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EMBEDDINGS OF THE COMPLEX BALL INTO SIEGEL SPACE * 

OLIVER BULTELt 

Abstract. We study properties of a certain map from the unitary group U(l,n — 1) to the 
group U((£~J), (n^1)). We explain how it gives rise to a map between canonical models of Shimura 
varieties and we prove that it extends to the ordinary locus of the integral model. Finally, we extend 
results of Satake on the endomorphism ring of a generic image point to positive characteristics. 

1. Introduction. In [14] Satake classifies embeddings of a symmetric Hermi- 
tian space X into Siegel space, let us describe his results in a special case: The 
bounded realization of Ip^n—p is a domain in complex affine p(n — p)-space which may 
conveniently be described as the set of complex valued p x (n — p)-matrices 

Bp,n_p = {AeM&t(p,n-p)\ P||00<1} 

where || • ||oo is the operatornorm (relative to the standard Hilbert space norms || • ||2 
on Cp and Cn~p respectively). If we write 5n for the bounded realization of 11 In, 
then there is a natural holomorphic embedding 

(1-1) Bp,n-p <L~> ^n • 

In the special case p = 1 we recover the complex ball in C71-1. Surprisingly (1.1) is 
not the sole symplectic embedding of i?i)n_i, as one has maps 

(1.2) B^ - £(»:}),(»-!) *-> S(l) 

which are induced by sending x G C71"1 to the (£lj) x (n^1)-matrix A with entries 

1 n otherwise 

where I = {zi,..., ik-i} and J = {Z'I, ..., ik} run through all subsets of {1,..., n — 1} 
with cardinalities k — 1 and k. We want to study the effect of (1.2) to quotients of 
£i,n-i by congruence subgroups and their canonical models. We consider, in more 
modern language, a Shimura datum (G, X), such that G is a Q-form of GL(n, C) and 
such that the conjugacy class /i of minuscule cocharacters obtained from X is: 

Cx 3z^ 

(z   0    ...    0\ 
0    1    ...    0 

Vo   0   ...    \) 

€GL(n,C). 

If /i is as above then all of the n — 1 fundamental dominant weights A satisfy Deligne's 
condition < \i, A 4- c(A) >= 1, c is the Weil-opposition. Thus one expects by [2, 1.3] 
that (suitable Q forms of) their highest weight representations provide maps from the 
Shimura datum {G,X) to a symplectic Shimura datum (GSp(2(^),Q),5/;x).  Such 
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a symplectic representation of (G, X) gives rise to the map (1.2) of the underlying 
symmetric Hermitian space, which in our case is the complex ball. Now consider a 
neat level structure K C G(A00). By Deligne's theory we obtain a Shimura variety 

(1.3) M(C) = G(Q)\(X x G(A00)/X) 

which has weakly canonical models over all fields containing the reflex. Moreover, the 
aforementioned symplectic maps provide us with certain abelian schemes Y^ over 
M. (Here one has to allow to replace (G, X) by a certain covering Shimura datum 
denoted (Gi,Xi) —► (G,X) in [2, Proposition 2.3.10], see body of text for details.) 
If one assumes that G and K are sufficiently well behaved at p, then the theory of 
PEL-moduli spaces provides us with a smooth model M.. 
In this paper we study the extension properties of Y^ with respect to the model 
M. Our result is that Y^ extends to an abelian scheme at least over the ordinary 
locus of At. Our result holds for all primes including 2. 
In a future publication we will show that one can remove the ordinarity hypothesis 
at the cost of having to restrict to primes bigger than k 4- 1 along with somewhat 
stronger conditions on G and K. More general results (under similar restrictions on 
the prime) have already been shown in [18]. 
The work is organised as follows: In section 2 we describe the Shimura datum 
(GI,XL) and the abelian schemes Y^ using the language of Hodge structures, 
we do not attempt to work with all possible Q-forms of G and of Gi but rather 
confine ourself to what we think is the most natural one. This allows us to give a 
very down to earth (and we hope enlightening) treatment of the covering Shimura 
datum (GuXi) (denoted (G(0xl),X(0x1)) in body of text), and of its symplectic 
representations (which we denote by V^). In section 3 we recall canonical 
coordinates and canonical lifts, to a large extend with sketchy proof. In section 
4 we show that under the usual assumptions on K the variety M has a smooth 
model over the ring of integers in the local field JSp, where E is a certain finite 
extension of the reflex field and where p is a prime over p. In section 5 we 
prove the extension theorem in two steps, we start with the construction of an 
extension of the Barsotti-Tate group of Y^k\ and then we show that this determines 
a well-defined extension of Y^ itself, essentially by Zariski's main theorem. Fi- 
nally, we show in section 6 how some of Satake's work on the endomorphism ring 
of F^) can be carried over to the points in the ordinary locus of the special fibre oiAi. 

I thank Prof. Ivan Fesenko, Prof. Eberhard Freitag, Prof. Winfried Kohnen, 
Prof. Richard Pink, Prof. Richard Taylor, and Prof. Rainer Weissauer for interesting 
conversations on the topic and further thanks go to the referee. 

2. Exterior powers of Hodge structures. Let V be a finitely generated tor- 
sion free abelian group. It is called a (Z-) Hodge structure of weight r if it is equipped 
with a decomposition 

Vc^  0 V™ 
p+q=r 

satisfying Vq,p = V™. A direct sum 
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of (Z-) Hodge structures Vr of weight r, we want to call a pure (Z-) Hodge structure. 
To give the decomposition over the reals is equivalent to give a homomorphism of 
R-algebraic groups 

h : Cx - GLR{VR) C GLc(Fc) 

by making z G C* act on Vp,q by ^~pz~9. If the only non-zero direct summands 
amongst the Vp,q's are V~1,0 and V0'-1 then the homomorphism above corresponds 
to a homomorphism between the R-algebras C and EndR(VK), which we continue to 
denote by h. In that case V is called a Hodge structure of type {(—1,0), (0, —1)}, 
and the C-space V-1'0 can set-theoretically be identified with VR which acquires 
its C-vector space structure by the corresponding algebra homomorphism h : C —» 
EndM(VM). Pure Hodge structures form an additive (g)-category in an obvious way. 
The pure Hodge structures of type {(—1,0), (0, —1)} are an additive full subcategory 
thereof. 
Let OL be the ring of integers in a totally imaginary quadratic extension L of a 
totally real number field L4". Write * for the non-trivial involution of L/L+. A Hodge 
structure V is said to have a OL-operation if a homomorphism L : OL —► End(V) is 
given. If t is fixed we obtain a refinement of the Hodge decomposition: 

p,q 

where we denote for any embedding a : L —» C by V™ the <j-eigenspace of VPiq. 
Note that we have VgiP = VPo%. The Hodge structures with OL-operation form a 
(g)-category as follows: If V and W are given, we can form the finitely generated 
torsion free Oi-module V ®oL W. We make it into a Hodge structure by declaring 
the subspace of V^ ®c W<r of weight (p, q) to be: 

