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COMPARING MULTIFRACTAL FORMALISMS: 
THE NEIGHBORING BOXES CONDITION * 

JULIEN BARRALt, FATHI BEN NASR*, AND JACQUES PEYRIERE§ 

Abstract. Physicists usually compute dimensions by using boxes and they also do so when 
dealing with multifractals. Also in the study of some dynamical systems and multiplicative processes, 
boxes naturally appear. On the other hand, in geometric measure theory, it is preferred to perform 
computations which do not depend on a grid. 

This article provides a bridge between the boxes and the grid-free approaches to the multifractal 
analysis of measures. Results for quasi-Bernoulli measures and statistically self-similar measures are 
obtained. 

1. Introduction. The multifractal analysis of a measure // aims at relating the 
dimension of the level sets of the pointwise Holder exponent of /i to the Legendre 
transform of some kind of entropy or free energy function, a problem initially raised 
and studied for physical motivations ([19, 17, 18, 25, 26]). 

To define these pointwise Holder exponents one has two alternatives:  to define 
log^(jB(x,r)) 

a(x) as the limit, when it exists, of either the ratio  7  when r goes to 0, 
logr 

\ogfi(Qn(x)) 
or the ratio        /^  / xx when n goes to +00 (where B(x.r) stands for the ball 

logdiam(Qn(a:)) 
of radius r centered at x and Qn(%) stands for the c-adic box of size c~n which con- 
tains x). Of course the partition function is defined in terms of covers or packings by 
balls in the former case, by boxes in the latter case. It is usual to observe connections 
between these two approaches when ^ possesses self-similarity properties and /i is 
supported by a regular enough Cantor set ([4, 9, 13, 34, 15, 16, 31, 1]). But there is 
no a priori reason why these two approaches should be connected in full generality. 
In this work, we give a condition ensuring that if a measure obeys the "box formal- 
ism" , then it also obeys the other one. Our results apply on two families of measures 
supported by the full c-adic grid of [0,1], namely the quasi-Bernoulli measures and 
the Mandelbrot measures. 

The so called "box formalism" is better explained in the abstract setting of trees. 
This is the matter of the next section. 

In Section 3, the Olsen multifractal formalism is recalled for the reader's con- 
venience. The main comparison theorem is stated and proven in Section 4. This is 
explained in the one dimensional case, for the sake of simplicity, but at the end of 
this section it is said how to deal with higher dimensions. Section 5 deals with quasi- 
Bernoulli measures, and Section 6 with the Mandelbrot multiplicative measures. 
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2. Box analysis. 

2.1. Trees and weighted trees. Let 7 be a locally finite rooted tree. If w is 
a node, we denote by F(w) the set of nodes which immediately follow w. Let 7n 

denote the set of nodes whose geodesic distance from the root equals n. There is a 
natural topology on the set 87 of geodesies stemming from the root which makes 87 
a metrizable totally disconnected compact space. 

We identify a node of 7 with the set of geodesies going through it a,nd the root. 
These sets are open and closed and they are the balls of an ultrametric distance 
defining the topology. A Borel measure on 7 can be identified with a function fi from 
the nodes of 7 to [0, -f-oo) subject to the condition 

fi(v) =   ^   /i(w)    for all    v £ 7. 
weF(v) 

From now on, we are given a continuous probability measure £ on 87 whose 
support is the whole 87. 

If fi is a measure on 9T, one defines 

where the star means that the terms for which fi(w) = 0 are removed from the sum 
—a convention valid throughout this article—, and 

r^q) = sup{£ G R | limsup C£(<?,£) = +oo}. 
n—»oo 

Since C% is a log-convex function, the function r^ is easily seen to be convex and 
non-increasing. 

One the other hand, for any a € M, one considers the set 

Ea = < x € 87 hm   -—-f-Y = a 
Z(w)->o log£(w) 

xGw 

Let dim^ be the Hausdorff dimension defined by using £(w) instead of the diameter 
of w (see [8]). 

Then it is known (for instance, see [11]) that, for each q for which r^q) exists, 
one has 

dime£;_,.,(,) <T;(-T^)), (2.1) 

where r* is the Legendre transform of r^, i.e. T*(t) = iniq^qt H- r^q). Indeed, the 
stronger inequality [11] 

Dim^_Ti((7)<r;(-r;(g)), 

where Dim^ stands for the packing dimension (defined in [36]), is almost an instance of 
the Chernoff formula [12]. Of course, if these inequalities lead to negative dimensions, 
this means that the corresponding set is empty. 

