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PROPER AFFINE HYPERSPHERES WHICH FIBER OVER 
PROJECTIVE SPECIAL KAHLER MANIFOLDS * 

OLIVER BAUES+ AND VICENTE CORTES* 

Abstract. We show that the natural 51-bundle over a projective special Kahler manifold carries 
the geometry of a proper affine hypersphere endowed with a Sasakian structure. The construction 
generalizes the geometry of the Hopf-fibration S2n+1 —► CPn in the context of projective special 
Kahler manifolds. As an application we have that a natural circle bundle over the Kuranishi moduli 
space of a Calabi-Yau threefold is a Lorentzian proper affine hypersphere. 

Introduction. In a previous paper [BC], we proved that any simply connected 
special Kahler manifold admits a canonical immersion into affine space as a parabolic 
affine hypersphere. A particular important class of special Kahler manifolds are come 
special Kahler manifolds. These are by definition special Kahler manifolds which are 
locally modelled on a complex cone over some complex projective manifold which 
is then called a projective special Kahler manifold. The purpose of this paper is 
to provide an understanding of the particular (affine) differential geometry which is 
canonically associated with projective special Kahler manifolds. 

Whereas the conic special Kahler manifold M which is associated with a simply 
connected projective special Kahler manifold M carries the geometry of a parabolic 
(or improper) affine hypersphere, we show that the total space S of a natural circle 
bundle S —» M is a proper affine hypersphere. The 51-action on S induces a Sasakian 
structure on S which is compatible with the affine differential geometry in a very 
specific sense. Moreover, all information about the conic special Kahler geometry on 
M is encoded in the affine Sasakian geometry on S. 

Lu showed [L] that every complete affine special Kahler manifold with a positive 
definite metric is fiat. Using a well known result of Calabi [Ca2] on complete con- 
vex affine hyperspheres we obtain an analogous result for projective special Kahler 
manifolds: We show that if M is a (simply connected) complete projective special 
Kahler manifold with a definite affine metric on S then M is isometric to CPn with 
the canonical Fubini-Study metric. 

The construction of the affine sphere S over a projective special Kahler manifold 
naturally relates to well known canonical data on the Kuranishi moduli space for 
Calabi-Yau three-manifolds. Thereby we show that a natural circle bundle over the 
Kuranishi moduli space admits a canonical structure of an affine hypersphere with 
affine metric of Lorentzian signature. 

If M is complete, and the metric on S is not definite, as in the case of Kuranishi 
moduli spaces, then interesting complete models for projective special Kahler mani- 
folds do exist. We describe all fibrations S —> M which admit a transitive semisimple 
group of automorphisms preserving the projective special Kahler structure on the base 
M. These are particular examples of homogeneous Lorentzian affine hyperspheres 
fibering over Hermitian symmetric spaces. 
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1. Preliminaries. 

1.1. AfRne hypersurfaces. For the convenience of the reader, and to fix the 
notation, we recall the basic definitions of affine differential geometry of hypersurfaces 
in Rn+1 and the definition of affine hyperspheres. For more details, see for example 
[NS, Ca2]. Let det denote the standard volume form on Rn+1, and V the standard 
flat connection on Rn+1. In the context of affine immersions we consider manifolds 
with a semi-Riemannian metric g and a torsionfree connection V so that 

i) the cubic tensor Vg is totally symmetric, and 
ii) the metric volume form Og is V-parallel. 

The data (g, V) are then said to satisfy the compatibility condition i) and the equiaffine 
condition ii). Every nondegenerate hypersurface immersion ip : M —> Rn+1 induces 
data (V, #) on M which satisfy i) and ii) via the fundamental formula 

VxY = VxY + g(X,Y)E, (1) 

where X, Y denote vector fields on M, and E is the affine normal of the immersion. 
(Note that the notation identifies M as a submanifold of Rn+1.) The affine normal E 
is a canonical normal vector field along ip which is defined up to sign by the condition 
that the pair (V,g) satisfies ii), and the normalizing condition 

iii) det(E,...) = 0p on M. 

The metric g is then called the Blaschke metric and the immersion ip : (M, V, g) —> 
Rn+1 a Blaschke immersion. The tensor A = —S7E is horizontal along ip and is called 
the shape tensor of the immersion. The quantity H = ^trA is called the affine mean 

curvature. If V is flat and n > 1 then, by the equation of Gaufi, A = 0 and the affine 
normal is the restriction of a constant vector field. In this case, I/J is called a parabolic 
(or improper) affine hypersphere. If the shape tensor equals a constant multiple of the 
identity, A — Kid, where K ^ 0, if) is called a proper affine hypersphere. In this case, 
V is projectively flat. An affine hypersphere has constant mean curvature H = K. 

Let M be a manifold with data (V, g) which satisfy i) and ii). We put V* for the 
conjugate connection of V with respect to g. It is torsionfree by the compatibility 
condition i). Then the fundamental theorem of affine differential geometry asserts that 
a simply connected manifold M with data (V,g) arises from a Blaschke immersion ip 
if and only if the integrability condition 

iv) V* is projectively flat 
is satisfied. The immersion ip is determined by the data (V,#) up to composition 
with an unimodular affine transformation. A special case arises if V is flat. Then 
it is easily seen that V* is also flat. Hence, iv) is satisfied and M is a parabolic 
affine hypersphere. We also mention that the data (V,p) arise from an immersion 
as an affine sphere if and only if the cubic tensor C = Vg has totally symmetric 
derivative V.C. If (M, V, g) is a manifold which satisfies the integrability conditions 
for a Blaschke immersion as an affine sphere we say that M has the structure of an 
affine sphere. 

1.2. Special Kahler manifolds. We recall some basic notions and construc- 
tions from special Kahler geometry. For more details the reader can consult [ACD], 
and also [F]. A special Kahler manifold (M, J,g, V) is a (pseudo-) Kahler manifold 
(M,J,g) together with a flat torsionfree connection V such that Va; = 0, where 
^ — di'iJ') is the Kahler form, and such that VJ is symmetric, i.e. dvJ(X1 Y) := 
(VxJ)Y - (VYJ)X = 0 for all vector fields X and Y. 
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More precisely, one should speak of affine special Kahler manifolds since there 
is also the notion of a projective special Kahler manifold. In fact, there is a 
class of (affine) special Kahler manifolds (M, J, g, V), which are called conic special 
Kahler manifolds and which are characterized by the existence of a local holomorphic 
C*-action (p\ : M -> M, A = re** G C*, with the property: 

((p\)*X = rcostX 4- rsintJX 

for all V-parallel vector fields X on M. Under appropriate regularity assumptions on 
the action, the projection 

TT : M —> M = P{M) 

onto the space of orbits M = P(M) is a holomorphic submersion onto a complex 
(Hausdorff-) manifold. Then M inherits a (pseudo-) Kahler metric g from (M,g), 
and the base (M,g) is called a projective special Kahler manifold. Although, strictly 
speaking, the fully fledged projective special Kahler geometry is encoded in the geo- 
metric data on the bundle TT : M —> M. 

