — End(V) is
given. If ¢ is fixed we obtain a refinement of the Hodge decomposition:

Vo=V®L,C2PVre,

P9

where we denote for any embedding o : L — C by V9 the o-eigenspace of VP4,
Note that we have VIP & _‘—/ﬂ. The Hodge structures with Op-operation form a
®-category as follows: If V and W are given, we can form the finitely generated
torsion free Op-module V ®p, W. We make it into a Hodge structure by declaring
the subspace of V, ®c W, of weight (p, q) to be:

@ VPL@ @c WPTP1ATa

P1,q1

In a similar way we define /\]éL V. We want to describe a particularly interesting
example of such tensor constructions, to this end fix a natural number n. Fix two
different CM-traces ®©, &™): I — C (= Q-linear maps which arise as &) (z) =
Yscjawm () for all z € L and k € {0,n}, where |#(|,|®(™| C Homg(L,C)). Let
us define:

(2.1) 3M(z) = (n -1)8O (z) + 2™ ()

Our input is a choice of:
o two Hodge structures of type {(—1,0),(0,—1)} with Op-operation, i.e. R-
linear homomorphisms

(2.2) h®) : C — EndL(V{¥),

for k € {0,1}, where the V(%) are finitely generated, torsion free @ -modules.
We require that:

(2.3) tr(zlyo-10) = 29 (z),

hold for all z € L, and k € {0,1}.
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e two *-skew-Hermitian Q-valued forms ¥, and ¥© on the L-spaces Vi,

and V(go), such that firstly the h(¥) become #*-involution preserving homomor-
phisms, if the right hand side of (2.2) is endowed with the Rosati involution,

and such that secondly the forms 1 (z, h(*)(i)y) on V]ék) are positive defi-
nite.
Observe that (2.3) implies that the Or-modules V() and V(®) have the ranks n
and 1. Observe also that we may write the forms %) and %(® in a unique way as
traces try /g M, and try, /0 ¥, where UM, and ¥(® are sesquilinear forms that are

L-valued on Vél) , and on Véo). Based on the 2nd and 3rd row of the table on page
188 of [14, Chapter IV,Paragraph 5] we want to consider the following output:
1. Or-modules V(*) defined by:

k
V(0)®OL 1-k ®OL /\ V(l),
OL

for every k € {0,...,n},
2. Q-valued (L, *)-skew-Hermitian forms %*) = tr; o ¥ on Vék), here is:

\I}(k) (zé_kxl A A Tk, yé_kyl Ao A yk)

= (T (z0,70))"* det (T M (24, 3;)s.5),

for z1,...,%k,y1,...,Yk € Vél), and zg,yo € V(O),
3. *-homomorphisms A*) : C* — Aut(VmEk) ) defined so that z € C* acts as:
i ®z A Az o (BO(2)z0) FRM (2)z1 A ARD (2)24.

We have to introduce reductive Q-groups as follows, on the category of all Q-algebras
G®) represents the functor:

C - {(1, 1) € End} e (V) x C* [v®) (yz,vy) = pp® (z, )}

Notice the natural similitude morphisms from G*) to G,,. We also introduce a group
G(©x1) by the requirement that the diagram

qoxn 92 &)

ol

GO —— Gp

be cartesian. Finally we introduce Q-rational group homomorphisms g(¥) : G(0x1) —
G) by sending, say (7(@,7(1)) € GO*1(C) to the element () : Vc(,k) — Vé,k) defined
by

(2.4) A®) (@ *zy A Azk) = YO (@o) TFy D (@) A Ay (k).

Let us also pick connected, smooth Z-models G5 (GL*) of the groups G*) (GO*)
by taking the schematic closure in the group Z-schemes GL(V®)/Z) (GL(V© @
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V(1) /Z)). Here the Op-lattices V() C Vék) (VO gvQ ¢ Véo) EBV&U), are as before.

The maps g(*) preserve these lattices and so give rise to maps ggc) : Gg’xn — G(Zk).
The V®) are clearly Hodge structures with @-operation, however much more is true:

LEMMA 2.1. Let (VD V© (1) 4O p() p(0)) be as before. Then (V&) AR s
a Hodge structure of type {(—1,0), (0, —1)} with Or-operation. Moreover, the quadru-
ples

(L%, VS, p®, 18
are PEL-data in the sense of [8], as is the quadruple
Lo LV oVgh,v@ @yp®, r® g rM).

The G®)(R)-conjugacy class of h*) is determined by the formula:
(2.5) tr(@|y o -10) = ¥ (z) = (” N 1) 3O (z) + (Z B i) o (z).

for any x € L. Therefore, when writing E® for the reflex field of (G%,h%), we have
E® ¢ EOXY for all k. Finally, the map g® : GO*D — G®) takes h(OX1) .=
h©® @ h() to h®).