The formula 

dim5JB_T,(g)=r;(-r;(g)) (2.2) 
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is shown [11] to hold if there exists a measure fiq, called a Gibbs measure, such that 
there exits C > 0 such that, for all w G T, 

^fi{w)qt(w)T^ < nq{w) < Cii{w)q£(w)T^ (2.3) 

Indeed, the equality (2.2) appeared, in a non rigourous mathematical form, in [18] 
and was proven to hold for some examples [9, 13]. 

It was noticed in [33] that (2.1) still holds when the function C# above is replaced 
by the infimum of the corresponding sums on the sections of 7 which lie below level n 
(in other terms, one considers covers of 87 by ultrametric balls). 

Indeed, as shown in [5], only the right hand side inequality in (2.3) is needed 
to prove (2.2). Since this is reminiscent of the Prostman lemma, it was natural to 
consider generalized Hausdorff measures: for q and t in R, and A C 37, define 

^\A) = lmiirf{$>K-)'£K-)* I ws € T, A C LK, ttVj) < *}• 

LEMMA 2.1 ([5]). If a compact set A is such that ^{^(A) > 0, then it carries a 
probability measure v satisfying v(w) < Cfi(w)q^(wY for all w. 

Then, if one defines 

^ = sup{]r vM^M I wj e 7, Zfa) < 8, Wj nwk = 9 for j^k}, 

aC^=lim3CH, 

and 

AMfa) = sup{t G R | Xpfat) = +oo}, 

this lemma implies the following theorem. 

THEOREM 2.2 ([5]). Suppose that ti^q) exists and that Oi^(<7)(supp(i) > 0. 
Then   dim^ E^q) = A^A'^q)). 

2.2. Homogeneous trees. In this section, we suppose that the tree 7 is ho- 
mogeneous of order c and that £ is uniformly distributed. In this context, it is more 
convenient to see 7 as the free monoid on a c-letter alphabet A. 

So, let A* = [Jn>QAn be the free monoid consisting of words on A endowed 
with the concatenation. The operation of concatenation will be simply denoted by 
juxtaposition, and by a dot, when this is necessary for a better understanding. The 
empty word e is the identity element. The length of a word w is denoted by \w\. If 
a word v is a prefix of the word w, we write v -< w. This defines an order on A*. 
Endowed with this order, A is a tree the root of which is e. If v and w are words, 
v Aw stands for their largest common prefix. The quantity d(v,w) = c~\vAw\ defines 
an ultrametric distance on A*. 

The completion A* of (A*,d) is a compact space which is the disjoint union of 
A* and DA*. The elements of dA* can be viewed as the infinite sequences of elements 
of A. The notion of prefix extends in a natural way to elements of dA*. 

We identify w e A* with the cylinder {x G dA* \ w -< #}, so a Borel measure (j, 
on dA* is a mapping from A* to R+ fulfilling the following compatibility condition 

IJi(w) = Y^ fi(wa)    for all    w G A*. 
aGA 
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At last, the measure £ is so defined: t;(w) = c"'™'. 
In this setting, the r^ function can be defined as follows. 

r^q) = limsup - logc ^ ^(w)q, 
.v   + + 00   ft 

w£An 

where q is a real number and the star means, as already said, that the summation 
runs only on the w having a non-zero measure. This function rM is convex and non- 
increasing as observed previously. 

3. A centered multifractal formalism. Let (X, d) be a metric space and // a 
positive atomless Borel measure on X. The support of // is denoted by supp /z. 

According to Olsen [32], we define several measures and premeasures indexed by 
a couple (g, t) of real numbers. If E is a subset of X and 5 is a positive real number, 
we set 

a»;i(^)=8up^V(5(xJ-,r,-))'r*., 

this supremum being taken over the collections {B(xj,rj)} of mutually disjoint balls 
whose centers Xj belong to E and whose radii Tj are less than 5. The star means that 
we omit in the summation the terms which are obviously infinite {i.e. zero raised to a 
negative power). As previously said, this convention holds throughout this paper. Of 
course, as long as the measure // has no point masses, it does not matter that balls be 
open or closed. In the sequel, we deal with such measures and, it will be convenient 
for our reasonings to consider only closed balls. 

We consider the limit 

?f(£) = limo?*J(£). 

The function T '   is called packing pre-measure. It lacks cr-subadditivity to be a 
Caratheodory outer measure. This is why one considers the following quantity 

which, as a function of E, is an outer measure.   (This is the same process as for 
defining packing measures, which were introduced in [36].) 

In a similar way, one defines Hausdorff-like measures. 

Mg
i;*g(E) = mfJ2*KB(xi>rj))

qrt
j, 

this infimum being taken over the coverings {B(xj,rj)} of E by balls whose centers 
Xj belong to E and whose radii rj are less than 5, and consider the limit 

5^'t(£7) = limo5^i(f?). 

