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INDEX OF DIRAC OPERATOR AND SCALAR
CURVATURE ALMOST NON-NEGATIVE MANIFOLDS*

FUQUAN FANG?

Abstract. A manifold M is called scalar curvature almost non-negative if for any constant
€ > 0, there is a Riemannian metric g on M such that sg - diam(M,g)® > —e and the sectional
curvature Secg < 1, where sy (resp. diam(M, g)) is the scalar curvature (resp. diameter) of (M, g).

Among others we prove that for a scalar curvature almost non-negative manifold M with
A(M) # 0 (resp. A(M) € Z3 nonzero and x(M) % 0 if n = 2(mod 8)), there is a constant e(n) > 0
such that, if the scalar curvature sps > —&(n), then
(i) the fundamental group m1(M) is finite;

(ii) M admits a real analytic Ricci flat metric go such that its Riemannian universal covering M is
isometric to the product of Ricci flat K&hler-Einstein manifolds and/or Joyce manifolds of dimension
8 with special holonomy group Spin(7).

0. Introduction. Let M be a closed Spin manifold. It is well-known that M
admits a metric with positive scalar curvature only if the index of the Dirac operator
vanishes, by the classical Lichnerowicz formula and the Atiyah-Singer index theorem
(cf. [LM]). The Gromov-Lawson conjecture, confirmed by Stolz [St], asserts the con-
verse for simply connected Spin manifolds of dimension at least 5. There are many
manifolds with non-negative scalar curvature but do not accept metrics of positive
scalar curvature, e.g. torus, Ks-surfaces, etc.

A basic theorem of Bourguignon shows that such a Spin manifold must be Ricci
flat. Starting from [St], Futaki [Fu| characterized all simply connected Spin manifolds
of dimension at least 5 with non-negative scalar curvature. It turns out that such a
manifold either admits a metric with positive scalar curvature, or it is the product
of Ricci flat Kahler-Einstein manifolds and/or Joyce manifold of dimension 8 with
Spin(7)-holonomy (manifolds in the latter class are called rigidly scalar flat). A key-
point involved is that, every harmonic spinor must be parallel and therefore, the
holonomy group must be special (cf. [Fu] [Wa]).

Recall that a manifold is called almost flat (resp. almost Ricci flat) if for any
positive constant € > 0, there is a Riemannian metric g on M such that

|Secy - diam(M, g)?| < € (resp. |Ric, - diam (M, g)?| <€),
where Sec, (resp. Ricy) is the sectional (resp. Ricci) curvature.

The celebrated Gromov theorem asserts that an almost flat manifold must be an
infra-nilmanifold, i.e. a finite regular cover must be a nilmanifold. By the Bochner
technique it is also well-known that an almost Ricci flat manifold has the first Betti
number at most n, where n is the dimension. In contrast, however, very recently
Lohkamp [Lo] proved that for every compact manifold M of dimension at least 3
and for any given positive constant ¢, there is a metric g so that its scalar curvature
satisfies that |s, - diam(M, g)?| < e.

We call a manifold M is of scalar curvature almost non-negative if for any constant
€ > 0, there is a Riemannian metric g on M such that sy - diam(M,g)? > —¢ and
the sectional curvature Secy < 1, where s4 (resp. diam(M, g)) is the scalar curvature
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(resp. diameter) of (M, g). Note that almost flat manifolds must be of scalar curvature
non-negative.

The main purpose of the present paper is to characterize manifolds with almost
non-negative scalar curvature. We will prove that there are indeed nontrivial topo-
logical obstructions for manifolds being of scalar curvature almost non-negative. For
example, following from our theorem the connected sum, K3#S5 x S3, of a K3-surface
with S x 83, does not admits metrics of almost non-negative scalar curvature.

Let M be Spin manifold. Let S*(resp. S~) be the Spinor bundles on M. Let
Dt : I'(St) — I'(S™) denote the.Dirac operator. The Atiyah-Singer index theo-
rem asserts that ind (D) = A(M) is a Spin cobordism invaraint and defines a ring
homomorphism

A Q5P KO (pt),

which is non-zero only if the dimension is 0(mod 4) or 1,2(mod 8). In particular, if
n = 0(mod 4), A(M) = A(M) is the A-genus of M.

Let M(n,d) denote the set of all closed Riemannian n-manifolds such that the
sectional K < 1, and diamM < d.

A manifold M € M(n,d) is called non-collapsing if there is no a sequence of
metrics of bounded curvature collapsing to a lower dimensional space in the Gromov-
Hausdorff topology.

THEOREM A. Let M € M(n,d) be a closed non-collapsing Spin manifold such
that A(M) # 0. There is a constant €(n) > 0 such that if the scalar curvature
sp 2> —€&(n), then M admits a Ricci flat real analytic Riemannian metric go with
restricted holonomy group Hol’(M,go) a product whose irreducible components are

SU(m), Sp(m), G2 or Spin(T7).

