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A CAUCHY-CROFTON FORMULA AND MONOTONICITY 
INEQUALITIES FOR THE BARBOSA-COLARES FUNCTIONALS * 

ISAAC C. LAZAROt AND LEVI L. DE LIMA* 

To Prof. J. L. Barbosa, on the accasion of his sixtieth birthday. 

Abstract. We prove a Cauchy-Crofton type formula for a class of geometric functionals, here 
denoted by Ar, r = 0, l,...,n — 1, first considered by L. Barbosa and G. Colares ([BC]) and 
defined over the space of closed hypersurfaces in a complete simply connected n-dimensional space 
form. Besides giving an integral-geometric interpretation to these functionals, this formula allows 
us to prove a monotonicity inequality for the functionals, namely, if Mi and M2 are embedded 
hypersurfaces enclosing convex regions Ki and i^, respectively, with Ki C K2, then ^4r(Mi) < 
.Ar(M2) with equality holding if and only if Ki = K2 (and consequently Mi = M2). 

1. Introduction. In this note we consider closed (i.e., compact oriented with- 
out boundary) hypersurfaces M71-1 C Nn(c), where Nn(c) is the complete simply 
connected space form of constant sectional curvature c, i.e., N (c) is the Euclidean 
space, the sphere or the hyperbolic space, if c = 0, c > 0 or c < 0, respectively. In 
[BC], a class of geometric functionals has been defined over the space of such im- 
mersions generalizing the classical curvature integrals for hypersurfaces in Euclidean 
space. More precisely, define 

Ar (M) = f Fr (50,51,..., 5r) dM (1) 
JM 

where dM is the area element of M, 5o, 5i,..., 5n_i are the elementary symmetric 
functions of the principal curvatures of M and the i^V's are defined recursively by 

(2) 
2 <r <n-l. 

Notice that v4o(M) is the area of M and if we are in the Euclidean case, i.e., 
if c = 0, then the functionals above reduce to the classical curvature integrals of an 
immersion M71"1 C Mn, namely, 

>/\'P (M)= / SrdM. (3) 

We shall call (1) the Barbosa-Colares functionals. The relevance of (1) comes 
from the fact proved in [BC] that the Euler-Lagrange equation for v4r, under volume 
preserving variations, is 

5r+i = const.,  r + l<n —1. (4) 
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Moreover, it is also shown in [BC] that the stable critical points for the above volume 
constrained variational problem defined by Ar are precisely the geodesic spheres. In 
other words, the only closed hypersurfaces in N (c) satisfying (4) for a given r and 
being a local minimum (or maximum) for Ar under volume preserving variations are 
the geodesic spheres. 

The purpose of this paper is to prove a theorem which provides an integral- 
geometric interpretation for the Barbosa-Colares functionals, namely, we show that 
a Cauchy-Crofton type formula holds for these functionals (see Theorem 3.1 below). 
A few interesting consequences emerge from this result. First of all, restricted to the 
space dC™c of convex smooth embeddings M71""1 C Nn(c), these functionals are strictly 
positive. Moreover, they satisfy the following sharp monotonicity inequalities. 

THEOREM 1.1. Let Mi and M2 be embedded hypersurfaces enclosing convex 
regions Ki and K2, respectively, with Ki C K2. Then 

A-(Mi) < A(M2), (5) 

with equality holding if and only if Ki = K2 (and consequently Mi = M2J. 

REMARK 1.1. In the spherical case with c > 0, one should assume further that M 
25 contained in an open hemisphere, since this is implied by the convexity assumption 
(see Definition 2.1 below). 

We stress that the positivity of Ar over dC^, which is an imediate consequence 
of our Cauchy-Crofton formula (see Remark 3.1) is rather surprising since, when 
evaluated over an arbritary immersion, or even embedding, these functionals can 
assume negative values. Moreover, in the language of Integral Geometry (see [KR], 
for example) we deduce from Theorem 1.1 that the Barbosa-Colares functionals are 
invariant monotone continuous valuations over dC™c (see Remark 4.1 for more on this 
point). In fact, ideas from Integral Geometry play a crucial role in the proof of the 
above theorem, since a crucial ingredient is a non-euclidean version of the well-known 
formula relating the measure of planes of a given dimension cutting convex subset 
K C R and the arithmethic mean of the measure of the orthogonal projections of 
K over planes with the complementary dimension (see (15), (21) and (22) below). 