Special Kahler manifolds may also be characterized in terms of complex La- 
grangian immersions (see [ACD]). In fact, any simply connected special Kahler 
manifold (M,J,g,V) has a canonical realization as a (pseudo-) Kahlerian immersed 
Lagrangian submanifold of a pseudo-Hermitian, complex symplectic vector space 
(V,7, Q) with split signature. This means that there exists a holomorphic Lagrangian 
immersion A : M —► V so that g = A*7 is the pull-back of the hermitian product 7. 
Moreover, the projection onto the subspace VT of real points for the real structure r 
defined by the relation ft = — Z7(-,T-) gives local flat coordinates on M which deter- 
mine the flat connection V. The holomorphic Lagrangian immersion A is determined 
by the data (g, V) up to a complex affine transformation which preserves 7 and f2. 
Conic special Kahler manifolds may be realized by immersions A which are equivariant 
with respect to the natural C*-action on V. A is then uniquely determined up to a 
complex linear transformation which preserves 7 and fi. We then -'call" A a compatible 
Lagrange immersion of the (conic) special Kahler manifold M. 

2. The local geometry. It is well known that holomorphic Lagrangian immer- 
sions A into a complex 2n-dimensional symplectic vector space V are locally of the 
form A = XF := dF : U —* T*Cn = V, where F is a holomorphic function defined 
on some domain U C Cn. The Kahler condition for the holomorphic Lagrangian 
immersion Xp is an open condition on the real 2-jet of F. Conic special Kahler man- 
ifolds correspond to potentials which are homogeneous of degree 2. Therefore the 
local geometry of (conic) special Kahler manifolds may be described in terms of a 
holomorphic potential F. 

Special Kahler domains. Let U C C71 be a connected open domain and F : U —> C 
a holomorphic function which satisfies the condition that the matrix 

T    / d2F 
Im 

dzidzj 

is nondegenerate. Then the function 

k = -Im ( V^ -^—^2 
2       K^dzi 
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defines a Kahler potential on J7. With the corresponding Kahler form u — i ddk, and 
metric g = uj(i •, •), the domain U is a (pseudo-) Kahler manifold1. Such a domain U 
will be called a special Kahler domain. On a special Kahler domain U there are flat 
coordinates, called flat special coordinates, 

dF 
Xi = Re(^) ,    ^ = Re(—) (2) 

which define on U a torsionfree flat connection V so that u is parallel. The complex 
manifold U with the data (#, V) is then a special Kahler manifold. Conversely, any 
special Kahler manifold is locally equivalent to a special Kahler domain (U,g,V). 

Another peculiar feature of special Kahler domains is that the Kahler metric g is a 
Hessian metric with respect to the flat connection. This means that on U there exists 
a real potential function / so that g = Vdf. (The fact that g is locally Hessian is well 
known. An explicit formula for / which is given in terms of the holomorphic function 
F, see [C2], shows that / exists globally on U.) Moreover, in the flat coordinates the 
smooth function / satisfies the Monge-Ampere equation 

\detd2f\=c1 (3) 

where c > 0 is a constant. As a consequence, the data (#, V) give U the geometry of 
a parabolic affine hypersphere, see [BC]. Explicitly, 

X(u) = {xi{u),...,xn(u), yi{u),...,yn{u), f{u)) 

defines a Blaschke immersion A : U —> R2n+1 into affine space R2n+1 which induces 
the data (V,p). 

2.1. The metric geometry of conic special Kahler domains. In this paper, 
we are mainly concerned with conic special Kahler domains. We call a special Kahler 
domain U C Cn+1\{0} come, if C*C/ C U and if the holomorphic prepotential F is a 
homogeneous function of degree 2. Moreover, we require that the potential k does not 
vanish on a conic special Kahler domain. Locally, any conic special Kahler manifold 
is equivalent to a conic special Kahler domain U C CTl+1\{0}. To any conic domain 
U C Cn+1 we let U denote its image in the projective space CPn. We consider the 
projection map 

TT : U —> U 

which is a submersion, and view U as a principal C*-bundle over U. The special 
Kahler metric g on U naturally induces a Kahler metric g on U via the projection TT. 

The metric g is defined by the formula 

^(n)(d7r(X),d7r(X)) = 
9u{X,X) 
gu{u,u) 

gu(X,u) 
gu{u,u) 

2 

,  XeTuC
n+l . (4) 

(Note that g is definite on the vertical spaces Vu = Cu C TuC
n+1 of the fibration TT 

by the condition that k ^ 0, see Lemma 2 below.) Let a) denote the corresponding 
Kahler form on U. Then it is easy to see that the pull-back 7r*a; on U is given by 

7r*a) = idd log k 

1We do not require that the Kahler metric g is definite 
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on the horizontal space Hu = V^. We call the domain U C CPn with the metric g a 
projective special Kdhler domain. The simplest example of such a domain is projective 
space CPn itself with the Fubini-Study metric: 

EXAMPLE 2.1. Putting U = Cn+1\{0} and F(2o,.. • ,zn) =iY^zj> formula (4), 
defines the Fubini-Study metric on U = CPn. The famous Hopf-fibration 

S2n+1  , Cpn 

exhibits the sphere S2n+1 = {u G Cn+1 | \u\2 = 1} as a S1-principal bundle over CPn. 
The Hopf fibration is also known to be a Riemannian submersion with respect to the 
standard metric on the sphere if the metric on CPn is suitably normalized. 

It is the content of our next proposition that the geometric construction of the 
Hopf-fibration generalizes in the context of projective special Kahler domains. To 
establish this result we consider now the Kahler potential k on U. We remark that k 
satisfies k(au) = |a|2fc(w), for a G C*, and, by assumption, never vanishes on U. We 
put Mc = {u G U | \k(u)\ = c}. Then the level surface Mc is a real hypersurface in 
U C Cn+1, and S1 acts freely on Mc. 