By the local formula for A-genus (Euler characteristic), M € M(n,d) is non-
collapsing if A(M) # 0 (resp. the Euler characteristic x(M) # 0). Therefore Theorem
A together with the Cheeger-Gromoll splitting theorem [CGr] implies immediately

COROLLARY 0.1. Let M € M(n,d) be a closed Spin manifold. Suppose that
A(M) # 0 (resp. AM) # 0 and x(M) # 0 if n = 2(mod 8)). There is a constant
g(n) > 0 such that, if the scalar curvature spr > —e(n), then
(i) the fundamental group m (M) is finite;

(i) M admits a real analytic Ricci flat metric go such that its Riemannian universal
covering M is isometric to the product of Ricci flat Kihler-Einstein manifolds and/or
Joyce manifolds of dimension 8 with special holonomy group Spin(7).

The above theorem together with the Stolz theorem [St] clearly implies

COROLLARY 0.2. Let M € M(n,d) be a closed non-collapsing Spin manifold. If
M is simply connected and n > 5. There is a constant e(n) > 0 such that, if the
scalar curvature sy > —¢, then either M admits a metric of positive scalar curvature
or admits a Ricci flat metric.

The proof of the Theorem A together with Corollaries 3.1 and 3.2 in [Wa] imply
the following two corollaries

COROLLARY 0.3. Let M € M(4, D) be a closed Spin manifold so that A(M) # 0.
There is a constant € > 0 such that, if the scalar curvature spr > —e, then M is bi-
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Lipschitz isometric to a Calabi- Yau Ks-surface.

COROLLARY 0.4. Let M € M(8,D) be a closed Spin manifold. Assume that
A(M ) # 0. There is a constant € > 0 such that, if the scalar curvature spr > —e, then
M is simply connected.

Observe that the A-genus of a Ks-surface A(K3) # 0. Corollary 0.1 implies easily
that the connected sum K3#5! x S3 does not admit an almost non-negative scalar
curvature metric. This also answers in negative the following question:

PROBLEM 0.5. Let M (resp. N) be a manifold with positive (resp. mon-negative)
scalar curvature. Does the connected sum M#N admit a metric with almost non-
negative scalar curvature?

This is maybe interesting by comparing with the amazing discovery of Schoen-
Yau [SY], that the connected sum of any two n-manifolds (n > 3) with positive scalar
curvature admits a metric with positive scalar curvature.

Some remarks on the above results are in order.

REMARK 0.6. The Seiberg-Witten theory [Wi] implies that 4-manifolds with
non-trivial Seiberg-Witten invariant do not accept any metric with positive scalar
curvature. Furthermore, Witten ([Wi]) proved that a scalar curvature non-negative 4-
manifold with non-trivial Seiberg-Witten invariant is hyper-Kahler, if b > 2. Seiberg-
Witten theory may be used to study scalar curvature almost non-negative 4-manifolds
in the spirit of the presented paper.

REMARK 0.7. Theorem A should be compared with a recent result in [Lot] where
sectional curvature is assumed being almost non-negative.

REMARK 0.8. Theorem A holds identically, if the upper bound for the sectional
curvature is replaced by a upper bound for the Ricci curvature together with a positive
lower bound for the conjugate radii.

Now let us start to sketch the idea in the proof of Theorem A.

Suppose Theorem A is false, then there is a sequence of n-dimensional Spin mani-
folds (M;, g;) so that A(M;) # 0, the scalar curvatures sy, > —1/i, the diameter diam
M; < D and Secy; < 1 for some positive constant D. By the Gromov precompactness
theorem and the Cheeger-Gromov theorem, passing to a subsequence if necessary, we
may assume that (M;, g;) converges in L%*P-class to a manifold (X, goo) (since M; are
non-collapsing.) Let ¢; € I'(S;") be a harmonic spinor with unit L2-norm. Using the
Lichnerowicz formula and the scalar curvature bound we prove that ¢; converges to
a parallel harmonic spinor ¢, with nontrivial norm. Therefore ¢; is almost parallel
for ¢ large, which implies that the Ricci curvature of (M;, g;) converges in LP-class to
zero. By regularity of Einstein equation we know that there is a real analytic Ricci
flat metric on X. A contradiction.