Proof. We first check that the Hodge structure V(*) has weights in 1tohe set
{(=1,0),(0,-1)}. The assumption (2.3) on V(!) implies that the VAT have
the following dimensions, where ¢ : L — C runs through all embeddings:

n if o € |8 n &M
- -1 ifoe |00 - |aM)|

dime VO T = { " ,
e Ve 1 if o €8™] - [2©)]
0 if o ¢ &) U™

0,~1
and analogous formulas for dim¢ v hold. Consequently we derive the following
Hodge decomposition for the o-eigenspace of /\ZL v

ALy ito e |80 [am)
-1,0 _ -1,0 0,-1
AVET @ NV Tae VD T ifo € (2]~ o)
-1, — 0:_1 .
e e ATV e AT o e o] 3]
AeVD” if o ¢ |2 U 3™

k
vty -
C

so that in each of the four cases the o-eigenspace of /\’éL V@ has the following Hodge
weights (with multiplicity):

(&) x (=k,0) if o € |30 N ||
gy = 4 (i) X (.0, G2 x (1=K, =1) if o € 2] ]2
(F21) x (-L,1-k), (")) x (0,—k) ifo € |®M™] |00
() x (0,-k) ifo ¢ |20 u|eMm)
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®cl—k
Comparing this with the Hodge weights of ,,(0) ¢ , being

(k—1,0) ifoe|®@]
(p,q) = . (0)
(0,k—1) ifo¢ |27

shows that the sole weights of V(*) are {(—1,0), (0, —=1)} and shows the formula (2.5)
also.
We still have to verify that the pairings ¥(®) (z, h(¥)(i)y) are positive definite. Every
embedding o : L — C is a *-homomorphism, therefore one obtains sesquilinear C-
valued pairings \Ilf,k) on Vf,(k) for every k. Consider the forms Eg,k) = \Il.(,k)(a:, R (i)y).
By assumption ™) (z, h(V)(i)y), and %@ (z,h(® (i)y) are positive definite on V]él),
and Vléo), so these forms restrict to positive definite forms Egl), and EC(,O) on Va(l), and
UE:; By utilizing the formulas for (%) and h(*) we see the positive definiteness of
E;"’, as

E® (zg Ry A Az, yg Fyi A A ) = B (20, 90)* 7F det (B (24, y5)1,5)-

Finally just check that 1(® (z, A(¥) (3)y) is the sum of various E® (z,y)’s. O

We turn to Shimura varieties which correspond to our choice of V(‘g 8 hd, for
§ € {(0 x 1),(0),...,(n)}. Let X° be the conjugacy class of h% in Gf, (we set
h(®x1) = h(®) @ h(1), then one puts according to [1]:

kMc(G°, X%) = G*(Q\(X’ x G°(A%)/K)

for the Shimura varieties, of which the projective limit ]l{iml kMc(G?, X9%) is equal to

Mc(G°, X°) = G(Q\(X° x G°(A%)),

by [2, Corollaire 2.1.11]. One writes xM(G%, X%) and M (G?, X%), for their weakly
canonical models over a choice of any field containing the reflex. We will prefer to
always work over the field E(®*1), being the largest of the reflex fields E?, thus our
M(G® X (k))’s are strictly speaking base changes via X g E(©%1) of the canonical
models.
Let us briefly sketch the moduli interpretations due to Deligne [1, Scholie 4.11]. If
F/E(©x1) is an algebraically closed field then there is a Autgoxy (F) x G*)(A®)-
equivariant bijection between F-valued points of M(G®*), X(¥)) and isogeny classes
of quadruples (Y(¥),,(®) \(k) n(k)) such that:

(a) Y is an abelian variety over F' up to isogeny.

(b) ¢ : L — End®(Y®) is a homomorphism such that

trpie y oo (L9 () = @®) (2)

for all x € L.

(¢) A% is a homogeneous polarization of ¥*¥) of which the Rosati involution
restricts to the CM involution on L.

(d) a L-linear level structure () : Vl§°(k) — Hi(Y®) A*) which becomes a
symplectic similitude if one imposes the Weil pairing on the right and the
pairing 9*) on the left.

(e) the skew-Hermitian L-module H;(Y® x ¢ C,Q) is isomorphic to (V, y(®)
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and similarly for M(G(©*1), X (0x1))_ In fact a more thorough treatment can be found
in [8]: The scheme M(G©*1, X(©X1)) represents a functor taking a E(©*1-scheme
S to the set of tuples (V) (%) \() (k) with properties analogous to (a)-(e). From
now on let us pick a level [ which is > 3. The compact open groups

(2.6) Ki={yeG@Z)|y=1 (modl)}

are neat and satisfy ¢g(®(K®) c K(©*1, This is most useful as it sets up maps
between the characteristic zero Shimura varieties

(2.7) g®) oy M(GOD, xOxD) Lo M(GP) | X (R)

that are induced from the group theoretic maps of lemma 2.1, according to [1,
Corollaire 5.4]. Note that these maps do not have a natural moduli interpretation.
Nevertheless we do obtain a homogeneously polarized abelian scheme Y(*) up to
isogeny over goxnyM (G(OXU,X (OX1)), with Op-operation ¢(¥), and appropriate level
structure 7*), by pulling back the universal family on g M(G®), X*)) via g(k).
Here, we wish to consider the particular representative of the isogeny class Y (¥) which
is determined by the constraint n(k)(VZ(k)) = Hl(Yg(k), Z). Within the homogeneous
class of polarizations A(¥), coming from the data Q¥ we wish to pick some effective
representative and write dy for its degree. Note that the homogeneous class Q)
depends only on the homogeneous class Q(1)(® @1 (1) of polarizations on V(© gV 1),
but the choice of an effective representative is arbitrary. Note also that 1(¥) may well
be ineffective even if %@ @ () is effective, see lemma 5.1 below, however. Having
made the above choice we obtain a further map:

(2.8) 9%+ ko M(GOD, XOV) = Ay, 4,1

where gi is [L* : Q|(}), and Ay, 4., is the fine moduli space of polarized abelian gi-
folds of degree di with level [-structure. We finish this section with two more results
on Y*);

LEMMA 2.2. Let VO k8 ¢ K®, be as above. Let F/E©*D) be a field and let
§ : Spec F — K(oxl)M(G(OxD,X(OXl))

be a point, let YE(k) /F be the abelian varieties which correspond to g(¥)(¢) via (a)-(e)
above (and leveled by the constraint n(k)(VZ(k)) = Hl(Ys(k),Z) ). Then:

k
H(Y® xp F*, 2% @0, \ Bi(Y® x5 F*°,2,)
oL,

is isomorphic to
H (Y xp F*, Z,)
as a Or,[Gal(Fe¢/F)]-module.

Proof. We can lift £ to a point ¢ : Spec F*¢ — M(G©*D), X ©x1)) " ysing the
moduli interpretation of M©*1) (see section 4 below) we can find the associated
tuple

(YD, v ®,,@,,0 30x1) 5@ )
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where A(®x1) is a homogeneous polarization of YE(O) X Ye(l) and (@, n(1) are L-linear
similitudes:

7D VoD — HI(YE(I),A“’).
and
77(0) . VAw (0) — Hl(lfg(o),Aoo)

of which the multipliers agree. Now let 7 be an element of Gal(#%¢/F), as
¢ and T(¢') have the same image in goxnM(GO*D, X(©%1)) one can find v =
(7,41 € K©X1) with 7(¢') = ¢'.y. Due to the G(*1)(A™)-equivariance of the
map M(G©*D), X ©0x1)) _, p(GHR), X R)) it follows that T(g*) (¢')) = g*) (¢7).®) (7).
However, ¢’y is by definition equal to:

(YD, 70,0, ,0, XOXD (1) 64D p(0) 6 4(©)),

and analogously for g(*)(¢).g%*®)(y). Now use the formula (2.4) and one is done. O

COROLLARY 2.3. If the assumptions are as above, then:
k
H{F (Y [F)Pros~™ gror, N\ HIF(YD/F)
F®L
is isomorphic to
H{*(Y{O/F)
as F ® L-module with Hodge filtration and Gauss-Manin connection.

Proof. Without loss of generality one can assume that F is a finitely generated
extension of E(©*1), We choose an embedding of F into C. By very construction of
the map g : goxny M(GO*D, X OXDY 5 Ly M(G®), X)) there are isomorphisms
of Hodge structures with Op-operation:

Hy (Y (€), 2)%o:* ©o, NS, Hx(Y{V(C).2)

£ 1

H(Y{P(0),2)

Let us denote by tgg and tg;) the de Rham and étale realizations which are obtained
from t(*) by composing with the comparison isomorphisms:

HiIRY® /C) = H (Y P (C),C)
and

H(Y® xp F*,2) = H(YP(C), 2).

k—1
The pairs (t((i’;%, tgl:) ) are Hodge cycles (on the abelian variety YE(O)XF XF Y,g.(l) XF
Y,c.(k) ) in the sense of [3, Paragraph 2]. By [3, Theorem 2.11] these are absolute
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Hodge cycles (on the aforementioned product of abelian varieties over F%¢). By [3,
Proposition 2.5] this implies that the de Rham components tgg are horizontal with
respect to the Gauss-Manin connection, in particular they descend to isomorphisms
over F%c;

HiiR()’e(O)/Fac)®Fa°®Ll_k QFacelL /\’;«"“C®L HiiR(Y'&(l)/Fac)

(k)
)|

HER(YO[Fee),

according to [3, Corollary 2.7]. Moreover, the subgroup of Gal(F*¢/F) fixing tgg

is the same as the subgroup of Gal(F*¢/F) fixing tg:), essentially because Galois
conjugates of absolute Hodge cycles are again absolute Hodge cycles, [3, Proposition

2.9]. Lemma 2.2 finishes our proof as tgf), is indeed rational over F, so that our

horizontal map tgg descends to F':
- k
HiiR(}/g(o)/F)®F®L1 k ®reL /\F®L HfR(Yg(l)/F)

(k)
)|

HIR(Y S /F)

too. O

REMARK 2.4. As we can identify GO with a subgroup of GO, we can identify
GOx1) with the product G x G where G is the kernel of the map g(® : GO*D — GO,
We even get a product of Shimura data (G©*1), X (0x1)) = (GO X(0)x (G, X), where
X is the projection of X©*V onto the G-factor.

Notice however, that (G,X) is not the type of Shimura datum, that can arise from
any PEL-datum, nor is it of Hodge type. This is because its weight homomorphism is
trivial. In fact one can think of Mc(G,X) as a moduli space for the Hodge structures

&t ®o, V) which have weight zero.
3. Deformations of ordinary points.