PROPOSITION 1. The hypersurfaces Mc c U are nondegenerate with respect to 
the metric g. Moreover, S1 acts isometrically on (Mc,g), and Mc is a S1 -principal 
bundle over U. If k > 0 then the projection map 

<iTc:(Mc,g)—>(U,g) 

is a semi-Riemannian submersion for c — \. (If k < 0 then 7rc is an anti-isometry 
on horizontal vectors for c = \) 

We will need a lemma. Let h = g-\-iuj denote the Hermitian product on U which 
is defined by g. We let £(u) = u denote the position vector field on U. 

LEMMA 2. 
i) hfa ■) = 2dk 

ti) dit, ')=dk 
Hi) 0(&O = 2fc 

Proof In the complex coordinates we have £ = ^(^j'^f" + ^JW7) anc^ 

d2F (d F \ 
—jdz^dzj. (5) 

"3* 

i /v-   d2F      ,_      v-^   d2F 

Consequently, 

= 2dk 

This proves i). Now ii) follows from i) by calculating 

g(Z, ■). = Re h{t •) = (Bk + dk) = dk . 
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Equation iii) is implied by ii), taking into account that the function k is 
R>0-homogeneous of degree 2. D 

Proof of Proposition 1. We consider the ^-orthogonal decomposition TwC
n+1 = 

Vu07iu into vertical and horizontal space which is defined by the canonical submersion 
TT : U -> U. Then Vu is the real span of £ and J£, and in fact Tin = {X G TuC

n+1 | 
h^.X) = 0}. In particular, g(£,X) = 0, for X G Wu. Therefore, by ii) from the 
lemma, it follows that liu C kerdfe = TMC. We compute the pull back 7r*§ of the 
special Kahler metric g on U on the tangent space of Mc. Using (4) we get that 
gu(U)U)^*9u = 9u on TUMC. Now, by iii) of the lemma, gu(u,u) = 2k(u). The 
proposition follows. 

PROPOSITION 3. The vector field £, which is the position vector field on the conic 
complex domain U, is also the position vector field in the affine coordinates Xi, yi. 

Proof. To see this, we compute 

dxi(£,) = Re dzi(£) = Rezi = Xi 

Hence, f = E^af" + Vi^l as claimed. D 

Metric cones. For any manifold M with a (pseudo-) Riemannian metric g, the 
manifold C{M) = M>0 x M with the metric dr2 4- r2^ is called the metric cone over 
M. More generally, we consider cone metrics of the type gK = ^dr2 + r2g, where K, ^ 0 
is. a constant. We denote the corresponding metric cone as CK(M) = (C(M),gK). Let 
us put sign k = 1 if k > 0 and sign k = — 1 if k < 0. 

COROLLARY 4. Le£ U be a conic special Kahler domain with Kahler potential k, 
and special Kahler metric g.  Then (U,g) is isometric to the metric cone CS[gnk(Mi). 

Proof. Since R>0 acts freely on [/, the map 

$ : C(Mi) -> C/ (r,u) i-> rw 

is a diffeomorphism. Note that d$>(r-j^) = £. The homogeneity of the holomorphic 
potential F implies that the second derivatives of F are constant on radial lines in U. 
Hence, by formula (5), we have gru(rX,rX) = r2gu(X, X), for u G Mi, X G TuMi. 

Moreover, by iii) of Lemma 2, gru(£,£) = 2k(ru) = r2signk. It is now immediate 
from ii) of Lemma 2 that $ is an isometry. D 

PROPOSITION 5.  The one-form r] := a;(£, •) defines a contact structure on Mi. 

Proof, dr] = L^cu = 2LJ is nondegenerate on kerT? = J^-1. D 

2.2. The affine geometry of conic special Kahler domains. Having just 
seen that any conic special Kahler domain ([/, g) has the geometry of a metric cone 
over the level surface (Mi, g) of k, we consider now the question how the flat affine 
connection V on U interacts with the cone structure of (U,g). The flat affine geometry 
on U is determined by the coordinate change (2) which embeds U as a domain in 
R2n+2. Since the symplectic form UJ is V-parallel, so is the volume form 

6 = 6°=^«An+1- 
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Using the flat special coordinates we may view 

Mx —> M2n+2 

2 

immersed into affine space as a real hypersurface. In the light of Corollary 4, the next 
result shows that the metric structure on (U,g) is determined by the affine geometry 
of the hypersurface Mi. 

THEOREM 6. In the flat special coordinates of the special Kdhler domain U C 
Cn+1 the hypersurface Mi C U immerses as a non-degenerate hypersurface in R2n+2. 
The transversal field E = —sign k £ is a Blaschke-normal for Mi with respect to the 

volume form 6 on R2n+2, and the corresponding Blaschke-metric on Mi coincides 
with the metric g induced from (U,g). Moreover, Mi is an affine hypersphere of 
affine mean curvature sign A:. 

We start the proof of the theorem with a lemma. Any vector field X on Mi with 

values in Cn+1 has a natural extension X on U which is defined by X(ru) = rX{u)^ 
for ue Mi. 

2 

LEMMA 7. 
i)t.g(X,Y) = 2g{X,Y), 

a) (v^)(lJy) = o^ _ 
Hi) g(£,S7xY) = -g(X,Y), ifY is tangent to Mi. 

Proof Using Proposition 3, i) follows since the function g(X,Y) is M>0-homoge- 
neous of degree 2. Also from X(ru) = rX(u), for all u £U, we deduce that VfX = 
V^ = X. Therefore, (Vtg){X,Y) = £ • fl(X,y) - g(VzX,Y) - g{X^Y) = £ • 
g(X, Y) - 2g(X, Y). Hence, ii) follows from i). 

Now, if Y is tangent to Mi  then ^(£,V^y) + g{X,Y) = -(V^p)(£,y) = 

— (V^)(X, y), by the symmetry of Vg. Hence, hi) follows from ii). D 

Proof of Theorem 6. Let X, Y denote vector fields tangent to Mi, and put 
K = signfc. Then, by ii),iii) of Lemma 2, and Lemma 7 the GauB-formula (1) for the 
hypersurface Mi, with respect to £ reads 

VxY = VxY-Kg{X,Y)t-, 

where V defines the induced connection on Mi. Therefore the affine metric on Mi 
2 2 

with respect to the transversal vector field E — — K( coincides with the metric g. 
Let 0i denote the metric volume form of the pseudo-Riemannian manifold (Mi,g). 
To show that E is a Blaschke normal, we note that (for an appropriate choice of 
orientation of Mi) the metric volume form 6 = Og of the ambient space (U,g) is 

given by 6 = — Kdr A r(2n+1)0i in the conic product coordinates $ from the proof of 

Corollary 4. And, therefore, 0(J3,...) = 0(—Kr-^,...) = 9i along Mi. Hence, E is a 
Blaschke-normal. Since A = —VE = «Id, Mi is an affine hypersphere of affine mean 
curvature H = K. 