This paper is organized as follows. In Section 2, we recall the basic facts on the 
Integral Geometry of convex hypersurfaces in space forms which will be used in this 
work. Emphasis here is given on explicit expressions for the densities <iLr and on 
describing the quermassintegrals as a suitable arithmetic mean of projected volumes. 
In Section 3 we prove the Cauchy-Crofton formulas and finally in Section 4 we furnish 
the proof of Theorem 1.1. 

2. Integral geometry of hypersurfaces in space forms. In this section, we 
collect some basic facts on the integral geometry of convex hypersurfaces in simply 
connected space forms which will be useful later. Our presentation follows [S] closely 
and the reader is referred to this marvelous book for further details. 

Recall that the isometry group Gc of Nn(c) acts transitively on the space Xc^ 
of totally geodesic submanifolds of Nn(c) of a given dimension r. An element of lc,r 

is called a r-plane and is denoted by Lr. If Hc is the isotropy group of a given Lr 

with respect to the above action, it follows that XC)r is naturally identified to the 
homogeneous space Gc/Hc. This allows us to define on XCjr a canonical left invariant 
measure, or density, denoted by <iLr, that is naturally induced from the Haar measure 
in Gc. The existence of this density permits us to consider the measure of r-planes 
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intersecting a fixed subset of Nn(c), a procedure which will be crucial in what follows. 
A variant of the above construction yields the Grassmanian Gn,r, which is obtained 
by considering the set of all elements of Xc^r passing through a given point of N (c), 
which is then named the origin of Nn(c). The corresponding density is denoted by 
dLr[Q]. 

As mentioned in the Introduction, a first step toward the proof of Theorem 1.1 is 
the identification of the Barbosa-Colares functionals to certain quermassintegrals via 
a Cauchy-Crofton type formula. For this, we need some basic facts on the geometry 
of convex bodies in space forms. 

DEFINITION 2.1. A convex body K in N (c) is a compact set with nonempty 
interior and having the property that, given points p and q in K, the unique minimizing 
geodesic segment in Nn(c) joining p to q lies entirely in K. 

REMARK 2.1. Notice that, in the spherical case when c > 0, the definition above 
implies that K is contained in an open hemisphere. 

We denote by Cn,c the set of all convex bodies in Nn(c). In general, an element in 
Cn,c has the property that its boundary M = dK is smooth almost everywhere and we 
reserve the notation C^. for the subset of CnjC formed by convex bodies with smooth 
boundaries. Also, it is convenient to denote by <9Cn?c the set of boundaries of elements 
in Cn,c and, similarly, by dC^ the set of smooth hypersurfaces bounding elements 
of C^c. In this latter class, the Barbosa-Colares functionals (1) are well-defined. We 
shall see, however, that as a consequence of the Cauchy-Crofton formula presented 
below, these functionals can be naturally extended to <9Cn?c (see Remark 3.1). We also 
notice that a convex body K G Cn,c is always measurable. In particular, the measure 
of the elements of JCjr intersecting a given K € C^c, namely, 

Qr{K) = [ dLr, (6) 
JLrnK^<j> 

is well defined and will be referred to as a quermassintegral of K. It turns out that 
it can be explicitly computed in terms of the geometry of M = dK, according to the 
parity of r. For c ^ 0, these are given by the expressions 

6(n,r) c^On^ViK) + ^6(n,M)A^_i (OK) 
2=1 

,  r = 2r/, (7) 

d(n, r) ^2 <*(n> r> i)M^ (dK) >  r = 2/ + L (8) 
2=1 

Here, 

-i 

Mr(dK)=(nr
1^     J^rdM, (9) 