3.1. Canonical Coordinates. In this subsection L is a finite extension of Qy,
let Oy, be its ring of integers, p its maximal ideal, and F = O /p its residue field. We
need some background material on Barsotti-Tate groups with Oy -operation. Let R be
a noetherian local Oy -algebra, complete with respect to the maximal ideal m. Assume
that the residue field k = R/m is an algebraically closed field extension of F. Let G be
a Barsotti-Tate group over R. Let ¢ : O, — End(G) be a homomorphism. The pair
(G, 1) is called a O -Barsotti-Tate group, if O, acts on Lie G by means of the structural
morphism Oy, — R, see [9], for the definition of LieG. A few numerical invariants are
noteworthy: the Of-height hto, G of G is defined by |G[p]| = |Or/p|"eL 9, and the
dimension of G is the rank of the projective module LieG. Every Op-Barsotti-Tate
group sits in a unique exact sequence:

0 N go N g get 0

where G° is connected and G is étale. One calls G ordinary if and only if
dim G = htp, G°, in general one has an inequality dim G < htp, G°. It follows from the
Dieudonné-Manin classification that over an algebraically closed field there is one and
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only one ordinary Op-Barsotti-Tate group of say dimension a and Op-height a + b,
cf. [6, (29.8)]. Also, by the rigidity of étale covers there is one and only one étale
Op-Barsotti-Tate group of given Op-height over any R. In fact the same is true at
the other extreme:

LEMMA 3.1. Let R be as above and let a be an integer. The category of Of-
Barsotti-Tate groups G over R with a = dim G = htp, G, is equivalent to the category
of Oy -Barsotti-Tate groups G over k = R/m with a =dim§G = htp, G.

Proof. Let R be artinian, let I C R be an ideal of square zero, let us endow it
with the trivial divided power structure. Consider a Op-Barsotti-Tate group G over
Ry = R/I with associated crystal D(Gp), see [9]. Notice that the value D(Go)r over
R is a free R ® Or-module of rank a. We have to show that Gy has a unique lift to a
O -Barsotti-Tate group G over R. So consider all sequences:

0 —— Fill! —— D(QQ)R —— LieG —— 0

where the quotient Lie G is a free R-module of rank a on which the @, action factors
through @y — R. This last condition actually means that LieG is a quotient of the
R-module R ®p, O} = R*. Due to rank reasons we then have equality. []

From this it follows easily that we have canonical coordinates for ordinary Op-
Barsotti-Tate groups, we write Y/OL for the Lubin-Tate one, f)/(’)L for its formal
group, by X(R) we mean the set m which is given a Or-module structure by the
group law of £.

LEMMA 3.2. Letk = R/m be as above and let Go be an ordinary Of -Barsotti- Tate
group over k/F. Consider the Or-modules:

T' = Homo, (L/OL, Go)
and
T” = HomoL (Z XoL k, go)

There ezists an equivalence of categories between lifts G/R of Go and maps ¢ €
Homo, (T, T") ®0, X(R), the equivalence being established by decreeing G to be the
following push out:

0 go g - get - D
[ l -] [
0 T T'®o0, L —— T'®0, L/O, — 0

where G° =T" ®p, ¥ X0, R.

Proof. The proof is word for word the same as in [7, Paragraph 2], so we are brief.
It is enough to consider lifts G over artinian Op-algebras R. According to lemma 3.1
the group G° is canonically isomorphic to 7" ® o, ¥ X0, R. Moreover, by the rigidity
of quasi-isogenies the extension class of:

0 —— T”®0L2XOLR g > T'®OL L/OL — 0

is torsion, say killed by p™. It follows that every element in

Exty, (T ®0, L/OL, T" ®0, T %o, R)
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is induced from an element in
HomOL (Tl ®o, p—nOL/OLa 1" Qo by XoL R)
which is unique as

HomoL(T’ Roy L/OL,T" QoL X Xo, R) =0.

In the sequel we will frequently use that the category of Barsotti-Tate groups
over R is equivalent to the category of projective systems of Barsotti-Tate groups
over R/M where M runs through all m-primary ideals [9, Chapter II, Lemma(4.16)],
in particular we can talk about the generic fibre of a deformation. In the ordinary
case these can be obtained as follows:

LEMMA 3.3. Let Gy be an ordinary Or-Barsotti-Tate group over k/F, with di-
mension a and Of-height a+b. Let T', T", R/Or, and ¢ € Homo, (T, T") R0, X(R)
with corresponding deformation G/R be as in lemma 3.2. Let K/L be a field extension
together with a Of-linear homomorphism R — K. Pick Oy -bases €},...,e, of T',
and ef,...,e; of T", and let ¢; ; € 3(R) be the entries of the matriz which represents
¢. Let further G; ; be the Of-Barsotti-Tate group over R defined by the push out:

0 —— Sxo, R Gis L/Oy —— 0
(3.1) | bus | [ -1 I,
0 —— Or L L/Op —— 0

and let ¢y : Gal(L*/L) — Of be the character obtained from the Tate module Or(1)
of ¥ xo, L. Then the operation of Gal(K?®/K) on the Tate module of G xp K*¢

is:
ClEa C
0 E
where C = (c; ;) is the a x b-matriz such that c;; : Gal(K*/K) — Or(1) is any

1-cocycle representing the continuous cohomology class in H},,,(Gal(K%/K,OL(1))
which is obtained from the extension (3.1).

