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DEFORMATIONS OF GENERALIZED CALIBRATIONS AND 
COMPACT NON-KAHLER MANIFOLDS WITH VANISHING FIRST 

CHERN CLASS * 

JAN GUTOWSKI+, STEFAN IVANOV*, AND GEORGE PAPADOPOULOS§ 

Abstract. We investigate the deformation theory of a class of generalized calibrations in Rie- 
mannian manifolds for which the tangent bundle has reduced structure group t/(n), 5C/(n), G2 and 
Spin(7). For this we use the property of the associated calibration form to be parallel with respect 
to a metric connection which may have non-vanishing torsion. In all these cases, we find that if 
there is a moduli space, then it is finite dimensional. We present various examples of generalized 
calibrations that include almost hermitian manifolds with structure group U(n) or SU(ri), nearly 
parallel G2 manifolds and group manifolds. We find that some Hopf fibrations are deformation fam- 
ilies of generalized calibrations. In addition, we give sufficient conditions for a hermitian manifold 
(M, g, J) to admit Chern and Bismut connections with holonomy contained in SU(ri). In particular 
we show that any connected sum of k > 3 copies of S3 x S3 admits a hermitian structure for which 
the restricted holonomy of a Bismut connection is contained in SU(S). 

1. Introduction. Riemannian manifolds with structure group a subgroup of an 
orthogonal group under mild topological assumptions admit a connection for which 
its reduced holonomy is a subgroup of the structure group. This connection is not 
necessarily the Levi-Civita connection but it may have non-vanishing torsion. The 
existence of such a connection with reduced holonomy a subgroup of an orthogonal 
group does not imply other geometric properties on a Riemannian manifold, like for 
example irreducibility. This is unlike the well-known case that involves the reduc- 
tion of the holonomy group of the Levi-Civita connection which has led to Berger's 
classification list. Nevertheless the question arises as to whether the reduction of the 
structure group of a Riemannian manifold is related to some underlying geometric 
structure. 

The aim of this paper is three-fold. First, we shall show that Riemannian mani- 
folds which admit a metric connection with holonomy an appropriate subgroup of the 
orthogonal group may have submanifolds which are calibrated with respect to a gen- 
eralized calibration. Second we shall investigate the moduli space of these calibrated 
submanifolds. Finally, we shall show the existence of a large class of hermitian mani- 
folds with trivial canonical bundle which admit either a Chern or a Bismut connection 
which has reduced holonomy contained in SU(n). Our latter result can be though off 
as a generalization of the Calabi-Yau theorem in the context of hermitian manifolds 
which are not Kahler. 

Generalized calibrations were introduced by Gutowski and Papadopoulos [17] 
and further investigated in [18] to describe the solitons of brane actions with a non- 
vanishing Wess-Zumino term. These solitons are certain submanifolds which minimize 
an energy functional and are associated with calibration forms. These forms, unlike 
the case of standard calibrations, are not closed. In what follows we shall use the 
term generalized calibration to refer to both the calibration form and the calibrated 
submanifold. The distinction between the two will be clear from the context. 
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In this paper, we shall demonstrate that generalized calibrations arise in the inves- 
tigation of manifolds that admit a metric connection with possibly non-vanishing tor- 
sion which has holonomy an appropriate subgroup of the orthogonal group. Although, 
generalized calibrations can be investigated independently, their use in manifold the- 
ory becomes more transparent in the context of holonomy groups and in manifolds 
with reduced structure group. This is because for certain holonomy groups, like for 
example those that occur in Berger's list; U(n) (2n), SU{n) (2n), 5p(n) • Sp{l) (4n), 
5p(n)(4n), G2 (7) and Spin(7) (8), manifolds admit parallel calibration forms which 
however are not necessarily closed; in parenthesis we have denoted the real dimension 
of the associated manifolds. Such forms give rise to generalized calibrated submani- 
folds which are minima of the energy functional 

E(Z) = Vol(Z) - / if, , (1.1) 
Jz 

where Z is a k-dimensional submanifold and ip is a calibration form of degree fc, 
dip ^ 0. The submanifolds that minimize E are not necessarily minimal. 

We shall focus our investigation to the generalized calibrations associated with 
the holonomy groups U(n) (2n), SU(n) (2n), G2 (7) and Spin(7) (8). We shall show 
that in most of these cases, the differential system associated with the deformation 
of the above generalized calibrations is elliptic. So if the moduli space of a gener- 
alized calibration exists, then it is finite dimensional. We shall not investigate the 
obstruction theory; this will appear in another publication. We shall also compute 
the second variation of the energy functional. The differential systems that arise in 
the deformation of generalized calibrations will also be investigated for various classes 
of manifolds that admit connections with the above holonomy. We shall see that in 
some cases they become simplified. We shall also give a large number of generalized 
calibrations as submanifolds of group manifolds, complex manifolds and homogeneous 
spaces. In particular, we shall show that some Hopf fibrations are families of general- 
ized calibrations. 

In the second part of the paper we shall focus on hermitian manifolds with van- 
ishing first Chern Class. This is because they are a generalization of Calabi-Yau 
manifolds. Recently such manifolds have found applications in the investigation of 
Reid's conjecture and of mirror symmetry. This conjecture can be stated as follows: 
Let X be a three-dimensional Calabi-Yau manifold and suppose that X can be blown 
down along a rational curve to a possibly singular manifold Yi. Such singularities of 
Calabi-Yau manifolds can be removed by a small deformation. Let Yi be the smooth 
deformation of Y. Now Yi has trivial canonical bundle and 62(^1) = b2(X) — 1. 
Continuing this procedure, we shall end up with a smooth manifold X with trivial 
canonical bundle and 62(X) =0. So X cannot be Kahler. The conjecture is that 
if X and Z are Calabi-Yau manifolds with 63 (X) = 63 (^), then Z is in the same 
deformation class of X. 

The canonical bundle of a hermitian manifold can be topologically but not holo- 
morphically trivial. For the definition of the former we take that the first Chern class 
vanishes. For the definition of the latter, we take that the canonical bundle admits a 
nowhere vanishing holomorphic section. We remark that there are canonical bundles 
which are topologically but not holomorphically trivial, such as the canonical bundle 
of SU{Z). It was discovered recently by Hitchin [20] that complex three-folds with 
holomorphically trivial canonical bundle appear as critical points of a certain diffeo- 
morphism invariant functional on the space of differential three-forms on a closed 
six-dimensional manifold. 
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There are several connections on hermitian manifolds compatible with both the 
hermitian metric and complex structure which coincide with the Levi-Civita connec- 
tion in the Kahler case. Amongst these connections the Chern connection is the 
unique connection for which the torsion 2-form is of type (2,0)+(0,2), and the Bis- 
mut connection for which the torsion is a three form. If the torsion 3-form of the 
Bismut connection is closed or equivalently the Kahler form is <9<9-closed, then the 
hermitian structure is said to be strong. The latter connection was used by Bismut 
[5] to prove a local index formula for the Dolbeault operator when the manifold is not 
Kahler but strong; vanishing theorems for the Dolbeault cohomology on a compact 
Hermitian non-Kahler manifold were found [3, 21, 22]. For other applications of the 
Bismut connection see [33, 21, 22]. In particular in [22] obstructions have been found 
to the Hodge numbers ft0,1, /i0'n for hermitian manifolds whose Bismut connection has 
reduced holonomy contained in SU(S). 

Given a hermitian manifold (M,g,J) with vanishing first Chern class, we give 
some sufficient conditions for (M, g, J) to admit a Chern or a Bismut connection with 
restricted holonomy contained in SU(n). The main tool that we shall use for the 
investigation of hermitian manifolds with trivial canonical bundle is the 99-lemma. 
This lemma is valid for any compact Kahler manifold but there are non-Kahler spaces 
satisfying the 99-lemma. A result of Deligne states that any Moishezon manifold is 
cohomologically Kahler and therefore it satisfies the 9<9-lemma. The <9<9-lemma also 
holds for any compact non-Kahler 3-fold with holomorphically trivial canonical bundle 
which is diffeomorphic to connected sums of k > 2-copies of S3 x 53 [28]. One of our 
main goals is to prove the following 

THEOREM 1. On a connected sum of k > 2-copies of S3 x S3 there exists a 
hermitian structure for which the holonomy of the Bismut connection is contained in 
SU(3). Such a hermitian structure is not strong. 

The celebrated Yau's solution of the Calabi conjecture [35] states that on a 2n- 
dimensional compact complex manifold with vanishing first Chern class of Kahler 
type there exists a Kahler metric with restricted holonomy contained in SU(n) (Ricci 
flat Kahler metric). For non-Kahler manifolds, it appears that the following holds: 

CONJECTURE 1. On any 2n-dimensional compact complex manifold (n > 2) with 
vanishing first Chern class there exists a hermitian structure with restricted holonomy 
of the Bismut connection contained in SU(n). 

The condition n > 2 on the dimension in this statement is essential since the Inoue 
surface has vanishing first Chern class but it does not admit hermitian structure with 
SU(2) holonomy of the Bismut connection as has been observed in [22]. 

Clearly this conjecture is true for connected sums of k > 2-copies of 53 x S3 in 
view of Theorem 1. It is also true for Moishezon manifolds and for compact complex 
manifolds with vanishing first Chern class which are cohomologically Kahler as we 
demonstrate in sections 17 and 18 below. 

This paper has been organized as follows: In sections two and three, we give 
the definition of generalized calibrations and introduce the energy functional. In sec- 
tion four, we compute the second variation of the energy functional and demonstrate 
the relation between generalized calibrations and reduced holonomy. In section five, 
we examine the deformations of a class of almost hermitian calibrations. In section 
six, we derive the deformation equations of SAS calibrations and in section seven, 
we explore them in various special cases. In section eight, we give many examples 
of SAS calibrations and deformation families. In section nine, we give the defor- 
mation equations of generalized co-associative calibrations.  In section ten, we give 
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the deformation equations of generalized associative calibrations. In section eleven, 
we investigate the deformation equations of generalized associative and co-associative 
calibrations in various manifolds with special G2 structures. In section twelve, we 
give many examples of associative and co-associative calibrations that include various 
deformation families. Some Hopf fibrations are such deformation families. In section 
thirteen, we give the deformation equations of generalized Cayley calibrations and in 
section fourteen we give a group manifold example. In section fifteen, we summarize 
some useful formulae for hermitian manifolds. In section sixteen, we investigate the 
existence of Chern connections with holonomy SU{n) on hermitian manifolds with 
trivial canonical bundles and in section seventeen we investigate the existence of Bis- 
mut connections with holonomy SU(n) on hermitian manifolds with trivial canonical 
bundles. In section eighteen, we give the proof of theorem one and in section nineteen, 
we give examples of manifolds with the holonomy of Bismut connection contained in 
517(3). 
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2. Generalized calibrations and relative de Rham Cohomology. Here we 
shall describe some of the main properties of generalized calibrations using relative 
de Rham cohomology. Generalized calibrations were defined in [17] in the context 
of understanding the solitons of brane actions with a Wess-Zumino term. In man- 
ifold theory, these solitons are certain submanifolds of a manifold which admits an 
appropriate form. These submanifolds are not minimal but they are the minima of a 
certain energy functional. We begin with a definition of generalized calibrations and 
in particular of the energy functional. 

DEFINITION. A generalized calibration of degree A: is a k-form (ft on an oriented 
manifold M which satisfies at every point p the inequality ^(£)|p < 1 for every oriented 
k-plane £ in TpM. 

For standard calibrations it is assumed in addition that cf) is closed, dcj) == 0. This 
is not the case here. 

DEFINITION. The contact set Cp(^) at a point p G M of a calibration 0 is 

Cp = {(■ e Gr(fc, TPM) :  #0 = 1} . (2.2) 

For calibrations of interest the contact sets are not empty. 

DEFINITION. Generalized calibrated submanifolds X of M are those for which 
4){TPX) = 1 at every p G X. 

In what follows we shall refer to both cj) and X as "generalized calibrations" of 
M. The distinction between the two will be clear from the context. 

Generalized calibrations minimize a family of functionals [17]. Here we shall 
repeat the analysis using relative homology and relative de Rham cohomology. Let 
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M be a manifold and N a submanifold of M with dimiV > k. Suppose that (a, (3) is 
a pair of forms such that a € fifc+1(M) and (3 € £lk{N). In addition assume that fi is 
a calibration. Next suppose that K is a submanifold of iV. Take an open ball D C K 
and consider the functional 

£(D,L)=Vo\{D)- fa, (2.3) 

where L is a submanifold of M such that dL — D 4- Y. We shall refer to 8 as the 
energy of D. 

We shall show that the functional £ is minimized whenever D C X and X is a 
calibrated submanifold of iV. However before we proceed to show this consider D\ 
and Dz two open balls in N such that dD\ = 9D2- Then we have 

[   p- f  a-([   fi- f  a)= [ 0- f a (2.4) 
JDi J Li J D2 J L2 JS JZ 

where 91/2 = Y -f D2 and 5 = JDi — D2 is the sphere in N which can be constructed 
by gluing the discs Di and D2 along the common boundary taking into account their 
relative orientations. In addition Z is obtained by gluing Li and L2 along Y and so 
it has boundary dZ = dLi - dL2 = (F 4- Di) - (F + JD2) = £>i - ^2 = S. So Z is a 
cycle in M relative to the submanifold N and Z £ iIfc+i(M, iV). 

Now suppose that (a,/?) represents a trivial class in the relative de Rham co- 
homology i?^1(M, iV). Recall that the cohomology operator d in relative de Rham 
cohomology is defined as d(a,l3) — (da,a|iv — dfi). Therefore [(a,/?)] is a trivial class 
iff a is exact, a = ety, which implies that c!(7|jv — 0) = 0, and 7^ — 0 is an exact 
form in iV, 7|JV — fi = dC- In such a case, we have 

f 0- f a = 0 (2.5) 
Js       Jz 

and so 

[   P- [  a-([   p- [   a)=0. (2.6) 
v/Di JLI JD2 JL2 

THEOREM 2. Xe^ (a:,/?) represent the trivial class in iJ^1(M,iV) and 0 be a 
calibration form in N. Then calibrated submanifolds X of N minimize the functional 
£(£>!,!,!). 