Now it is easy to find a V-potential for g. 

COROLLARY 8. The Kdhler potential k is also a V'-potential for the special Kdhler 
metric g, i.e. g = Vdk on U. 

Proof. For homogeneous vector fields X and Y, we compute 

(Vxdk)(Y) = X • dk(Y) - dk{VxY). 
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If Y is tangent to Mi then, using ii) of Lemma 2 dk(VxY) = #(£, V^y), and iii) 

of Lemma 7 implies (V^dfc)(y) = g(X,Y). UY = £ then we get (V^dfc)(0 = 
X • dife(0 - dk(X) = X'2k- dk(X) = dk(X) = gfa X). D 

3. Afflne Sasakian hyperspheres. In Riemannian geometry a manifold (S,#) 
is called Sasakian if the corresponding metric cone (C(S),gi) is a Kahler manifold, see 
e.g. [BG]. More generally, we call a (pseudo-) Riemannian manifold Sasakian if the 
metric cone CK(S) is a (pseudo-) Kahler manifold. Let U be a a conic special Kahler 
domain, and S = Mi C U the affine sphere which is associated to U by Theorem 
6. By Corollary 4, the affine hypersphere S is a Sasakian manifold. However, the 
concept of Sasakian manifold does not take into account the presence of the affine 
connection V on 5. Let (5, g, V) be a proper affine sphere. We show below that 
the metric cone CK(S) admits, as the natural affine differential geometric structure 
induced from 5, the geometry of a parabolic affine hypersphere (C(5),^, V). This 
parabolic sphere is called the parabolic cone over S. In [BC] it was remarked that 
the geometric data of a special Kahler manifold are in fact the geometric data of a 
parabolic sphere (M, V,g) whose Blaschke metric is Kahler, and whose Kahler form 
u is V-parallel. This motivates the following 

DEFINITION 9. A proper affine hypersphere (5,g, V) is called an affine Sasakian 
hypersphere if the parabolic cone (C(5), #, V) over S is Kahler, and the corresponding 
Kahler form LJ is V-parallel. 

Equivalently, a proper affine sphere S is affine Sasakian, if and only if the parabolic 
cone over S is special Kahler. 

3.1. The parabolic cone over a proper affine sphere. We show here that 
every proper affine hypersphere may be naturally realized as a hypersurface in a conic 
parabolic affine sphere. We already encountered this phenomenon, however in the 
particular context of conic special Kahler domains. 

Proper spheres embed into conic parabolic spheres. Let (M,g) be a pseudo- 
Riemannian manifold. We view M = {l}xMina canonical way as a submanifold of 
CK(M) with the metric g induced from the cone metric gK on C(M). Note also that 
the multiplicative group R>0 acts on C(M). 

PROPOSITION 10. Let ip : 5 —> Rn+1 be a proper affine hypersphere of affine 
mean curvature K, and with induced Blaschke data (V,/i). Then the metric cone 
CK(S) admits a torsionfree, flat, M>0-invariant connection V so that the data (hKJV) 
satisfy the integrability conditions for a parabolic affine hypersphere. 

Proof. We consider the local diffeomorphism $ : C(S) —> Rn+1 given by (r, u) *-* 
rip(u) and let V be the pullback of the canonical flat connection on Rn+1. To simplify 
the notation we view S as a hypersurface in Mn+1. Also we may then assume that 
E = —K€ is the affine normal of 5, where £(x) = x is the position vector field on 
Rn+1. For a vector field X on 5, let X denote the constant extension of X to the 
product manifold C(S) = R>0 x 5. Also we define the vector field X on U = $(C(5)) 
by X(ru) = rX(u), where u G S and r > 0. We let f = r^ denote the position vector 
field on the cone C(S). Then X = $*X, and £ = $*£. 

We show first that the metric volume form 6hK is V parallel. Note first that, for 
the right choice of orientation of C(5), 

ehK = \K\-UrArn6h. 
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We choose a (local) basis of vector fields Xi,..., Xn on S. Since Oh(Xi,..., Xn) = 
det(E,Xi,...,Xn) along 5, we get on C(5): 

0fcK(£Xi,...,xn) = M-^ 

Therefore ^^ = ±|K|2$*det, and hence the equiaflBne condition ii) is satisfied with 
respect to V. 

Next we show that Vh^ is totally symmetric. It is enough to verify that 

(VXK)(Y,Z) = {VYK){X,Z) , 

for all vector fields X, Y and Z on C(5). We remark that if X, Y are vector fields on 
5 the following formulas hold on C{S)\ 

VxY = VxY-Kr-2K{X,Y)l, (6) 

Vjf|=X,  V|X = X (7) 

Therefore 

(V^X?, Z) = X • ^(f, Z) - A^CVjfy, Z) - hK(Y, VxZ) 

= r2X • ft(y, Z) - r2/i(Vxy, Z) - r2/i(y, Vx^) . 

Hence, for vector fields X,Y,Z the compatibility condition i) for hK is implied by i) 
for h. Next we compute 

(vshK)(Y, z) = i- hK(Y, z) - Mve-r, Z) - hK{Y, VfZ) 
= 2hK(Y, Z) - hK(Y, Z) - hK{Y, Z) = Q. 

But also 

(VyftK)(£Z) = -hK(V9lZ) - hK(lVyZ) 

= -hK{Y, Z) + nr-2hK{l Oh^Y, Z) = 0 . 

Finally, we easily see that (V^hK)(X^) — (VxhK)(£,£) = 0. Hence, it follows that 
VhK is totally symmetric. D 

Note that (h^^V) satisfies the integrability condition for parabolic spheres since 
V is flat. Hence, (C(S'),/iK, V) has the structure of a parabolic affine sphere. As 
a consequence of the fundamental theorem of affine differential geometry, if C(S) 
is simply connected, the data (/iK,V) are obtained from a Blaschke immersion $ : 
C(S) —> Mn+2 as a parabolic affine hypersphere. Thus, the affine sphere (5, h, V) is 
realized in a canonical way as a submanifold of a parabolic affine sphere (C(S'), hK, V), 
and the Blaschke metric on 5, with respect to (C(S), V), coincides with the metric 
h, induced from hK. We call the parabolic affine sphere (C(S),hK,V) the parabolic 
cone over 5. 