Proof. By addition of extension classes we may assume without loss of generality
that at most one entry ¢;, j, is non-zero. In this case G is isomorphic to G, j, @
(T xo, R)> ! @ (L/OL)*"! and the assertion is obvious. O

3.2. Canonical Lifts. We turn to consequences for abelian schemes with Op-
operation, where L is a CM-field. In analogy to subsection 3.1 we fix a rational
prime p and assume that, every prime of L™ over p is split in L, hence there exists a
set 7 = {q1,...,qm} of primes of L over p, such that {q1,...,qm,q5,...,q%} exhaust
all the primes of L over p, consequently we have a decomposition:

m m
(3.2) OL®Zy 2 POL, o 0L,
i=1 =1
We write ey, ...,em,€],..., e € Op ® Z, for the corresponding idempotents. More-

over for i € {1,...,7}, we want to fix embeddings 0; : Lq, — Qg°, where we fix an



210 0. BULTEL

algebraic closure Q3¢ of Q,. We put Op° for the integers in Qg°, and P|p for the
maximal ideal. Finally, E is the field generated by the o;(Lq;)’s, with ring of integers
Og, maximal ideal p, and residue field F,.

Let S be a base scheme over O and let A be an abelian scheme over S, and
let A\ be a p-principal quasipolarization on A/S. We will say that some operation
¢ : O — End(A), makes (A4, ) into a Op-abelian scheme if and only if for every
i € {1,...,r} the induced operation on the projective Og-module e; Lie A coincides
with scalar multiplication by means of the map o; : Or,, — Op — I'(5,0), and
if e;Lie A = 0 for the remaining i € {r + 1,...,m}. More specifically let k¥ be an
algebraically closed field extension of F,. Then a Op-abelian scheme (A, A, ¢) over k
gives rise to Oy, -Barsotti-Tate groups A[q$°]. We will say that (A, A, ¢) is ordinary
if this holds for all of the A[q2°]. In this case we can apply the Serre-Tate canon-
ical coordinates to study deformations of the Op-abelian scheme (A, A,t) over any
Spec k — Spec R, such that R is a noetherian local Og-algebra that is complete with
respect to its maximal ideal. In particular let us look at the unique unramified exten-
sion B/E of complete discretely valued fields that has k/F, as residue field extension.
The lift (4, A, ¢) to Op with the canonical coordinates of all the A[q$°] the trivial ones
is called the canonical lift. We have the following important fact:

LEMMA 3.4. Fizm ={q1,...,qm} and 05 : Lq, — Qze forie {1,...,7r} as above.
Let (A, A, 1) be a Or-abelian variety over the algebrazcally closed field extension k over
Fp. Let (A, )\ ¢) be the canonical lift over Op. Then Endo, (A) = Ende, (A), as Z-
algebras with involution.

Proof. The proof in [9, Chapter V,Theorem(3.3)] translates word for word to our
situation. O

4. The integral model M©%1),

4.1. The moduli problem. Recall the two CM traces ®©® and &™) for L, as
in section 2, and recall also our choice of (V(1), VO 1) 4@ hM) p(0) giving rise
to Shimura data (G©*D, X(©%1)) and of the level [ > 3. We fix a prime P|p in Q2°,
the algebraic closure of Q in C, and assume (#) the following:

e the pairings %™ and #(® induce Z(p)-valued perfect pairings on Vz((lp)) and

(0)
Zpy
e p is coprime to [,

o there exists a set 7 of primes of L over p such that
2@] = {o: L - Q| (P) e 7°},

o if |™] — |8©)| = {0y,...,0,} then q1 = o7 (P),...,qr = o7 (P) are
pairwise distinct prime ideals of L.

We write {q;|¢ =+ 1,...,m} for the remaining primes in 7. The primes in 7* are
nothing else then {q},...,q},}, consequently we have a decomposition as in (3.2)
with corresponding idempotents e1, ..., em, €}, ..., e}, € O ® Z,. We write E for

the field generated by the o;(L)’s, we write p for the prime ideal induced in E by 3,
and denote as usual by Og, the integers in the completion of E at p, notice that £
contains the reflex field E©*1) and that Ej, may well be ramified over EgOXI) . The
moduli interpretation for M(©*1) that we will give is only defined over the extension
Og,.

The first two #-conditions imply that the group K (°*1 | as introduced in (2.6), allows
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a factorization K @©DPK 0D ywhere K(©xD? ¢ GOX1)(A®P) is compact open, and
KD =GPV (Z,) looks like 23 x [T, OF, x [IiZ, GL(n, Oy,,). We begin by
introducing a moduli space of abelian varieties. We need the following set valued
functor, over a Op,-scheme S its points consist of:

(2’) Y and Y@, abelian schemes over S, up to Zy)-isogeny,

(b’) operations :) : O — End(Y ™) ® Z) and 10 : O — End(Y®) ® Z,),
such that for £ € {0,1} the Og-modules e; Lie Y®) are projective of rank 1
if k=1andie€ {l,...,7} and of rank 0 otherwise, moreover in the former
case the Qp-operation on e; LieY () is given by o;.