Proof Let X be a calibrated submanifold of iV and Di a disc in X. Then we 
have 

£(I>i,Li)=Vol(£>i)- 

= f   P- f  a 
JDi JLi 

= f   P- I  <*< Vol(JD2) - /"  a 
J D2 J IJ2 J IJ2 

= £(D2,L2). (2.7) 

The first equality follows from the definition of the functional. The second equality 
follows from the assumption that X is calibrated. The third equality follows because 
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the class (a, (3) is trivial in iJ^^M, JV). Finally the inequality follows from the 
definition of generalized calibration.     □ 

Next we shall investigate some of the properties of the functional (2.3). In par- 
ticular we have the following: 

THEOREM 3. Let K be a closed submanifold of N C M and L a submanifold of 
M such that dL = K. In addition assume that (a, /?) represent the trivial class in 
HdR(M,N).  Then the functional £(K, L) is independent of the choice of L. 

Proof. Let Lf another submanifold of M such that dLf — K. Then we have 

£{K, L') = Vol(^) - / a = Vol(K) - [ 7 = Vol(!0 - / a = S(K, L) .     (2.8) 
JU JK JL 

The first equality follows from the definition. The second equality follows from Stoke's 
theorem because a is exact and so a = dj. The third equality also follows for the 
same reason as the second, and the last follows from the definition of the functional 
£.■    D 

REMARK 1. Suppose that (a,/?) represents a class in iJfc+1(M, JV;Z). Then it is 
straightforward to see that the functional £(K, L) mod Z is independent of the choice 
ofL. 

3. Special Cases. A special case of interest is whenever the generalized cali- 
bration form /3 is defined as a generalized calibration on M. For (a,/3) to be a trivial 
class, a = dy, a = dfi and 7 — /? = d£ must be an exact form in M. In such a case 
the functional £ can be written as 

£(D) = Vol(D) - / 7 . (3.9) 
JD 

If X is a compact calibrated submanifold of M with boundary dX, then 

S(X) = -f   C- (3.10) 
JdX 

In particular if X is closed, then £(X) = 0. Since £(Z) > 0 if Z is a closed but not 
calibrated submanifold of M, calibrated closed submanifolds of M are global minima 
of £. Another special case to consider is whenever a = djy and we choose 7 = /?. 
This is the case which we shall focus on later. The functional £ in this case is 

E(D) = Vol(Z?) - f 0 . (3.11) 
JD 

It is worth adapting the main theorem of generalized calibrations to this case. In 
particular we have the following: 

THEOREM 4. Let 0 be a generalized calibration in M; then calibrated submanifolds 
X of M minimize the functional E in (3.11). 

Proof. Let X be a calibrated submanifold of M and D an open ball in X. Next 
let D' an open ball in M, such that dD = dD'. Then we have 

E(D)=Vol(D)-[ (3= f 0-f 0 = 0= f  (3-f  f3<Vol(D')-[  0 = E(D'). 
JD        JD      JD JD'      JD

1 JD' 
(3.12) 
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The equalities are obvious. The inequality follows from the defining property of the 
calibration form.     D 

The energy (3.11) vanishes when evaluated at every calibrated submanifold X of 
M. In addition E(Z) > 0 if Z is not calibrated and therefore calibrated submanifolds 
are global minima of E. From now on, we shall focus on the calibrated submanifolds 
which are the minima of the functional (3.11). 

REMARK 2. Standard calibrations for which the calibration form is closed dfi = 0 
are special cases of the generalized calibrations associated with the functional (3.11). 
The only difference is that the energy functional used for standard calibrations is 
the induced volume Vol. Calibrated submanifolds under the standard calibrations are 
minimal. For the generalized calibrations the functional (3.11) is not the induced 
volume but nevertheless it can be identified with the "energy" of the submanifold. 
Observe that the relation between (3.11) and induced volume evaluated on a closed 
submanifold Z of M is 

E{Z) = Vo\{Z)-l3[Z] . (3.13) 

The last term depends only on the cohomology class of (3. In particular it does not 
contribute in the equations for the criticality of E and so the generalized calibrated 
submanifolds X are minimal. Conversely, if (3 is a closed form, then minimal sub- 
manifolds of M minimize the energy functional E. 

4. Deformation of generalized calibrations. 

4.1. The second variation of the energy functional. Here we compute 
the second variation of the energy functional evaluated on a calibrated submanifold. 
Suppose X is a calibrated submanifold of M with respect to a generalized calibration 
0, and let X{t) be a 1-parameter family of submanifolds of M with X(0) = X. 
In addition let dvo\{t) = dvo\(X(t)) be the volume form of X(t), and (j){t) be the 
restriction of the calibration form on X{t). Since dvol(t) and (j){t) are top forms 
on X(t), we have (j>{t) = \(t)dvol(t) for some function X(t) where A(0) = 1. This 
condition follows because the volume form of a calibrated submanifold is equal to the 
calibration form. Setting E(t) = E(X(t)), we have that the energy functional (3.11) 
is 

m= I  *-(  t 
JX(0)        Jx(o) 

= f    </>- I    4 
Jx(t)       Jx(t) 

= / m - f w) 
Jx Jx 

= I (A(t)dvol(t) - (/>(*)) • (4.14) 
Jx 

Thus Jx \(t)dvo\(t) — (j){t) is independent of t. Differentiating the energy functional 
twice and evaluating at t — 0, we obtain 

d^_ 
dt2 E{t)\t^ = -J ^\(t)\t=0dvom - 2 j^ |A(t)|taBo^dvol(t)|t=o ,      (4.15) 

where we have used A(0) = 1 and (4.14).  To proceed with the computation of the 
d 
dt' second variation of the energy functional, we shall show that 4A(t)|t=o = 0. This a 
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consequence of the calibration bound. In particular we have the following: 

dvol(t) - 4>(t) = (1 - X(t))dvol(t) . (4.16) 

Evaluating this on an appropriately oriented orthonormal basis and using the cal- 
ibration bound, we find that A(£) < 1.   Since A(0) = 1 is a maximum, we have 
£\(t)\t=o = o. 

To conclude, the second variation of the energy is 

|^(*)U = -Jx |U(t)|«=odvol(0) • (4.17) 

As in the case of standard calibrations, the second variation of the energy can be 
computed in terms of the normal vector field V. The proof is similar to that given in 
[29]. The result is summarized in the following theorem: 

THEOREM 5. 

^E(t)\t=Q = J (HV^lpdvolCO) - VfrV^ - ZV-LVW* " 2iv-LvVS^)   (4.18) 

where Wy is the Levi-Civita covariant derivative of M along the normal direction V 
of X and V^V is the covariant derivative of the normal bundle of X in M induced 
by the Levi-Civita connection of M. 

4.2. Special holonomy and generalized calibrations. Let (M,g) be a Rie- 
mannian manifold which admits a metric connection V with possibly non-vanishing 
torsion and holonomy contained in one of the groups U(n) (2n), SU(n) (2n), Sp(ri) 
(4n),'5p(l) •S'p(n) (4n), G2 (7) and Spin(7) (8); the entry in (•) is the real dimension 
of M. Manifolds with such holonomy admit generalized calibration forms. These are 
forms parallel with respect to the connection V. In what follows we shall not inves- 
tigate all cases. Rather we shall focus on Riemannian manifolds (M, g) which admit 
a metric connection V with possibly non-vanishing torsion and holonomy U(n) (2n), 
SU(n) (2n), G2 (7) and Spin(7) (8). The general theory of deformations of generalized 
calibrations will be developed without further assumptions. However in many exam- 
ples that we shall present later, we shall require that (M, g) satisfies some additional 
geometric conditions in addition to those that are a consequence of the reduction 
of the structure group of TM. These will simplify some aspects of the deformation 
theory of generalized calibrations and in particular the deformation equations. In 
particular we shall consider the following cases: 

Holonomy U(n) 

Suppose that a Riemannian manifold (M,^) (dim M = 2n) is equipped with 
a metric connection V whose holonomy is contained in U(n). Then M admits an 
almost complex structure J, J2 = — 1, which is parallel with respect to V and the 
metric g is hermitian with respect to J, g(JX, JY) = g(X, Y) for X, Y vector fields on 
M. Therefore (M, g, J) is an almost hermitian manifold with compatible connection 
V. Conversely, let (M, J,p) be an almost hermitian manifold, then (M,J,g) admits 
a connection V with holonomy contained in U(ri). Such a connection V can be 
constructed from the Levi-Civita connection V5 of g as 

VXY = VSXY-±J(V9
XJ)Y, (4.19) 
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where X, Y are vector fields on M. It is straightforward to verify that g and J are 
V-parallel, V# = VJ = 0. Note that any almost hermitian manifold (M,gyJ) has a 
Kahler form Q(X, Y) = g{X, JY). ft is V-parallel but it is not closed, dQ, + 0. 

PROPOSITION 1. Let {M,g,J) be an almost hermitian manifold and Q be the 
associated Kahler form. The forms (j)k = ^^fc ^re generalized calibrations of degree 
2k. The contact set at every point of M is Gr(fc,Cn). 

Proof. To show this, we shall demonstrate the above statement at a neighbour- 
hood U of a point p E M. Then because fa is parallel, it will hold everywhere in 
M. We remark that there is a neighbourhood of a point p G M and a local frame 
{ea, e5; a = 1,..., n}, (e5 = (ea)), of (M, g, J) such that the metric and Kahler form 
can be written as 

9= j^S^e1 

a,6=l 
n 

fi=-^5a5eaAe5. (4.20) 
a,6=l 

Observe that in such a frame the metric and Kahler form take the standard form of a 
Euclidean metric and (almost) complex structure on R n = Cn. It follows that fa are 
calibrations from Wirtinger's inequality on R n. From the same inequality it follows 
that the contact set consists of the complex k-planes in R n = Cn. All the planes of 
the contact set can be constructed by acting with U(n) on the k-plane 

6 = {(^i,...,^,0,...,0):^i,...,^GC}cCn. (4.21) 

D 
The calibrated submanifolds X are almost hermitian submanifolds of (M,g,J). 

Both the metric and almost complex structure on X are induced from those on M; 
the almost complex structure on X is induced from that on M because at every point 
p £ X, the holomorphic subspace of TPX 0 C is identified with a complex k-plane of 
the contact set at p. Observe that the dimension of the contact set at every point 
is 2k(n — 1). We shall refer to these generalized calibrations as almost hermitian 
calibrations. These results can be summarized as follows: 

COROLLARY 1. The almost hermitian calibrations of degree 2k of an almost 
hermitian manifold (M, #, J) are almost hermitian submanifolds of real dimension 
2k. 

Suppose that (M, g, J) is a hermitian manifold, i.e. the almost complex structure 
J is integrable. It is known that such manifolds admit various connections V with 
non-vanishing torsion such that V# = V J = 0. Because of this the holonomy of all 
such connections V is contained in U(n). Again the forms ^ = ^^fc axe generalized 
calibrations. The contact set at every point of M is Gr(k1 C

n). The proof is identical 
to the one given above for the almost hermitian manifolds. In this case, the calibrated 
submanifolds X are hermitian submanifolds of (M^g^J). In particular, they are 
complex submanifolds. To show this observe that the Nijenhuis tensor of X vanishes 
because the complex structure J of M is integrable. Such calibrations have been 
called hermitian calibrations in [17]. These results can be summarized as follows: 

COROLLARY 2. The hermitian calibrations of degree 2k of a hermitian manifold 
(M,g,J) are hermitian submanifolds of real dimension 2k. 
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Holonomy SU(n) 

Suppose that a Riemannian manifold (M,g) (dim M = 2n) admits a metric 
connection V whose holonomy is contained in SU(n). In such a case (M,#) admits 
an almost complex structure J such that (M,g,J) is an almost hermitian manifold 
equipped with a (n,0)-form ^ such that Vg = V J = Vi/> = 0. Compatibility of these 
conditions requires that the form tjj is appropriately normalized. In particular 

(_l)i(n-l)n( * yi^ A ^ = dvol ? (432) 

where $ is the associated (0, n) form and dvol is the volume form of M with respect 
to the metric g. 

Conversely, let (M, #, J) be an almost hermitian manifold with topologically triv- 
ial canonical bundle, then there is a connection V which has holonomy contained in 
SU(n). To see this, observe that (M,^, J) admits a no-where vanishing (n,0)-form 
I/J but in general I/J A t/J will not be related to the volume form of M as in (4.22). In 
general, we have 

^ A $ = (-l)-^n-1)n+n(2z)n/2dvolg (4.23) 

for some nowhere vanishing real-valued function / of M, where $ is the associated 
(0,n) form. Now there are two possibilities to consider. First, define x = Z-1^- 
Observe that x is again a nowhere vanishing section of the canonical bundle and it is 
normalized as in (4.22). In such case, one can show that the connection 

V^' = V?'JY'' + I^*i-*»-i Vf "xk^.k^Y* + I^i-^-i Vf JXfcib1...ibn_1l
r* 

(4.24) 

has holonomy contained in SU(n), i.e. g, J and x are aU V-parallel, where Vfl,,J is 
a connection with holonomy contained in [/(n), V9,Jg = V9,J J = 0, such as the one 
given in (4.19). 

Alternatively, observe that / is either a positive or negative function. So without 
loss of generality we can take / to be positive because if it is negative we can take |/|. 
Next define a new metric h on M by h = f^g. Then observe that (M, /i, J) is again 
a hermitian manifold and the (n,0)-form I/J is normalized as in (4.22) with respect to 
the new metric h. In such a case, one can show that the connection 

V,Y' = v^y' + ^*,-fe»-1vVtfkk1...kB_1i
rfc + ^'fcl-fc»-lv^Wfe1...fcB_xy* 

(4.25) 

has holonomy contained in 5C/(n), ie ft, J and ip are all V-parallel, where Vh,J is a 
connection with holonomy contained in U(ri), Vh'Jh = Vh,JJ = 0, such as the one 
given in (4.19) but constructed using the Levi-Civita connection of the metric ft. 