In order to deal with an outer measure, one defines 

^■*(J5)=sup5{J'*(F). 
FCE 
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These last measures are the multifractal counterparts of the centered Haudorff 
measures introduced in [35]. 

For a fixed q, if, for some t one has 7^ (supp /x) < +oo, then, for all t' > t, one has 

7q^ (supp/x) = 0. Therefore, there exists a unique A.^(q) G R such that 7^ (supp/x) 
is infinite if t < A/X(g) and zero if t > A^q). 

In a similar way, two functions B^ and 6M are associated respectively to 7%* and 

All these three functions are non-increasing; AM and B^ are convex. It is clear 
that B^ < Afj,. If, moreover the metric space (X,d) has the Besicovitch covering 
property defined below, one has b^ < B^. 

If a and /? are two real numbers such that a < /3, one considers the following sets 

v/     m      /     i     ^r    .  glogj^Bfor)) log^B^r)) \ 
XJa,8) = <x  \ a < hminf ^  < hmsup r  < p >. M I rN.o logr *    rNo logr "    J 

Instead of X^a, a), we shall simply write X^a). 

If the derivative of B^ exists at point q, it is known [32] that the following in- 
equalities hold, with the convention that a set of negative dimension1 is empty, 

dimX^-B'^q)) < b;(-B^q)) 

DimX^-B'^q)) < B^-^q)), (3.1) 

where, as previously, the star as an exponent denotes the Legendre transform —i.e. 
f*(a) = m(qGi&aq + f(q)— and where dim and Dim stand for the Hausdorff and 
packing dimensions. 

DEFINITION 3.1. If Br^{q) exists and if all the quantities in (3.1) are equal, one 
says that the measure /i obeys the multifractal formalism at point q. 

Before recalling the following theorem [6], we need another definition. 

DEFINITION 3.2. A metric space (X, d) is said to have the Besicovitch cov- 
ering property if there exists a positive integer (3 such that, given any collection 
{B(xi,ri)}iGl of balls, one can extract from it packings Pi, P2, ..., Pp which al- 
together form a cover of the set {x^}^/. 

Any euclidean space has this property, as well as, of course, any ultrametric space. 

THEOREM 3.3.   //(X, d) has the Besicovitch covering property, if a = —Bf^(q) 

exists, and ifOi^   *    (supp^u) > 0; then 

dimX^a) = DimX^a) = J5*(a)      and    6M(g) = B^(q). 

4. Comparing multifractal analyses. 

4.1.  Stating the problem. 

LEMMA 4.1. Let jibe a non-zero positive measure on dA*. Then one has r^ = A^. 

Proof. We begin by noticing that, if t > r^q), one has 

Y*       fi{w)q c-'H < +00 (4.1) 

1For a further interpretation of negative dimensions, see [26, 27]. 
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It results that, if t > r^q), 7^ (supp^) is finite, and therefore t > A^(q). This 
proves A^ < r^. The converse inequality is obvious. 

The equality asserted in this lemma is similar to the equivalence of two different 
definitions of the quantity called A(E) in [36]. 

The map 7. There is a natural map from dA* onto R: let us take A = 
{0,1,2,..., c — 1} and consider the map 7 which sends the element x = aia2 • * • «n * • * 
on the number X^n>i anC~n. This map sends cylinders onto c-adic intervals, and 
when a measure /J, on dA* has no point masses, it is equivalent in many problems to 
consider it or its image 1/ = 7* (fi) under 7. 

This rises the natural question of deciding when the multifractal analysis of is (in 
(R, I I)) and fi (in (dA*,d)) are linked. Indeed, there are no reasons (even when u is 
doubling) why B^ and i?^, for instance, should coincide. There are no reasons either 
that Xv{a,(3) should be the image of X^a^ff) under 7. Nevertheless, one has the 
following fact. 

LEMMA 4.2. One has Kv < rM. 

Proof. Consider first the case q < 0. Let {B{xj,rj)} be a centered packing of 
suppz/, and t > T^(q). Each B(xj,rj) contains a c-adic interval Ij such that Xj G Ij, 
\Ij\ > Tj/c (where \Ij\ stands for the length of ij), and ^(/j) > 0 (do not forget that 
Xj G suppi/). Therefore 

<ct+Y*       /JLWC-W <+OO, 

where t+ = max{t, 0}. This yields TJ^suppi/) < 00. Consequently A1/(q) < r^{q). 

