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INDEX OF DIRAC OPERATOR AND SCALAR 
CURVATURE ALMOST NON-NEGATIVE MANIFOLDS* 

FUQUAN FANG+ 

Abstract. A manifold M is called scalar curvature almost non-negative if for any constant 
£ > 0, there is a Riemannian metric g on M such that Sg • diam(M,^)2 > -e and the sectional 
curvature Secg < 1, where Sg (resp. diam(M,g)) is the scalar curvature (resp. diameter) of (M,g). 

Among others we prove that for a scalar curvature almost non-negative manifold M with 
A(M) T£ 0 (resp. A(M) 6 Z2 nonzero and x(M) ^ 0 if n = 2(mod 8)), there is a constant £(n) > 0 
such that, if the scalar curvature SM > —efa), then 
(i) the fundamental group 7ri(M) is finite; 
(ii) M admits a real analytic Ricci flat metric go such that its Riemannian universal covering M is 
isometric to the product of Ricci flat Kahler-Einstein manifolds and/or Joyce manifolds of dimension 
8 with special holonomy group Spin(7). 

0. Introduction. Let M be a closed Spin manifold. It is well-known that M 
admits a metric with positive scalar curvature only if the index of the Dirac operator 
vanishes, by the classical Lichnerowicz formula and the Atiyah-Singer index theorem 
(cf. [LM]). The Gromov-Lawson conjecture, confirmed by Stolz [St], asserts the con- 
verse for simply connected Spin manifolds of dimension at least 5. There are many 
manifolds with non-negative scalar curvature but do not accept metrics of positive 
scalar curvature, e.g. torus, JCs-surfaces, etc. 

A basic theorem of Bourguignon shows that such a Spin manifold must be Ricci 
flat. Starting from [St], Futaki [Fu] characterized all simply connected Spin manifolds 
of dimension at least 5 with non-negative scalar curvature. It turns out that such a 
manifold either admits a metric with positive scalar curvature, or it is the product 
of Ricci flat Kahler-Einstein manifolds and/or Joyce manifold of dimension 8 with 
Spin(7)-holonomy (manifolds in the latter class are called rigidly scalar flat). A key- 
point involved is that, every harmonic spinor must be parallel and therefore, the 
holonomy group must be special (cf. [Fu] [Wa]). 

Recall that a manifold is called almost flat (resp.   almost Ricci flat) if for any 
positive constant e > 0, there is a Riemannian metric g on M such that 

\SeCg • diam(M,#)2| < e (resp. \RiCg • diam (M,g)2\ < e), 
where SeCg (resp. Ric5) is the sectional (resp. Ricci) curvature. 

The celebrated Gromov theorem asserts that an almost flat manifold must be an 
infra-nilmanifold, i.e. a finite regular cover must be a nilmanifold. By the Bochner 
technique it is also well-known that an almost Ricci flat manifold has the first Betti 
number at most n, where n is the dimension. In contrast, however, very recently 
Lohkamp [Lo] proved that for every compact manifold M of dimension at least 3 
and for any given positive constant e, there is a metric g so that its scalar curvature 
satisfies that \sg • diam(M,p)2| < s. 

We call a manifold M is of scalar curvature almost non-negative if for any constant 
e > 0, there is a Riemannian metric g on M such that sg • diam(M,^)2 > — s and 
the sectional curvature Secg < 1, where s^ (resp. diam(M, g)) is the scalar curvature 
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(resp. diameter) of (M,g). Note that almost flat manifolds must be of scalar curvature 
non-negative. 

The main purpose of the present paper is to characterize manifolds with almost 
non-negative scalar curvature. We will prove that there are indeed nontrivial topo- 
logical obstructions for manifolds being of scalar curvature almost non-negative. For 
example, following from our theorem the connected sum, K^S1 x S3, of a i^s-surface 
with S1 x S3, does not admits metrics of almost non-negative scalar curvature. 