PROPOSITION 2. Let (M,g,J) be an almost hermitian manifold, dimM = 2n; 

with trivial canonical bundle and associated parallel (n,0)-form ijj. The form </) = 
Re('0) is a generalized calibration of degree n. The contact set Cv at every point of 
(M,£,J) isSU{n)/SO{n). 

Proof. As in the case of almost hermitian calibrations, we shall prove the propo- 
sition in a neighbourhood U of a point p G M. In such a neighbourhood, there is a 
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local frame {ea,ea } in (M,g, J) such that 

5 = E((ea)2 + (ea')2) 
a=l 

n 

0 = ^eaAea/ 

a=l 

^ = (e1+ie1/)A--.A(en + zen#) . (4.26) 

Again in this frame the metric, Kahler form and (n,0)-form take the standard form of 
those in R2n. These are precisely the data of a SLAG calibration in R n. Therefore 
it follows that 0 is a generalized calibration from the results of Harvey and Lawson 
as they apply for Special Lagrangian (SLAG) calibrations. Similarly, it follows that 
the contact set at every point p € M is SU(n)/SO(n). All the calibrated planes can 
be constructed by acting with SU{n) on the standard plane 

£o = {(si, • • • ,xn,0, • • • ,0) : zi,... ,Zn e M} C R2n . (4.27) 

D 
Such generalized calibrations have been called Special Almost Symplectic or SAS 

for short [17]. The SAS calibrations are real middle dimension submanifolds of 
(M,g,J). We remark that if Rei/j is a SAS calibration, then Re(eieip) is also a SAS 
calibration, where 6 is a constant angle. 

So if (M, g, J) is an almost hermitian manifold with a compatible connection 
which has holonomy contained in SU(ri), then M admits two types of generalized 
calibrations with calibrated submanifolds; the almost hermitian and the SAS. This is 
reminiscent of Calabi-Yau manifolds which have two types of calibrated submanifolds 
the Kahler and SLAG. 

A special case that we shall investigate later is that in which (M, g, J) is a her- 
mitian manifold which admits a compatible connection V with holonomy contained 
in SU(n). Again these manifolds admit two types of calibrations; the hermitian and 
the SAS. The contact set of SAS calibrations is SU(n)/SO(n) at every point of M. 

The above results are summarized as follows: 

COROLLARY 3. Let (M, g) J) be an (almost) hermitian manifold with trivial 
canonical bundle. Then (M, g, J) admits (almost) hermitian and SAS calibrations. 

Another class of hermitian manifolds (M, g, J) are those for which the canonical 
bundle is holomorphically trivial. Connections on such manifolds will be investigated 
in the second part of this paper. Such manifolds admit a holomorphic (n, 0)-form ip. 
Thus ^ is closed, dif; = 0, but I/J is not always normalized as in (4.22). In such a case, 
as we have explained, we can either rescale the form ip or we can rescale the metric g. 
In particular we can rescale the metric g as h = f n g so that ip becomes a calibration 
form, where / is given in (4.23). Since ip remains closed, the associated calibrated 
submanifolds are SLAGs and therefore minimal with respect to h. Alternatively as 
we have seen, one can rescale the holomorphic (n,0)-form ip as x — Z-1^ where / is 
given in (4.23). In this case, the rescaled form x is a calibration but it is not closed. 
The associated calibrated submanifolds are SAS with respect to the original metric g. 

Another special case that has recently been investigated is that of Kahler mani- 
folds (M,g,J) with trivial canonical bundle for which the metric g is not a Calabi-Yau 
metric. Such manifolds have been called almost Calabi-Yau and have been studied 
in the context of mirror symmetry (see [24]).   Note that as a consequence of the 
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Calabi-Yau theorem, compact almost Calabi-Yau manifolds always admit a Calabi- 
Yau metric. Compact almost Calabi-Yau manifolds admit a holomorphic (n, 0) form 
Vs which is therefore closed (dip = 0), but not necessarily parallel with respect to a 
hermitian connection because it does not satisfy the normalization condition (4.22). 
The strategy adopted in this case is to conformally rescale the metric g, as in the case 
of hermitian manifolds with holomorphically trivial canonical bundle above, so that 
ip remains closed, and the associated calibrated submanifolds are Special Lagrangian 
and therefore minimal with respect to the rescaled metric. Alternatively as we have 
seen, one can rescale the holomorphic (n, 0)-form ^. The associated calibrated sub- 
manifolds are SAS with respect to the original metric g. 

In the case that (M,#, J) is Calabi-Yau, then the hermitian calibrations become 
the standard Kahler calibrations while the SAS calibrations become the standard 
SLAG calibrations. 

Holonomy G2 

A Riemannian manifold (M, g) (dim M = 7) equipped with a metric connection 
V whose holonomy is contained in G2 admits a V-parallel three-form ip and a V- 
parallel four-form xift which is the dual of I/J. As we shall show these forms I/J and */0 
are generalized associative and generalized co-associative calibrations, respectively. 

Conversely, let (M, g, ip) be a Riemannian manifold which admits a three-form ip 
that satisfies the algebraic conditions of a G2 invariant structure (such a three-form 
is stable in the terminology of [20]), then there is a connection V which has holonomy 
G2. This connection can be expressed in terms of the Levi-Civita connection V9 ofg 
and the form ^ as 

VfcF^Vfr + ^VV^/^ + ^^VV^*^^, (4.28) 

where Y is a vector field. 

PROPOSITION 3. Let (M,g,il)) a seven-dimensional manifold which admits a G2- 
structure as above. The forms ip and tip are generalized calibrations of degree three 
and four, respectively. In both cases the contact set at every point of M is G2/SO(4). 

Proof. To show this, we remark that there is locally a frame {e^4; A = 1,..., 7} 
of (M, g, ip) such that the metric and the V-parallel three-form -0 can be written as 

<7=E(eA)2 

^ = e1^ + 6^ (e45 - e67) + e2 A (e46 + e57) + e3 A (e47 - e56) ,       (4.29) 

where e12 = e1 Ae2 and similarly for the rest. Observe that in such a frame the metric 
g and parallel three-form ip take the standard form of a Euclidean metric and G2- 
invariant three-form in R . It follows that both ip and *'0 are generalized calibrations 
from the results of Harvey and Lawson as they apply for associative and co-associative 
calibrations. It also follows that the contact set at every point of M is G2/50(4). All 
the planes of the contact set can be constructed by acting with G2 on the 3-plane 

fo = {(xi,X2>Z3,0,0,0,0) : ai^a* ^ K} C R7 , (4.30) 

for generalized associative calibrations and on the 4-plane 

£0 = {(0,0,0, X4, X5, ze, xj) : x*,£5, xe, X7 € R} C R7 , (4.31) 
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for generalized co-associative calibrations.     D 
There are many special cases of seven-dimensional Riemannian manifolds that 

admit connections whose holonomy is contained in G^. We shall present many of 
these cases when we investigate the deformation theory of generalized associative and 
co-associative calibrations. 

Holonomy Spin(7) 

A Riemannian manifold (M, g) (dim M = 8) equipped with a metric connection 
V whose holonomy is contained in Spin(7) admits a V-parallel self-dual four-form $. 
As we shall see, $ is a generalized Cayley calibration. 

Conversely, let (M, #, <i>) be a Riemannian manifold equipped with a self-dual four- 
form $ which satisfies the algebraic conditions of a Spin(7) structure, then (M,#, <I>) 
admits a connection V whose holonomy is contained in Spin(7). The connection V 
can be expressed in terms of the Levi-Civita connection V5 of g as 

V*Y* = Vgr* + ^mkiVl®™^ , (4.32) 

where Y is a vector field. 

PROPOSITION 4. Let (M,g, $) be an eight-dimensional manifold with Spin{7) 
structure as above. The forms <& is generalized calibration of degree four. In both 
cases the contact set at every point of M is Spin(7)/K, where K = SU{2) x SU(2) x 
SU(2)/Z2. 

Proof To show this, we remark that there is locally a frame {eA] A = 1,..., 8} of 
(M, #, $) such that the metric and the V-parallel self-dual four-form $ can be written 
as 

2 = E(^)2 

$ = ^L + (c12 _ ^34) A (e56 _ ^ + ^ + ^ A (e57 + ^ 

+ (e14 - e23) A (e58 - e67) + e5678 . (4.33) 

Observe that in such a frame the metric and parallel self-dual four-form take the 
standard form of a Euclidean metric and Spin(7) -invariant four-form in R . It follows 
that $ is a calibration from the results of Harvey and Lawson as they apply for 
the Cayley calibration. It also follows that the contact set at every point of M is 
Spin(7)/K, where K = SU(2) x SU(2) x SU(2)/Z2. All the planes of the contact set 
can be constructed by acting with Spin(7) on the 4-plane 

£o = {(a:i,a:2,a:3,X4,0, ...,0) : x1,X2,xs,X4 € R} C R8 . (4.34) 

D 
It can be shown that given a self-dual four-form as in (4.33), there is always a 

connection V with torsion a three-form given in [23] which has holonomy contained 
in Spin(7). The torsion is 

T = 5$ + - * (# A $) (4.35) 

where 0 = y * (5$ A $) is the Lee form of the manifold. 
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4.3. Useful Formulae. For the investigation of the deformation theory of gen- 
eralized calibrations, we shall use some formulae which relate the Lie derivative of a 
form to a covariant derivative. 

Let x be a k-form expressed as x = •%\XA1...Ake
Al A • • • A eAk in a frame {eAp}. 

Then 

dx = ^VAlXA2...Afc+1e
Al A- • • Ae^1 + —l—XA^AkT^ Ae^ A- • • Ae^  (4.36) 

where TA — VeA = \TA
BC^

B
 A ec is the torsion 2-form of V or equivalently 

T(X, y) = VxY - VyX - [X , y] (4.37) 

for vector fields X, Y. 
The Lie derivative of x with respect to a vector field V = VAeA, (e"4, eg) = ^5, 

is as follows: 

UX = (ivd + div)x = ^V*1 (Vx)A1A2...Ak+1e
A> A • • • A eA^ 

+ -^—yXA1A2...AkivTAiAeA*A---AeA'< 

+ 1j^\VBXA1BA3...AkT
M A e* A • • • A eA" 

+ Jkh)\VAl(vBXBA2...Ak)e
A> AeA>A---AeA» 

+ jj^VBXBA2A3...AkT
A> A eA> A ■ ■ ■ A eA* 

^^V^BXA^.A^A-'-Ae^ 

+ jjr^}CJAlV
BXBA2...Ake

M A ■ ■ ■ A eA- , (4.38) 

where V is the unique connection associated with V which has torsion T = —T. To 
summarize 

£vX = Wx + —±-^XAAl...Ak-l VBVAeB A eAl A • • • A eA^ . (4.39) 

So, if x is V-parallel, Vx = 0, and 

CvX = (fcZljiX^..^..!VBVAeB A eAl A • • • A eA^ . (4.40) 

Another formula which we shall find useful is the Lie derivative of a vector-valued 
k-form 

1 
£ = -jjU^Afe*1 A'-'AeAk®eB (4.41) 

which may be written as 

Cvt = W£ + ■7j^yZBA2...Ak
AVA1V

BeM A---AeA,<®eA 

- jlUi...Ak
BVBVAeA* A---AeA<<®eA. (4.42) 
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So, if £ is V-parallel, and X is some submanifold on which 

Ui-ASe*1 A'-AeAk\x®eA=0 (4.43) 

then 

CvZ\x = -rj^yZBA2...Ak
AVAlV

BeAi A • • • A e^|x ® eA . (4.44) 

These formulae are key in the investigation of the deformation theory of generalized 
calibrations. 

4.4. Second variation of the energy functional revisited. The second vari- 
ation of the energy functional is considerably simplified if we assume that the cali- 
bration form (ft is V-parallel. In particular, suppose that X is a k-dimensional sub- 
manifold calibrated with respect to 0. Suppose we consider an adapted frame so that 
{ea : a = 1,..., k} are tangent to X and {e1 : i = k + 1,..., dim(M)} are normal to 
X, and we take (j)iai...ak-1 |t=oez Ae01 A• • • Ae0*-1 = 0. Then we deform the calibration 
and write the calibration form as 

cj> = Ae1 A • • • A ek + j^^^ia^a^ A eai A • • • A e"*"1 (4.45) 

+ ^^'/W.a^e* A e* A e*1 A • • • A c0fc-» + ©((e*)3) . (4.46) 

Using the fact that </> is V-parallel, we can compute ^ by acting twice on (4.46) 
with Vy where V = 9/9t is a normal vector field. After some lengthy computation, 
we find 

dt2 E(t)\t=0 = - f ^X(t)\t=0dvom 

= [ [(V^V, V-1 V)dvol(O) - i^vi^,v<i>} \t=o • (4.47) 
Jx 

5. Deformation of hermitian calibrations. Let (M,g, J) be a hermitian 
manifold of complex dimension n. As we have mentioned the calibrated submanifolds 
with respect to 0 = ^jfifc are the complex submanifolds of (M,g, J) of dimension k. 
The deformation theory of a complex submanifold X of M is well known. The di- 
mension of the moduli space is the number of holomorphic vector fields of the normal 
bundle of the submanifold X, i.e. it is the dimension of the Cech cohomology H0(JVx) 
where Nx is the normal bundle of X in M. There is an obstruction of integrating 
these small deformations. This lies in the Cech cohomology group H1(iVx). It is clear 
that there should be a theory of deformations of almost hermitian calibrations. This 
will be investigated elsewhere. 