Pi,Ql 

In a similar way we define /\0 V. We want to describe a particularly interesting 
example of such tensor constructions, to this end fix a natural number n. Fix two 
different CM-traces $(0\ <I>(n): L —> C (= Q-linear maps which arise as $W(x) = 

Ecr€|$(fc)| a(x) for a11 x G L and k € {0'n}' where l*(0)l> l$(n)l c HomQ(L,C)). Let 
us define: 

(2.1) $W(x) = (n - l)$(0)(x) + $W(^) 

Our input is a choice of: 
• two Hodge structures of type {(-1,0), (0,—1)} with OL-operation, i.e.   R- 

linear homomorphisms 

(2.2) h^ :C-+EndL(T^fc)), 

for k € {0,1}, where the V^ are finitely generated, torsion free OL-modules. 
We require that: 

(2-3) trWyoo-Lo) = &k)(x), 

hold for all x € L, and fe G {0,1}. 
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• two *-skew-Hermitian Q-valued forms ip^, and ip^ on the L-spaces VQ \ 

and VQ ^, such that firstly the h^ become ^-involution preserving homomor- 
phisms, if the right hand side of (2.2) is endowed with the Rosati involution, 
and such that secondly the forms I/JW (x, h^ (i)y) on V^ ' are positive defi- 
nite. 

Observe that   (2.3) implies that the C^-modules V^ and V^ have the ranks n 
and 1. Observe also that we may write the forms ip^ and ^0) in a unique way as 
traces tr^/Q \I>(1\ and tiL/Q ^0\ where ^W, and ^^ are sesquilinear forms that are 

L-valued on VQ   , and on VQ \ Based on the 2nd and 3rd row of the table on page 
188 of [14, Chapter IV,Paragraph 5] we want to consider the following output: 

1. C^-modules V^ defined by: 

for every k £ {0,..., n}, 
2. Q-valued (L,*)-skew-Hermitian forms ip^ = tiL/Q^^ on VQ \ here is: 

¥k\x1
0-

kx1 A • • • A Xk.yl^yx A--Ayk) 

= (¥0Hxo,yo))1-kaet(^1Hxuyj)i^ 

for xi,...,Xk,yi,...,yk € v£\ and xo,2/o € V^0), 

3. *-homomorphisms hW : Cx —> Aut(V^ ^) defined so that z G Cx acts as: 

x1
Q-

kx1 A'"Axk^ (hW(z)xo)1-khl1\z)x1 A ... A h^(z)xk. 

We have to introduce reductive Q-groups as follows, on the category of all Q-algebras 
QW represents the functor: 

C -> {(7,M) € End^c(^fc)) x C^^Hjx^y) = ^k\x,y)} 

Notice the natural similitude morphisms from G^ to Gm. We also introduce a group 
GKoxi) ky jjjg requirement that the diagram 

G(oxi)     9ll) , G(i) 

GW 

be cartesian. Finally we introduce Q-rational group homomorphisms gW : G^0* ^ —* 
G^ by sending, say (7(0),7(1)) € G(0xl)(C7) to the element 7^) : V^ -> V{i

k) defined 
by 

(2.4) 7W(4-^1A--.Axfc)=7(0W~V1)(zi)A---A7(1W 

Let us also pick connected, smooth Z-models 0% (Gg ) of the groups G(fc) (G^0*1)) 
by taking the schematic closure in the group Z-schemes GLCV^/Z) (GL(V^ ® 
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VW/Z)). Here the 0L-lattices V™ C Vg' (V<® ®V^ C Vg'eVg*), are as before. WmT/Uh 

The maps g(k' preserve these lattices and so give rise to maps g^ } : G; 
(fc) . ^(Oxl) <k) 

The V^ are clearly Hodge structures with C^-operation, however much more is true: 

LEMMA 2.1. Ut {V^ M0) ^{1) ^{Q) ^ M^) beasbefore. Then(V^k\hW) is 
a Hodge structure of type {(—1,0), (0, —1)} with OL-operation. Moreover, the quadru- 
ples 

are PEL-data in the sense of [8], as is the quadruple 

(L e L, *, v£0) e vgK ^ e v(1), h™ © hW). 

The G^(M)'Conjugacy class of h^ is determined by the formula: 

(2.5) trCarl^-x..) = *<*>(*) = (" " ^(x) + (^ I J)*
(B)

(*). 

for any x £ L.   Therefore, when writing Es for the reflex field of (G6^6), we have 
E(k)   c   ^(Oxl)  for all k      Finally7   the map g{k)   .   G(0xl)   _,  G(k)   takes h(0xl)   ._ 

Proof    We first check that the Hodge structure V^ has weights in the set 

{(-1,0), (0,-1)}.   The assumption    (2.3) on V^ implies that the V^    '    have 
the following dimensions, where a : L —> C runs through all embeddings: 

dimcV^ 
-1,0 

n 
n ■ 

1 

0 

N0,-1 

ifae|$<0>|n|$<n>| 
i    ifaG|^(0)|-|^n)| 

if(7€|*(n)|-|*(0)| 

ifa(t\$W\U\$W\ 

and analogous formulas for dime V; '       hold. Consequently we derive the following 
Hodge decomposition for the a-eigenspace of [\0   V^\ 

c 

-1,0 

r(l)-1'0 

©Ar1^"1'0^^0'-1 

v^' ' ®cAc 
lAc^ .fcTHD0'-1 

^Vi^'^eA^^0'"1 

if<7€|$W|n|$(")| 

ifae|$(0)|-|#<n)| 

if(7€|$<n>|-|*<0>| 

ifa^|$(0)|u|$(n)| 

so that in each of the four cases the tr-eigenspace of /\0L V^ has the following Hodge 
weights (with multiplicity): 

(P.?) 