Let M be Spin manifold. Let 5'+(resp. S~) be the Spinor bundles on M. Let 
T)+ : r(S'+) —> r(S'~) denote the«Dirac operator. The Atiyah-Singer index theo- 
rem asserts that ind (D^) = A(M) is a Spin cobordism invaraint and defines a ring 
homomorphism 

A:n?pin-+KO-*(pt), 

which is non-zero only if the dimension is 0(mod 4) or l,2(mod 8). In particular, if 
n = 0(mod 4), A(M) = A(M) is the ^4-genus of M. 

Let M{n,d) denote the set of all closed Riemannian n-manifolds such that the 
sectional KM < 1, and diamM < d. 

A manifold M G A^(n, d) is called non-collapsing if there is no a sequence of 
metrics of bounded curvature collapsing to a lower dimensional space in the Gromov- 
Hausdorff topology. 

THEOREM A. Let M e M(n,d) be a closed non-collapsing Spin manifold such 
that A{M) ^ 0. There is a constant e(n) > 0 such that if the scalar curvature 
SM > — e{n)> then M admits a Ricci flat real analytic Riemannian metric go with 
restricted holonomy group HoP(M,go) a product whose irreducible components are 
SU{m), Sp(m), G2 orSpin{7). 

By the local formula for i4-genus (Euler characteristic), M G M.{n,d) is non- 
collapsing if A{M) ^ 0 (resp. the Euler characteristic x(^0 7^ 0)- Therefore Theorem 
A together with the Cheeger-Gromoll splitting theorem [CGr] implies immediately 

COROLLARY 0.1. Let M G M{n, d) be a closed Spin manifold.   Suppose that 
A{M) ^ 0 (resp.  A(M) ^ 0 and x(M) ^ 0 if n = 2{mod %)).   There is a constant 
e(n) > 0 such that, if the scalar curvature SM > — £(tt)> then 
(i) the fundamental group TTI (M) is finite; 
(ii) M admits a real analytic Ricci flat metric go such that its Riemannian universal 
covering M is isometric to the product of Ricci flat Kdhler-Einstein manifolds and/or 
Joyce manifolds of dimension 8 with special holonomy group Spin(7). 

The above theorem together with the Stolz theorem [St] clearly implies 

COROLLARY 0.2. Let M G M(n, d) be a closed non-collapsing Spin manifold. If 
M is simply connected and n > 5. There is a constant e{n) > 0 such that, if the 
scalar curvature SM > —£, then either M admits a metric of positive scalar curvature 
or admits a Ricci flat metric. 

The proof of the Theorem A together with Corollaries 3.1 and 3.2 in [Wa] imply 
the following two corollaries 

COROLLARY 0.3. Let M G .A/f (4, D) be a closed Spin manifold so that A(M) ^ 0. 
There is a constant e > 0 such that, if the scalar curvature SM > — £, then M is bi- 
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Lipschitz isometric to a Calabi-Yau K^surface. 

COROLLARY 0.4. Let M € M(8,D) be a closed Spin manifold. Assume that 
A(M) =£ 0. There is a constant e > 0 such that, if the scalar curvature SM > —£, then 
M is simply connected. 

Observe that the A-genus of a ifs-surface A(Ks) ^= 0. Corollary 0.1 implies easily 
that the connected sum KsftS1 x 53 does not admit an almost non-negative scalar 
curvature metric. This also answers in negative the following question: 

PROBLEM 0.5. Let M (resp. N) be a manifold with positive (resp. non-negative) 
scalar curvature. Does the connected sum M#iV admit a metric with almost non- 
negative scalar curvature? 

This is maybe interesting by comparing with the amazing discovery of Schoen- 
Yau [SY], that the connected sum of any two n-manifolds (n > 3) with positive scalar 
curvature admits a metric with positive scalar curvature. 

Some remarks on the above results are in order. 