5.1. Complex submanifolds of Hermitian manifolds. It has been known 
for some time that hermitian manifolds admit compact complex submanifolds which 
represent the trivial homology class. This is unlike the case of compact Kahler mani- 
folds where complex submanifolds always represent a non-trivial homology class. An 
example of such a hermitian manifold that admits a holomorphic submanifold which 
represents the trivial homology class has been given in [32]. This is an example of a 
hermitian calibration which is not Kahler. 
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Another example of a hermitian calibration is that of the Hopf fibre S1 x S1 in the 
group manifold S3 x S3. As we shall demonstrate later in the investigation of exam- 
ples of SAS calibrations in group manifolds, such a submanifold is holomorphic with 
respect to a hermitian structure on S3 x S3. Observe that the hermitian calibration 
51 x 51 represents the trivial homology class. 

6. Deformations of SAS Calibrations. Let (M, g, J) be an almost complex 
manifold which admits a compatible connection V (Vg = VJ = 0) which has holon- 
omy contained in SU(n). The following can be shown using the results of Harvey and 
Lawson: 

THEOREM 6. Let {M,g,J) be a manifold as above. If X is a SAS calibrated 
submanifold of M with respect to <f> — Re a;, where w is the parallel-(n,0) form, then 
Sl\x = Ini UJ\X = 0; where fi, is the Hermitian form obtained from J. Conversely, if 
X is a middle dimension submanifold of M such that Q\x — Im u\x = 0, then X is 
calibrated with respect to (j). 

Because of this, the small deformations of X generated by sections V of the normal 
bundle, Nx, of X in M which preserve the property that X is calibrated satisfy 

£vn\x = 0 , Cylm u\x = 0 . (6.48) 

To determine the conditions on V imposed by the above two condi- 
tions, we proceed as follows. We introduce an orthonormal basis {ea,ea/} = 
{ei, ... , en, ey, ... , en/} of the tangent bundle of M and a dual frame {ea, ea } = 
{e1, .'... , en, e1 , ... , en } of M such that the Kahler form Ct and the parallel (n,0)- 
form take the (canonical) forms 

n n n 

n=   J2   Q*vea A eb' =   J2   5ab'ea A eb'= Sea A ^ 
0=1, b'=l o=l, &'=1 o=l 

u> = K=1(ea - iJ(ea)) = (e1 + ie1') A • - • A (en + ien') . (6.49) 

It is clear that the non-vanishing components of the almost complex structure J in 
this frame are Ja

a> and Ja a. 
Restricting the orthonormal basis {ea, ea/} at a point p of the calibrated subman- 

ifold X, {ea} is a basis in the tangent space TpX and {ea/} is a basis in the fibre 
Np of the normal bundle Nx of X in M. Therefore the deformations of X in M are 
described by vector fields V = Va ea>. Using this and (4.40), the conditions (6.48) 
can be written as follows: 

VaV6'(Wa Aeb = 0 
VaF

6,JV=0. (6.50) 

These are viewed as equations for the normal vector field V. 
There is another way to write the deformation equations of SAS calibrations. 

For this observe that the normal bundle Nx and the tangent bundle TX of X are 
isomorphic, Nx = TX. The isomorphism is induced by the almost complex structure 
J as U — Uaea = J(V) = Jab'Vh ea. Using this, the conditions (6.48) on the normal 
vector field V can be rewritten as 

d(ivti)\x + ivd£l\x = 0 ,   ^(zylm u)\x 4- iydlni u)\x = 0 . (6.51) 
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Next using the fact that both Q and u are parallel with respect to the connection 
V and (4.36), these two conditions can be expressed as 

DxU = dU- Ua(T
a + fa) = 0 (6.52) 

and 

DlU = 5U + Ua(ta + ta) = 0 , (6.53) 

where fa = ebA ecCtbbfT
b'ca'tt"'", ta = Tb

ab and ia = Ja'aTb'a>bJ
b
b,. 

Equivalently, the deformation equations (6.52) and (6.53) can be written in com- 
ponents as follows: 

d^U^ - d^U^ - UP(T^2 + f^2P) = 0 (6.54) 

and 

(VT^ - U^tp + tM) = 0 . (6.55) 

We remark that the deformations of SAS calibrations in the special case when M is 
a symplectic manifold, and so fi is closed, have been considered in [31]. It has been 
shown that the moduli are unobstructed, and the dimension of the moduli space is 
bi(X). Both expressions (6.50) and (6.52, 6.53) of the deformation equations will 
be used later in the examples to find the moduli space of SAS calibrations in non- 
symplectic manifolds. 

6.1. SAS calibrations and an elliptic system. To investigate whether the 
differential system (6.52) and (6.53) has solutions, consider the following resolution: 

A0(X) ^ A^X) 5j A2(X) (6.56) 

where Di has been defined as above and DQ is the adjoint of DQ. Clearly we have the 
adjoint resolution as follows: 

A0(X) $ Ai(x) £ A2(X) , (6.57) 

where DJ is the adjoint of Di. Next we can consider the Laplaciari 

A = DoDl + DjDi . (6.58) 

Prom general elliptic theory, we know that the solutions of the equations DiU = 0 
and DQU^O are zero modes of the Laplacian A. Conversely, the zero modes of the 
Laplacian A are also solutions of the two differential equations. Prom general elliptic 
theory we also have the following: 

COROLLARY 4. The moduli space of a closed SAS calibration X in M, if it exists, 
has finite dimension. 

We shall investigate the elliptic system in more detail in special cases below. 

7. Special Cases. There are several different types of almost hermitian struc- 
tures, for example given in the Gray-Hervella classification [15]. We shall not explore 
all cases here. Instead, we shall focus on some of these. Some explicit examples will 
be given later. In what follows, we shall assume that some hermitian connections have 
holonomy contained in SU(n). 



56 J. GUTOWSKI, S. IVANOV AND G. PAPADOPOULOS 

7.1. Almost Hermitian manifolds with skew torsion. Let (M, g, J) be an 
almost hermitian manifold. It has been shown in [10] that (M, g, J) admits a unique 
almost hermitian connection V with torsion a three-form iff the Nijenhuis tensor of J 
is a three-form as well, ie (M, g, J) is a Gi manifold in the Gray-Hervella classification. 
In that case the torsion of the connection is 

T(X, y, Z) = -dVL{JX, JY, JZ) + N{X, Y, Z) (7.59) 

where N(X,Y) = [JX,JY] - [X,Y] - J[JX,y] - J[X,JY] is the Nijenhuis tensor. 
Suppose that in addition the holonomy of this connection is contained in SU(n). In 
such a case the differential system for SAS calibrations can be simplified to 

d!7-[/a(T
a + fa)=0 

5U + Uaia = 0 . (7.60) 

Despite the simplification of the second deformation equation, we have not been able 
to analyze the system further. However, a special class of such hermitian manifolds 
are the Nearly Kahler ones. For these, the deformation equations simplify further. 

7.2. Nearly Kahler manifolds. Let (M,g,J) be a Nearly Kahler manifold, 
ie (M,g,J) is an almost hermitian manifold satisfying (V^J)y + (VyJ)X = 0 , 
where X, Y are vector fields on M. It is known [14] that on a Nearly Kahler manifold 
(M, g, J) the following identities hold: 

4dQ(X,y,Z) = 3JV(JX, Y,Z) = -12g{{V9
xJ)Y,Z) (7.61) 

and 

29((^9
UV

9
XJ)Y,Z) = -(g((y9

uJ)X,(V9
YJ)JZ) + cydic(X,Y,Z)). (7.62) 

The Nijenhuis tensor AT is a (3,0) + (0,3)-form. Nearly Kahler manifolds admit a 
compatible connection V with torsion a three-form T = jN and VT = 0 [26, 4, 10]. 

We shall focus our attention to six-dimensional nearly Kahler manifolds. Any 
six-dimensional nearly Kahler manifold is Einstein and of constant type (see [14]). 
This means that the Ricci tensor, Ricg = §ag and 

||(V^J)Y||2 = la.(\\Xf • ||Y||2 -ff
2(X,r) -92(X, JY)), (7.63) 

where a = Scal9/15 is a positive constant and Seal9 denotes the scalar curvature of 
g. It is clear that the holonomy of the connection V of any six-dimensional Nearly 
Kahler manifold which is not Kahler is contained in SU(3). 

To investigate SAS calibrations in six-dimensional Nearly Kahler manifolds, we 
shall first prove the following theorem for Lagrangian submanifolds in Nearly Kahler 
manifolds. 

THEOREM 7. A three-dimensional Lagrangian submanifold L of a six-dimensional 
Nearly Kahler manifold (M, J, g) is a SAS calibration and minimal. Consequently any 
Lagrangian submanifold L is orientable. 

Proof. To show that any Lagrangian submanifold of a six-dimensional nearly 
Kahler manifold is minimal, we shall first show that 

fl((V^J)y,Z)=0 (7.64) 
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for X, Y, Z tangent to L. To see this, we use the fact that J is parallel with respect 
to the connection V with torsion the Nijenhuis tensor N. Using the fact that N is a 
(3,0) 4- (0,3)-form and that L is Lagrangian, it is straightforward to verify (7.64). 

To show that L is SAS, observe that a V-parallel (3,0) form ip can be defined on 
L with Re^ = N and Im^ = |df2; Q, is the Kahler form. Since both the Nijenhuis 
tensor JV and the almost complex structure J are V-parallel, in view of (7.61), tp 
is parallel as well. So N can be identified with the calibration form. Using (7.64), 
(dfi)|i, = 0 and so L is a SAS calibration. Consequently L is orientable. 

The second part of the proof of this theorem that L is minimal is a generaliza- 
tion of a similar theorem for 56 in [8]. To begin, denote with a and A the second 
fundamental form and the shape operator of the submanifold L in a manifold M, 
respectively. Prom the definition of a and A, we have X, Y tangent to L and £ normal 
toL 

V^Y = V^r + a(X,n    Vs
xe = -AtX + Dx£, (7.65) 

where X, Y are vector fields tangent to L, £ is a vector field normal to L, V9L is the 
induced Levi-Civita connection on L and D is the induced connection on the normal 
bundle. Recall that a(X,Y) = a{Y,X) and g{a(X,Y),£) = g(AtX,Y). 

To see that L is minimal we observe that the (3,0)+(0,3)-form dQ on M satisfies 
the identity 

-|(V£dn)(y,Z) = (V9
XV

9
YJ)Z = ±a(g(Y,JZ)X + g(X,Z)JY - g(X,Y)JZ), 

(7.66) 
where dQ(X,Y) denotes the (1,2) tensor corresponding to the 3-form dCt via the 
metric g. 

Since dQ(X,Y) is normal to L for X,Y tangent to L, we obtain DxJY = 
-§dfi(X,r) + e/V^y, AjyX = -Ja(X,Y). Using these properties of the sec- 
ond fundamental form, we calculate 

(V9
xdSl)(Y, Z) = -A^iY^X + Dxdn(Y, Z) - d£l(Vg

xY, Z) - dft(y, Vg
xZ) 

-(Kl(a(X,Y),Z) -d£l(Y,a(X>Z)) (7-67) 

= Ja(Jdn(Y,Z),X) - -Jdn(X,dn(Y,Z)) - J{V9£JdQ)(Y,Z) 

for X, V, Z tangent to L. Multiplying the last equality by J and using (7.66) we get 
for the normal component 

a(Jdn(y,Z),X) + Jdft(a(X,y),Z) +'Jdn{Y,a{X,Z)) = 0. (7.68) 

The last equality means tra — 0. Indeed, we may assume that | JdQ(ei, 62) = v/J-ea 
form an orthonormal basis on L for any even permutation of (123). Evaluating (7.68) 
on those basis we get tra = 0 by taking the cyclic sum and using the skew-symmetry 
of N. Hence, L is a minimal submanifold of M.     D 

The theorem above generalizes the result of Ejiri [8] which states that for the 
Nearly Kahler 56 any Lagrangian submanifold M3 C S'6 is minimal. SAS calibrations 
in the Nearly Kahler S6 will be consider below. 

Since the torsion is a (3,0) + (0,3) form, the differential system for the deformation 
of SAS calibrations on a nearly Kahler six-dimensional manifold (M, J, g) reduces to 
the equations 

dU = ^(%)JV = SiiuT) = -(iju)dn,    SU = 0. (7.69) 
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PROPOSITION 5. Let V = JU be a SAS deformation of a SAS calibrated com- 
pact submanifold L on 6-dimensional Nearly Kdhler manifold M. Then the following 
formula holds 

J (2RiJ>(U, U) - |a||C/||2 + l(Cug)2)dVol.\L = 0 . (7.70) 

In particular, if M = S6 then U cannot be a Killing vector field on L. 

Proof. We shall use the following general formula on a compact Riemannian 
manifold [34] 

f (RiCijWW 4- (VW^iViUj) - {5U)2)dVoL = 0 . (7.71) 

The formula (7.71) follows from the identity 

ViiWiVjW) - (VjU^W) = RidjlPW + (VJ'CP)(Vi^) - (V,^')2        (7.72) 

by an integration over the compact L. 
Let V — JU be a SAS deformation. The constant type condition (7.63) implies 

\\dU\\2 = 9||2£7T||2 = 9a||l7||2. Substituting the latter equality into (7.71) we get 
(7.70). 

For any minimal lagrangian submanifold L of the Nearly Kahler S6 we have 
Ric9(U,U) = a\\U\\2 — X)z=i5f(a(^ei)»Q:(^ei))5 where ei,62,63 is an orthonormal 
basis on L. Substituting the last equality into (7.70) and taking into account (7.69), 
we get a contradiction with the assumption that U is Killing.     D 

7.3. Hermitian manifolds with holonomy SU(n). In this section, we take 
(M, J, g) to be a hermitian manifold, dim M = 2n, for which the holonomy of either 
the Bismut connection V6 or the Chern connection Vc is contained in SU(n). The 
definitions of these connections are given in section fifteen. Both these cases will 
emerge in the investigation of hermitian manifolds with trivial canonical bundle in 
sections sixteen and seventeen. 