'GJ)x(-M) ifCTe|$(0)|n|$W| 
(V) x (-M), (rD x (1 - *.-l) if «• € |$(0)| - |$(n)| 
(rl) >< (-1.1 - fc). ("fc1) x (0- -fc) if ^ e |*(»)| - |$(0)| 

[(^)x(0,-fc) if(7^|$(0)|U|$(n)| 
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Comparing this with the Hodge weights of V^ , being 

f(k -1,0)    ifa€|$(0)| 
[P,q)-\(0,k-l)    i{at\&V\ 

shows that the sole weights of V^ are {(—1,0), (0, —1)} and shows the formula (2.5) 
also. 
We still have to verify that the pairings ip(k\x, h^k\i)y) are positive definite. Every 
embedding a : L —> C is a *-homomorphism, therefore one obtains sesquilinear C- 
valued pairings ^ ' on V^ ' for every k. Consider the forms E^' = ^^ '(x, h^k\i)y). 

By assumption ^^(x^h^^y), and ip(0\x, h^ (i)y) are positive definite on V^ , 

and V^ , so these forms restrict to positive definite forms E* , and Es- on Va , and 

Va   . By utilizing the formulas for W^ and h^ we see the positive definiteness of 

E^ixl^X! A ... A Xk^yx A • • • A yk) = ^(^cyo)1"* det^1)^,%),,,). 

Finally just check that 7/^(2;, h^k\i)y) is the sum of various JSi- ^(x, T/j's. D 

We turn to Shimura varieties which correspond to our choice of VQ,^^
5
, for 

5 £ {(0 x 1), (0),... ,(n)}. Let X5 be the conjugacy class of h6 in G^, (we set 
^(oxi) _ ^(0) 0 ^(1)^ t]:ien one puts accor(iing to   [1]: 

KMC(G5,X5) = G6(Q)\(XS x G^A^/K) 

for the Shimura varieties, of which the projective limit lim KMC(G
5
, X

S
) is equal to 

K—►! 

Mc(G5,X5) = G6(Q)\(X5 x G^A00)), 

by [2, Corollaire 2.1.11]. One writes KM(GS,X6) and M^X5), for their weakly 
canonical models over a choice of any field containing the reflex. We will prefer to 
always work over the field E^0xl\ being the largest of the reflex fields Es, thus our 
M(G^k\X^ys are strictly speaking base changes via xE(k)E^0x1^ of the canonical 
models. 
Let us briefly sketch the moduli interpretations due to Deligne [1, Scholie 4.11]. If 
F/E(pxi) is an algebraically closed field then there is a Aut^oxi^F) x G^A00)- 
equivariant bijection between F-valued points of M(G^k\X^) and isogeny classes 
of quadruples (Y(fcVfc), A(fe),7/fc)) such that: 

(a) y(fc) is an abelian variety over F up to isogeny. 
(b) t^ : L —> End0(y^)) is a homomorphism such that 

taUeyw(t<fc>(s)) = *<*>(*) 

for all x £ L. 
(c) \(k) is a homogeneous polarization of Y^ of which the Rosati involution 

restricts to the CM involution on L. 
(d) a L-linear level structure rjW : Vr

A
oo(A:) -> H^Y^.A00) which becomes a 

symplectic similitude if one imposes the Weil pairing on the right and the 
pairing ipW on the left. 

(e) the skew-Hermitian L-module H^Y^ xpC.Q) is isomorphic to (V^k\ipW) 
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and similarly for M(G(0><1),X(0><1)). In fact a more thorough treatment can be found 
in [8]: The scheme M(G(0xl),X(0x1)) represents a functor taking a E^x^-scheme 
S to the set of tuples (Y^k\ ^k\ \(k\ rj^) with properties analogous to (a)-(e). From 
now on let us pick a level / which is > 3. The compact open groups 

(2.6) K6 = {7eGi(Z)\7 = l    (mod/)} 

are neat and satisfy g^k\K^) C K^0xl\ This is most useful as it sets up maps 
between the characteristic zero Shimura varieties 

(2.7) gW : K(oxi)M(G(0xl\x(0xl>) -> K(k)M(G^k\X^) 

that are induced from the group theoretic maps of lemma 2.1, according to [1, 
Corollaire 5.4]. Note that these maps do not have a natural moduli interpretation. 
Nevertheless we do obtain a homogeneously polarized abelian scheme Y^) Up to 
isogeny over ^:(oxi)M(G(0xl),X(0x1)), with O^-operation ^k\ and appropriate level 
structure rj^k\ by pulling back the universal family on K(k)M(G^k\X^) via g(k\ 
Here, we wish to consider the particular representative of the isogeny class Y^ which 
is determined by the constraint r)^k\V^ ) = #i(^ ,Z). Within the homogeneous 

class of polarizations A^), coming from the data QipW, we wish to pick some effective 
representative and write dk for its degree. Note that the homogeneous class Qi/jW 
depends only on the homogeneous class Q(ip^ (Bip^) of polarizations on V^ ® V^, 
but the choice of an effective representative is arbitrary. Note also that ifiW may well 
be ineffective even if ip^ 0 ip^ is effective, see lemma 5.1 below, however. Having 
made the above choice we obtain a further map: 

(2-8) fl<fc> : ^OXDM^
0
*

1
),^

0
*

1
)) -> A^j 

where g^ is [L+ : Q](^), and Agkidk,i is the fine moduli space of polarized abelian g^- 
folds of degree dk with level /-structure. We finish this section with two more results 
onyW: 

LEMMA 2.2. Let V6,hs,ips,K5, be as above. Let F/E^x^ be afield and let 

f : SpecF -> K(oxi)M(G(0xl\x(0x1)) 

be a point, let Yi */F be the abelian varieties which correspond to g^k\^) via (a)-(e) 

above (and leveled by the constraint r}(k\V^ ^) = Hi(Y}   ,Z)J.  Then: 

H^Y™ xFF°',Zef
0*'1-k®oLl A ffi(ye(1) xFF^Ze) 

is isomorphic to 

as a 0Le[Ga\(Fac/F)}-module. 