Now, consider the case q > 0. Let {B(XJ, Tj)} be a centered packing of supp 1/, and 
t > r^q). Each B(XJ1 Vj) is covered by at most c+1 c-adic intervals Ij^Ij^ •. •, Ijfe 
of non-zero ^-measure and of common length I satisfying I < 2TJ < cL One has 

fei 

and r*- < 2~tct  l/l*. Observe also that a c-adic interval can appear at most twice as 
an Ij^, since {B(xj,rj)} is a packing. Therefore 

< 21-'(c + l)^-1)+ct+ Y*        fi(w)qc-W < +00. 

This proves again that A^(q) < r^{q). 

In the next section, we give conditions which ensure that the multifractal analysis 
of JJL and v are equivalent. In the subsequent sections, we analyse some examples. 
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4.2. The comparison theorems. As recalled in Lemma 2.1 the inequality 
Ji-^supp fi) > 0 (where fi is a measure on dA*) is equivalent to the existence of a mea- 
sure jjiq^t with the property that, for a suitable C > 0, one has iJ<q,t(B) < C/^JS)9!!?!*, 
for any ball J5 of radius |JB| small enough. It is convenient to set the following defini- 
tion. 

DEFINITION 4.3. Let n be a measure on a metric space X and q and t be two real 
numbers. A non-zero measure fj,' having the property that there exists two positive 
numbers C and rj such that, for all x G supp// and r < rj, one has //(#(£, r)) < 
CtJL{B(x, r)) r* is called a Prostman measure for /x at (q,t). 

From now on we stick to the convention that // (with or without subscript) is a 
measure on dA* and that v (with or without subscript) stands for the corresponding 
image measure under 7. 

As, via 7, the elements of An correspond to the c-adic intervals of length c~n 

contained in [0,1], one can assign to each w € An a number i(w) so as to have 
j(w) = [i(w) c~n, (i(w) +1) c_n]. Finally, if the words v and w have the same length, 
we set S(V)W) = \i(y) — i(w)\. 

If v = 7*(/i) has no masses at the endpoints of 7(1*;), then ^(7(1^)) = M^O- But, 
one always has       KTM) < J2 veA*   ^(p)- 

From now on, in this section, we deal with an atomless measure /i on dA* and 
its image v under 7. 

LEMMA 4.4. Let q € R and 7] > 0 be two numbers. Assume there exists a 
Frostman measure fiq for /1 at (q.r^q)). Let vq = 7*(/ig) stand for the image of nq 

under 7. Then we have the following facts. 
1.  When q<0, if c~(n+1) < 2r < c'71, one has 

f        [i/(B(x,r))   q v^Bfar))]" dvq(x) < 

2.  When q > 0, if c n < r < c1 n, one has 

C c-n(l+»|)rM(g)    ^      H^+^niw)-™. 

v^weA71 

8(v,w)<S 

1-n 

L suppu 
[V(B(x,r))-q yg{B(x,(l + -c)r)) 

V 
dvq{x) < 

Cc-n(1+r?)r^9)     Yl      lJi{v){1Jrr))qii(w)-m. 
v,w€An 

8{v,w)<4c+2 

In both cases the constant C depends only on q, rj, and c. 

Proof We begin by assuming q < 0. By the Besicovitch covering lemma, we 
extract from the collection {-B(a;,r)}xesUppI/ of balls (3 (a universal constant) packings 
which altogether cover supp v. 

One has 

/. J3(a,r)nsuppi/ 
v(B(x,r))  qvq(B(x,r))]   duq{x) < 

v{B{a,2r))-mVq{B{a,2r))l+\ 
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The interval B(a, 2r) is contained in at most two c-adic consecutive intervals /i 
and maybe I2 of common length I such that l/c < 2r < I. We add to this collection of 
one or two intervals the two c-adic intervals of the same length which are contiguous. 
We keep only the ones having a non-zero ^/-measure. Then we have intervals Ji, J2, 
J3, and maybe J4 such that, if / is any of the intervals Ii or /2, Vq{I) is majorized 
by the sum ^ /i9( J^). We had to adjunct the right and left intervals to cope with the 
case where vq has masses at some c-adic points. In these conditions, we have 

1+7? ̂  v(B{a,2r))-mvq (£(a,2r))1+77 < ft i^u^yA   fe^ 

<ci (r.^rA fe^)(1+ll)gl^l(1+,,)T|lh)) 

< C2 c-^+^W YJ v(Ji)~qr) K^)(1+77)<?> 

where the constants Ci and C2 depend only on c, q, and 77. 

Now, consider the case q > 0. For every x € supp 1/, B(x, r) contains at least one 
c-adic interval Ix of length c~n such that /i(/z) > 0 and c~n < r < c1-71. 