First consider the case for which the Bismut connection has holonomy contained in 
SU(n). In such a case the differential system for the deformation of SAS calibrations 
becomes 

dU - ^UaHabfc,J
b'bJ

c'ceb A ec = 0 

{V9)aUa - Ua0a = 0 (7.73) 

where H is the torsion of the Bismut connection and 6 is the Lee form (see section 
fifteen). To derive the first equation, we have used the fact that the torsion three-form 
H of the Bismut connection is (2,1) and (1,2) with respect to J; this follows from the 
integrability of the complex structure and the fact that J is parallel with respect to 
the Bismut connection. 

There are two cases to consider. If the hermitian manifold (M, #, J) is balanced, 
then 9 = 0, and the deformation equations are 

dU - ^UaHah,dJb'hJ
c'ceb A ec = 0 

(V9)aUa = 0 . (7.74) 
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In particular, U is co-closed. Next assume that {M,g,J) is conformally balanced, ie 
6 — 2df for some function / on M. This class of hermitian structures appears in some 
applications in physics. Rescaling U = e2fU, we find that the differential system 
becomes 

dU + 2dfAU- \uaHavc,J
b\jc'ceb A ec = 0 

(V9)aUa = Q. (7.75) 

So U is again co-closed. 
Next take (M, J, g) to be a hermitian manifold for which the associated Chern 

connection Vc has holonomy contained in SU(n). In this case the parallel (n,0)-form 
ip is holomorphic and therefore closed, di/; — 0. The deformation differential system 
(6.54, 6.55) for SAS calibrations becomes 

df/-[/o(C
a-f-Ca) = 0 

(V5)aC/o = 0, (7.76) 

where C is the torsion of the Chern connection. Again, the one-form U is co-closed. 

8. Examples. 

SAS calibrations in hermitian group manifolds 

8.1. Group manifold examples. Consider the group manifold S3 x S3 with 
metric 

ds2 = (a1)2 +. (a2)2 + (a3)2 + (a1)2 + {a2)2 + (<73)2 (8.77) 

and a complex structure J with associated Kahler form 

fi = a1 /\(T2-al Aa2 + <73Aa3 (8.78) 

where a1 and a1 are left invariant one-forms satisfying 

d<Ta = -\eabcGh /\<7C 

2 

daa = -)-eabcGb /\crc . (8.79) 

The associated parallel (3,0)-form is 

u = e<f (a1 + ia2) A (^ - zcr2) A (a3 + 2<73) . (8.80) 

The X = S3 submanifold of S3 x S3 which is defined by the diagonal embedding 
cr*|x = <Jl\x is a SAS calibration. 

This SAS calibration has moduli. To see this observe that both ft and UJ are 
invariant under the left action of S3 x S3. In addition S3 x S3 acts on the diagonal 
S3 as (ki,k2)(g,g) —> (kigJk2g). Thus if the diagonal 53 is a SAS calibration, then 
all the right cosets of S3 in S3 x S3 are SAS calibrations as well. The moduli space 
of these deformations is S3 x S3/S3. Observe that if (fci,/^) = (k^h.k^h) for h G S3, 
then (fei,fe2) and {k^k^) generate the same deformation. 
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For an alternative way to see this, let V be the connection on the group S3 x S3 

associated with the left action. Observe that the metric and the Kahler form are 
parallel with respect to the connection V. The connection V which has torsion T = 
—T is associated with the right action on the group manifold S3 x S3. In particular 
all right-invariant vector fields are parallel with respect to V. Thus they satisfy the 
equation (6.50). This is equivalent to the analysis above in which the left group action 
was used. This is because the right-invariant vector fields generate the left-action on 
group manifolds. Of course the right-invariant vector fields which are tangent to the 
diagonal S3 generate diffeomorphisms of the diagonal S3 and so they are not tangent 
to the moduli space. However, there are three linearly independent right invariant 
vector fields which are normal to the diagonal 53, which are given by 

V^^Pi-Pi (8.81) 

for i = 1,2,3 where {pi,pi',i = 1,2,3} are right invariant vector fields on S3 x S3. 
Hence the dimension of the moduli space is at least three. 

To find whether the moduli space has dimension more than three, one should find 
the number of solutions to the differential equations (6.52 and (6.53) or equivalently 
(6.50). Adapting them to this example, we have 

dU - U A a3 + User1 Aa2 = 0 

5U-U3 = 0 (8.82) 

where U = Ui<Tl\x' After some computation, it can be shown that the only solutions 
to (8.82) are given by linear combinations of iT/(j?)fi|x as expected. Hence the moduli 

V(i) 
space is three-dimensional. 

We remark that there is a hermitian calibration which is a torus T2 = S1 x S1 

along the directions (<T3,cr3) of 53 x 53. This torus is the fiber of the product of 
fibers of the product Hopf fibration T2 -» S3 x 53 —► S2 x S2. The homology class 
[T2] is trivial because H2{S3 x S3) =0. This is an example of a family of hermitian 
calibrations with base space 52 x S2. 

A SAS calibration on the complex Iwasawa manifold is given at the end of the 
paper, in the last section. 

SAS calibrations in almost hermitian group manifolds 

For another group manifold example consider again the group manifold 53 x 
53 with metric (8.77) but now equipped with the almost complex structure J with 
associated Kahler form 

n = a1 A cr1 + a2 A a2 + a3 A a3 . (8.83) 

The associated (3,0)-form is 

u; = (a1 + ia1) A {a2 + id2) A {a3 4- id3) . (8.84) 

It is clear that the three-sphere given by S3 x {e} is a SAS cycle, where e is the identity 
element. It is also clear that any three-sphere in S3 x S3 given by the embedding 
S3 x {fc}, k £ S3, is again a SAS cycle for the above generalized calibration. Thus 
there is a moduli space which has dimension at least three. This can also be derived 
using the connection V as in the other example above. In fact the dimension of the 
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moduli space is three. To see this observe that the deformation equations for SAS 
calibrations imply that 

VaUb-VbUa = 0 

VaUa = 0 , (8.85) 

where V is the flat connection on 53 with associated frame the left-invariant 1-forms 
{cra; a = 1,2,3}, These equations in particular imply that 

VaVaUh = 0 . (8.86) 

Using 

/   ||W||2 = - / ((7,V2C/)=0 (8.87) 
Js3 Js3 

we conclude that U is parallel with respect to V and so left-invariant. Since there 
are three linearly independent left-invariant vector fields on S3, the dimension of the 
moduli space is three. In fact the moduli space is 53. 

We can also consider a similar group manifold example as above but this time 
with 

CJ = {(a1 + ia1) A (a2 + id2) A {a2 + id2) (8.88) 

as a (3,0) form. In this case a SAS cycle is {e} x 53. The moduli space is again 53. 
We remark that in both the above group manifold examples, there is an almost 

hermitian calibration which is a torus T2 along the directions (cr3,cr3).  In fact the 
induced almost complex structure on T2 is integrable and so T2 is complex. 

The above two group manifold examples can be easily generalized as follows. Let 
G be a semisimple Lie group (dimG = k). On the group manifold G x G, we can 
define the metric 

k 

ds2(G xG) = Y^ (OO2 + (^a)2) (8-89) 
a=l 

and the almost complex structure J with associated Kahler form 

k 

ft = ^VA<7a (8.90) 
a=l 

where {(7a; a = !,...,&} and {<7a; a = 1,..., k} are the left invariant one-forms of 
G x G; the first set is that of the first group in the product G x G while the second 
set is that of the second group. We can also define a (n,0)-form as 

u = (a1 + ia1) A • - • A (ak + idk) . (8.91) 

The submanifold G x {e} is a SAS calibration with respect to Re a;. In fact all spaces 
G x {/i}, h £ G, are SAS calibrations. Therefore the dimension of the moduli space 
is at least k. In fact it can be shown that the dimension of the moduli space is 
exactly k by repeating the analysis for 53 x 53 examples above. In particular, it is 
straightforward to show that the solutions of the deformation equations U = — iy^lx 
are left-invariant one-forms. Similarly {h} x G are also SAS calibrations with respect 
to Re u where 

co = (i)"*^1 + id1) A"'A(ak + idk) (8.92) 

in this case. The dimension of the moduli space is again k. 
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8.2. SAS submanifolds in 53x53 with the left-invariant Einstein metric. 
There is another Nearly Kahler structure on S*3 x S3 which can be constructed as 
follows. First write Spin(4:) = S3 x S3 and decompose the Lie algebra of S,pm(4) as 
spm(4) = 5o(4) = h + m with h = span{jEi2, £13, E23} and m = span{jE7i4, £24, £'34}, 
where the matrices Eij, (i < j) are the standard generators of so(4). Denoting the 
associated left-invariant forms as the elements of the basis, we have 

4 

dEij^-J^EikAEkj . (8.93) 
fc=i 

Denote the Killing form on spm(4) by B(X,Y) = -l/2tr(XY). Then there are 
two Einstein metrics on S3 x S3. One is associated with the bi-invariant metric 
Bi = Blhxh + B\mxm. The SAS calibrations for this manifold have already been 
investigated above. The other is associated with the left-invariant metric B1/3 = 
^B\hxh + B\mxm' With respect to B1/3 we consider the orthonormal basis ei = 
\/3.Ei2,e2 = V^Eis.es = \/3£,23,e4 = Ei^es = £24,^6 = £'34. In this basis the 
Kahler form is 

Q = -I (e1 A e6 - e2 A e5 + e3 A e4) . (8.94) 

Denote the associated almost complex structure with J. Then (S3 x S3, £1/3, J) is a 
Nearly Kahler non-Kahler manifold [16]. 

Consider a copy of S3 C S3 x S3 determined by the integrable distribution h = 
span{ei,e2,e3}. This is a lagrangian submanifold of the Nearly Kahler manifold 
(S3 x S3,B1/3, J) and therefore it is a SAS calibration. 

The moduli space is at least 3-dimensional. Indeed, simple calculations show that 

dej = -(ijejdSl),    8ej = 0 (8.95) 

for j = 1,2,3, where e-7 is the dual 1-form to ej. Hence, ei, 62,63 are solutions of the 
differential system (7.69). 

8.3. SAS calibrations on Flag manifold. Let Fh2 = U(3)/U(l) x U(l) x 
U(l) be the complex three-dimensional flag manifold. Consider the reductive decom- 
position u(3) = h 0 m where u(3) is the Lie algebra of the unitary group U(3) and 
h and m are determined by: h == u(l) 0 u(l) 0 u(l) C u(3) and 

0 a b 
-a 0 c 
-b —c 0 

m = {   -a   0      c   } C u(3). (8.96) 

Identifying any element X G TFi^ — m with the corresponding triple of 
complex numbers (a, 6, c), we consider the U(3)-invariant Riemannian metric on 
^i,25 g(X,X) = |a|2 -j- \b\2 4- |c|2. An invariant almost complex structure on Fi^ 
is defined by J : (a, 6, c) —> (ia, —z6, ic) and it is compatible with the invariant met- 
ric g. Then (Fi^.g.J) is a Nearly Kahler non Kahler 6-dimensional manifold. We 
consider an orthonormal basis of TFi^ given by 

ei = -^(1,0,0),    e2 = Jeu    e3 = —(0,1,0), 

e4 = -Je3,    e5 = -—(0,0,1),    e6 = Je5. (8.97) 
v2 
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Then the 3-sphere S3 determined by the integrable lagrangian distribution £1,63,65 
is a SAS calibration on the Nearly Kahler 6-dimensional (Fi?2,#, «/)• 

8.4. SAS calibrations and the 6-sphere. Let ImO be the 7-dimensional vec- 
tor space of imaginary octonions. Consider the unit sphere 56 C ImO. The right 
multiplication by u G S6 induces a linear transformation Ju : O —> O which is orthog- 
onal and satisfies J2 = — 1. The operator Ju preserves the 2-plane spanned by 1 and 
u and therefore preserves its orthogonal 6-plane which may be identified with TUS'6. 
Thus Ju induces an almost complex structure on Tu5

6 which is compatible with the 
inner product induced by the inner product of O. Therefore 56 has an almost com- 
plex structure which is compatible with the standard metric g on S6 and so (56, #, J) 
is an almost hermitian manifold. In fact (S6,g,J) is Nearly Kahler. The group of 
automorphisms is the exceptional group G2. 

Let L C 56 be a three-dimensional Lagrangian submanifold of 56 with respect 
to a Kahler 2-form. Then by the results of section 7.2, L is a SAS calibration and is 
minimal. In addition it satisfies g(Vg

xJ)Y, Z) = 0 for X,Y, Z tangent vectors to L 
by the result of N.Ejiri [8]. For example consider the invariant G2 form in (4.29) or 
equivalently in (9.99) below and view {el;i = 1,..., 7} an orthonormal basis in R . 
Then the Kahler form at the point x = xlei of 56, Yl{=i(x%)2 — 1> is 

ft = zVijA^' A ek (8.98) 

restricted in the directions orthogonal to x. The three-sphere defined by the equations 
x1 = x2 = x3 = 0 is a Lagrangian submanifold and so a SAS calibration. 

9. Deformations of generalized co-associative calibrations. Let (M, g, ijj) 
be a seven-dimensional manifold which admits a metric connection V whose holonomy 
is contained in G2. As we have mentioned there is a local orthonormal frame {ea , e1} 
for a, b = 4,5,6,7 and i,j = 1,2,3 such that the parallel three-form ip takes the 
canonical form 

iP = e123 + 6^ (e45 - e67) + e2 A (e46 + e57) + e3 A (e47 - e56) , (9.99) 

where e12 = e1 A e2 and similarly for the rest. Observe that t/> can also be written as 

3 

^ = e123 + JV A n* (9.100) 
i=i 

where {ftj,z = 1,2,3} is a basis of anti-self-dual two-forms in the directions spanned 
by the {ea; a = 4,5,6,7} frame basis. The generalized co-associative calibrating four- 
form is simply the Hodge dual of I/J, *if>. 