Proof. We can lift £ to a point f : SpecFac -♦ M(G(0xl),X(0x1)), using the 
moduli interpretation of M(0xl) (see section 4 below) we can find the associated 
tuple 

(yt Vi V V0), A^W1),,/0)) 
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where \(0xl) is a homogeneous polarization of Y^ ^ x Y^ ' and TJ^^T]^ are i-linear 
similitudes: 

,?«:yA.W-2r1(y«>A~). 

and 

of which the multipliers agree. Now let T be an element of Gal(Fac/F), as 
$' and T(^') have the same image in i<-(oxi)M(G^0><1\x(0x1)) one can find 7 = 
(7(o))7(i)) 6 ^(oxi) with T^/j = ^#7- Due to the G(0xl>(Aoo)-eqiiivariance of the 

mapM(G(0xl),X(0x1)) -> M(G^\X^) it follows that r^^^')) = 9(k)(^)-9ik)h)- 
However, ^'.7 is by definition equal to: 

and analogously for ^^(^O-i^^M- Now use the formula  (2.4) and one is done. D 

COROLLARY 2.3. If the assumptions are as above, then: 

k 

is isomorphic to 

HfR^/F) 

as F 0 L-module with Hodge filtration and Gauss-Manin connection. 

Proof Without loss of generality one can assume that F is a finitely generated 
extension of £'(0xl). We choose an embedding of F into C. By very construction of 
the map gW : K(oxi)M(G(0xl\X(0x1)) -> ^MtG^X^) there are isomorphisms 
of Hodge structures with O^-operation: 

^(y^CO.z)®^1-* ®oL AoL H^iciz) 

tw 

HtiY^iC^Z) 

Let us denote by rd^ and ret' the de Rham and etale realizations which are obtained 
from t^ by composing with the comparison isomorphisms: 

HdR(y^/C) * H^Y^iQX) 

and 

H^Y^ xF Fac,Z) ^ H^Y^iC^Z). 

The pairs (tdR^et ) are Hodge cycles (on the abelian variety Y} Xp Y} ' XF 

Yc ^) in the sense of   [3, Paragraph 2].   By   [3, Theorem 2.11] these are absolute 
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Hodge cycles (on the aforementioned product of abelian varieties over Fac). By [3, 

Proposition 2.5] this implies that the de Rham components rd^ are horizontal with 
respect to the Gauss-Manin connection, in particular they descend to isomorphisms 
over Fac: 

HdR(yt0)/Fac)®""i*'>1-k <g>F-e0L AF-0LfflR(^(1)/^OC) 

ZdR 

tdR 

HfR{Y^k)/Fac), 

according to [3, Corollary 2.7]. Moreover, the subgroup of Gal(Fac/F) fixing vd^ 

is the same as the subgroup of Gal(Foc/F) fixing t^, essentially because Galois 
conjugates of absolute Hodge cycles are again absolute Hodge cycles, [3, Proposition 

2.9]. Lemma 2.2 finishes our proof as 4t , is indeed rational over F, so that our 

horizontal map t^ descends to F: 

HdR{Y(o)/F)^Li-k ^mL A*0Lfff«(y€
(1>/F) 

HdR(Y^/F) 

too. D 

REMARK 2.4. As we can identify G^ with a subgroup of G^, we can identify 
G(0xV with the product G^ x G where G is the kernel of the map g^ : G(0x ^ -> G^. 
We even get a product of Shimura data (G(0xl),X(0x1)) ^ (G(0),X(0))x(G,X); where 
X is the projection of X^0x1^ onto the G-factor. 
Notice however, that (G, X) is not the type of Shimura datum, that can arise from 
any PEL-datum, nor is it of Hodge type. This is because its weight homomorphism is 
trivial. In fact one can think of Mc(G,X) as a moduli space for the Hodge structures 

y(0)   OL     <S)OL V^ which have weight zero. 

3. Deformations of ordinary points. 

3.1. Canonical Coordinates. In this subsection L is a finite extension of Qp, 
let OL be its ring of integers, p its maximal ideal, and F = O^/p its residue field. We 
need some background material on Barsotti-Tate groups with OL -operation. Let R be 
a noetherian local (PL-algebra, complete with respect to the maximal ideal m. Assume 
that the residue field k = R/ra is an algebraically closed field extension of F. Let Q be 
a Barsotti-Tate group over R. Let t : OL —» End(£/) be a homomorphism. The pair 
(C/, L) is called a C^-Barsotti-Tate group, if OL acts on Lie Q by means of the structural 
morphism OL —► -R, see [9], for the definition of Lie*?. A few numerical invariants are 
noteworthy: the ©L-height htc^ Q of Q is defined by |(?[p]| = \OL/p\htoL G, and the 
dimension of Q is the rank of the projective module Lie Q. Every O^-Barsotti-Tate 
group sits in a unique exact sequence: 

o * go > g > get > o 

where go is connected and get is etale. One calls g ordinary if and only if 
dim g = htoL6

0, in general one has an inequality dimC/ < hto^0. It follows from the 
Dieudonne-Manin classification that over an algebraically closed field there is one and 
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only one ordinary ©L-Barsotti-Tate group of say dimension a and O^-height a + 6, 
cf. [6, (29.8)]. Also, by the rigidity of etale covers there is one and only one etale 
O^-Barsotti-Tate group of given C^-height over any R. In fact the same is true at 
the other extreme: 

LEMMA 3.1. Let R be as above and let a be an integer. The category of OL- 

Barsotti- Tate groups Q over R with a = dim G = htoL Q, is equivalent to the category 
of OL-Barsotti-Tate groups Q over k = R/m with a = dimQ — htoL G> 

Proof Let R be artinian, let I C R be an ideal of square zero, let us endow it 
with the trivial divided power structure. Consider a C^-Barsotti-Tate group Go over 
i?o = R/I with associated crystal JD((/O)> see [9]. Notice that the value D(GQ)R over 
R is a free R (8) (9z,-module of rank a. We have to show that Go has a unique lift to a 
C^-Barsotti-Tate group G over R. So consider all sequences: 

0 Fil1 
D(Go)i LieG 0 

where the quotient Lie G is a free i?-module of rank a on which the OL action factors 
through OL —> R. This last condition actually means that Lie G is a quotient of the 
i?-module R ®oL O^ = Ra. Due to rank reasons we then have equality. D 

Prom this it follows easily that we have canonical coordinates for ordinary OL- 

Barsotti-Tate groups, we write £/0£, for the Lubin-Tate one, £/0L for its formal 
group, by S(i?) we mean the set m which is given a OL -module structure by the 
group law of E. 

