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THE SEIBERG-WITTEN EQUATIONS FOR FAMILIES AND 
DIFFEOMORPHISMS OF 4-MANIFOLDS * 

NOBUHIRO NAKAMURAt 

1. Introduction. In this paper, we investigate the Seiberg-Witten equations 
for families, and get some information about diffeomorphisms of 4-manifolds. The 
Seiberg-Witten equations for families have been investigated by several authors [4], 
[6], [9], [12]. Our concern is related to reducible solutions. 

Reducible solutions of the Seiberg-Witten equations play an important role in a 
proof of Donaldson's theorem [2] for a closed 4-manifold of b+ = 0 (See e.g. [10]). 

On the other hand, in the case when 6+ = 1, the Seiberg-Witten invariants can 
not be diffeomorphism invariants. The phenomenon is also related to the existence of 
reducible solutions. The fact is used by [7] to give a proof of the Thorn conjecture. 

The main topic of this paper is a generalization of the above two situations. We 
concentrate on the case of just &+-dimensional family of a 4-manifold. 

As applications, by considering the families over Sl and torus, we prove the 
following results about diffeomorphisms of non-spin manifolds of 6"f' = 1,2 with even 
intersection forms. 

THEOREM 1.1. Let X be a closed A-manifold of bi =0 whose intersection form 
is of the form —E% ® 2H, where H is the hyperbolic quadratic form. Then there do 
not exist orientation-preserving commutative diffeomorphisms f and g which have the 
following two properties: 

(1) f and g preserve an integral lift of W2(X) which is in the torsion part of 
H2(X]Z). 

(2) Decompose H2(X]Z)/Tor into the direct sum -E$ © H 0 H. Let f*, g* be 
automorphisms on H2(X]Z)/Tor induced from f, g. Then f* and g* are of 
the forms, 

/* = JF
,e(-l)©(+l), 

5*=G©(+1)©(-1), 

where F, G are commutative matrices which preserve Es. 

C. Bohr constructed many examples of X which satisfy the assumption of Theo- 
rem 1.1 [1]. 

THEOREM 1.2. Let X be a closed A-manifold ofbi=0 whose intersection form 
is of the form —Es © H. Let f: X -> X be an orientation-preserving diffeomorphism 
of X, and suppose that f preserves an integral lift of W2(X) which is in the torsion 
part of H2(X]Z). Then f preserves the orientation of H+(X]R). 

Particularly, in the case of the Enriques surface, we have the following. 

COROLLARY 1.3. An orientation-preserving diffeomorphism of the Enriques sur- 
face preserves the orientation of H+(X]M.). 

A similar result for KS surface is well-known [3]. 
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Let us explain the central part of the argument. 
Suppose that we have a family of 4-manifold parametrized by B. Precise formu- 

lation is as follows. Let B be a d-dimensional closed manifold, and X be an oriented 
closed 4-manifold of 6+ = d. Furthermore, we assume that bi of X is 0 for simplicity. 
Let X be a smooth fiber bundle over B with fiber X. On such a family, we consider 
the Seiberg-Witten equations and the union of the moduli spaces of solutions for all 
the parameters. Let us denote the union by M. Then, even if we choose perturbation 
generically, we can not avoid reducibles in general. When bi = 0, M contains some 
reducibles as singular points. Let n be the dimension of M. (In this situation, n 
is odd.) Then we can see that the neighborhood of a reducible becomes a cone of 

CP""5". Removing these cones from M, we get a n-dimensional compact manifold 
whose boundary consists of several CP~^~,s. In the unoriented cobordism group of 
4A:-dimension, CP2k is a non-trivial element. Hence, if n is equal to 1 modulo 4, then 
the number of components of boundary, that is, the number of reducibles must be 
even (Theorem 2.4). 

The fact that the number of reducibles must be even will imply a constraint on 
the topology of smooth X-bundle. Applying this to the case when B is 51 or torus, 
we can get Theorem 1.1 and Theorem 1.2. 

Acknowledgements. The author would like to thank M. Puruta for invaluable 
discussions. 