1. Preliminaries. In this section we give some necessary preliminary results
needed in next sections.

a). Harmonic coordiantes

A local coordinate (hl,...,h™) is harmonic if each component is a harmonic func-
tion, i.e., Ah* =0 for i = 1,...,n, where A is the Laplacian opertator. In a harmonic
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coordinate, the Ricci curvature of the metric tensor g satisfies the equation
. 1
(Ricg)ij = —5 A gij + Q(9, 99).

here g;; = g(%, 8%,) and Q(.,.) is a quadratic form of its variables (c.f. [Pe]).
The existence of harmonic coordinate ball of uniform radius is studied in [JK]
[An], in terms of various curvature bound. We quote the following

THEOREM 1.1 [AN]. Let (M,g) be a Riemannian n-manifold (not necessarily
complete) such that

(L4.1) |Ricy| < M, inj B(z, % . dist(z, 0M)) > io(z) > 0
Then, given any C > 1 and a € (0,1), there is an g9 = £o(), C, n, @) with the following

property: given any x € M, there is a harmonic coordinate system U = {u;}T* defined
on B(z,e(x)) C M such that if gi; = g(Vus, Vu;), then g;j(z) = 6;; and

(1.4.2) C~1.1<¢g(y) <C -1, (as bilinear forms)

(1.4.3) £(z) )| gi;;(W)lcre < C

_n
for all y € B(z,e(x)) (resp. %ngllm.pw(zls(,» < C), where

e(z) > £q - dist(z,OM)

(1.44) 0@ 2 " digmdd

>0
where B(z,T) is the metric ball with radius v, I the identity matriz and inj is the
injectivity radius.

b). Compactness theorems

THEOREM 1.2 [CG]. Let (M;,g;) be a sequence of compact Riemannian mani-
folds whose sectional curvature, diameter, and injectivity radius satisfy

A< Sec.g, <A, diam < d, iy > i,

where the constants are independent of i. Then, replacing M; by a subsequence if
necessary, M; converges to a metric space X, such that

(1) X is a differentiable manifold;

(i) there is a diffeomorphsim f; : X — M; for all sufficiently large i;

(ii) the pullback metrics f;(g;) converges in C1*-class to a C1* (resp. L*P) Rie-
mannian metric goo in X, for any prescribed real number oo € (0,1) (resp. positive
integer p > 1).

For the sake of simplicity, in the rest of the paper we fix the real number a € (0,1)
(resp. the integer p > n).

For a sequence (M;, g;) as above, the limit metric g is not necessarily C2. How-
ever, if the LP-Ricci curvature (for p large) of g vanishes identically, then by the
elliptic regularity of the Einstein equation one may conclude the smoothness of g
(indeed real analytic). That is
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THEOREM 1.3 [AN]. Let (M;,g;) be a sequence as in Theorem 1.2. If the LP-
Ricci curvature (for some large p) of goo vanishes identically. Then (M;,g;) has a
subsequence converging to a C*° Riemannian manifold X, such that .

(i) there is a diffeomorphsim f; : X — M; for all sufficiently large i;
(ii) the pullback metrics f}(g;) converges in C*®-class to a real analytic Riemannian
metric goo-

2. Convergence of harmonic spinors. Let M be a closed Spin Riemannian
manifold. Let St (resp. S~) be the positive (resp. negative) spinor bundle. Let
D :T(S8%) — I'(S™) be the Dirac operator. The classical Lichnerowicz formula reads

1
(2.1) D? =V*V + 78
where s is the scalar curvature of M.

Let M; be a sequence of closed Spin Riemannian n-manifolds such that

diam(M;)? - 8; > —¢; ; Secg, <1

where sg; is the scalar curvature of M;. By rescaling we may assume that diam(M;) <
1 and sy, > —¢;. Note that the sectional curvature Secy, > —A(n).

Let ¢; € I'(S;") denote the harmonic spinors (i.e. D;¢; = 0.) By normalizing we
may assume that

1 3
(2.2) TR /Mi gt =1

LEMMA 2.3. Let ¢; be as above. Then
il < C

where C is a constant depending only on n, €; and A(n).

Proof. Note that

Al¢l® = 2(ViVids, ¢s) — 2| Vigil?
By the Lichnerowicz formula we get that
0=V;V¢; + %sgiq&i
Therefore
Al < —gsaldil < gedail?

By [Ga] Proposition 3.2 it follows that

(S, l¢il4)%
2o <O M 7 _ o
iz < o Vol(M;)
The desired result follows. 0

Let 2r denote a uniform lower bound for the conjugate radii of M;. By Theorem
1.1, there are radii r balls, B}(r),---,B(r), in the tangent spaces Ty Mi, where
pi, -+ ,pt, € M; are m points so that the exponential maps XDy Bk(r) c Tps Mi —
M; are embeddings and exp,: (Bi(r)),- -+ ,€Xpp: (B*(r)) is a harmonic coordinate
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covering of M;. Fixing k, consider the pullback metric exp;‘;;-c (9:;) on BE(r). By The-
orem 1.2 there is an integer NV such that for all ¢ > N, there is a diffeomorphism
f¥ : B¥(r) := BX(r) — BE(r) so that the pullback metric tensors ( fik)"(exp;;?c (94))
converge in L?P-class (cf. [Ya])

Let ¢; = (fF)* (expy; (qb,)) € I'(S) be the pullback spinors, where S* is a spinor

bundle of B¥(r), which is isomorphic to the pullback spinor bundles $* on B¥(r) for
all 7 sufficiently large (passing to a subsequence if necessary.)