LEMMA 3.2. Let k = R/m be as above and let Go be an ordinary OL-Barsotti-Tate 
group over k/W. Consider the OL-modules: 

and 

T' = UomOL(L/OL,g0) 

T" = EomoL(^xoLk,g0). 

There exists an equivalence of categories between lifts Q/R of Go and maps cf) € 
Hovao^T'iT") ®oL S(iZ), the equivalence being established by decreeing Q to be the 
following push out: 

0 

0 

g° 

-> T' ®oL L 

-» 0 

r ®oL L/OL - 0 

S x0l R. where g° = T" < 

Proof. The proof is word for word the same as in [7, Paragraph 2], so we are brief. 
It is enough to consider lifts g over artinian C^-algebras R. According to lemma 3.1 
the group g° is canonically isomorphic to T" ®oL ^XoLR- Moreover, by the rigidity 
of quasi-isogenies the extension class of: 

0 T"®oLXxoLR T' ®oL L/0L -> 0 

is torsion, say killed by pn. It follows that every element in 

ExtJ,L(T' ®oL L/0L,T" ®oL VxoLR) 
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is induced from an element in 

HomoL(T, ®oL p-nOLIOL,T" ®oL E X0L R) 

which is unique as 

HomoL(T' ®OL L/OL,T" ®QL ExaLR) = 0. 

D 

In the sequel we will frequently use that the category of Barsotti-Tate groups 
over R is equivalent to the category of projective systems of Barsotti-Tate groups 
over R/M where M runs through all m-primary ideals [9, Chapter II, Lemma(4.16)], 
in particular we can talk about the generic fibre of a deformation. In the ordinary 
case these can be obtained as follows: 

LEMMA 3.3. Let Qo be an ordinary OL-Barsotti-Tate group over k/W, with di- 
mension a andOL-heighta+b. LetT', T", R/0Ly andcfre H.omoL(T\T")(g)oL?>(R) 
with corresponding deformation Q/R be as in lemma 3.2. Let K/L be a field extension 
together with a OL-linear homomorphism R —> K. Pick OL-bases ei,..., e'h of Tr, 
and e",..., e^ ofT", and let faj G S(i?) be the entries of the matrix which represents 
(j). Let further Gij be the OL-Barsotti-Tate group over R defined by the push out: 

0  > E xoL R  > Gij  > L/OL  > 0 

(3.1) | <i>i,j 

0  ►      0L       >   L    > L/OL  > 0 

and let ci : Gdl(Lac/L) —> O^ be the character obtained from the Tate module OL(1) 

o/E XoL L
ac. Then the operation ofGdl(Kac/K) on the Tate module of Q xR Kac 

is: 

ciEa     C 
0       Eb 

where C = (QJ) is the a x b-matrix such that dj : Gal(Kac/K) —> OL(1) is any 
l-cocycle representing the continuous cohomology class in Hc0nt(G&l(Kac/K, OL{1)) 

which is obtained from the extension   (3.1). 

Proof By addition of extension classes we may assume without loss of generality 
that at most one entry <t>i0lj0 is non-zero. In this case G is isomorphic to Gi0,j0 0 
(E XoL R)01-1 © (L/OL)

6-1
 and the assertion is obvious. D 

3.2. Canonical Lifts. We turn to consequences for abelian schemes with Co- 
operation, where L is a CM-field. In analogy to subsection 3.1 we fix a rational 
prime p and assume that, every prime of L+ over p is split in L, hence there exists a 
set TT = {qi,..., qm} of primes of L over p, such that {qi,..., qm, qj,..., q^} exhaust 
all the primes of L over p, consequently we have a decomposition: 

771 771 

(3.2) OL®ZpS0OLqj©©OLq.. 

We write ei,..., em, ej,..., e^ € OL 0 Zp for the corresponding idempotents. More- 
over for i G {1,..., r}, we want to fix embeddings o^ : Lqi —> QpC, where we fix an 
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algebraic closure Q£c of Qp. We put 0£c for the integers in Q^c, and ^P|p for the 
maximal ideal. Finally, E is the field generated by the cr^l/qj's, with ring of integers 
OEI maximal ideal p, and residue field Fp. 
Let 5 be a base scheme over OE and let A be an abelian scheme over 5, and 
let A be a p-principal quasipolarization on A/S. We will say that some operation 
t : OL —* End(yl), makes (A, A) into a (^L-abelian scheme if and only if for every 
i e {1,... ,r} the induced operation on the projective Os-module e^Lie^l coincides 
with scalar multiplication by means of the map cr* : C?£,q. -* OE —> r(5, C?), and 
if ei Lie A = 0 for the remaining i € {r + 1,..., m}. More specifically let k be an 
algebraically closed field extension of Fp. Then a O^-abelian scheme (A, A, L) over k 
gives rise to 0£,q.-Barsotti-Tate groups ^[qf3]. We will say that (A, A,/,) is ordinary 
if this holds for all of the ^.[qf3]. In this case we can apply the Serre-Tate canon- 
ical coordinates to study deformations of the C^-abelian scheme (A, A, t) over any 
Spec k c-> Spec i?, such that R is a noetherian local O^-algebra that is complete with 
respect to its maximal ideal. In particular let us look at the unique unramified exten- 
sion B/E of complete discretely valued fields that has fc/Fp as residue field extension. 
The lift (A, A, L) to OB with the canonical coordinates of all the ^[qf3] the trivial ones 
is called the canonical lift. We have the following important fact: 

LEMMA 3.4. Fixn = {qi,... ,qm} andai : Lqi —> Q£c fori €{!,..., r} as above. 
Let (A, A, L) be a OL-abelian variety over the algebraically closed field extension k over 
Fp. Let (A,\,L) be the canonical lift over OB- Then Endo^C^) = Ende>L(^4), as Z- 
algebras with involution. 