Oi is the area of the unit Euclidean sphere of dimension i and the universal constants 
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appearing in (7) and (8) are given by 

bM=   or...o1   ' (10) 

l(nri)=(   r-1    \      OrOr-lOn-2i+l       T'-j ,      s 

<n,r) = 0^-;0—, (12) 

In case c = 0, we have 

QrW^ain^Mr-itfK), (14) 

where 

nOn-2 • • • On-r-l a(n,r) 
(n-r)Or_i...OiOo 

By convention, OQ = 2. These formulas follow from the generalized Gauss-Bonnet 
theorem and the explicit formulas for the densities dLr. The details can be found in 
[S], page 310. 

It is well-known that in the Euclidean case (c = 0), the quermassintegrals Qr 

admit a dual description as an arithmetic mean of the (n — r)-dimensional volumes of 
the orthogonal projections of K over (n — r)-planes Ln_r G Gnyn-r. More precisely, 
one has up to a universal multiplicative constant 

Qr(K)= f        voln-r(*Ln_rm(K))dLn_r[0]. (15) 

hTl Here, voln_r denotes the (n — r)-dimensional Hausdorff volume and 7rLn_r[0] : ^ 
R   denotes the orthogonal projection over Ln_r[o] € Gn)n_r.  The rationale behind 
(15) is as follows. First, we have the disjoint union 

{Lr;Lrni^0}=: (J W(Ln-r[o]), (16) 
Ln — r [0] £ Gn, n — r 

where 

7^(Ln_r[o]) = {Lr\ LrnKy£®,Lr is perpendicular toLn_r[o]}. (17) 

On the other hand, the density dLr can be expressed (see [S], page 204) as 

dLr = dcrn-r A <iLn_r[o], (18) 

where dan-r is the volume element of £n_r[o]. By integrating this over {Lr; Lr OK ^ 
0} and using (6) and (16), (15) follows straightforwardly. 

Now, a crucial ingredient in the proof of Theorem 1.1 is to realize that a formula 
similar to (15) holds in the non-euclidean setting (c ^ 0). In effect, the decomposition 
(16) stills holds in this case.   As for (18), the non-euclidean analogues are (see [S], 
page 306) 

dLr — cosr(\/cp)dan-r AdLn_r[o], c> 0, (19) 
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and 

dLr = cosh7*(>/^cp)dcrn-r A <iLn_r[o], c < 0, (20) 

where in both cases p denotes the geodesic distance of a generic point in Ln_r[o] to 
the origin of Nn(c). Proceeding exactly as above, one gets 

Qr(K) = f If cosr(^p) dan-r ) dLn.r[o], c > 0, (21) 

and 

fir(if) =  / ( f cosifiy/^cp) dan-r J dLn_r[0], c < 0, (22) 

where, as before, 7r£,n_r[0] : Nn(c) —> Nn(c) is the orthogonal projection over Ln_r]^ G 
Gn^n-r along geodesies. Notice that here 7ri,n_r[0] does not preserve lengths and the 
correction term involving p is certainly expected. 

REMARK 2.2. As it is always the case, one should be careful here in case c > 0. In 
effect, in this case, one should restrict to convex bodies inside a given open hemisphere 
centered at the origin, otherwise the orthogonal projections above are not well defined. 
Moreover, since 0 < p < 7r/2, the integrand of the innermost integral in (21) is strictly 
positive. 

3.  The Cauchy-Crofton formula for the Barbosa-Colares functionals. 
The purpose of this section is to show that, restricted to dC™c, the Barbosa-Colares 
functional Ar-i coincides with the quermassintegral Qr up to a universal constant de- 
pending only on n, r, c. From now on, we shall restrict ourselves to the case c ^ 0 and, 
in order to make computations simpler, we introduce the modified quermassintegrals 
for K € C~c by 

Wr(K) = b(n,r)-1Qr(K),  r = 2r', (23) 

Wr(^)=rf(n,r)-1Qr(^),  r = 2r' + l. (24) 