LEMMA 2.4. Let M; be as above. If lim;e; = 0, then a subsequence of é; above
converges in L*>P-class (for any integer p > 1) to a non-trivial parallel harmonic spinor
q§ with respect to the limit metric goo-

Proof Recall that all ¢; satisfy
N 1 o
(2.4.1) ViVigi+ 1566 =0

By Theorem 1.2 it follows that in the harmonic coordinate ball B¥(r) and a local
frame of sections of S+ (resp. S’"), (2.4.1) gives a second order uniformly elliptic
equation, such that

(2.4.2) the coefficients of the second order term are uniformly C1- (resp L?p.)
bounded;

(2.4.3) the coefficients of the first order terms (also the quadratic terms) are
uniformly C%°- (resp. L*-) bounded;

(2.4.4) the coefficients of the zero order terms are uniformly LP-bounded;

By [ADN] we know that ||¢;]|z2» < C||¢;illz, where C is a universal constant.
Therefore, by Lemma 2.3 ¢; contains a convergence subsequence in L2? -(resp. Ch%-)
topology for any p’ < p, noting that there is a Sobolev embedding L%? ¢ C11~7,

Next we prove that the limit ¢ is parallel with respect to the metric go. By (2 2)
 is not zero and the desired result follows.

Integrating (2.4.1) we get

_ 1 2 1 2
" vol M; /Mi IVigil™ + 4vol M; /Mi Sl

Since €; — 0, the second term

.1 -
Jim oo, sl =0

Hence, passing to a subsequence we may assume that

. 1 2
zlirr{o]c: vol M; /Mi Viil” =0

We now use a trick in [Ya]. Suppose that $ is not parallel with respect to go,. Set

= |Vidil2, @ = |Vood|2. Then there is a point z € B¥(r) for some & such that
a>b>0 on the radius ¢ ball Bs(z, (B*(r), §oo)) for some positive constants b and 4.
Thus &; > £ on Bs(z, (B*(r), §:)) for i large. Set a; = |V;¢;|>. By the Bishop-Gromov

™
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volume comparison theorem we get

vol {a; < 2} 5 Yol Bs(ai, Ms)  a(9)
©vol (M) T vol (M;) < a(D)

where ¢; = expy; © f¥(z) and a(r) is the volume function of radius r ball in the
hyperbolic space of curvature —A(n). Therefore

vol {a; < £} a(d)
vol (Mi)2 s1- a(D)

for sufficiently large ¢. On the other hand, by (*) above, for any fixed b > 0, it holds
that

vol {a; < ¢}
lim ———2- =
2% vol (M;) !
A contradiction. 0
3. Proof of Theorem A. Let M be a Spin manifold, and ¢ € T'(S*) be a
spinor. Using the first Bianchi identity we get

(3.1)
1 1 .
;e]’(veive,— - vej Ve, — v[ei,ej])¢ = -Z jZ“ejRijklekel¢ = *5 ;Rlc(eia er)eid
for any i, where e;,- - ,e, is an orthonormal basis.

Proof of Theorem A. Suppose not. Then there is a sequence of Riemannian
manifolds (M;, g;) with A(M;) # 0 so that

diam(M;) < 1, s, > —i %, Secy, < 1

but no one of M; admits the desired metrics.

By the Atiyah-Singer index theorem, the index Ind(D;) # 0. Therefore there is a
nonzero harmonic spinor ¢; € ker D;, where D; is the Dirac operator. By normalizing
we may assume (2.2) for all ¢;.

Applying (3.1) to ¢, and integrating both sides we get

1
i —_— 1 . y
(32) k]'_l_l;n vol Mk / ] I El Rlc(elvel)el(ﬁk‘ 0

by Lemmag 2.3 and 2.4.
Since ¢ is parallel with respect to g, and

1
vol Mk My,

|¢kl4 =1,

the C%-norm

DN =

|pk]co >

for k large. Therefore (3.2) implies that

1
li 2 : ioles P _
klm SR / ) | : Rlc(el,ez)ezl =0
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for any i and any prescribed integer p > 1. This proves that the limit metric go, on
X is LP-Ricci flat. By Theorem 1.3 this implies that g, is a smooth Ricci flat metric.

By Lemma 2.4 the limit of ¢; is a parallel spinor ¢o, with respect to goo. By [Fu]
we know that the holonomy of g.. must be one of the desired types. 0
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