(c) MOx1) a homogeneous class of polarizations on Y(® x Y containing a
representative of degree in Z(’; X

(d") level-K Ox)?_gtructure 7(®%1) e, for some choice of geometric point & of S
one has a 7 (S, £)-invariant KM?- (resp. K©"-) class of Op, ® A®P-linear
symplectic similitudes:

"7(1) Ly Q A®P Hl(yg(l),Aoo,P)
(resp.
77(0) . V(O) ® A®P — Hy (Yg(O),Aoo,P)

), of which the multipliers agree.
The above functor is representable by a Op,-scheme M(©*1). The general fibre of it
is canonically isomorphic to

(4.1) MO = HK(oxl)M(G,EOXI),X(OXU) X gox1) Fy
%

where i indexes all the locally trivial G©*-torsors, and where G{*) is the auto-

morphism group of the ith G©®*V_torsor. It is clear that the constructions in section
2, can be applied to each of the Shimura varieties in (4.1) at a time, i.e. there are
Shimura data (ng), X)) corresponding to each of the locally trivial G(©*1-torsors
and there are maps

(4.2) 98 ¢ oy MGV, x Oy 0 MGP, x (k)

generalizing the morphism (2.7). In particular, by our conventions on the com-
pact open subgroups K(®*1) and K*) we obtain homogeneously polarized abelian
schemes with properties as expressed in lemma 2.2 over each of the Shimura varieties

xoxnM(GOD | x(0x1) We will continue to denote these by Y (). The same remark
applies to the induced classifying maps (2.8) which generalize to give maps:

(4.3) g® MO — Ay 4.

Hereis g = [L* : Q) (',:), and d is the degree of some choice of an effective polarization
within the homogeneous class A(¥),

LEMMA 4.1. If & holds, then M©*V) s smooth over O, .

Proof. We use the concept of a local model M'¢ over O E,, following the method
of [10]. In the case at hand, the functor which M!°° represents, can be described as
follows, over S/ Spec O, the points consist of pairs (¢, ¢) where t is a (@;~, O Ly, )9z,
Os module, and ¢ : (P, Or,,)" ®z, Os — t is a (PL, O1,,) ®z, Os-linear
surjective map such that:
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e ¢;t is a line bundle on S, for all i € {1,...,r}, moreover OL,, acts on it by
;.
eet=0foralie{r+1,...,m}
One sees that M'°° is smooth, as the fibres are isomorphic to (P"~1)*". ]

4.2. Stratification. Let k£ be an algebraically closed field over F, and let £ :
Speck — M(*1) be a point corresponding to data (YE(I),YE(O),...). Ifie{r+
1,...,m}, then the Or, -Barsotti-Tate group YE(I)[q;?"] is étale, if 7 € {1,...,7} it is
one-dimensional, hence isomorphic to

OL.. A
Gl,:zq-’f,-q ® (Lq./OL,,)"

for some f; € {0,...,n — 1}, here the notation is from [6, (29.8)]. The formal
OLqi-module is in this case isomorphic to

We call § ordinary if f; =--- = f, =n—1, ie. if and only if all the Oy, -Barsotti-
Tate groups }’E(l)[q;’°] are ordinary in the sense of section 3. The ordinary locus is
Zariski open by [11]. We let MO be the open subscheme of M©*1) cbtained by

ord
removing the non-ordinary locus in the special fibre.

5. An extension theorem. We continue the study of the abelian schemes Y,
we begin with a lemma on the degree of Y(¥);

LEMMA 5.1. Let (VD) V© @ () and corresponding (V*),4*)), be as in
section 2. If v and @ induce Z(p)-valued perfect pairings on Vzg(lp)) and Vzg(op)),
then ¥ *) induces a Z(p)-valued perfect pairing on szi)).

Proof. The data 1) gives rise to a Z(p)-valued perfect pairing on the O ® Z)-

module Vz(:,)) if and only if

k k —
v® v v L Dl ez,

has this property, where Dy, is the different of Or. If one has this for £ € {0,1}, then
the same follows for the exterior pairing

k k

(1) 1) —k
/\ Vz(p) X /\ Vz(p) - DL ® Z(p)’
OL OL

induced by ¥®)| and for the 1 — k-fold self-product of ¥(©):

(0) ®o, 1-k
VZ(p)

By taking the product once more we obtain that
k) . y(k (k) -1
o® v v - Dl ez,

is perfect, which is what we wanted. O
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5.1. Extension of Y(¥)[q%°]. With these gadgets we are now in a position to
give a Serre-Tate analog of the tensor constructions of section 2. Let us start with
an algebraically closed extension k/F, and an ordinary k-valued point £ : Speck —
M‘(g:l), that is represented by the tuple (YE(I), YE(O), (D@ AOx1) ) Our aim
in this subsection is to define a certain Barsotti-Tate group:

m m
6 = Diar) o DG lai]
i=1 i=1
on the universal deformation space Defog = Spec R of £, in such a manner that the
generic fibre of it matches our Y (¥)[q®]. Here we use the usual algebraization results
of polarized formal abelian schemes to freely switch between Spec R and Spf R. Note
that according to lemma 3.2 we have a canonical isomorphism

T
~ 1 / n ~
Spf R = HHomoLqi (Tz( ) ,Ti(l) ) ®OL‘H PP XOL,, 0 Og,
=1
where Op C B is again the ring of integers in the unique complete unramified ex-

tension B of E, inducing the residue extension k/F,. It goes without saying that
G®)[qx°] will be the Serre dual of G(*)[q$°]. It is then meaningful to put:

"' = Homo,,, (Lq,/OL,,, Y [a°))
and
Ti(l)” = Homo,, (i X0y, 0. kY [e5)),
for i € {1,...,m}, and k € {0,1}, and further

k
’ /®o 1- ’
T(k) z Lq; ®0Lqi /\ T(l)

and
(K" _ (0)/®Oq; 17 " O
T =T ®OL'H TZ ®0L4i /\ Tﬁ

(]