Fix a G supp(/i) and consider the set of closed c-adic intervals of length c~n 

the interior of which intersect B(a, (2 + £)r), and, as previously, add to them two 
intervals of the same generation, one on the right, the other on the left. The number 
of elements of the set S of these intervals is bounded by 4c + 3. Therefore 

/. B(a,r)nsuppi/   . 

< 

dvq{x) ^B(x,r))-qvq{B{x,^±pL)) 

<   f L-<i(Ix)l,q(B(x,£±^)) 
«/B(a,r)nsuppi/ L C 

IGS _      JB(a> 

dvq(x) 

,         (c+l)r ,77 , 
vq[B{x,- —))   dvq 

r)nsuppi/ ^ 

< E^9(7) 

< C 

i/,(B(a,(2 + -)r)) 1+77 

E^w l+r? 

,/e5 

The proof ends as previously. 

DEFINITION 4.5 (NBC). A measure /i on dA* is said to satisfy the Neighboring 
Boxes Condition (NBC) for q G R if for all s > 0, there exists rj > 0 such that 

J^ c-n^^+^     J2    /i(?;)-?7V(^)(1+77)9 < +00, 
n>0 ViWeA71 

<5('i;,u;)<c/ 

(4.2) 

where d = 3 if q < 0, d = 4c + 2 otherwise. 
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LEMMA 4.6. Let q G M. Assume there exists a Frostman measure nq for /x 
at {q^r^q)) and that fi fulfills the NBC for q. Then, we have bv(q) = r^q). 

Also, there exists a constant C > 0 such that, for any e > 0, for i/q-almost every x, 
and for r small enough, i/g(S(a:,r)) < Cu^B(x,r))   rT^~z. 

Proof. First consider the case q < 0. Set 

F{r) = f        \v(B{x,r))-qvq(B(x,r))Y dvq{x). 

For any e > 0, we have 

^ F(c-n) C^(^(9)-^) < C ^ c-n(r^(q)+i?e)       ^      |x(v)"W/x(w;)(1+,?)9, 
n>0 n>0 v.weA71 

due to Lemma 4.4. The right hand side quantity is finite for a suitable choice of 77, 
because of the NBC. 

As a consequence of the Borel-Cantelli lemma, for z^-almost every JE, one has 

vq(B(x,c-n)) < is(B(x,c-n))qc-n(T^-^ 

for n large enough.    Consequently for z/g-almost every a;, one has iyq^B(x,r))  < 

C^(B(cc,r))   rT^^~£ for r small enough. 
Similarly, when q > 0, for ^-almost every x, one has 

^(Bix.K1-71)) < Cv(B(x,K-n))q K-
nM«)-e) 

for n large enough, where K = 1 -f 1/c. This implies that, for ^-almost every x, one 
has ^(B(a:,r)) < Ci>(B(x,r))9 rT^~e for r small enough. 

It results from these estimates that 9{£'T/X^~e(suppz/) > 0, and therefore 6^(9) > 

LEMMA 4.7.  Under the same assumptions as in Lemma 4-0, one has 

vq (R \ Xv{rB'u{q+), -BUq-))) = 0. 

Proof. Due to Lemmas 4.2 and 4.6, Bu(q) = T^(q). Take a < -Bl(q+) and set 

En = {x G suppi/ I z/(5(x,r)) > r01   for  r < 1/n} . 

Choose e > 0 and £ > 0 such that r^q) - e — at > Bv(q +1). This can be done 
for positive, but arbitrarily small, e. Once e is chosen, consider the following sets 

Gm = I a; G suppzy | i/g(S(a;,r)) < Ci/(B(a;,r))9rT^(9)-£ for r < l/m\ , 

where C is the constant in Lemma 4.6.  Due to this lemma, Um>i G™> ^^ ^u^ uq~ 
measure. 

Let F be a subset of En. For any 8 < min(l/n, 1/m), consider a centered 0-cover 
{B(xj,rj)} of F n Gm which splits in /? packings. 
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We have, if v* stands for the outer measure associated with i/^, 

This means that i/*(F) < Cfl+ttTM~e~at(F), and 

VqiEn) < yi+^M-c-a^En) < T^'T^^-e-at(supp is). 

But this last quantity equals 0 because r^q) — e — at > B^q +1). Therefore 

({                   ,              \ogv(B(x,r))        W /,   ,     \ 
vq I < x G supp i/ | limsup ^ L < a > J = vq \\j En\ == 0. 

Thus we proved the equality 

vq | \ x e supp i/ I limsup 0g   ;   ^,r^ < -5^(9+) >) = 0. 
\[ r\o logr JJ 

The equality 

/f                   ,              logi/(JB(x,r)) .,     xl\ 
i/g    < x G supp J/   limsup 7  > -BJq-) >    = 0. 

is proven in a similar way. 