PROPOSITION 6. A necessary and sufficient condition for a four-dimensional 
submanifold X of M to be a generalized co-associative calibration with respect to *^ 
is that iftlx = 0. 

Proof The proof of this proposition is similar to that given for standard co- 
associative calibrations in [19] and so it will not be repeated here.     D 

If X is a co-associative calibrated submanifold, we can adapt a frame at every 
point of X such that the directions {ea;a = 4,5,6,7} are tangent to X and {e*;2 = 
1,2,3} are normal. Expressing the condition Cvifr = 0 for the deformation of a co- 
associative calibration X along the normal vector field V in terms of the V connection 
of (4.40), we have 

(a)a6Vc^eaAe6Aec = 0 (9.101) 
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where {f^; i = 1, 2, 3} is the basis of anti-self-dual Kahler forms used to construct the 
form ip in (9.99). Using the anti-self duality of {Cl^i = 1,2,3}, the equation (9.101) 
also implies 

Y^WbVaV = 0 , (9.102) 

where Ji are the (almost) complex structures associated with fi*. 
There is an alternative way to express the deformation equations. For this observe 

that the normal bundle Nx of X in M is isomorphic to the bundle A2~(X) of anti- 
self-dual two-forms of X, Nx = A2~(X). The proof of this is similar to that given by 
[29]. It is based on the observation that the normal bundle Nx and A2~(X) are both 
associated to the principal 50(4) frame bundle of X with the same representation, 
i.e. the three-dimensional anti-self-dual representation of 50(4). Note that the seven- 
dimensional pr representation of G2 which leaves three form -0 invariant decomposes 
as pr = ^30^4 under the action of 50(4) c G2, where t^ is the three-dimensional anti- 
self-dual representation of 50(4) acting on the directions 123 and V4 is the standard 
four-dimensional vector representation of 50(4) acting on the directions 4567. Let 
V = Vlei be a normal vector field of X, then the isomorphism is given by ay = iv^lx- 
Observe that ay is an anti-self-dual two-form on X. 

Next the condition Cy^ = 0 can be written as 

day + ivdip\x = 0 . (9.103) 

If dip = 0, then the dimension of the moduli space is equal to bt(X), i.e. the dimension 
of the space of anti-self-dual harmonic two-forms of X. Now we shall turn to the case 
where dip ^ 0. Using the fact that ip is parallel with respect to V, we find that 

d(ay) - (ay)abT
a A eb + ^^2^6° A eb A ec = 0 . (9.104) 

Using the relation 

9AB = ^ACD^B
CD

 , (9.105) 

the deformation equations may be written solely in terms of ay as 

day + (ay)ab[-Ta Aeb + ^ipicd^T jaie
c A ed A eai] = 0 . (9.106) 

Furthermore, as ay is anti-self-dual, this defines an elliptic system of partial 
differential equations. Hence we conclude that 

COROLLARY 5. The moduli space of generalized co-associative calibrations, if it 
exists, is finite dimensional. 

10. Deformations of generalized associative calibrations. Let (M, #, ip) be 
a seven-dimensional manifold which admits a metric connection V whose holonomy 
is contained in G2. Such manifolds also admit generalized associative calibrations, 
in addition to the generalized co-associative calibrations investigated in the previous 
section. The former is a degree three calibration associated with the three form ip of 
(9.99). We again introduce the orthonormal frame {eA} = {e2 , ea\i = 1,2,3,a = 
4,5,6,7}, where now {e2} span the tangent directions of the generalized associative 
cycle and {ea} span the normal directions. 
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As in the case of standard calibrations, the condition for a three-dimensional 
submanifold X to be calibrated with respect to ip is that a certain vector-valued 
three-form x £ fi3(M,TM) should vanish on X. The form x is related to the cross 
product on R = ImO and it is invariant under G25 so x is V-parallel. In particular 
in the basis that we have written the three-form ^, x 1S given by 

7 

x=J2xA®eA (1(U07) 

where 

xl = (e256_e247 + e346 + e357>) 

x2=(e147_e156_e345 + e367) 

x3=(e245_e267_e146_e157>) 

x4=(e567_e127 + e136_e235) 

x5=(e126_e467 + e137 + e234) 

x6 = (e457 _ e125 _ e134 + e237J 

xr = (e124 _ e456 _ e135 _ ^36) (10 108) 

To compute the dimension of the moduli space of generalized associative cali- 
brations, we require that £vx\x = 0- Using the fact that this vector-valued three- 
form is parallel with respect to the connection V, (4.40) and after observing that 
(X

AJ
^V^A)\X = 0, we find that £vx\x = 0 implies 

^(nOabViK6 = 0 (10.109) 
i,b 

where V is the connection with torsion T = —T. The normal bundle Nx of a gen- 
eralized associative submanifold is isomorphic to the spin bundle S of X. This can 
be shown by observing that both Nx and S are associated to the Spin principal bun- 
dle, P, of X, which is the double cover of the frame bundle of X, with the same 
representation. The proof of this is similar to that for standard calibrations and it 
has been described in [19, 29]. Here we shall summarize the proof. First observe 
that every oriented three manifold admits a spin structure and so P exists for all 
associative calibrations X. Then observe that the seven-dimensional representation 
p? of G2 which leaves the three-form I/J invariant decomposes as p? = vs ® 54, where 
^3 is the three-dimensional representation of 517(2) induced by the standard three- 
dimensional vector representation of SO (3) acting on the directions 123 and 54 is the 
four-dimensional real spinor representation of 517(2) acting on the directions 4567. 
Since 4567 are the normal directions of X, the normal bundle Nx and the spin bundle 
S are associated to P with the same representation 54, so Nx = S. Therefore the 
deformation equation (10.109) is the Dirac equation in three-dimensions with respect 
to the connection V; the gamma-matrices are given by the {Qi]i = 1,2,3}. This is 
in fact an elliptic differential equation and so if a moduli exist, the moduli space is 
finite dimensional. 

The index of the Dirac operator that appears in the deformations of generalized 
associative calibrations vanishes. Because of this it is expected that generic gener- 
alized associative calibrations will not have moduli. This is similar to the case of 
standard associative calibrations. Although generic generalized associative calibra- 
tions do not have moduli, we shall find many examples of families of generalized 
associative calibrations in special cases. 
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11. Special Cases. There are several special cases of G2 structures according 
to Fernandez-Gray classification [9] depending on various additional conditions that 
the three-form ^ and its dual *?/> satisfy. 

Calibrated and cocalibrated G2 manifolds 

The manifold (M,g,il)) is calibrated if dip — 0 and (M,^,^) is cocalibrated if 
dti/j = 0. It is known that if (M, g, ^) is both calibrated and cocalibrated, then the 
holonomy of the Levi-Civita connection V9 is contained in C?2. 

For calibrated G2 manifolds, the generalized associative submanifolds are minimal 
because ip is closed. In addition, the deformation equations of such submanifolds are 
given by the Dirac equation in (10.109) with respect to a connection of the normal 
bundle which is induced from a connection on M which has non-vanishing torsion. 

For calibrated G2 manifolds, the generalized co-associative submanifolds generi- 
cally are not minimal because *?/> is not closed. The deformations of such submanifolds 
are given in (9.101) or in (9.103). Because dip = 0, the latter equation can be simpli- 
fied to 

dav = 0 . (11.110) 

Since ay is anti-self-dual, the dimension of the moduli space of generalized co- 
associative calibrations in calibrated G2 manifolds is b^. 

For cocalibrated G2 manifolds, the generalized associative submanifolds are not 
generically minimal because ip is not closed. The deformation equations of such 
submanifolds are given by the Dirac equation (10.109) with respect to a connection of 
the normal bundle which is induced from a connection on M, which has non-vanishing 
torsion. 

For cocalibrated G2 manifolds, the generalized co-associative submanifolds are 
minimal because d * ip = 0. The deformations of such submanifolds are given in 
(9.101) or in (9.103). 

Another type of G2 manifold for which the associated generalized calibrations can 
be analyzed as for co-calibrated G2 manifolds is that of cocalibrated G2 manifolds of 
pure type. For such manifolds d * ip = 0 and dip A ip = 0. Again the co-associative 
calibrations are minimal. 

Integrable G2 manifolds 

The manifold (M,g,ip) is an integrable G2 manifold iff 

d*iP = 6A*iP (11.111) 

where 30 = — * (*dip A ip) is the Lee form. It has been shown in [10] that such G2 
manifolds admit a unique connection with torsion a three-form. 

For generic integrable G2 manifolds, both ip and *ip are not closed, so the gener- 
alized associative and co-associative calibrations are not minimal. The deformation 
equations for generalized associative calibrations are given by the Dirac equation 
(10.109) but in this case the connection on the normal bundle is induced from a con- 
nection with torsion a three-form on M. The deformation equations for generalized 
co-associative calibrations (9.103) can be simplified somewhat using the expression 
for the torsion in [10]. In particular, denoting the torsion 3-form by T = i/, we have 
[10] that 

dip = ^(dip. * ip) * ip■ + 9 A ip + *# . (11.112) 
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Hence, noting that iy * ^jx = 0, it follows that 

iv#|x = (-flAav + iv(*fir))|x (11.113) 

and so we require that 

dav - 9 A ay + ^(avtaaa^*102 * Hiabce
a A e6 A ec = 0 . (11.114) 

However, despite this simplification, it has not been possible to compute the dimension 
of the moduli space. 

The subclass of integrable G2 manifolds which have applications in physics (string 
theory) are those for which the 1-form 8 is exact and so 6 = — 2cJ$ for some function 
$ on M which is identified with the dilaton. The analysis of generalized associa- 
tive and co-associative calibrations in this case is as for the integrable G2 manifolds 
above. There is some additional simplification though in the deformation equations 
for generalized co-associative calibrations. In particular, defining py = e2®ay and 
substituting in (11.114), we obtain 

dpy + ^(P^)a1a2#
aia2 * Hiabce

a A eb A ec = 0 . (11.115) 

Nearly parallel or weak holonomy G2 manifolds 

The manifold (M, g, ij)) admits a nearly parallel or weak holonomy G2 structure 
iff dip = A * V* for ^ constant. If A = 0, then (M,g,ip) is calibrated. If A ^ 0, then 
(M, <?, I/J) is co-calibrated. Since we have already investigated the case of calibrated 
G2 manifolds, we shall focus on the case that A ^ 0. In [10], it has been shown 
that nearly parallel manifolds admit a connection V with torsion a three-form. In 
particular T = —^XI/J. 

There are many examples of nearly parallel G2 manifolds which include 57, 
50(5)/50(3) and the Aloff-Wallach spaces N(n,m) = SU(S)/U(l)n,m\ the embed- 
ding of 17(1) in 517(3) will be described later. 

For nearly parallel G2 manifolds, the generalized associative submanifolds are 
not generically minimal because if) in not closed. The deformation equations of such 
submanifolds are given by the Dirac equation (10.109). Using the connection with 
the torsion the three-form which is proportional to ip\ the deformation equation can 
be simplified to 

YlWrfiV* + jVa = 0 . (11.116) 

Therefore the deformations of the associative submanifolds are eigenspinors of the 
Dirac operator. 

There are no compact without boundary generalized co-associative submanifolds 
in nearly parallel G2 manifolds. Although in this case the calibration form *?/> is 
closed, it is also exact and therefore the volume of such a calibrated submanifold is 
zero1. 

1We thank D. Joyce for pointing this out to us. 
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12. Examples. 

12.1. A group manifold example. Consider the group manifold M — 53 x 
Ss x S1 with left-invariant metric 

5 = E(cri)2+E^)2+^0)2 (12-117) 
i i 

and equipped with the left-invariant three-form 

</, = a123 + a1 A (a01 - a23) +a2A (a02 + a13) + a3 A (a03 - a12) ,        (12.118) 

where {a1; 1,2,3} and {<J
Z
; 1,2,3} are the left-invariant one-forms on the three-spheres 

53 and 53 in M, respectively and cr0 is the invariant one-form on S1. Clearly this 
three-form ip defines a G2 structure on M which is parallel with respect to the V- 
connection on the group manifold associated with the left action. 

It can be easily seen that the submanifold S3 is a generalized associative calibra- 
tion, while 51 x S3 is a generalized co-associative calibration. 

Observe that the submanifolds S3 x {p}, p e S3 x S1 are all generalized associative 
calibrations and so the moduli space has dimension at least four. In fact the moduli 
space has dimension exactly four. To see this observe that the equation for the 
deformations in this case is 

J2(^i)ab^iVb = ^iWViV6 = 0 (12.119) 
iyb i,b 

and V is a flat connection. Therefore 

S72Va = 0 . (12.120) 

Then 

/ (vv;w) = - / (F,V2TO = 0 (12.121) 
Js3 Js3 

and hence V is constant. So the moduli space has dimension four. In fact the moduli 
space in this case is 53 x S1 and therefore M is a family of generalized associative 
calibrations. 

Similarly, observe that the submanifolds S3 x S1 x {p}, p e S3, are all generalized 
co-associative calibrations and so the moduli space in this case has dimension at 
least three. In fact the moduli space has dimension exactly three. The deformation 
equation is 

Y.WaVbV = J^VifaVtV* = J] V6(av)6a = 0 . (12.122) 
2,6 iyb b 

Therefore ay is co-closed with respect to the flat connection V. Since ay is anti- 
self-dual, it is also closed, V A ay =0, with respect to V. Since ay is both closed 
and co-closed is harmonic with respect to the Laplacian V2. A partial integration 
argument similar to the one above implies that ay is necessarily V-parallel. This 
implies that the dimension of the moduli space is three. In fact in this case, the 
moduli space is S3. 
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Generalized calibrations in S7 = Sp(2)/Sp(l) 

12.2. Generalized associative calibrations in homogeneous spaces. Iden- 
tify R8 = H . Then observe that the action of Sp(2) preserves the equation for 
S7 written in terms of quaternions with stability subgroup 5^(1) up to a conju- 
gation. This implies that Sp(2)/Sp(l) = S7. In addition observe that Sp(l) C 
Sp(l) x Sp(l) C Sp(2). This leads to the principal fibration Sp(l) ~> S7 -+ MP1. 
This is the principal fibration associated with the anti-self dual SU(2) = Sp{l) in- 
stanton connection in S4 = HP1. Let {a^i = 1,2,3} be the associated connection 
with curvature 

w* = da* + jjkot A ak . (12.123) 

The Bianchi identity implies that 

dwi = 2ei
jkcjj Aak . (12.124) 

In addition there is a local frame {£a] a — 4,... ,7} such that 

^ = ^VA^, (12.125) 

where {fi2; i = 1,2,3} is the basis of constant anti-self-dual two-forms in M   given in 
(9.99) and (9.100). 