Proof. The proof in [9, Chapter V,Theorem(3.3)] translates word for word to our 
situation. D 

4. The integral model M^xl). 

4.1. The moduli problem. Recall the two CM traces <I>(0) and $(n) for L, as 
in section 2, and recall also our choice of (V^, V^0\ ipW, ip(0\ h^, h^) giving rise 
to Shimura data (G(0><1),X(0><1)) and of the level / > 3. We fix a prime ^\p in Qac

5 

the algebraic closure of Q in C, and assume (♦) the following: 

• the pairings I/J^ and ip^ induce Z(p)-valued perfect pairings on V^ '  and 

• p is coprime to I, 
• there exists a set TT of primes of L over p such that 

|$(0)| = {a : L -> Q06^-1^) G IT*}, 

. if |$(»)| - |$(0)| = {<Ti,...,<rr} then qi = crf1^),... ,qP = (r,"1^) are 
pairwise distinct prime ideals of L. 

We write {q^z = r + 1,..., m} for the remaining primes in TT. The primes in TT* are 
nothing else then {qi,..-,qm}, consequently we have a decomposition as in (3.2) 
with corresponding idempotents ei, ..., em, ej, ..., e^ G OL 0 Zp. We write E for 
the field generated by the ^(LJ's, we write p for the prime ideal induced in E by ^J, 
and denote as usual by OEP the integers in the completion of E at p, notice that E 

contains the reflex field £,(0xl) and that Ep may well be ramified over jE-p * \ The 
moduli interpretation for M(0xl) that we will give is only defined over the extension 

OB,. 

The first two ^-conditions imply that the group i^0xl), as introduced in (2.6), allows 
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a factorization ii:(0xl)P^0xl), where K^x1^ C G^HA00*) is compact open, and 

40xl) = 40xl)(Zp) looks like Z£ x XfiUOl^ x niliGL(n,(9Lqi). We begin by 
introducing a moduli space of abelian varieties. We need the following set valued 
functor, over a OEP-scheme 5 its points consist of: 

(a') l^1) and y(0), abelian schemes over 5, up to Z(p)-isogeny, 
(b') operations fi) : 0L -> End^^) 0 Z(p) and ^0) : OL -> End(y(0)) ® Z(p), 

such that for k G {0,1} the Os-modules e^Liey^^ are projective of rank 1 
if k = 1 and i 6 {1,... ,r} and of rank 0 otherwise, moreover in the former 
case the OL-operation on e^Liey^1) is given by c^. 

(c') A^0*1), a homogeneous class of polarizations on y(0) x y^1) containing a 
representative of degree in Z? v, 

(d') level-iir(0xl)P-structure ffQxl\ i.e. for some choice of geometric point £ of S 
one has a TTI (5, £)-invariant X^1)^ (resp. KWP-) class of OL ® A^'Minear 
symplectic similitudes: 

r/W : y^ ® A00'? -> ^(y^^A00^) 

(resp. 

r/W : V^ ® A00^ -> tfi (y/0), A00^) 

), of which the multipliers agree. 
The above functor is representable by a OEP -scheme A^(0xl). The general fibre of it 
is canonically isomorphic to 

(4.1) M^0*1) = \±KmvtM(G?*1\x<-0*v>) xB,oxi) E9 

i 

where i indexes all the locally trivial G(0xl)-torsors, and where G^ x Ms the auto- 
morphism group of the ith G^0xl^-torsor. It is clear that the constructions in section 
2, can be applied to each of the Shimura varieties in (4.1) at a time, i.e. there are 

Shimura data (G^ \X^) corresponding to each of the locally trivial G(0xl)-torsors 
and there are maps 

(4.2) </*) : ^.jM^U*0*1)) - KWM{G\k\xW) 

generalizing the morphism (2.7). In particular, by our conventions on the com- 
pact open subgroups K^0x1^ and K^k\ we obtain homogeneously polarized abelian 
schemes with properties as expressed in lemma 2.2 over each of the Shimura varieties 

K(oxi)M(Gf xl\ X(0x1)). We will continue to denote these by Y™. The same remark 
applies to the induced classifying maps   (2.8) which generalize to give maps: 

(4-3) 9{k) ■■ MW-> Ag,,,^. 

Here is gk = [L+ : Q] (^), and dk is the degree of some choice of an effective polarization 
within the homogeneous class A^. 

LEMMA 4.1. //♦ holds, then M^0x1^ is smooth overOEp- 

Proof. We use the concept of a local model Mloc over OEP , following the method 
of [10]. In the case at hand, the functor which Mloc represents, can be described as 
follows, over 5/ Spec OEP the points consist of pairs (t, 0) where t is a ((£%L1 OLq.)®zp 

Os module, and 0 : (©^OLJ
71
 ®ZP OS -♦ * is a (©^OL,.) ®ZP ^-linear 

surjective map such that: 
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• eit is a line bundle on 5, for allz G {1,..., r}, moreover 0£,q. acts on it by 
(Ti. 

• e^ = 0 for all i € {r + 1,..., m} 
One sees that Mloc is smooth, as the fibres are isomorphic to (p71-1)^. □ 

4.2. Stratification. Let k be an algebraically closed field over Fp and let ^ : 

Spec A: —> M^0x1^ be a point corresponding to data (Y} \YC   ,...)•   ^ i € {r + 

1,... ,m}, then the C^.-Barsotti-Tate group Y}   [qf0] is etale, if i G {1,... ,r} it is 
one-dimensional, hence isomorphic to 

G&.4/,-i © (W00/4 

for some /^ G {0, ...,n — 1}, here the notation is from    [6, (29.8)].    The formal 
OLq.-module is in this case isomorphic to 

We call £ ordinary if fi = • • • = fr = n — 1, i.e. if and only if all the C^.-Barsotti- 

Tate groups Y}   [q^0] are ordinary in the sense of section   3. The ordinary locus is 

Zariski open by   [11]. We let Mor^    be the open subscheme of M^0x1^ obtained by 
removing the non-ordinary locus in the special fibre. 

5. An extension theorem. We continue the study of the abelian schemes Y^k\ 
we begin with a lemma on the degree of Y^: 

LEMMA 5.1.  Let (F(1), V(0)
,V

(1)
J^

(0)
) 

and corresponding (V^k\^k^), be as in 
section   2.   If ip^ and ip^ induce Z(pyvalued perfect pairings on V^ '   and V^ ', 

then I/JW induces a Z(pyvalued perfect pairing on ¥% *. 