REMARK 0.6. The Seiberg-Witten theory [Wi] implies that 4-manifolds with 
non-trivial Seiberg-Witten invariant do not accept any metric with positive scalar 
curvature. Furthermore, Witten ([Wi]) proved that a scalar curvature non-negative 4- 
manifold with non-trivial Seiberg-Witten invariant is hyper-Kahler, if bj > 2. Seiberg- 
Witten theory may be used to study scalar curvature almost non-negative 4-manifolds 
in the spirit of the presented paper. 

REMARK 0.7. Theorem A should be compared with a recent result in [Lot] where 
sectional curvature is assumed being almost non-negative. 

REMARK 0.8. Theorem A holds identically, if the upper bound for the sectional 
curvature is replaced by a upper bound for the Ricci curvature together with a positive 
lower bound for the conjugate radii. 

Now let us start to sketch the idea in the proof of Theorem A. 
Suppose Theorem A is false, then there is a sequence of n-dimensional Spin mani- 

folds (Mi,gi) so that A(Mi) ^ 0, the scalar curvatures Sgi > —1/i, the diameter diam 
Mi < D and Sec^ < 1 for some positive constant D. By the Gromov precompactness 
theorem and the Cheeger-Gromov theorem, passing to a subsequence if necessary, we 
may assume that (M^,^) converges in L2'p-class to a manifold (X,poo) (since Mi are 
non-collapsing.) Let 0^ G ^{Sf) be a harmonic spinor with unit L2-norm. Using the 
Lichnerowicz formula and the scalar curvature bound we prove that 0^ converges to 
a parallel harmonic spinor (j)^ with nontrivial norm. Therefore fa is almost parallel 
for i large, which implies that the Ricci curvature of (Mi,gi) converges in Z,p-class to 
zero. By regularity of Einstein equation we know that there is a real analytic Ricci 
flat metric on X. A contradiction. 

1. Preliminaries. In this section we give some necessary preliminary results 
needed in next sections. 

a). Harmonic coordiantes 

A local coordinate (h1,..., hn) is harmonic if each component is a harmonic func- 
tion, i.e., Ah1 = 0 for i = 1, ...,n, where A is the Laplacian opertator. In a harmonic 
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coordinate, the Ricci curvature of the metric tensor g satisfies the equation 

{Ricgjij = --Agij + Q(g, dg). 

here gij = ^(^fr, ^fj) and Q(.,.) is a quadratic form of its variables (c.f. [Pe]). 
The existence of harmonic coordinate ball of uniform radius is studied in [JK] 

[An], in terms of various curvature bound. We quote the following 

THEOREM 1.1 [AN]. Let (M^g) be a Riemannian n-manifold (not necessarily 
complete) such that 

(1.4.1) IRICM] < A, inj B(x, - • dist(x, dM)) > i0(x) > 0 

Then, given any C > 1 and a € (0,1), there is an eo = £o(A, C, n, a) with the following 
property: given any x € M, there is a harmonic coordinate system U — {^i}™ defined 
on B(xy€(x)) C M such that if g^ = g{^7ui,Vuj)} then gij(x) = 5ij and 

(1.4.2) C1 -1 < g(y) < C • J, (as bilinear forms) 

(1.4.3) ^)1+altoi(y)llc>.-<c 

2—21 

for ally eB(x,e(x)) (resp.    /^.J^ llffij IU^p(B(x,g(x)) < C), where 

(1-4.4) $& > eo • ^pm > o 
IQ(X) diamM 

where B{x, r) is the metric ball with radius r, I the identity matrix and inj is the 
injectivity radius. 

b). Compactness theorems 

THEOREM 1.2 [CG]. Let (Mi,gi) be a sequence of compact Riemannian mani- 
folds whose sectional curvature, diameter, and injectivity radius satisfy 

A < Sec.gi < A,   diam < rf,   Z'M > ^'o? 

where the constants are independent of i.   Then, replacing Mi by a subsequence if 
necessary, Mi converges to a metric space X, such that 
(i) X is a differentiable manifold; 
(ii) there is a diffeomorphsim fi'.X—^Mi for all sufficiently large i; 
(Hi) the pullback metrics fi(gi) converges in C1,a-class to a C1,a (resp. L2'p) Rie- 
mannian metric g^ in X, for any prescribed real number a G (0,1) (resp. positive 
integer p > 1). 