Let us also introduce a map:
)I/
ngn 1,

®) ;: Homo,, (T, 1" (@ 1"

) — Homo,
which is defined by contraction of elements, sending ¢ : Tz-(l)’ — Ti(l)” to the map
¢® . 7™ 70" defined by

x kgL Ao Azg — Z )”’1x%,’k¢(l)(x,,)x1 AN ANy 1 NTyg1 A+ AT,

where z¢ € T(O) - {O} and z1,...,Tk € T(l),. Notice that T(k) and g(k) are

can,i

only non-zero if T( )" is non-zero, which happens for all ¢ in {1,...,r}. To define a
Or,, -Barsottl-Tate group G®[q2°] of O, -height (}) over Defog we consider

"
le(k) ®0Lq,- 27; XOLqivo'i k@:l';(k) ®0Lqi Lqi/OLq'.
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and deform it by ggizm-. We can finish this subsection with the following two auxiliary
lemmas:

LEMMA 5.2. Let m; be a profinite group. Let p be a continuous representation
thereof into the group GL(n, A), where A is a ring, separated and complete with respect
to the M-adic topology where M is an ideal. Assume that p has the form

C1 C2 Cn
0 1 0
0 O 1

where ¢ : T — A* is a continous character and where the mapsca, ..., cp:m — A
are continous 1-cocycles of w1 with coefficients in ¢ (i.e. representatives of elements
in HY .(m1,c1)). Then for every k € {0,...,n} the representation \*p : m —

afay ¢
0 E(";‘))

GL((}), A) has the form

where the Z:i) X (";1) -matriz C' can be described as follows: the rows are indezed by
the set of k —1-element subsets I = {ia,...,1x} C {2,...,n}, the columns are indezed
by the set of k-element subsets J = {i1,...,ix} C {2,...,n}, and the entry in the I'’th
row and J ’th column is equal to

{ (-1)le, I=J-{i}

0 otherwise

Proof. Denote the standard basis of A™ by ey,...,e, the subspace spanned by
e1Ne;, - Aej is /\k p invariant and the quotient carries the trivial action. This show
that the diagonal blocks are as asserted. To check the cocycle matrix note that:

k
/\p(eil/\---/\«fzi,c)—e,:l/\---/\ei,c

k
= Z(—l)u-lciuel Neiyeo-Nej,_; Nej, s Noe- Neg,
v=1

LEMMA 5.3. Let the tuple (Ys(l), Yg(o), (D, O XOD Y over k/F, be as
before, and let Defog = Spec R be the universal deformation space. Let G, GO,
and G*) be the Barsotti-Tate groups over R constructed above. Then for every i €
{1,...,m} the (étale!) Barsotti-Tate group with Oy, -operation:

0 1, 80n, 1ok A o 1
(G©a°] xr R[=)) ®0s,, [\ (G0 xR R[Z))
p o, p
is canonically isomorphic to G [q°] x g R[%].

Proof. = We may regard these objects over R[%] as representations of
1 (Spec R[%],Spec k), now use lemma 5.2, and lemma 3.3. 0
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5.2. Extension of Y(*), We continue to assume that & is valid:

THEOREM 5.4. The abelian scheme Y® over M©*1) eztends to an abelian
scheme Y®) over the whole of MOV B oinherits o Oy -operation from the Of-

ord
operation &) on Y*) in a unique way.

Proof. As Mfg;l) is disconnected we consider the connected components
separetely, let A" be one of them, it is an integral scheme, write N for the generic
fibre. We consider the morphism g(*) : N — A, 4,1, obtained from the abelian
scheme Y %) together with a choice of effective polarization in the homogeneous class
A®) | as we did in (2.8). Here note that we can choose the effective polarization in
the class A(®) to have a degree dj, coprime to p, because of lemma 5.1. Let Aj be
the normalization of the schematic closure of the graph in N’ x Ag, 4, 1, let x be the
projection from Ny to the A-component. Let No, N, and ng,dhl, be the special

fibres of Ny, N, and A, 4, 1.

We want to prove that the fibres of x are all 0-dimensional. By the semicontinuity
of fibre dimensions it is enough to consider Fy°-valued points zo of Ny, lying over some
Fa¢-valued point (z,y) of N x Ay, di,i- Write R for the local ring of Oppr X0p, M
at the closed point zg and let I C R be the stalk at zg of the ideal sheaf to the closed
immersion

]Fgc X¥N NO — OE;w XOEP N().

Write R and I for their completions at the maximal ideal to z¢. Consider the com-
mutative diagram:

SpecR —_— OE;W XOEp No E— OE;M‘ XOEp N x Agk,dk,l

I I I

Spec(R/I) —— F*xxNy — Fp X Agy,dy 1

Over Spec R we have the pull-back of the universal abelian schemes Y@, Y1)
and Y*). From the composition Specf% — Defoz, we also have O, -Barsotti-Tate
groups G(*)[q%°] according to subsection 5.1. By lemma 5.3 the generic fibre of
G*)[q%°] agrees canonically with the generic fibre of Y¥)[q], according to [15,
Theorem 4] G(*)[q5°] agrees with Y(*)[q°]. Tt follows that Y(*)[qs°] is constant on
Spec(R/I) because G(*¥)[q5°] is constant there. According to Serre-Tate, [9, Chapter
V,Theorem 2.3] the polarized abelian scheme (Y®), \(¥)) is constant on Spec(&/I),
and on Spec(R/I) as well. This means that the natural map from the local ring Q
of Fp¢ x Ag,.di,1 at y to R/T factors through y: Q — Fp¢. Now just notice that R/I
being the local ring of Fg° xﬁwo at xo is finite over @, so that R/I is finite over Fg°.