Proof The data ^^ gives rise to a Z(p)-valued perfect pairing on the OL <8)Z(p)- 

module V^ ' if and only if 
HP) 

^■■V^xV^-.Vl^Z^ 

has this property, where VL is the different of OL- If one has this for k G {0,1}, then 
the same follows for the exterior pairing 

k k 

rW v A T/(I) A<>A<;)-^^(P), 

induced by ^W, and for the 1 — A;-fold self-product of ^(0): 

(0) ®^l-fc (0) ®oLl-k fc_1 
VZ(V) 

X  VZ(V) -* UL      ®HP)' 

By taking the product once more we obtain that 

is perfect, which is what we wanted. D 
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5.1. Extension of V^q^0]. With these gadgets we are now in a position to 
give a Serre-Tate analog of the tensor constructions of section 2. Let us start with 
an algebraically closed extension fc/Fp and an ordinary fc-valued point £ : Spec k —» 

M^, that is represented by the tuple (^(1), ^(0), i^, ^0\ A(0xl\ ...). Our aim 
in this subsection is to define a certain Barsotti-Tate group: 

m m 
gW = 0 gW ^00] e 0 gW [qjcx,] 

i=l i=l 

on the universal deformation space Defo^ = Spec R of £, in such a manner that the 
generic fibre of it matches our V^tqf5]. Here we use the usual algebraization results 
of polarized formal abelian schemes to freely switch between Spec R and Spf R. Note 
that according to lemma  3.2 we have a canonical isomorphism 

r 

Spf R £* nHom^<u (Zf )W1)'/) ®oLqi % xo^a, OB, 

where OB C B is again the ring of integers in the unique complete unramified ex- 
tension B of Ep inducing the residue extension fc/Fp. It goes without saying that 
£(*0[q*<x>] Will be the Serre dual of G^iq?}. It is then meaningful to put: 

if*' = EomoLJLJOLqi,YW[q?)) 

and 

for i G {1,..., m}, and fc G {0,1}, and further 

^0, 

1-fc fc-1 

and 

Let us also introduce a map: 

which is defined by contraction of elements, sending (pW '.T^      —> T/1^   to the map 

0(fc) : 7^(fc), _ 7:(fc)', defined by 

a;J~fcXi A • • • A Xfc H-> ^(-l)I/~1xJ"A;0(1)(xz/)xi A • • • A x^-i A x^i A • • • A xk, 
v=l 

where XQ G T^' - {0} and xi,... ,xk G T^'.   Notice that i;^^' and g^ are 

only non-zero if T> )   is non-zero, which happens for alH in {1,... ,r}. To define a 
OL,.-Barsotti-Tate group (/^[q-0] of C?Lq.-height (]J) over Defo^ we consider 
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and deform it by g^ i. We can finish this subsection with the following two auxiliary 
lemmas: 

LEMMA 5.2. Let TTI be a profinite group. Let p be a continuous representation 
thereof into the group GL(?2, A), where A is a ring, separated and complete with respect 
to the M-adic topology where M is an ideal. Assume that p has the form 

/ci    C2    ...     cn\ 
' 0     1    ...     0 

\0     0    ...     1/ 

where Ci : TTI —> Ax is a continous character and where the maps C2, ..., cn : TTI —> A 
are continous l-cocycles O/TTI with coefficients in ci (i.e. representatives of elements 
in Hcon^iTi^ci)). Then for every k e {0,...,n} the representation /\ p : TTI —> 
GL((£),i4) has the form 

{   0    Em) 
where the (£lj) x (n^1)-matrix C can be described as follows: the rows are indexed by 
the set ofk — l-element subsets I = {2*2,..., ik} C {2,..., n}, the columns are indexed 
by the set of k-element subsets J = {zi,..., ik} C {2,..., n}; and the entry in the I 'th 
row and J }th column is equal to 

fC-i)"-1^   i = J-{iv} 
10 otherwise 

Proof Denote the standard basis of An by ei,..., en the subspace spanned by 
^i A ei2 • • • A eik is /\ p invariant and the quotient carries the trivial action. This show 
that the diagonal blocks are as asserted. To check the cocycle matrix note that: 

A; 

/\ p{eil A • • • A a J - e^ A • • • A eik 

k 

= X^^""1)1""1^61 A ei2'' * A ewi A eWi A • • • A e<fc 

D 

LEMMA 5.3. Let the tuple (Y^, Y£
0), t^, L^, X^

X1
\ ...) over k/¥p be as 

before, and let Defo^ = Speci? be the universal deformation space. Let QW, G^, 
and G^ be the Barsotti-Tate groups over R constructed above. Then for every i E 
{1,... ,m} the (etale!) Barsotti-Tate group with OLq.-operation: 

is canonically isomorphic to G^ltf?] XR R[p]' 

Proof. We may regard these objects over R[^] as representations of 

7ri(Spec/Z[~],SpecA;), now use lemma 5.2, and lemma 3.3. D 
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5.2. Extension of Y^k\ We continue to assume that 4 is valid: 

THEOREM 5.4. The abelian scheme Y^ over M^0x1^ extends to an abelian 
scheme yW over the whole of Mor^ . It inherits a Oi-operation from the OL- 

operation ffl on Y^ in a unique way. 

Proof. As Mord is disconnected we consider the connected components 
separetely, let J\f be one of them, it is an integral scheme, write iV for the generic 
fibre. We consider the morphism g^ : AT -+ Agk,dk,h obtained from the abelian 
scheme YW together with a choice of effective polarization in the homogeneous class 
A^), as we did in (2.8). Here note that we can choose the effective polarization in 
the class X^ to have a degree dk coprime to p, because of lemma 5.1. Let A/Q be 
the normalization of the schematic closure of the graph in J\f x Agk,dk,i, let x be the 
projection from A/o to the A/'-component. Let JVo, iV, and Agk^(ik,u be the special 
fibres of A/Q, A/", and Agk4k,i. 