THEOREM 4.8.  Under the same hypotheses as in Lemma 4-6, we have 

\Tl\rBM-))   lf ^^0- 

Proof. Due to Lemma 4.7, £/g is carried by Xu(—B^q-h), —Br
v{q—)). On the other 

hand, due to Lemma 4.6, for i/g-almost every rr, for e > 0, and for r small enough, 
one has 

logt/q(g(:c,r)) ^logC ,     logi/(B(x,r))   t 

logr logr logr 

One concludes by using the Billingsley lemma [8]. 

COROLLARY 4.9. Let q G R. Assume there exists a Frostman measure iiq for JJ, 

at {q^T^{q)). If Tf(q) exists and if fi fulfills the NBC for q, then both measures fi 
and v = 7*(/i) satisfy the multifractal formalism at q and one has bv{q) — Bv(q) = 
K{q) = b^q) = B^{q) = AM(g) = r^q). 

By careful analysis of the steps which lead to the previous theorem and its corol- 
lary, and a few modification, one can prove the following result. 
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THEOREM 4.10. Let q G R. Assume there exists a non-zero measure nq on dA* 
and a function Cq on A* such that jJiq{w) < Cq(w) ^(wy C~

MT
^ for all w € A* 

such that ji{w) > 0. Ifrf(q) exists and if, for all e > 0, there exists rj > 0 such that, 
we have 

Y^ c-»M9)+i?e)     ^    /i(^)-r7<7Cq(^)1+VH(1+77)<7 < +00 

n>0 v^wGA71 

8(v,w)<c' 

(where d = 3 if q < 0, d = 4c + 2 otherwise), then both measures /i and v = 7*(/i) 
ofte^z i/ie multifractal formalism at q, and bl,(q) = Bv{q) = kv(q) = ^^(g) = ^(g) = 
AM(g) =rM(g). 

One can remark that the conjunction of the existence of a Gibbs measure and of 
the NBC is stronger than the hypothesis of this last theorem, which therefore can be 
called weak NBC. 

REMARK. [The case of higher dimension] We stated and proved these com- 
parison theorems in a one dimensional setting in order not to deal with too complicated 
notations. But these results hold for measures on Rd. Here are the few modifications 
to be made to accomodate this case. 

This time, the alphabet is of the form Ad. So each node w of the tree (Ad) can 

be viewed as a collection (u>i, W2,. -., Wd) of words on A. An element x of d(Ad) can 

be identified to (xi, £2, • • •, Xd) £ (dA*) and a mapping, which we again call 7, from 

^(.A^) to Rd is defined by 7(2;) = (7(^1),7(^2)? • • • ?7(^))- Similarly, the distance 
of two nodes v = (vi, V2, •. •, vj) and w = (wi^w?,..., Wd) of the same generation, 
again denoted by 5, is 5(v, w) = max {<J(vi, wi),5(^2^2)5 • • •»5(vd, Wd)}- At last, the 
value of c' is unchanged. Then, as already said, the previous results hold, with the 
same proofs, if fi is a measure on d(Ad)   and v = 7*(/i). 

5. Quasi-Bernoulli measures. A probability measure on dA* is said to be 
quasi-Bernoulli if there exists C > 0 such that, for any v and w in A*, one has 

—H{v)n(w) < n(vw) < Cfi(v)fi(w). (5.1) 

The multinomial measures constitute a paradigm of such measures. They are 
very special elements of a larger family. Indeed, denote by S the shift operation on 
dA*. Due to its construction [10], any Gibbs measure with Holder potential on the 
dynamical system (cM*, 5) is quasi-Bernoulli. Moreover, any quasi-Bernoulli measure 
is equivalent to an ergodic quasi-Bernoulli measure (see [20]). 

It turns out from [28, 29, 11] that for every q £ R there exists a probability 
measure iJ,q and a constant Cq > 0, such that, for every v G A* such that fj,(v) ^ 0, 
one has 

^-ljL(v)qc-T^q^ < iJLq{v) < Cq^v)qc-T^^. (5.2) 

Moreover, the function r^ is differentiable [20]. As a consequence, the first two 
assumptions in Corollary 4.9 are fulfilled for every q € R. 

Clearly, a quasi-Bernoulli probability measure /i on dA* has an atom if and only 
if ^(j) = 1 for some j G A1, in which case fj, = 5jj...j...> We discard this case and 
prove the following result. 
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THEOREM 5.1. Let n be a continuous quasi-Bernoulli measure on dA*. Then 
both measures fi and v = 7* (/x) obey the multifractal formalism everywhere and one 
has   bv = Bv = Kv = b^ = B^ = AM = rM. 