We next prove that x is proper, it certainly suffices to show that the schematic
closure of N is proper over N, we check this by using the valuative criterion
of properness, [4, Corollaire 7.3.10(ii)]. Let F' be the function field of N. Let
z : Spec F — N be the generic point, and let g*) o z = y : Spec F — M(©%1) be the
composition. Let R be a discrete valuation ring of F', dominating some local ring of
On. We write ¢ : Spec R — N for the corresponding morphism, and y,§°) and y;‘l’,
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(resp. Y{? and Y(l)) for the pull backs of the universal abelian schemes over M (1)
via ¢ (resp. via z). Choose any prime ¢ different from p. The {-adic Tate modules
of Y? and Y are unramified. Therefore, if Yy(k) denotes the pull back of Y*) to
Spec F', the f-adic Tate module of Yy(k) is unramified as well, by lemma 2.2. Due
to Néron-Ogg-Safarevic’s criterion, [17, Theorem 1], there exists an abelian scheme
y"“) over R extending Yy(k), moreover y,§’°) inherits a polarization of degree dy and

a level [-structure from Yy(k). The corresponding R-valued point in the moduli space
Ag..di,1 establishes a R-valued point y in the schematic closure of V, which lies over .

We conclude that x is an isomorphism, by using the Main Theorem of Zariski
[5, Corollaire 4.4.9].

The abelian schemes thus obtained have a Op-operation, for example because
homomorphisms between abelian schemes over normal bases extend, [12, Chap.IX,
Corollaire 1.4]. O

REMARK 5.5. The Y*)’s are Op-abelian schemes, because the structure of the
Op-operation on the Lie algebra can be checked in the generic fibre.

Over algebraically closed fields of characteristic p one can clarify how the canonical
lift of Y(¥) relates to the canonical lift of Y (*):

LEMMA 5.6. Let k be an algebraically closed field over Fy. Let (Y, YO,
LD, 0 \Ox) 50x1)) pe g k-yalued point of MCZV. Let (Y, YO, ...) be the
canomcal lift over Op. Lety : SpecOp — Mff:: 2

the O -abelian scheme y(") over Op 1is the canonical lift of its special fibre.

be the classifying morphism. Then

Proof. We only have to check that all the Or, -Barsotti-Tate groups split, again
by [15, Theorem 4] this follows if the Galois representatlon splits. This is clear, by
lemma 2.2. 0

6. Endomorphism ring of Y(*). In [14] the endomorphism ring of the generic
Y*) is studied. We extend this study to the special fibre of V&) We start with
preliminary remarks on the Mumford-Tate group: Consider a C-valued point (YE(I),

Ys(o), JD O AOXD) Y of groxny M(GOXD)| X©X1)) then
Ve = Hy(Y@(C),Q)

is a Hodge structure with an operation of L on it. Let us write M7 C GL(Vél) /L),
for the smallest algebraic group over L such that MT X, C contains for every
embedding ¢ : L — C the cocharacter uy : G X C = MT x, , C given by

2T TE V(l)-1 o

/'I‘U(z) ‘T { V(I)O -1

x

the following is very well-known:

THEOREM 6.1. If End) (Y(l)) = L then the group MT to the Hodge structure
with L-operation Vé )= H, (Yg(l), Q) is the full linear group GL(Vé )/ L), in particular
Endd (YY) = L for all k.
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Proof. We follow the ideas of [13, Theorem 3]. Let us remark that V() is
semisimple as a representation of M7 . This is because any M7 -invariant subspace
W is a Hodge structure with L-operation. Then take the orthogonal complement
W* with respect to ¥(1). This is again a Hodge structure with L-operation, and
hence a M7 subrepresentation complementary to W. So MT is reductive, as it has
a faithful semisimple representation p, namely the natural action on the L vector

space Vél). A similar argument gives that End a7 (p) coincides with Endr,(V(Y) = L.

Upon base change via some ¢ : L — C we are in a position to apply [16, Proposi-
tion 5] to MT x 1, , C. Here note that we may choose o in the set |®(™| — || £ 0,
so that the group p,(Gn,) is contained in MT xp, , C.

The assertion on End%(Yék)) just follows as the kth exterior power is an absolutely
irreducible representation of GL(V&I) /L). 0

Using canonical lifts we easily get an analog in positive characteristic:

COROLLARY 6.2. Assume that the &6-conditions of subsection 4.1 hold. Consider
a point € : Speck — M(OXI), where k is an algebraically closed field over Fyp. If

ord

End%(yél)) = L, then End%(yék)) = L’ fO’l" all k.

ord

Proof. Let ¢ : SpecOp — MOD correspond to the canonical lift of (3)5(1), 5(0),
WD @ XOxD) ) where Op is as in subsection 3.2. Choose an embedding
Op — C. We have End%(y;(l) X0, C) = L, because this algebra must be contained
in End%(yﬁ(l)) = L. By theorem 6.1 we infer End%(y,fk) xop C) = L, and therefore

End} (Y™ = L. Now we apply lemmas 3.4 and 5.6. 0
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