Completeness of affine spheres. We recall an important fact about parabolic 
spheres. Calabi [Cal] and Pogorelov [Po] proved that if the affine metric g of a 
parabolic affine hypersphere (M, g, V) is definite and complete, then M must be a 
paraboloid. The case that a proper affine sphere (5, /i, V) has a definite metric is also 
of particular interest. The Blaschke normal of S may be chosen so that the affine 
mean curvature H = K is positive. If (with this choice of normal) the metric h is pos- 
itive definite, then S is called an elliptic affine sphere, if h is negative definite then S 
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is called hyperbolic. Therefore 5 is elliptic, if and only if the metric cone CK(S) carries 
a definite metric hK. In the hyperbolic case the metric hK has Lorentzian signature 
(1, n). There is the following result of Calabi [Ca2] on complete elliptic hyperspheres: 

THEOREM 11. Let S be an elliptic affine hypersphere with complete Blaschke 
metric h. Then S is an ellipsoid. 

Let 5 be an elliptic affine hypersphere with complete metric h. Then the parabolic 
sphere (C(S'), hK, V) has definite metric hK. However, clearly the metric cone C(S) is 
not complete. But Calabi's theorem implies that if S is complete then C(S) = U C 
En+1 may be completed in 0 € R714"1 to U = E714"1, so that the metric hK smoothly 
extends to Rn+1. We deduce: 

COROLLARY 12. Let S be an elliptic affine hypersphere with complete metric h 
and affine mean curvature K. Then the parabolic cone (CK(S),hK,V) is obtained by 
deleting a point in an elliptic paraboloid. 

3.2. Characterization of affine Sasakian hyperspheres. Let (S,g) be a 
(pseudo-) Riemannian manifold, D the Levi-Civita connection on S. Then a Sasakian 
structure on 5 is provided by a Killing vector field a of constant length g(a1 a) = ft-1 

so that the covariant derivative $ = Da satisfies 

(DX9)(Y) = K{g(a,Y)X-g{X,Y)a) . 

The Killing vector field cr and the one-form 77 = /^((J, •) are called the characteristic 
vector field and the characteristic one-form of the Sasakian structure on S. Let CK(S) 
be a metric cone over 5, and let £ = r J^ denote the Euler field on C(S). We define 
a complex structure J on C(S) by the formulas 

JX = $X - 77(X)£ , J£ = <T . 

It is straightforward to verify that in fact J2 = —Id, and that the cone metric gK is 
J-invariant. Moreover J is parallel with respect to the Levi-Civita connection. Hence, 
J is integrable and CK(5) is Kahler. Conversely, if CK(5) is Kahler with respect to the 
complex structure J then a = J£ defines the characteristic vector field of a Sasakian 
structure on S. 

PROPOSITION 13. Let (5,g,V) be a proper affine hypersphere with Sasakian 
structure a. Then the parabolic cone over (5, g, V) is special Kahler with respect to 
the complex structure J induced from a if and only if <& = Vcr. 

Proof Let us first recall the formulas (6), (7) from the proof of Proposition 
10, which are satisfied by the flat connection V on C(S). Note also that the same 
(warped product) relations hold for the metric connections D and D, where D is the 
Levi-Civita connection of the cone metric gK. Next we remark that the parabolic cone 
(C(S),gK, V) is special Kahler if and only if the special Kahler condition 

d?J = 0 (8) 

is satisfied.   For a vector field Y on 5, we compute (V^J)Y = 0, and (VyJ)£ = 

Vy a - JT, where JY = D^a - ri(Y)g and Vy a = Vya - Kg(Y, <T)£. Therefore if (8) 
is satisfied (Vy J)£ = 0, and hence V.cr = D.a = $. Conversely, from $ = V.<T we 
deduce that JY = Vya and hence, since V is flat, it follows (8) along S. Moreover, 
from the above equations <2VJ(Y,£) = (VyJ)£ = 0 follows immediately. Therefore, 
the parabolic cone (C(5),^, V) is special Kahler. D 

Consequently, if the Sasakian structure a satisfies $ = Vcr we call a an affine 
Sasakian structure on the hypersphere (S,g, V). 
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4. Applications. 

4.1. The Canonical circle bundle. Let TT : M —> M be a projective spe- 
cial Kahler manifold, where the conic manifold M carries the data (J, <7,V). Let 
(M, J,g, V) be the universal covering space of M, and A : M —> V a compatible La- 
grangian embedding into a pseudo-Hermitian, symplectic vector space (V, 7, fi). Since 
the embedding A is unique up to isometry of (V,7, fi), the function 

is invariant under deck-transformations of the covering, and hence defines a function 
k : M -> R>0. Note that, by iii) of Lemma 2 and by Corollary 8, (M,V,g) is a 
Hessian-manifold with potential k. We define a family of hypersurfaces Mc = {p 6 
M I k(p) = c} in M. Then the hypersurfaces Mc are invariant by the natural isometric 
51 C C* action on the conic manifold M. We call 

5 := Mi—^M 
2 

the canonical circle bundle over the projective special Kahler manifold M. 

THEOREM 14. Let M be a projective special Kahler manifold and S —► M its 
canonical circle bundle. Then S has a canonical structure of a proper affine hy- 
persphere. Moreover, S carries an affine Sasakian structure which determines the 
projective special Kahler geometry on M. 

Proof It is enough to prove the theorem locally. Therefore we assume Mi C 17, 
where U is a special Kahler domain with data (g, J, V). By Theorem 6, 5 = Mi C U 
is a proper affine sphere, so that (U,g) is the metric cone over S. Since the flat 
coordinates on U are conic, i.e. R>0-equivariant, the flat connection V on U = C(S) 
coincides with the flat connection on C(S) which is constructed in Proposition 10. 
Hence, (U,g,V) is the parabolic cone over 5, and the parabolic cone is special Kahler. 
In particular, the sphere S is affine Sasakian, and, by Proposition 13, the Sasakian 
structure a on 5 induced from J is affine Sasakian. □ 

4.2. Projective special Kahler domains with a definite metric. Let U 
be a projective special Kahler domain with a definite metric g and F the potential 
function of the corresponding special Kahler domain U C Cn+1\{0} which carries the 
special Kahler metric g defined by formula (5). Note that by formula (4) the function 
—F induces the same metric g on [7, however the signature of the metric g on U is 
inverted. 