We want to prove that the fibres of x are all O-dimensional. By the semicontinuity 
of fibre dimensions it is enough to consider FjJc-valued points XQ of iVo, lying over some 

Fpc-valued point (a;,y) oi N x Agkidk,i' Write R for the local ring of OE^ XQE -M) 
at the closed point XQ and let J C R be the stalk at XQ of the ideal sheaf to the closed 
immersion 

Write R and / for their completions at the maximal ideal to XQ. Consider the com- 
mutative diagram: 

Specfl     > OE^ xOEp A/'O  > OEnr xoEpMx Agk4^i 

Spec(i?//)  >     F^X^JVQ      > lPpcx^fcA,« 

Over Spec^ we have the pull-back of the universal abelian schemes y^\ y^, 
and y(k\ Prom the composition Speci? —> Defo^, we also have C^q.-Barsotti-Tate 

groups ^^^[q^0] according to subsection 5.1. By lemma 5.3 the generic fibre of 
(/^[qf] agrees canonically with the generic fibre of y^fq?0], according to [15, 
Theorem 4] Q^lqf] agrees with ^[q?0]. It follows that ^[q?0] is constant on 
Spec(JR/J) because ^^^[qf3] is constant there. According to Serre-Tate, [9, Chapter 
V,Theorem 2.3] the polarized abelian scheme (y^k\\^) is constant on Spec(R/I)1 

and on Spec(i?//) as well. This means that the natural map from the local ring Q 
of Fpc x Agk,dk,i at y to R/I factors through y : Q —► FpC. Now just notice that R/I 
being the local ring of Fpc XJ^NQ at XQ is finite over Q, so that R/I is finite over Fj}0. 

We next prove that x Is proper, it certainly suffices to show that the schematic 
closure of N is proper over A/", we check this by using the valuative criterion 
of properness, [4, Corollaire 7.3.10(ii)]. Let F be the function field of N. Let 
x : SpecF —> N be the generic point, and let gW o x = y : SpecF —> M(0xl) be the 
composition. Let R be a discrete valuation ring of F, dominating some local ring of 
Otf. We write £ : Speci? —> A/* for the corresponding morphism, and 3^    and J^1', 
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(resp. Yx and Yx■ ), for the pull backs of the universal abelian schemes over M^0x1^ 
via £ (resp. via x). Choose any prime £ different from p. The £-adic Tate modules 

of Yx and Y^ ' are unramified. Therefore, if Y^ ' denotes the pull back of Y^ to 

SpecF, the ^-adic Tate module of Yy ' is unramified as well, by lemma 2.2. Due 
to Neron-Ogg-Safarevic's criterion, [17, Theorem 1], there exists an abelian scheme 
y^ over R extending Yy , moreover y^ inherits a polarization of degree dk and 

a level /-structure from Yy . The corresponding R-valued point in the moduli space 
Agkldkli establishes a R-valued point t) in the schematic closure of N, which lies over y. 

We conclude that x 'ls an isomorphism, by using the Main Theorera of Zariski 
[5, Corollaire 4.4.9]. 

The abelian schemes thus obtained have a C?L-operation, for example because 
homomorphisms between abelian schemes over normal bases extend, [12, Chap.IX, 
Corollaire 1.4]. D 

REMARK 5.5. The y^ 's are OL-abelian schemes, because the structure of the 
OL -operation on the Lie algebra can be checked in the generic fibre. 

Over algebraically closed fields of characteristic p one can clarify how the canonical 
lift of Y^ relates to the canonical lift of Y^: 

LEMMA 5.6. Let k be an algebraically closed field over Fp. Let (Y^, Y^, 

L(i)} A(0)^(0xi)| ^(oxi)) be a k-valued point of M^rf\ Let {Y^, y(0), ...) be the 

canonical lift over OB- Let y : Spec OB —»-A^lrd *e ^e classifying morphism. Then 

the OL-abelian scheme 3^     over OB is the canonical lift of its special fibre. 

Proof We only have to check that all the C^.-Barsotti-Tate groups split, again 
by [15, Theorem 4] this follows if the Galois representation splits. This is clear, by 
lemma  2.2. □ 

6. Endomorphism ring of Y^. In [14] the endomorphism ring of the generic 
Y^ is studied. We extend this study to the special fibre of y(k\ We start with 
preliminary remarks on the Mumford-Tate group: Consider a C-valued point (Y}   , 

Y™, tW, tW, A*0*1), ...) of tfoxoM^0*1),**0*1)), then 

is a Hodge structure with an operation of L on it. Let us write MT c GL(VQ /L), 
for the smallest algebraic group over L such that MT x^o- C contains for every 
embedding a : L —► C the cocharacter /v : Gm x C —> MT xLja. C given by 

(zx   xev}ir1'0 

fMa{z) : x ^ ( o-i 
[x    xe V}1* 

the following is very well-known: 

THEOREM 6.1. IfEnd0
L(Y^) = L then the group MT to the Hodge structure 

with L-operation VQ = Hi(Y^ , Q) is the full linear group GL(VQ /L), in particular 

EndliY^) = L for all k. 
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Proof. We follow the ideas of [13, Theorem 3]. Let us remark that V^ is 
semisimple as a representation of MT. This is because any .MT-invariant subspace 
W is a Hodge structure with X-operation. Then take the orthogonal complement 
W* with respect to ip^. This is again a Hodge structure with L-operation, and 
hence a MT subrepresentation complementary to W. So MT is reductive, as it has 
a faithful semisimple representation p, namely the natural action on the L vector 
space VQ   . A similar argument gives that End^r(p) coincides with EndiiV^) = L. 

Upon base change via some a : L —> C we are in a position to apply [16, Proposi- 
tion 5] to MT xL^ C. Here note that we may choose a in the set |<l>(n)| - |$(0)| ^ 0, 
so that the group ^(G™) is contained in MT x^ C. 

The assertion on End^l^ ) just follows as the fcth exterior power is an absolutely 

irreducible representation of GL(VQ   /L). D 

Using canonical lifts we easily get an analog in positive characteristic: 

COROLLARY 6.2. Assume that the ^-conditions of subsection 4..1 hold. Consider 
a point £ : Specfc —> M07^ , where k is an algebraically closed field over Fp. If 

End^Of >) = L, then EndJO^0) = L, for all k. 

Proof Let j: : Spec OB —► Mr^ ' correspond to the canonical lift of (3^ , D^ , 

f/1), f,(0), A^0><1\ ...), where OB is as in subsection 3.2. Choose an embedding 

OB 
C
—> C. We have End£,(3^ X

OB C) = L, because this algebra must be contained 
in EndJO^1*) = L. By theorem 6.1 we infer End?, {ylk) X0B C) = L, and therefore 

EndS,(y?
(fc)) = L. Now we apply lemmas  3.4 and  5.6. D 
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