Next consider the metric and the three-form on S'7 

ds^yt^f + z^in2 

i=l a=4 
3 

^ = yta1 A a2 A a3 + yz2 ^ a* A w* , (12.126) 
2=1 

where y, z € R — {0}. It can be easily seen by setting {e1 = ya2;i = 1,2,3} and 
{e1 = zi1', i = 4,..., 7} that the metric ds2 and ^ above take the canonical form of a 
(?2 structure as in (9.99) and (9.100). 

The fibres of the fibration Sp{l) —> S7 —> HP1 are all associative generalized 
calibrations; this can easily be seen by observing that 

tflsp(i) = VH*1 A a2 A a3)|5p(i) = dvol(5p(l)) . (12.127) 

This is the case for any y, z € R—{0}. Therefore this fibration is a family of generalized 
associative calibrations. 

It can be easily seen that the G2 structure on 57 in (12.126) is nearly parallel, 
d<0 = A * V>, iff 

-82/ = \z2 

±y* + z2 = ~\yz2. (12.128) 

This system has a solution for y — —3/A and z = ±3/A. This gives a nearly parallel G2 
manifold which is the squashed S7. Clearly the squashed 57 is a family of generalized 
associative calibrations. 
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REMARK 3. The Hopf fibration S1 —> 53 —* S2 is also a smooth family of 
generalized calibrations. To see this observe that the metric on Ss can be written as 

ds2{S3) = ((T3)2 + (a1)2 + (a2)2 (12.129) 

where cr1,^2,^3 are the left-invariant one-forms on S3 and ds2(S2) = (cr1)2 -f C^2)2- 
It can be easily seen that cr3 is a generalized calibration in S3 of degree one. The 
calibrated lines are circles which are the fibres of the Hopf-fibration. Therefore S3 is 
a family of generalized degree one calibrations with space of parameters S2. 

Generalized calibrations in M = 50(5)/50(3) 

We shall demonstrate that M = SO(5)/SO(3>) is a family of generalized associa- 
tive calibrations. We remark that M is not homeomorphic to 57; M and S7 have the 
same deRham cohomology but M exhibits torsion in the third cohomology. Observe 
that 5o(5) = 5o(4) 0 R and so(4) acts with the fundamental representation on R . 
Since so(4) = so(3) 0 so(3), the structure constants decompose under the decompo- 
sition AR = A2+R 0 A2~R . Under this decomposition of so(5) a frame can be 
introduced at M which satisfies the following structure equations: 

dea = (Ji)
0

bp» A eb + (li^bCT1 A eb (12.130) 

dp* = c^fcp* A ^ - i(fi«)a&ea A eb , (12'.131) 

where {ea;a = 1,...,4} are associated with a basis in R , {crl;2 = 1,2,3} are as- 
sociated with a basis in the Lie algebra of the stability subgroup of the coset and 
{pl;i = 1,2,3} are the rest of the generators. The structure constant matrices 
{Ji'^i — 1,2,3} are anti-self-dual and the structure constants {Ii',i = 1,2,3} are 
self-dual; (Cli)ab = Sac(Ji)cb' 

The metric and three-form on M are the following: 

3 4 

ds^S7) = ^(p^)2 + 2(ea)2 (12-132) 
i=l a=l 

3 

<lp = pl Ap2 Ap3 + 2 J^i^abP1 A ea A eb . (12.133) 
i=l 

Observe that both are invariant under the stability group 50(3) of the coset and so 
they are globally defined on M. It can be easily seen that the data given in (12.133) 
define a nearly parallel G2 structure on M. 

Next consider the obvious subgroups of 50(5); 50(3) C 50(4) C 50(5). Then 
there is a fibration 50(4)/50(3) -+ 50(5)/50(3) -> 50(5)/50(4) or equivalently 
53 —* M —» 54. The cotangent bundles of the fibres at every point p G 54 are spanned 
by {pz|p; i = 1,2,3} and because the metric on M is diagonal in this basis all the 53 

fibres of this fibration are associative submanifolds of M. This fibration is a family 
of generalized associative G2 calibrations. 

Generalized calibrations in Aloff-Wallach spaces iV(n, m) 

Another class of nearly parallel G2 manifolds are the so called Aloff-Wallach 
spaces N{n,m) = SU{?>)/U{l)n,m. The U(l) is embedded in 517(3) as 

diag(einx, eimx, c-i<n+m>x) , (12.134) 
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where n, m € Z. To construct the G2 structures on this space write 5^(3) = u{ 
Under the action of [/(I), R7 decomposes as R7 = R2eR20R2eR. This can be seen 
by using the action of ^(1) on the Cartan subalgebra and the step operators of 5^(3). 
In particular, each R is spanned by the step operators E±oc, where a is a positive 
root, while R is spanned by the direction in the Cartan subalgebra of si/(3) which is 
orthogonal to the generator of the embedded u(l). A local frame can be introduced 
on N(n,m) according to this decomposition as {crz,p2,C%7y;z = 1,2}. To be precise, 
let {LB

A
\A,B = 1,2,3}, (LBAy = LB

A
, tiLAA = 0, be the left invariant forms on 

5[/(3), dLA
B = iLa

c ALcA. We set <Tl+i<T2 = zis1, P1 + ^2 = V C1 +K2 = Li2, 
and 77 = y/2(cos SLi1 '+ sin JL22), where tan(5 = — ^L. This decomposition is similar 
to that in [7]. A metric on N(n, m) can be written as 

ds2 = x2 Y,^?+v2 E^)2 +z2 E^)2 + /V - (12-135) 
i i i 

where x, 7/, rr, / € R — {0}. To define a G2 three-form, it is most convenient to induce 
it from a Kahler form u and a (3,0)-form 0 on R because of the above decomposition 
of R . Indeed consider the two-form 

u) = x V A a2 + y V A p2 + z2^ A C2 (12.136) 

and the (3,0)-form 

(i> = xyzia1 + ia2) A (p1 + ip2) A (C1 + <2) . (12.137) 

Then the G2 three-form on iV(n, m) can be defined as 

^ = Re(j)-frjAuj. (12.138) 

Setting e1 = rccr^e5 = xcr2,e2 = yp1^6 = yp2,e3 = z^.e7 = 2rC2>e4 = Z7?? one can 

bring the metric ds2 and I/J above into the canonical form of a G2 structure given in 
(9.99) and (9.100). 

For all x,y,z,f e R — {0}, the above data define a G2 structure on N{n,m). 
However not all these G2 structures are nearly parallel. It can be shown that if 

X = {x2^y2 + z2) 
4xyz 4- 2V2f(y2(cos 5 - sin 6) + z2 sin 5) = Xy2z2 

&xyz + 2\/2f(x2(cos5-sm8) - z2cos5) = \x2z2 

Axyz + 2y/2f(x2sui5-y2cos5) =Xy2x2 (12.139) 

then the G2 structure is nearly parallel. It is known that these equations have solutions 
and so there are nearly parallel G2 structures on iV(n, m); for a recent discussion see 
[6, 7]. 

To find generalized G2 calibrated submanifolds in iV(n,m), observe that 
U(l)n,m C 5(^(2) x U{1)) C 5C/(3). Viewing 5(^(2) x C/(l)) as a 3 x 3 matrix, 
the embedding of U{1) in S(U{2) x [/(I)) is as in (12.134). This sequence of sub- 
groups of SU(3) define the fibration 

S{U{2) x I7(l))/E7(l)nfm -> N(n, m) -> CP2 . (12.140) 

In fact it turns out that the typical fibre is S(U(2) x l7(l))/i7(l)Tljm = S3/7jp, where 
p = \n + m\ > 0; for p = 0 the typical fibre is S2 x S1. 
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Next decompose s(u(2) 0 u(l)) under the action of u(l) as s(u(2) 0 u(l)) = 
u(l) © R . Moreover M decomposes under the irreducible two dimensional real rep- 
resentation of u(l) as R3 = R2eR. Since s(u(2)@u(i)) C 5u(3), R3 is a submodule of 
R under the action of w(l). Therefore it can be arranged such that the tangent space 
of the fibres of the fibration Ss/Zp -» N{n,m) —> CP2 is spanned by {77, a1, a2}. It 
is clear that ^\s3 w — rfvol(53/Zp) and so every fibre is a generalized associative 

calibration. Therefore the Aloff-Wallach spaces are families of generalized associative 
calibrations for any G2 structure defined in (12.135) and (12.138). 

13. Deformations of generalized Cayley Calibrations. Let (M,g) be an 
eight-dimensional Riemannian manifold which admits a metric connection V with 
holonomy contained in Spin(7). On such a manifold there is a local frame {eA] A = 
1,..., 8} such that the self-dual four-form 

$ = e12i4+(e ,12    „34 )A(e 56    ^78 e-)+(e
13+e

24)A(e67+e68)+(e14-e23)A(e" 58 rt67\ „5678 -e-7)+e5 

(13.141) 
is V-parallel. 

The condition that a four-dimensional submanifold X C M is calibrated with 
respect to $ is that r\x = 0 where r € f24(M, F) is a four-form which takes values on 
the vector bundle F\ F = P x^M. where d^ is the seven-dimensional representation 
of Spin(7), i.e. the one induced from the standard seven-dimensional vector repre- 
sentation of 50(7). This four-form r is associated with the four-fold cross product of 
R = O with values in ImO and it is Spin(7) invariant, so r is V-parallel Explicitly, 
in an appropriate basis, r is 

/      (e14-e23)A(e57 + e68) 
(e12 - e34) A (e58 - e67) 

r = 
(e13+e24)A(e56 

e2345_e1346+e1247_e 

78 

1238 
e'3) 

(e13 + e24)A(e58-e67) 
(e14 - e 
(e12 - e 

\ 
23\ ) A (e56 - e78) 
34) A (e57 + e68) 

1   e1678 __ e2578   ,   e3568 04567 

e2346 _j_ e1345 _|_ e1248 _|_ e1237 _ e2678 

e2347+e1348. 

1 e2348 _ e1347 . 

a1245 e1236 _ e3678 

. e1578 _ e4568 _ e3567 

. e4578 _|_ e1568 _|_ e2567 

. e1246 _|_ e1235 _ e4678 i e3578 _. e2568 _ e1567 

(13.142) 

The Cayley calibration is a degree four calibration in an eight-manifold M. Let 
X be a generalized Cayley submanifold whose tangent directions are spanned by 
{ea;a = 1,... ,4} and normal directions by {e2; i = 5,... ,8}. Then, by the same 
reasoning used for the generalized associative deformations, the condition CVT\X = 0 
implies that 

^:=;£t?jVaW=0, (13.143) 
a,3 

{1, £V, r = 1,2,3}, and {nr 
171)4 

r = 1,2,3} is a basis of constant where {ta;a = 1, ...4} 
anti-self-dual 2-forms in R* spanned by the directions 5,6,7,8; such a basis has been 
defined in section nine for the G2 calibrations. The operator V is elliptic. So if the 
moduli space exists, it is finite dimensional. It is expected that for generic generalized 
Cayley cycles, the dimension of the moduli space is the index of the operator V. 
The index of this operator V is the same as that computed for the standard Cayley 
calibrations because the principal symbol is the same. It has been found [25] that 
ind(P) = or(X)-|xW-|[X]'[X], where a{X), x(X) and ([X]-[X]) is the signature, 
Euler number and self-intersection of the Cayley calibration X. 
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14. Examples. 

14.1. A group manifold example. Let M = S3 x Ss x S1 x S1 equipped with 
the left invariant metric 

3 3 

9 = E^)2+E^)2 + (CT0)2 + (*0)2 (14-144) 
i=l i=l 

and the left invariant self-dual four-form 

$ = a0123 + (a01 - a23) A (a01 - a23) + (a02 

-Hi13) A (a02 + ^13) + ((T03 - cr12) A (a03 - a12) + a0123        (14.145) 

where {cr^i = 1,2,3} and {drl;i = 1,2,3} are the left-invariant one-forms of S3 and 
53, respectively, and a0 and a0 is the bi-invariant one-form of S1 and 51, respectively. 
Both the metric and self-dual four-form are parallel with respect to the connection 
associated with the left-action. With an appropriate choice of orientation of M both 
submanifolds S1 x 53 and S1 x S3 are generalized Cayley calibrations. We shall focus 
on the investigation of the moduli space of the S1 x S*3 calibration; the study of the 
moduli space of 51 x S3 is similar. Observe that all the submanifolds S1 x S3 x {p}, 
where p € S1 x S3 are Cayley calibrations. Therefore the dimension of the moduli 
space is at least four. In fact the dimension of the moduli space is exactly four. 
To see this one uses the fact that V = d acting on the normal vector fields of the 
calibration. Then the result follows from a partial integration argument as in the 
group manifold example in the G2 case. The moduli space of the 51 x S3 Cayley 
calibration is S1 x S3. So M is a family of generalized calibrations for which the 
fibers and the base are calibrated. 

This example is a special case of a larger class of examples which can be 
constructed by taking a seven-dimensional manifold (AT, g^) with a G2 structure 
which admits a associative submanifold X. Then the manifold M = N x S1 with 
ds2(M) = ds2(S1) + ds2(N) and $ = e0 A ip + *^ is a Spin(7) manifold; * is the 
Hodge operation in N and e0 is the invariant one-form along 51. In addition S1 x X 
is a generalized Cayley calibration. 