For the sake of simplicity, in the rest of the paper we fix the real number a G (0,1) 
(resp. the integer p > n). 

For a sequence (Mi,gi) as above, the limit metric g^ is not necessarily C2. How- 
ever, if the ZARicci curvature (for p large) of #00 vanishes identically, then by the 
elliptic regularity of the Einstein equation one may conclude the smoothness of #00 
(indeed real analytic). That is 
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THEOREM 1.3 [AN]. Let (Mi,gi) be a sequence as in Theorem 1.2,  If the LP- 
Ricci curvature (for some large p) of g^ vanishes identically.   Then {Mi^gi) has a 
subsequence converging to a C00 Riemannian manifold X, such that 
(i) there is a diffeomorphsim fi'.X—* Mi for all sufficiently large i; 
(ii) the pullback metrics /*(&) converges in C00-class to a real analytic Riemannian 
metric goo. 

2. Convergence of harmonic spinors. Let M be a closed Spin Riemannian 
manifold. Let S+ (resp. S~) be the positive (resp. negative) spinor bundle. Let 
D : r(5+) —* T(S~) be the Dirac operator. The classical Lichnerowicz formula reads 

(2.1) i?2 = V*V+ifl 

where s is the scalar curvature of M. 
Let Mi be a sequence of closed Spin Riemannian n-manifolds such that 

diam(Mi)2 • Si > -Si ; Sec5i < 1 

where Sgi is the scalar curvature of Mi. By rescaling we may assume that diam(Mi) < 
1 and 5^ > —Si. Note that the sectional curvature Sec^ > — A(n). 

Let 0i 6 T(Si') denote the harmonic spinors (i.e. Difc = 0.) By normalizing we 
may assume that 

LEMMA 2.3. Let jn be as above. Then 

where C is a constant depending only on n, e, and A(n). 

Proof. Note that 

By the Lichnerowicz formula we get that 

1 

Therefore 

1 

0 = VJV^i + ^j^, 

By [Ga] Proposition 3.2 it follows that 

,,,2      <r   (/MJ^I4)*   _r miLoo < Oi— - Gi 
y/vol{Mi) 

The desired result follows. D 

Let 2r denote a uniform lower bound for the conjugate radii of Mi. By Theorem 
1.1, there are radii r balls, f^(r),--- ^^(r), in the tangent spaces Tp^Mi, where 

Pii''' iPm £ M are m points so that the exponential maps expp; : B^(r) C Tpi Mi ~> 
Mi are embeddings and exp^^B^r)), • • • ,exppiri(Bfl(r)) is a harmonic coordinate 
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covering of Mi. Fixing A;, consider the pullback metric exp** (<fc) on J5f (r). By The- 

orem 1.2 there is an integer N such that for all i > N, there is a difFeomorphism 
fi   : Bk(r) := Bx(r) —> jBf(r) so that the pullback metric tensors (•//e)*(exp*i (^)) 

converge in Z/2'p-class (cf. [Ya]) 
Let 02- = (//c)*(exp*i (^)) G r(5+) be the pullback spinors, where S+ is a spinor 

bundle of Bk(r), which is isomorphic to the pullback spinor bundles Sf on Bk(r) for 
all i sufficiently large (passing to a subsequence if necessary.) 

LEMMA 2.4. Let Mi be as above. IflimiSi = 0; £/ien a subsequence of fa above 
converges in L2>p-class (for any integer p > 1) to a non-trivial parallel harmonic spinor 
<f> with respect to the limit metric g^. 