This result is established without using the NBC in [7] under the strong hypoth- 
esis: for all n > 1, if a, b £ An and 5(a, b) = 1 then /i(a)//(6) = 0. In particular, the 
case c = 2 is excluded and in the case c = 3 fi is a Dirac mass. 

Proof. We begin by a preliminary remark: if v and w are words of length n, and if 
t) and w stand for their prefixes of length n — 1, then <£({;, w) > k implies £(?;, w) > ck. 
It results that, given two integers n > m > 0 and two words v and w in A71 such that 
cm-i ^ 5(v,w) < cm, there exists two prefixes v and w o£ v and it; respectively of 
common length n — m such that 5{v, w) < 1. 

It results from (5.1) and the above remark that, for a quasi-Bernoulli measure to 
fulfill the NBC it is enough that for all e > 0, there exists 77 > 0 such that 

n>0 v,weAn 

£(v,w)<l 

Due to the existence of the Gibbs measure fj,q this reduces to 

NP c-n(TM(g)+„e)       J2      ^T11^^1^ < +00. 
n>0 v,w£An 

8{v,w)=l 

Define A = {Q<j < c - 2 | ^OXi + 1) 7^ 0}. 

Define p^ to be the word consisting of k consecutive zeros and A/- to be the 
word consisting of k consecutive c — 1 (considered as a letter from the alphabet 
{0,l,2,...,c-l}). 

By (5.1), for n > 1, a representation of the set of pairs (v,w) in An such that 
li{v)n(w) ^ 0 and i{w) = i{v) -f 1 is as follows: 

n-l 

U       U     {{u.j.XkMJ + l).Pk) 13 € A} (5.4) 

M(u)^0 

if /i(0)/x(c - 1) ^ 0 and 

U    {(u.j,u.(j + l))\jeA} 
ueA"-1 

/i(n)^0 

otherwise. 
We end the proof when /i(0)/i(c — 1) ^ 0. The other case is simpler. We have to 

prove that for every e > 0, there exists rj > 0 such that 

n-l 

5,,.w = Ec"B(T|,(')+v)E  E 
n>l fc=0u€l/i»-i-* 

Y- V(u.j.\k)qri , .qn(u.(j + l).pk) 
gr? 
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is finite. 

Fix 6 > 0. Let rj be a positive number to be chosen later on. By (5.1), 

lji(u.j.Xk)q 

/i^j + l).^ 
+ li(u.{j + l).pk) 

r/i(?A.(j + l).pfc) 
qr] 

< 

C^rjMuy 

for some constant C(q,ri). Therefore 

^t^+^M™ 

Sq,M < (c - 1) C(q,V) £ c-^W+^/nfa.J?) 
n>l 

with 

n-1 

/»(«,»/) = X)c(n-1-fc)T''-' »(fl) 

fe=0 

,(At),^!! + /,(w),M«)" 
M(Pfc) QV M**) 97? 

where 

1 v-^* 

ue.Afc 

By using (5.2) we get 

a 
_c^(g) <; ckr^ik{q) < Q ^r^q)^ 

Then (5.2) and (5.7) yield 

n-l 

fe=0 HqiPkY N(^k)n 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

By construction fig has no atoms and is quasi-Bernoulli. Consequently, by 
the sub-multiplicativity property (up to a multiplicative constant) of /ig, both 
limn-^oo ^ log Hq(pn) and limn^oo ^ log Mg(^n) exist and are negative. Therefore if 77 
is small enough (notice that 77 does not depend on e), one has 

Mq(rj) = sup 
fcGN 

^(^^S + M^A,)^^" 

and, by (5.8), 

< 00 

Finally by (5.6) 

sqM < {c-i)c{q,ri)C2
q
+2mq{-n)c-^Y,nc~nr)£ < n- 

n>l 
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6. Statistically self-similar measures. In this section, we consider the ran- 
dom measures introduced by B. Mandelbrot in [24]. Up to now, their multifrac- 
tal analysis has been mostly performed in the setting of the tree of c-adic intervals 
(see [22, 21, 14, 30, 2, 3]). Nevertheless, Arbeiter and Patzschke [1] obtained a result 
in the same spirit as ours under strong assumptions without setting a general frame. 
To be more specific, they compute the Hausdorff dimension of the level sets of the 
local centered Holder exponent, for each a with probability one, for a Mandelbrot 
cascade on the attractor of an IFS satisfying the OSC. 

Mandelbrot measures do not satisfy the NBC. This motivated the consideration 
of the weak NBC (Theorem 4.10). 