2. The Seiberg-Witten equations for a family. Let X be an oriented closed 
4-manifold. Let bi denote the z-th Betti number of X and b+ denote the dimension of 
a maximal subspace, fZ"+(X;R) in H2(X;R), where the intersection form is positive 
definite. In this paper, we suppose that bi of X is 0. 

Let B be another oriented closed d-dimensional manifold, and X be a smooth 
fiber bundle over B with fiber X. Let us denote the tangent bundle along the fiber 
by T(K/B) and the bundle of z-forms by Q^X/B). By choosing a metric on T(X/5), 
we get a principal SO(4) bundle Fr of frames. 

A Spinc-structure P on T(X/B) is an equivalence class of lifts of SO (4) bundle Fr 
to a Spinc(4) bundle P. (We abuse the notations for a Spinc-structure and a Spin0 (4) 
bundle.) 

Suppose that a Spinc-structure P is given. Then, by restricting this Spinc- 
structure to a fiber Xb at b e B of X, we have a Spinc-structure P& on Xt- (For 
any object on the total space X, the object with subscript 6 will denote the restriction 
to the fiber X^.) 

Conversely, suppose that a Spinc-structure P on X is given. We want to construct 
a Spinc-structure on T(X/B) from P. In general, however, this is not possible. In 
what situation can we do that? The following is an answer. 

PROPOSITION 2.1. Suppose that C e iir2(X;Z) and a fiber bundle X —> B with 
fiber X satisfy the following conditions: 

(1) The class C is an integral lift ofw2{X) and C e H2(X;Z)ni(<B\ 
(2) H3(B',Z) = 0. 
(3) The map of mod 2 reduction ri: H2(B; Z) —> H2(B\ Z2) is surjective. 

Then there is a Spin0-structure P on T(X/B) such that ci(detP|x) = C. 

Proof By considering the spectral sequence for the fiber bundle X —> 5, we can 
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get the following commutative diagram. 

0  >  H2(B;Z)   -^-^   H2(X',Z)   ^^  H2(X;Z)^^   -^->   HS(B;Z) 

0  > ff2(£;Z2) -^-^ ^2(X;Z2) —^-> tf^X;^)^)  ^^ H^{B',Z2) 

(The horizontal arrows are exact. The maps cfa are transgression. The vertical arrows 
are mod 2 reduction maps.) First note that itf2p0 = ^(^(^(X/B))) = ^(C). By 
the assumption (2), there is a lift C € if2(X;Z) of C E ^(XjZ)^^) via k^ The 
image C7 G iJ2(X;Z2) of C by r2 does not necessarily coincide with W2(T(X/B)). 
But, by the commutativity of the diagram, the image of C" — W2(T(X/B)) by fo is 
0. Hence there is a lift a € H2{B] Z) ofC' - W2{T{X/B)) via J2. By the assumption 
(3), we have a lift a of a via ri. Then C - ji{a) is a lift of W2(T(X/B)). This proves 
the existence of required Spinc-structure. D 

Next we want to consider the Seiberg-Witten equations for a family. Fix a class 
C € H2(X] Z) as in Proposition 2.1, and fix a Spinc-structure P associated to it. Let 
5+ denote the positive spinor bundle and L denote det(5+). The bundle L is viewed 
as a family of U(l) bundles over B: L = YibeB L^. Let us denote the space of U(l) 
connections on Lb by A(Lb). 

Let us define the bundle 11 —> B of parameters as follows: 

n = {(gb,Hb) £ Met(Xb) x Q2(Xb)\ *gb fib = fit}, 

where Met(X6) denote the space of metrics on Xb. 
When we choose a section rj: B —> 11, we get the Seiberg-Witten equations on P 

for a family {{Ab^b)}beB € UbzB A(Lb) x r(^): 

2.2 \        . 

where DAb denotes the Dirac operator defined by a connection Ab and the Levi-Civita 
connection of metric gb, (i/jb <S> ^b)o denotes the trace-free part of ^ 0 ipb interpreted 
as an endomorphism of 5+ (and this endomorphism is identified with an imaginary- 
valued self-dual 2-form via the Clifford multiplication). 