Then we have 

LEMMA 3.1. For K € C~c, 

Wr(K) = 0r°n-r+1 Mr-^OK) + cWr-2(K), r = 2r', (25) 
UQUI 

Wr(K) = ^^Mr-iidK) + cr-^Wr-2(K), r = 2r' + 1. (26) 

Proof Let us first consider the case r = 2r/. By (7) and (23), we have 

r' 

Wr(K) = (f'On^ViK) + Y, Kn, r, i)M2i-i (dK) (27) 
i=i 

and then 

r'-l 

Wr_2(K) = S-iOn^ViK) + J2 Kn,r- 2,z)X2,_1 (dK). (28) 
i=i 
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On the other hand, we can rewrite (27) as 

r'-l 

Wr(K) = (f'On-iV(K) + b(n,ry)Mr-i{dK) + ^ 6(n,r,0M2i-i (dK).     (29) 
2=1 

Now, a straightforward computation using (11) and the fact that 

Oi 27r 

0<-2      i - 1 

gives us 

Hn, r, i) 
 = c 
6(n, r —2,z) 

and 

yJrLJn—i—i 
b(n,r,rr) = 

OoOi 

<i(n, r, z) 
OoOi 

(30) 

Comparing (28) and (29) we obtain (25), proving the lemma in this case. 
The case r = 2r/ + 1 is treated similarly. Prom (8) and (24) we have 

r' 

Wr(K) = £ d(n, r, i)M2i (dK), (31) 
2=1 

and then 

r' 

Wr-2(K) = ^ <*(", ^ - 2,0^22 (dK). (32) 
2=1 

We rewrite (31) as 

r'-l 

Wr(iq = d(n,ry)Mr-i(dK) + ^ d(n,r,i)A<2i (dK). (33) 
2=1 

Again we compute 

(i(n, r, i)     _ c(r — 1) 

d(n, r - 2, i) 27r 

and 

On-r+l 

Comparing (32) and (33), (26) follows easily. This completes the proof of the lemma. 
This lemma, together with (1) and (2), show that the modified quermassintegral 

Wr resembles Ar-i- In fact, according to the theorem below, they actually coincide up 
to universal constants. This is the promised Cauchy-Crofton formula for the Barbosa- 
Colares functionals. 
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THEOREM 3.1. Let K 6 C~c. Then, 

Wr (K) = 0r^+1 ( ; Z i )"' A-i (dK),     r = 2r') (34) 

Wr{K) = ^or{nr-i)1^-1^)' r=^,+i-       (35) 

Proof. We use induction on the parity of r and start with the even case r = 2rr. 
Prom (7) and (23) we have Wo(^) = ^X-K"), and this shows the theorem for r = 0. 
Suppose now by induction that 

Wr-2{K) = 0"-'+3°:-2Ar-3(dK),   r>3. 
OoOi(r_3) 

By Lemma 3.1 and the induction assumption we find that 

Wr(K) = ^""lY,   /   Sr^dM + cWr^iK) 
OoOi[;r_[) JM 

Sr-idM + e(n, r) A-3 W 

where 

OoOiClJ) \JM 

.     .      ("_i)    C)r_20„_r+3 c(n-r + l) 
e(n'r) = TH^K • ^^^ c = (^l)        OrOn-.+i r-2 

so that finally we get 

^»=at§fl(::i1)"V'<3jr)'- 
As for the odd case, we see that if r = 1, (35) reduces to 

which is the well-known non-euclidean analogue of the classical Cauchy formula ([S], 
page 310). Now assume by induction that 

Wr_2(JO = ^g^ {^-l)   ^-s^)'  ^3- (36) 
Then, by Lemma 3.1, 

y^ff) =  0"-''-1 1   .     /     Sr-! CM +      Cir-1)?n-r+\Ar-3{dK) 

 0n-r-1 I  /    Sr_i dM + e(n, r)A_3(^) ) , (37) 

\   r — 1 
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where, by (30), 

e(n, r) = 

71-1 

c(r - 1) On-r+3 V r - 1 ) _ c(n - r + 1) 
2IT     On_r+i f n-1 \ r - 2 

r-3 

Now, (35) follows easily from (37), (1) and (2), finishing the proof. 