DEFINITION 15. A projective special Kahler domain U with a definite metric g 
is called of elliptic type if the metric g on U is definite. 

We remark that if U is an elliptic projective special Kahler domain, then by for- 
mula (4) the metric g on U must be positive definite. Moreover the affine hypersphere 
S C U which is associated to U by Theorem 6 has a definite metric, and 5 is an el- 
liptic affine hypersphere. Conversely, if U is a projective special Kahler domain with 
a negative definite metric g, then the associated affine hypersphere S has an affine 
metric with Lorentzian signature. 
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Characterization of complex projective space. In [L] it was proved that a special 
Kahler manifold M with a (positive) definite complete metric is flat. In fact, it may 
also be deduced from this result that any complete special Kahler domain U C Cn with 
a definite metric is just Cn with a Hermitian inner product. In the case of projective 
special Kahler domains there are many (homogeneous) examples with a definite and 
complete metric known, for instance, the examples given in the section 5. Among 
elliptic special Kahler domains though, the projective space CPn is characterized by 
its completeness property: 

THEOREM 16. Let U C CPn be a projective special Kahler domain of elliptic type 
with a complete metric g. Then U = CPn and g is homothetic to the Fubini-Study 
metric on CPn. 

Proof We may choose F on U C Cn+1 so that g is positive definite. Therefore the 
Kahler potential k on U is positive. By Theorem 6, the associated affine hypersphere 
S is of elliptic type with a positive definite metric and, since S —> U is a Riemannian 
submersion with a complete base and compact fibre 51, 5 has a complete metric as 
well. Hence S is an ellipsoid by Thm 11. Recall that, by Corollary 4, the special 
Kahler domain U C Cn+1 over U is the parabolic cone over S and, by Corollary 12, 
U — Cn+1\{0}. Also by Corollary 12, the metric g on U has a quadratic potential 
with respect to the flat connection V on U. Since, by Corollary 8, & is a V-potential 
for g, k must be a homogeneous quadratic function in the affine coordinates. Hence, it 
follows that the cone metric g is parallel with respect to V. Therefore V = D, which 
is possible only if F is a quadratic function and g is just a Hermitian inner product 
on Cn+1. In this case, g is homothetic to the Fubini-Study metric. D 

4.3. Calabi-Yau moduli space. We recall that a Calabi-Yau m-fold (of gen- 
eral type) is an oriented compact Riemannian manifold {X, g) with holonomy group 
Hol(X, g) = SU(ra). This implies that X admits a unique complex structure J com- 
patible with the orientation such that (X, J, g) is a Kahler manifold and a parallel J- 
holomorphic (m, 0)-form vol (a holomorphic volume form), which is unique up to con- 
stant scale. In particular, (X, J) is a complex manifold of (complex) dimension m with 
trivial canonical bundle Am'0T*X. Let M be the Kuranishi moduli space of (X, J), 
i.e. the (local) moduli space of complex structures 7 on X. There is a natural holomor- 
phic line bundle over M whose fibre at I G M isT^A^'Vx) = iJm'0(X, J) {Thoi 
stands for holomorphic sections). Let TT : M —► M be the corresponding holomorphic 
C*-bundle: 7r_1(/) = i7m'0(X, J) — {0}. The one-dimensional complex vector spaces 
#m'0(X,I) have a natural norm: ||vol||2 := (V11!)"7" /x vol A vol. Let S C M be the 
unit circle bundle with respect to that norm. 

THEOREM 17. Let S -> M be the above circle bundle over the Kuranishi moduli 
space of a Calabi- Yau threefold. Then S has naturally the structure of a Lorentzian 
affine Sasakian hypersphere. In particular, S is a proper affine hypersphere. 

Proof It is known that M has the structure of a projective special Kahler man- 
ifold. We briefly recall the construction of that structure. (For more details, see 
[Cl]). The cup product defines a complex symplectic form fi on V := if3(X, C) and 
7 = \/--T^(,)T) is a pseudo-Hermitian form of (complex) signature (n + l,n 4- 1), 
where n = /i1,2 = dimM. The map 

M3l^H3>0(X,I)eP(V) 

is a holomorphic immersion and is induced by a conic holomorphic immersion (f): M —> 
V — {0}, with the following properties: 0*0 = 0 ((/) is Lagrangian) and g = Re 0*7 
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is a Kahler metric of complex signature (l,n) on the complex manifold M. These 
properties correspond to the first and second Hodge-Riemann bilinear relations for 
the underlying variation of Hodge structure of weight 3. As explained in section 1.2 
the conic immersion </) induces on M the structure of a conic special Kahler manifold 
such that the corresponding projective special Kahler metric on M is negative definite 
(according to the conventions of this paper). Moreover, the circle bundle S defined 
above coincides with the canonical circle bundle S = Mi of the projective special 

Kahler manifold M (notice that (-/—T)~m = \/~r for m = 3 and hence ||iz||2 = 7(w, u) 
for u € iJ3'0(X, /)). Now we can apply Theorem 14. □ 

5. Homogeneous examples. The basic example of an affine Sasakian hyper- 
sphere 5 is provided by the total space of the Hopf fibration 

S = S2n+l = SU(n + l)/SU(n) —> CPn = SU(n + l)/S(U(n)U(l)) . 

In the Lagrangian picture the corresponding conic affine special Kahler manifold 
(M, J,g,V) is given as a linear Lagrangian subspace M C V = T*Cn+1 for which 
the restriction of the Hermitian metric 7 is positive definite. Since M is a linear sub- 
space the flat connection V coincides with the Levi-Civita connection D of g = Re 7. 
The group SU(n -f 1) acts transitively on M = CPn by holomorphic isometries of the 
special Kahler metric (Fubini-Study metric). The action is induced from the canonical 
linear symplectic action of SU(n -f 1) on V — T*Cn+1 which preserves the Hermitian 
metric 7 and the Lagrangian subspace M C V. This action preserves also the affine 
Sasakian hyper sphere 52n+1 C M and induces a transitive action on 52n+1 preserving 
the affine geometric and Sasakian structures. 

More generally, one can consider Lagrangian subspaces M C V = T*Cn+1 of 
arbitrary Hermitian signature (p, q), p + q = n + 1. They correspond to fibrations 

S = SU(p, g)/SU(p, 9 - 1) — SU(p, 9)/S(U(p, q - l)U(l)) = M. 