15. The dd-lemma and some useful formulae. The main tool that we shall 
use for the investigation of hermitian manifolds with trivial canonical bundle is the 
99-lemma. This can be stated as follows. Let (M, #, J) be a hermitian manifold, and 
0 and 0 be two closed (p,q)-forms. Locally one can always write 

(j) = 4) + ddip , (15.146) 

for some locally defined (p-1, q-l)-form ip. The 99-lemma states that if </> and ^ 
represent the same class in the Dolbeault cohomology, then (15.146) is valid for some 
(p-1, q-l)-form on M. 

Let (M, #, J) be a 2n-dimensional (n > 1) Hermitian manifold with complex 
structure J and compatible Riemannian metric g. Denote the Kahler form by ft. 
The definitions JX and Ja, for X a vector field and a a one-form, are (JX)* = 
JljXj,    (Ja)1 = -(a o J)1 = -akJki respectively. The Lee form 9 is defined by 

e = d^oj    ei = -{v9)knkjj
ji (15.147) 

where d^ is the adjoint of d and V^ is the Levi-Civita connection of the metric g. 
Equivalently d^ft = JO. If the Lee form 9 = 0 then the hermitian manifold is said to 
be balanced. Balanced hermitian manifolds are studied in [30, 13, 1, 2, 12, 11]. 
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The Bismut connection V6 and the Chern connection Vc are given by 

g{Vb
xY, Z) = g(V9

xY, Z) + ^(X, Y, Z) , (15.148) 

g(vc
xY, z) = ^(v^y, z) + idn(JX, y, z), (15.149) 

respectively.      Recall  that   dc   =   z(9 - d).      In  particular,   (icfi(X, y, Z)    = 
-d£l(JX,JY,JZ). 

Let p6 and pc be the Ricci forms of the Bismut and Chern connections respectively. 
Then it was shown in [3] that 

pc = pb+d(J6) . (15.150) 

In complex coordinates {za},a = 1, ...,n, we have the following formulae: 
c 

Let F be the Chern connection. Then 

(hiii = 9>Sda90i (15.151) 

and so 

(Ha = (f)^ = 30(log(det(S)) • (15.152) 

The Lee form is then 

Oa = (f fQ0 - (f)Ja = (p {dag(n - d0g^) = da(log(det(g)) - g^d0g^ .  (15.153) 

In terms of the Chern connection, the Lee form is 

(d<?)a7 = aa(f)J7-aT(f)Ja. (15.154) 

The Ricci form of the Chern connection is pc 

iP%a = dBD°aa = d-0da{\og{det{g)) - dp {gl'drfsi) ■ (15-155) 

The (l,l)-part of formula (15.150) can be written in the following way [22] 

Using (15.153), (15.155) we obtain that (15.150) is equivalent to the following two 
formulae 

V>ia = d» (s^cUoi) - da {g^d0g^) + da (gidigrf) , (15.156) 

ipb
0a = {d6)0a = d00a - daB0 . (15.157) 
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16. Chern Connections with holonomy contained in SU(n). Hermitian 
manifolds which admit a Chern connection with holonomy contained in SU(n) neces- 
sarily admit a holomorphic (n,0)-form. Since the existence of holomorphic (n,0)-forms 
depends only on the choice of complex structure, this can be used to show whether a 
complex manifold admits a hermitian structure for which the associated Chern connec- 
tion has holonomy contained in SU(n). To find whether a certain complex manifold 
admits (n,0)-holomorphic forms one can use the Kodaira-type vanishing theorems 
[27, 13] together with the results in [22]. 

For complex manifolds satisfying the 99-lemma, we have the following: 

THEOREM 8. Let (M, J) be a 2n-dimensional compact connected complex non~ 
Kdhler manifold with vanishing first Chern class, ci(M, J) = 0. Suppose (M, J) 
satisfies the dd-lemma.  Then 

1. i) There exists a Hermitian structure such that the holonomy of the Chern 
connection is contained in SU(n), pc = 0; 

2. ii) The Hodge number hn>0 = 1. 

Proof. The Ricci form pc of the Chern connection of any hermitian structure 
(<7, J) represents the first Chern class of the manifold. Therefore since Ci(M, J) = 0, 
pc is exact. Because pc is also a (l,l)-form, applying the dd-lemma, we find that 

pc = iddh , (16.158) 

for some real function h on M. Next we consider the manifold M with hermitian 
structure (M, g = ehfng, J). Using (15.155), we find that the Chern Ricci form pc of 
the new hermitian structure vanishes because 

Hence, the holonomy of the Chern connection of (M, g J) is contained in SU(n). This 
proves (i). 

To show (ii), the Gauduchon plurigenera theorem [13] implies /in'0(M, J) < 1 
since the function u = trace(pc) = 0. Since the holonomy of the Chern connection of 
(M,g,J) is contained in 5t/(n), there is a parallel (n,0)-form. A parallel (n,0)-form 
with respect to the Chern connection is necessarily holomorphic. Hence, hn'0 = 1. 
This proves (ii).     D 

COROLLARY 6. On k > 2-copies of S3 x 53 there exists a hermitian structure such 
that the holonomy of the Chern connection is contained in SU(3). In the conformal 
class of any hermitian structure there exists a unique (up to homothety) one with 
Hol(Wc)CSU(3). 

17. Bismut Connections with holonomy contained in SU(n). Consider 
the following lemma 

LEMMA 1. The Bismut Ricci forms pb, ph of two conformally equivalent hermitian 
structures (M, #, J) and (M, g = e^g, J) are related by 

ippot = ipp* + (2 - n)dpdaf ;     ppa = ppa . (17.160) 

Proof.. It follows by straightforward calculations from (15.156) and (15.157).     D 

THEOREM 9. Let (M, J) be a 2n-dimensional compact complex non-Kdhler man- 
ifold with vanishing first Chern class, ci(M, J) = 0.   Suppose (M, J) satisfies the 
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dd-lemma and that there exists a hermitian structure (g,J) such that d6 is a (1,1)- 
form. Then there exists another unique (up to homothety) conformal hermitian struc- 
ture (M, g = efg, J) such that the holonomy of the associated Bismut connection is 
contained in SU(n), pb = 0, provided n > 3. 

Proof. Let (M,g,J) be the hermitian structure with d6 a (l,l)-form. Using 
(15.157), we find that the Ricci form pb of the Bismut connection is a (l,l)-form. 
Therefore it is an exact (l,l)-form since pb represents the first Chern class which 
is zero. Applying the c?<9-lemma we can write pb = iddf, for some real function / 
on M. Next using lemma 1, it is straightforward to observe that the Ricci form pb 

of the Bismut connection of the hermitian structure (M, g = e^2~ng, J) vanishes. 
Thus, the holonomy of the Bismut connection of (M, p, J) is contained in SU(n). The 
uniqueness follows since on a compact hermitian manifold the equation g^dpdaf = 0 
has only constant solutions. This completes the proof.     □ 

We remark that if the Lee form 8 is an exact form i.e. the structure is conformally 
balanced, then the above theorem applies. So we have the following corollary: 

COROLLARY 7. Let (M,g, J) be a 2n-dimensional compact complex balanced non- 
Kdhler manifold with vanishing first Chern class, ci(M, J) = 0. Suppose (M, J) 
satisfies the dd-lemma. Then there exists another conformal hermitian structure 
(M,g = efg,J), unique up to homothety, such that the holonomy of the associated 
Bismut connection is contained in SU(n) provided n > 3. 

A Moishezon manifold is a compact complex manifold which is bimeromorphic to 
a projective variety. Any Moishezon manifold satisfies the 99-lemma by a result of 
Deligne. Alessandrini and Bassanelli proved in [2], Corollary 4.6 that every Moishezon 
manifold is balanced. Therefore from the above Corollary 7 we have the following: 

COROLLARY 8. Every Moishezon manifold of complex dimension n, n > 3, 
with vanishing first Chern class admits a hermitian structure for which the Chern 
and Bismut connections have holonomy contained in SU(n). The torsion of such a 
Bismut connection is not closed. 

Proof. We need only to show that a Moishezon manifold cannot admit a strong 
hermitian structure for which the Bismut connection has holonomy contained in 
SU(n). For this, we use the result of [22], Corollary 4.2, which asserts the follow- 
ing: if the torsion of a Bismut connection with vanishing Ricci form is closed on a 
compact non-Kahler hermitian manifold, then there are no holomorphic (n,0)-forms, 
i.e. the canonical bundle cannot be holomorphically trivial. But Theorem 8 implies 
that the Moishezon manifolds with vanishing first Chern class admit a holomorphic 
(n,0)-form, a contradiction.     D 

In view of Corollary 8 Moishezon manifolds with vanishing first Chern class may 
have applications in heterotic strings. 

18. Proof of Theorem 1. Let M denote a connected sum of k > 2-copies of 
S3 x S3. M is cohomologically Kahler, &1(M) = ft1'0 = /i0'1 = 0 and /i3'0 = /i0'3 = 1 
[28]. According to Theorem 4.10 in [22], if there exists a hermitian structure such 
that the restricted holonomy Hol(Vb) C SU(3), then the structure is conformally 
balanced i.e. its Gauduchon metric is balanced. Conversely, the existence of a bal- 
anced Hermitian structure on M leads to the existence of hermitian structure in the 
same conformal class with Hol(Vb) C SU(3) by Theorem 9. 

The existence of a balanced hermitian structure on a 2n-dimensional compact 
complex manifold (M, J) has an intrinsic characterization, namely it can be expressed 
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in terms of positive currents by a theorem of Michelsohn [30] which states that a 
smooth compact complex 2n-dimensional manifold admits a balanced structure if and 
only if it is homologically balanced. 

We recall that the space of real currents of degree (n-k,n-k) is the dual space of 
Ak>k(M)R, i.e. real (n-k,n-k)-forms with distribution coefficients. A compact complex 
manifold is balanced if and only if there is no positive current T of degree (1,1) which 
is the component of a boundary (i.e. if T = dS+dS and T > 0 then T = 0 [30]). This 
result has an expression in terms of Aeppli group V1,1

(M)R. The real (l,l)-Aeppli 
group is defined as 

v  {M)R
-—(aAo)i(M) + aAi.o(M))R— 

(18-161) 

The Michelsohn theorem can be rewritten [2]: M is balanced if and only if ev- 
ery non-zero positive 90-closed current of degree (1,1) represents a non-zero class in 
V^{M)R. 

Now, it is clear that any compact cohomologically Kahler complex manifold is 
balanced. Then, the above mentioned result of Deligne and similar arguments as in 
the proof of Corollary 8 complete the proof of Theorem 1 .     D 

COROLLARY 9. Any compact 2n-dimensional (n > 2) complex manifold with van- 
ishing first Chem class which is cohomologically Kahler admits a hermitian structure 
with vanishing Ricci form of the Bismut connection. Such hermitian structure is not 
strong. 

19. Examples. Here we shall give examples of Bismut connections with holon- 
omy SU(n) which can be thought of as generalizations of Calabi-Yau manifolds. 

EXAMPLE 1. Consider the U(n) invariant metric 

ds2 = (A(r2)^ + B(r2)zaZp)dzadzP (19.162) 

where za — S^z^ and Za — Sapz^3 and r2 = 5a^zaz^. In this case it can be easily 
seen that the connection of the canonical bundle is oja = izaf^2), where 

/ = (n - 1)A-1{2B - A') + (log(i4 + r2^))' (19.163) 

where prime denotes differentiation with respect to r2. The condition that dw = 0, 
necessary for the holonomy to be contained in 5?7(n), implies that 

/ = 0 . (19.164) 

We remark that the Kahler case corresponds to taking B = A'. In this case the 
solutions produce the Calabi-Yau metrics due to Calabi. 

EXAMPLE 2. A compact example of a hermitian manifold for which its Bismut 
connection has holonomy SU(3) is as follows. Consider the complex Heisenberg group 

G = {{   0    1     z2 zuz2,z3eC}, (19.165) 

with multiplication.  The complex Iwasawa manifold is the compact quotient space 
M = G/Y formed from the right cosets of the discrete group T given by the matrices 
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whose entries 21,2:2,23 are Gaussian integers. The 1-forms dzi, dz2^ dzs — Zidz2 
are left invariant by G and by F. These 1-forms pass to the quotient M. We denote 
by 0:1,0:2, as the corresponding 1-forms on M, respectively. Consider the Hermitian 
manifold (M,g, J), where J is the natural complex structure on M arising from the 
complex coordinates 21,22,23 on G and the metric g is determined by g = J2i=i &i®<Xi- 
The Chern connection D is determined by the conditions that the 1-forms 01,02,03 
are parallel.   The torsion tensor of D is given by C(o^,o^) = — [0^,0^],    i,j = 

1,2,3, where af is the vector field corresponding to o^ via g. The only nonzero 
term is Cfaf^af) = —ctf and its complex conjugate. Thus, the space (M,g, J) is a 
compact balanced Hermitian (non Kahler) manifold with a flat Chern connection and 
automatically the holonomy group of its Bismut connection is contained in SU(3) by 
formula (15.150). The (0,3)-form ip = 01 A 02 A 03 is parallel with respect to both 
Chern and Bismut connections. Let ei, 62,63, Jei, Je2, Jes be a real basis determined 
by o^ = Cj — \f—\Jey Then the real Iwasawa manifold X determined by 61,62,63 
is a SAS calibration with respect to Rety. It admits moduli since V = — Jes is a SAS 
deformation. Indeed, U = JV — 63 is a Killing vector field on M and therefore it is 
also holomorphic by results in [11] since the Chern connection is flat. Thus, 63 is a 
SAS deformation of X in M. 

Note added to the proof. A counterexample to conjecture one has been found 
in [36] for the case of holomorphically trivial canonical bundle. 
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