REMARK 3.1. Notice that, as an immediate consequence of this theorem, we see 
that AT is strictly positive when restricted to dC™c. Moreover, the Cauchy-Crofton 
formulas above allow us to extend Ar to <9Cn,c in a natural way so that this positivity 
property is preserved. 

REMARK 3.2. The same argument as above yields more general formulas than in 
Theorem 3.1. More precisely, it is possible to show that, when evaluated over a closed 
embedded hypersurface M, ^4r_i(M) equals, up to a universal constant, the integral 

L x(LrnK)dLr, 
LrnK^0 

where x denotes the Euler characteristic and K is the (not necessarily convex) region 
bounded by M. Clearly, ifM e dC™c then K € C™c and from this we get that Lr n K 
is convex in Lr for any Lr intersecting K. Hence, x(Lr n K) = 1 for any such Lr 

and we recover Theorem 3.1. 

4. The proof of Theorem 1.1 and concluding remarks. The proof of The- 
orem 1.1 above can now be easily carried out. We consider only the spherical case 
(taking Remark 2.2 into account), the hyperbolic case being similar. Let be given 
hypersurfaces Mi and M2 enclosing convex bodies Ki and i^, respectively, with 
Ki C K2. By the Cauchy-Crofton formula (Theorem 3.1), one has to prove that 
Qr{Ki) < Qr(^2) with equality holding if and only if Ki = K2. It follows from the 
assumptions that, for each £n_r[o] € Gn,n_r, there holds 7rLn_r[0] (Ki) C 7ri,n_r[01 (K2), 
and hence 

/ cosr(\/cp)rf<jn_r <  / cosr(\/cp)d(jn_r (38) 

Integrating this over Gn)n_r and recalling (21), we conclude Qr(Ki) < Qr(K2), as 
desired. On the other hand, if equality holds, one has equality in (38) for any I/n_r[o] € 
Gn,n-r. Since, as remarked before, 'KLn_r[0]{Ki) c ^Ln_r{0](-K2) and cosr{y/cp) is 
always positive, we have 

voln_r (7rLn_r[0] (ifi)) = voln_r (7rLn_r[0] (^2)) , 

from which we find that 

^n_r[0](^1)=7rLn_r.[0](^2). (39) 

We see then that Ki and K2 are such that (39) holds for any Z/n_r[o] € Gn,n_r and 
this clearly implies that Ki = K2. 

REMARK 4.1. According to [KR], the fundational result in Euclidean Integral 
Geometry is Hadwiger's characterization theorem.   This states that any continuous 
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and invariant valuation on Cn>c for c = 0 is a linear combination of AQ^AI, ... ,v4n 

(here, we define An{K) = V(K), the volume of K) and the Euler characteristic x- 
It is very likely that a similar result holds for the remaining simply connected spaces 
forms. More precisely, it seems natural to investigate whether the Barbosa-Colares 
functional, together with the volume and the Euler characteristic, constitute a basis 
for the space of such valuations over Cnjc- 

REMARK 4.2. There is still another interesting consequence of the Cauchy-Crof- 
ton formula. Given V > 0, let dC^c v be the space of all smooth convex hypersurfaces 

in Nn(c) enclosing a convex body with volume V (naturally, in the spherical case, 
one should assume that V is less the volume of a hemisphere). By using standard 
arguments based on the direct method of the calculus of variations and Blaschke se- 
lection theorem (see [BZ], for example), one can show the existence of a convex body 
KQ satisfying Ar(K) > Ar(Ko) for any K G C™cV. In other words, the variational 
problem of minimizing Ar over dC^cV has a solution, namaly, KQ. In a companion 

paper [LL], we prove that KQ is actually the geodesic sphere in N (c) with volume 
V. This is not only in conformity with the stability result in [BC] but also yields 
sharp isoperimetric inequalities for the Barbosa-Colares functionals which generalize 
the well-known isoperimetric inequalities for the classical curvature integrals (3) (see 
[BZ]). 
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