The case q = 1 is of particular interest. In that case the projective special Kahler 
metric is negative definite (as for the Calabi-Yau moduli space and as for the target 
manifolds of N=2 D=4 supergravity theories with vector multiplets) and hence the 
metric of the affine Sasakian hypersphere has Lorentzian signature: M — CHn is the 
complex hyperbolic space and S is the real hyperbolic (2n4-l)-space of Lorentzian 
signature (anti de Sitter space). 

The Classification. A projective special Kahler manifold M = P(M) will be called 
homogeneous if it admits a transitive group of isometries G whose action is induced 
by a G-action on the conic manifold M preserving the data (g, J, V). Homogeneous 
projective special Kahler manifolds 

M = P(M) = G/K 

with K compact have been classified in [AC] under the assumption that G is a real 
semisimple Lie group. We recall the result only in the most interesting case of nega- 
tive definite metric on M. It turns out that in this case the manifolds M — G/K are 
Hermitian symmetric spaces of non-compact type and are in one-to-one correspon- 
dence with the complex simple Lie algebras [ different from Cn = £ip(C2n). In all the 
cases the underlying conic affine special Kahler manifold is a Lagrangian cone M C V 
generated by the G-orbit of a highest weight vector of a G€-module V of symplectic 
type. The Gc-module V admits a G-invariant real structure r compatible with the 
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symplectic structure fi, which defines a Hermitian metric 7 = \/^lJ2(-, r-). The affine 
special Kahler metric is the restriction of g = Re 7 to M. The list is the following: 

A) I = 5[n+3(C),    M = CHn = SU(n, l)/S(U(n)U(l)),    V = Cn+1 © (Cn+1)* 

BD) I = 50n+5(C),    M = (SL(2,R)/SO(2)) x (SO(n - l,2)/SO(h - l)SO(2)), 
V = c2 0 cn+1 

E6) I = e6(C), M = SU(3,3)/S(U(3)U(3)),    V = /\SC6 

E7) I = e7(C), M = SO*(12)/U(6),    V^ = Vine) (semispinor) 

E8) I = e8(C), M = E^25)/E6SO(2),    V^ = Vfa) 

F) I = f4(C), M = Sp(R6)/U(3),    F(14)(7r3) = AoC6 

G) I = 02(C), M = CH1 = SL(2, R)/SO(2),    K = V3 C2. 

Here V(A) denotes the irreducible module Gc-module with highest weight A = ]r AJTTJ, 

where TT^ are the fundamental weights. The notation V^ indicates that the module 
has complex dimension d. Notice that in the cases A) and BD) n = dime M. The only 
redundancy in this list occurs the case n = 1. In fact, the Dynkin diagrams As = B3 
define the same projective special Kahler manifold CH1 = SU(1,1)/S(U(1)U(1)) = 
SL(2,M)/SO(2). In both cases the corresponding conic manifold M is a linear La- 
grangian subspace in the vector space V. 

Note that it may happen that projective special Kahler manifolds are isometric 
as Riemannian manifolds, but nevertheless their special geometry is different: The 
diagram G2 defines M = CH1 but in this case the underlying conic affine special 
Kahler manifolds M C V is not a linear subspace, as for type A), n=l. In fact, 
V = \/3 C2 is the symmetric cube of the defining representation C2 of Gc = SL(2, C). 
The Zariski closure of M C V is the nonlinear cone M' = {u3\u £ C2} C V and 
M C M' is open. 

Homogeneous affine Sasakian spheres. An affine hypersphere (5, g, V) is called 
homogeneous if Aut(5) = Aut(5,^, V) acts transitively on S. Note that in general 
Aut(iS) is a proper subgroup of Isom(S') = Aut(5,^). If S has an affine Sasakian 
structure a then let Aut<7(S) be the subgroup of those automorphisms in Aut(5) 
which commute with the flow of the vector field a. We call Aut0-(5) the group of au- 
tomorphisms of the affine Sasakian sphere S. Clearly, any affine Sasakian hypersphere 
S with a transitive action of Aut(J(5) is a circle bundle over a homogeneous projective 
special Kahler manifold. If M is homogeneous then Isom(5) acts transitively on 5. 
But note that, in general, the canonical isometric 51-action on 5 does not preserve 
the connection V. The following theorem is a consequence of the above classification. 

THEOREM 18. Let S be the affine Sasakian hypersphere over a homogeneous 
projective special Kahler manifold M = G/K of a real semisimple Lie group G. If 
the special Kahler metric of M is negative definite then M belongs to the above list 
A)-G) and G acts transitively by automorphisms of the Lorentzian affine Sasakian 
hypersphere S. 

Proof. By construction, the G-action on M is induced by a G-action on the 
symplectic vector space V which preserves the geometric data on V. Hence G acts 
also on the canonical circle bundle 5 over M preserving the affine Sasakian geometry 
on S. Note now that in all the cases the centre Z{K) = U(l) of K acts non-trivially, 
and hence transitively, on the fibre of S —> M over the canonical base point o = eK 
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in M = G/K. This follows, for example, from the fact that K is the stabilizer of the 
line I = Cv C V generated by a highest weight vector v G VT of the G€-module V. 
In fact, K contains a (compact) Cartan subgroup of (3, which cannot act trivially on 
/. (Notice, that the semisimple part of K, however, acts trivially on /.) □ 

Clearly, the Aut(S') action on the affine sphere S extends to a linear (with respect 
to the flat connection V) action on the parabolic cone which contains S. Hence, if 
G C Aut(5) acts transitively, the affine sphere S arises as a generic G-orbit in a real 
vector space W. If G is semisimple then S must be the level-set of a homogeneous 
G-invariant polynomial on W. 

THEOREM 19. Let S be an affine Sasakian hypersphere with Lorentzian metric. 
If Auta(5) contains a semisimple transitive group G then the affine sphere (5,p,V) 
arises as a hypersurface which is defined by a G-invariant homogeneous quartic poly- 
nomial on a real vector space W. 

Proof. S identifies with the canonical circle bundle in the parabolic cone M = 
C(S) which is special Kahler. The action of Aut0.(5) on S extends to an action on 
M which preserves the special Kahler data on M. Using a compatible Lagrangian 
immersion we may therefore as well assume that the action of G = Aut(7(S) on 5 
is induced by an action of G on a Hermitian symplectic vector space (V,7,fi). In 
fact, we identify S as an affine sphere in the real vector space W = Vr, and S is a 
level set of the Kahler potential fc, which is, as a function on VT, homogeneous of 
degree 2 and invariant by G. We claim that fc2 is a quartic polynomial. Since G 
acts with cohomogeneity one, it is sufficient to show that VT admits a homogeneous 
G-invariant quartic polynomial, which is then necessarily proportional to /c2. To show 
this it is clearly enough to construct a (complex) homogeneous G€-invariant quartic 
polynomial on V. The existence of such a polynomial on V follows by the following 
general argument. 