The action of gauge transformation group Qb = Map(X5;U(l)) is as follows: for 
ub E Qb, ub(Ab,iljb) = (Afy-u^dutjiUttipi,). The group Gb acts freely at (Ab^b) where 
ipb is not identically 0. 

A solution to the Seiberg-Witten equations with the property ^ = 0 is called a 
reducible solution. The subspace W of 11 where reducible solutions appear is called 
the wall The wall W is characterized as 

W = {(gb,^b)\27rC — fib is <76-anti-self-dual}, 

where C is considered as a harmonic 2-form. The wall W has codimension 6+ in H. 
The moduli space of the solutions to the Seiberg-Witten equations for a family is 

given as 

M^F) = ]J{solutions to (2.2)}/£6. 
bGB 
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The virtual dimension d(C) of the moduli space is 

(2.3) d(C) = \{C2- sign(X)) - 1 - 6+ + d. 

(We assume that bi = 0.) 
If we choose rj generically, then ^^(X, P) becomes a d(C)-dimensional smooth 

manifold outside reducibles. 
When rj and W intersect, reducible solutions appear, and they form a &i- 

dimensional torus if1(X;R)/iir1(X;Z) in the moduli space. Therefore, if bi = 0, 
each time rj crosses W, one reducible point appears in the moduli space. 

To see the intersection of rj and W, we introduce a finite dimensional vector bundle 
iJ+ over B as follows: For each b G B, let H+b C Cl2(Xb) be the space of pfc-self-dual 
harmonic 2-forms. The spaces H+ form a 6+-dimensional subbundle H+ —> B of 
n2(X/B) -► B. 

Let us define the section 5^ of H+ by 5^(6) = 27rC — /i(/ib)U, where h(fib) denote 
the harmonic part of ^5, and H+ is identified with its dual bundle via the cup product. 

Now let us consider the situation that the dimension d of B is equal to 6+ of X. 
Then d(C) in (2.3) becomes an odd number. 

Suppose further that rj is generic and intersects W transversally. (Then the section 
STJ of H+ intersects the zero section transversally.) Note that the intersection of rj 
and W consists of discrete points of finite number. Note also that there is one-to-one 
correspondence between intersection points of 77 and W, and zeros of s^. Hence, when 
61 = 0, there is one-to-one correspondence between reducibles in the moduli space 
and zeros of s^. 

The next theorem will imply a constraint on the topology of smooth X-bundle, 
as we can see in Section 3. 

THEOREM 2.4. Ifd(C) > 0 and d(C) = 1 ( mod 4), the number of zeros of the 
section s^ is even. 

Proof. Outside reducibles, the moduli space jM(X,P) forms a o!(C)-dimensional 
smooth manifold which may not be orientable. In the neighborhoods of reducibles, 
if necessary, perturb the Dirac operator in (2.2). The Kuranishi model is given by a 
U(l)-equivariant map, 

$: Cm+i(C2-sign(X)) eRn _> Cm 0 Rn+6+-d, 

for some m, n € N. Since we assume that 6+ -d = 0, the neighborhood of a reducible is 
d(C)-l 

homeomorphic to the cone of CP 2 . (The case of 1-dimensional family is explained 
in [11]. The argument there is directly applied to our case.) Remove the cones 
from M(K,F). Then we get a d(C)-dimensional compact manifold whose boundary 

d(C)-l 
consists of several CP 2 's. In the unoriented cobordism group of 4A>dimension, 
CP is a non-trivial element. Hence, under the assumption of theorem, the number 
of components of boundary must be even. Noticing that the number of components 
of boundary is equal to the number of reducibles, and a reducible corresponds to a 
zero of SJJ, we see the theorem. D 

REMARK 2.5. In the case when H+ —► B is orientable, we can refine Theorem 2.4 
as follows: If d(C) > 0 and d(C) = 1 ( mod 4), the signed count of zeros of s^ 
according to its orientations is 0. 
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REMARK 2.6. When d(C) > 0 and d(C) = 3( mod 4), the assertion of Theo- 
rem 2.4 still holds in some cases. Consider the space B^ = A(Lb) x (r(5^") \ {ifrb = 
0})/Gb' When bi = 0, it is known that 8% has the same homotopy type of CP00 

which has non-zero second cohomology class U.IfU has a lift U in the cohomology 
of the family YLbeB^b* we can deduce the assertion of Theorem 2.4 by evaluating the 

d(C)-l ~ d(C)-l 
fundamental class of CP    2      of the moduli ;s boundary by U    2 