Proof. Recall that all fa satisfy 

(2.4.1) V*V^ + 7^ = 0 
1 

By Theorem 1.2 it follows that in the harmonic coordinate ball Bk{r) and a local 
frame of sections of S'+ (resp. 5"), (2.4.1) gives a second order uniformly elliptic 
equation, such that 

(2.4.2) the coefficients of the second order term are uniformly C1'01- (resp. Z/2'p-) 
bounded; 

(2.4.3) the coefficients of the first order terms (also the quadratic terms) are 
uniformly C0'a- (resp. L1^-) bounded; 

(2.4.4) the coefficients of the zero order terms are uniformly Lp-bounded; 
By [ADN] we know that H^Hz^.p < CH^II^oo, where C is a universal constant. 

Therefore, by Lemma 2.3 fa contains a convergence subsequence in L2'p -(resp. C1^-) 
topology for any p' < p, noting that there is a Sobolev embedding X2'p C C1,1-^. 

Next we prove that the limit $ is parallel with respect to the metric g^. By (2.2) 
(j) is not zero and the desired result follows. 

Integrating (2.4.1) we get 

^^Jj^+^mL*9^ 
Since Si —► 0, the second term 

lim inf-——— /    Sg-lfa]2 = 0 
i->oo     AvolMi JM.  9l^ 

Hence, passing to a subsequence we may assume that 

(*) lim-ni7 / lv^l2 = 0 
i->oo vol Mi JMi 

We now use a trick in [Ya]. Suppose that </> is not parallel with respect to g^. Set 
^z = |Vi0i|2, a = |Voo^|2- Then there is a point x G Bk(r) for some k such that 
a > b > 0 on the radius 5 ball Bs(x, (5fc(r),^00)) for some positive constants b and 5. 
Thus di > | on Bs(rr, (Bk(r),gi)) for i large. Set ai = \Vifa\2. By the Bishop-Gromov 
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volume comparison theorem we get 

vol{Qi<|}      volBsfaMj)      a(5) 
vol (Mi)     -      vol {Mi)      - a(D) 

where ^ = exppt o f^(x) and a(r) is the volume function of radius r ball in the 
hyperbolic space of curvature — A(n). Therefore 

vol {OJ < |} a(5) 

vol {Mi)     -        a(D) 

for sufficiently large i. On the other hand, by (*) above, for any fixed b > 0, it holds 
that 

vol {ai < f} 
lim  , /^x     = ! t-^oo     vol (Af») 

A contradiction. D 

3. Proof of Theorem A. Let M be a Spin manifold, and cj) G r(S'+) be a 
spinor. Using the first Bianchi identity we get 

(3.1) 

j 3,k,l i 

for any i, where ei, • • • , en is an orthonormal basis. 
Proo/ <9/ Theorem A. Suppose not. Then there is a sequence of Riemannian 

manifolds (M*, &) with .A(Afj) 7^ 0 so that 

diam(Mi) < 1, Sgi > -i"1, Sec^ < 1 

but no one of Mi admits the desired metrics. 
By the Atiyah-Singer index theorem, the index Ind(Di) ^ 0. Therefore there is a 

nonzero harmonic spinor fc € ker D;, where Di is the Dirac operator. By normalizing 
we may assume (2.2) for all </>{. ■ 

Applying (3.1) to </>& and integrating both sides we get 

(3.2) lim —i— /    |y;Ric(ei,ez)e^ib|p = 0 
fc-^oo vol Mk JMk   £-f 

by Lemmas 2.3 and 2.4. 
Since <£ is parallel with respect to #00 and 

the C0-norm 

for k large. Therefore (3.2) implies that 

lim ——-r /    |y^Ric(ei,e/)e/|p = 0 
k-+oovolMkJMk

]^ J   ' 
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for any i and any prescribed integer p > 1. This proves that the limit metric g^ on 
X is Lp-Ricci flat. By Theorem 1.3 this implies that g^ is a smooth Ricci flat metric. 

By Lemma 2.4 the limit of 0* is a parallel spinor (j)^ with respect to goo. By [Fu] 
we know that the holonomy of g^ must be one of the desired types. D 
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