As we know, the Gc-module V is associated to a Dynkin diagramm A of the type 
A, B, D, E, F or G. We give some more detail how this correspondence works. (See 
[AC] for a complete account.) Let N = iV(A) = L/L0 be the compact symmetric 
quaternionic Kahler manifold which is associated to the Dynkin diagramm A. (See 
[Wo].) L is the compact simple Lie group with trivial centre associated to A and L0 = 
Sp(l)ff is the stabilizer of a point o E N. The complexified isotropy representation is 
a product T0N 0 C = C2 0c V- The group Sp(l) acts by the standard representation 
on C2, and V is a complex module for H which admits a skew symmetric bilinear 
invariant. It follows that the maximal semisimple subgroup H' C H is a compact form 
of a complex semisimple group Gc which acts on V. In this way, we have associated 
a Gc-module V to the Dynkin diagramm A. Now the quaternionic Weyl tensor, see 
[Sa], of the quaternionic Kahler manifold iV = iV(A) at the point o G N gives rise to 
a nonzero Gc-invariant element Q G S4V*. This shows the existence of a nontrivial 
Gc-invariant homogeneous quartic polynomial Q on V. U 

In examples it is not difficult to guess the quartic invariant Q directly from 
the G-module VT. This gives an explicit description of the corresponding affine 
hyperspheres. 

EXAMPLES. 

A) G = SU(n,l), VT = O1, Q(v) = g(v,v)2, where g is the SU(n, l)-invariant 
Hermitian product. 
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BD) G = SL(2,R) x SO(n - 1,2), VT = R2 0 R71"1'2 ^ Hom^R2)*^"1'2). Let 
a; be a SL(2,R)-invariant symplectic form on R2 and g the SO(n — l,2)-invariant 
scalar product, defining identifications *„ : R2 ^ (R2)*, $p : R71"1'2 ^ (R71"1'2)*. 
For A e HorniXR2)*^71-1'2) let A* € Hom((Rn-1'2)*,R2) be the dual morphism. 
Then Q(A) = det(A*^A^). 

E6) Gc = SL(6,C), V = (A3C6)*. To any 3-form a we can associate the operator 

Aa:C6 —► (AC6)   :=C6'    v^aAtya. 

Then Q(a) = trace(^42). It is easy to check that Q ^ 0 by evaluating Q on 
ob1 A dz2 A dz3 + d^4 A dz5 A rfz6. This example is discussed in detail in [H] and 
the corresponding real symplectic SL(6, R)-module is also considered. Here we are 
interested in the real structure r invariant under the real form G = SU(3,3) of 
SL(6, C). It is induced by the SU(3,3)-invariant pseudo-Hermitian form on C6 = C3,3. 
In fact, this form induces a G-invariant pseudo-Hermitian form 7 on V = (A3C6)*. 
This determines a G-invariant real structure r on V such that — 27(-,r-) = Q, is 
the Gc-invariant symplectic form of V: 0(a, p)dz1 Adz2 Adz3 Adz4 Adz5 Adz6 = a A/?. 

F) G = Sp(R6), VT = Ao K6
 

is the kernel of the maP A3 K6 9 a >-> UJ A a e /\5 R6, 
where u is the symplectic form on R6. The G-invariant quartic polynomial Q is just 
the restriction of the SL(6, C)-invariant quartic polynomial on /\ C6, see previous 
example, to the subspace Ao^6* 

G) G = SL(2, R), VT = \/3 R2- The elements of VT can be considered as homogeneous 
cubic polynomials p on R2. Let q(p) = det(d2p) € V R2 be the determinant of the 
Hessian of p. Then Q = D(q(p)) is the discriminant of q(p). 

REMARKS: 

1) In all the above examples (A-E) the group i?* • G acts with an open orbit on VT, 
in other words VT with the action of R* • G is a real prehomogeneous vector space. 
Complex irreducible prehomogeneous vector spaces were classified in [SK]. Another 
description of the quartic invariant for the complex prehomogeneous vector spaces 
associated to some of the complex simple Lie algebras was recently given in [Cl]. 
2) The Sasaki field a of the affine hypersphere S C VT can be easily computed from 
the real quartic invariant Q. From Lemma 2 ii) it follows that a = J£ is precisely 
the Hamilton vector field Xk associated to the Kahler potential k. We can normalize 
the G-invariant real symplectic structure on VT (or the invariant Q) such that Q is 
related to the Kahler potential k by the formula Q = k2. Then we have XQ = 2kXk 
and therefore, since k = 1/2 on 5, we have a = XQ on S. 

Compact quotients. Let G be one of the real semi-simple Lie groups from the 
list A)-G). By Theorem 18, G acts transitively and properly on a Lorentzian affine 
hypersphere S = G/K which fibers over a Hermitian symmetric space G/K of non- 
compact type, K = KZ(K). By a result of Borel [Bo], G admits cocompact lattices 
F < G. This allows to construct compact Clifford-Klein forms 

Sr= r\G/K 
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for the Lorentzian homogeneous spaces S = G/K. The spaces Sr admit an isometric 
S^-action (induced from the affine Sasakian structure) with finite stabilizers, the orbit 
space being a Hermitian locally symmetric space 

MT= T\G/K . 

In his influential paper [Kul], Kulkarni observed the existence of non-trivial cir- 
cle bundles over compact locally complex hyperbolic spaces, carrying a Lorentzian 
metric of constant curvature 1. This corresponds to the complex hyperbolic case 
M = CHn = SU(n, l)/5(U(n)U(l)), i.e. case A) in our list. In this sense, our con- 
struction generalizes Kulkarni's construction of compact Lorentzian space-forms. It 
seems worthwile to further study the particular Lorentzian geometry of the homo- 
geneous spaces S occuring in examples B) to G), and their compact Clifford-Klein 
forms. However, in this paper we content ourselves with summarizing what was just 
explained: 

COROLLARY 20. Let M be one of the Hermitian symmetric spaces appearing in 
the list A)-G), and Mr o, compact Clifford-Klein form for M. Then Mr is the orbit 
space of an isometric S1-action on a compact Clifford-Klein Sr for the Lorentzian 
homogeneous space S associated to M. 
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