3. Applications of Theorem 2.4. In this section, we prove theorems in the 
introduction as applications of Theorem 2.4. 

3.1. The case when d = b+ = 1. In this part, we deal with a manifold X of 
b1 = 0 whose intersection form is of the form —Es 0 H. For example, let X be the 
Enriques surface. As for the topology of the Enriques surface, see e.g. [5]. 

Note that, when a 4-manifold X has even intersection form, W2 (X) has an integral 
lift which is in the torsion part of H2(X;Z). (This can be seen easily from Wu's 
formula and the universal coefficient theorem. See e.g.[8].) 

Let us prove Theorem 1.2 and Corollary 1.3. 

Proof of Theorem 1.2. Let C be an integral lift of W2(X) as in Theorem 1.2. Let 
us consider the mapping cylinder X = X x [0,1]// —> S1. In this case, B = S1 and 
/ preserves the class C. Hence, by Proposition 2.1, there is a Spinc-structure P with 
the property ci(detP|X) = C. Note that d(C) = 1. By Theorem 2.4, we see that the 
number of zeros of the section s^ is even. 

Suppose now that the diffeomorphism / reverse the orientation of H+(X')R). 
Then H+ is the non-trivial R-bundle over S1 which can not have a transversal section 
whose number of zeros is even. This is contradiction. □ 

Proof of Corollary 1.3. When X is the Enriques surface, the torsion part of 
H2(X]Z) is Z2. Hence, the assumption concerning W2 {X) is automatically satisfied. 
D 

REMARK 3.1. As for the case of this part, the fiberwise dimension of the moduli 
space is 0. In this case, one could prove results of this type by ordinary wall-crossing 
argument. 

3.2. The case when d = b+ = 2. In this part, we deal with a manifold X of 
b1 = 0 whose intersection form is of the form —Eg © 2H. For example, let X be the 
connected sum of the Enriques surface with S2 x S2. C. Bohr constructs examples of 
7ri(X) = Z2k {h is a positive integer) in Example 2 of [1]. 

Let us prove Theorem 1.1. 

Proof of Theorem 1.1. Suppose that there exist commutative diffeomomorphism 
/ and g which satisfy the properties (1) and (2) in the theorem. Let C be an integral 
lift of 1^2 PO as in (1). Let us consider the following X-bundle X over T2: 

X = Xx[0,l]x[0,l]/(/(0't)' 

In this case, B — T2 and / and g preserve the class C. Hence, by Proposition 2.1, 
there is a Spinc-structure P with the property Ci(detP|X) = C. Note that d{C) = 1. 
By Theorem 2.4, we see that the number of zeros of the section s^ is even. 

On the other hand, by the property (2), the bundle H+ is of the form 

nlE®Tr*2E-*S1 x 51, 
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where E be the non-trivial M-bundle over S1, and TT^: S1 X 51 —> 51 be the i-th 
projection (i = 1,2). Hence, W2(H^) is non-zero, and this implies contradiction. D 

REMARK 3.2. In this case, the fiberwise dimension of the moduli space is —1. 

In Theorem 1.1, suppose that Hi(X; Z) = Z2k (& is odd). Then, for all diffeomor- 
phisms, the assumption (1) is satisfied. (Take the element of order 2 as the integral 
lift of W2{X).) Hence the following holds. 

COROLLARY 3.3. Let X be a manifold whose intersection form is of the form 
—Eg 0 2H and suppose Hi(X;Z) = Z2k (k is odd). There do not exist orientation- 
preserving commutative diffeomorphisms f, g of X which has the property (2) in 
Theorem 1.1. 

REMARK 3.4. We can formulate similar results in the case when d = 6+ > 3. 
However, these are rather complicated. 
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