For the sake of simplicity, we only deal with the so-called canonical multiplicative 
cascades. Let us recall a construction of these measures. 

Fix W a non-negative random variable. Assume that W is not almost surely 
constant and that E(W) = 1/c. 

Define the function    T(q) = 1 + logc E(l{w>0}W
q)    for q e R. 

In order to avoid technicalities, unessential to our purpose, we assume that W is 
positive and that T(q) is finite for any q G R. 

Let (WW)W€A* be a sequence of independent copies of W. For every n > 1, 
consider the random measure //n whose density with respect to the uniform probability 
measure on dA* is locally constant and equals 

C     VVwi ** 11)111)2  ' ' '  ** 11)111)2...Wn 

on the cylinder w = W1W2.. .wn. With probability one, the sequence fin converges 
weakly to a measure // as n goes to infinity Moreover, if ?'(1) < 0, one has fi ^ 0 
(see [23]). 

Then, define J = {q <E R; T*(-?'(<?)) > 0}. It follows from Theorem %(iv) in [3] 
that TM = r on J. 

THEOREM 6.1. With probability one, both measures fi and v = 7*(/z) satisfy the 
multifractal formalism on J and bv — Bv = Aj, = 6M = B^ = AM = rM = r on J. 

Proof. For every q G J, v G A* and n > 1, define 

Y    (v\ = c~~n^       Y^      Wq   Wq Wq 

Wi...Wn£An 

It follows from Corollary 5 in [3] that, with probability one, for all v G .A* and all 
q G J, the limit Yq(v) = limn_+00 Y^n(?;) exists. Moreover, with probability one, for 
all q G J, the mapping jj,q defined on DA* by 

M 

^(T;)=c-W^)yg(t;)nw?1-Wi (6.1) 

defines a measure (notice that fii = /z); all the measures fj,q have dA* as support and 
for all v e A* and q € J, 

N{v) = Cq(v)^v)qc-^^ (6.2) 
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with 

Cq(v) 
Yq{v) 

Wyfivy 

Since r^ = r on J, the result will be a consequence of Theorem 4.10 if we show 
that for every non trivial compact subinterval K of J, with probability one, for all 
q G K, for all s > 0, there exists 77 > 0 such that 

^ c-n(r(9)+r?£)       ^       ^(vy^Cqiw)1^fx(w^1+rj)q < +OO, (6.3) 

n>l v,weAn 

i.e. 

where 

£c-n(r(g)+,e)/n^((?)<00) 

n>l 

fn,e,rl(q)=        ^       ^ W""^^)1^ 11 ^^^t^- 
v,w€An k=l 

Fix such a compact K. It turns out that it suffices to show that for every e > 0, 
if 77 > 0 is small enough, then 

f E„>i sup,eif nc-^H^^fe)) < 00 
lE^isup^c-^H^EO/;^)!) < 00 l • ; 

(see the proof of Corollary 1 in [3] for a more detailed similar argument). 

It follows from Lemma 6 in [3] that for rj small enough 

CK(rj) =    sup    E (\T(Y1(v)-™Yq(w)1+'')\) + E {Y^vy^Y^w)1^) < 00 

n>l, 
v,w€iAn 

and 

E(\£W-o<iwl1+^\) 
CK{rj) =    sup    —^-7 ——r-^- < 00. 

v,w~€An 

By taking into account the fact that the Ws are mutually independent, we get 

E (l/;,ei,(?)l) < Cjc(i7)(l + nC'K(V))gn,e,v(q) 

where 

v,weAn   /c=l 
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Also, we have 

By using a reduction similar to the one made in the beginning of Section 5, we can 
assume without loss of generality that in the sums over {v,w e A71; S(v,w) < c'}, 
there are only pairs (v,w) for which 5(v,w) < 1. Then, by using (5.4), we get 

9n^r)(q)=Cn^+hn^(q), 

where 

n-1 -n-k 
hnwb) = (c -1) Eck (E(W))" (E(W-^)E(W^^)) 

fc=0 
n-1 

- (. -1) (Eiw-'nw^))" g [E{w.c
m^+m) 

<cH-n(-2+r(g)+T(0)+77g(r,(g)-r,(0))+77eq(77)) 

n-1 
y^c/c(2-r(0)-77g(T'(Q)-r/(0))+r7eq(77)) 

< 

n-1 

X 

0l+n(r(<7)+77£g(77)J 

c2_r(0)-r7g(r'(g)-T'(0))+r?eq(77) _ ]_' 

with eq(rj) —> 0 uniformly on iiT when ry —> 0. Then, it is easily seen that (6.4) holds 
if rj is small enough. 
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