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THE SURFACE AREA PRESERVING MEAN CURVATURE FLOW * 

JAMES MCCOYt 

Let MQ be a compact, strictly convex hypersurface of dimension n > 2, without 
boundary, smoothly embedded in En+1 and represented locally by some diffeomor- 
phism FQ : Rn D U —> FQ (U) C MQ C Rn+1. Under the surface area preserving mean 
curvature flow, formulated by Pihan in [P], the family of maps Ft = F('}t) evolves 
according to 

(1) — F(x,t) = {l-h{t)H(x,t)}v{x,t) iXGU, 0<*<T<oo, 
C/U 

F(;0)=Fo, 

where H is the mean curvature of Mt = Ft (J7), v is the outer unit normal to Mt and 

(2) "«>-%**■ 

where dfit is the surface area element on Mt. Pihan studied basic properties of this 
flow for general n and showed that (1) has a unique solution for a short time. He 
also proved for n = 1 that an initially closed, convex curve in the plane converges 
exponentially to a circle with the same length as the initial curve. Analogous to 
this result and those of Huisken in [Hul] and [Hu2] for the mean curvature flow and 
the volume preserving mean curvature flow, we show here a similar result for the 
surface area preserving flow, when n > 2. I would like to thank my PhD supervisor 
Professor Klaus Ecker for introducing me to this topic and for his suggestions, advice 
and encouragement throughout the production of this work. I would also like to thank 
Professor Gerhard Huisken and Dr Ben Andrews for useful suggestions and Associate 
Professors John Stillwell and Alan Pryde and Drs Maria Athanassenas and Marty 
Ross for valuable discussions. 

Recently in [M] we have generalised the results of [Hu2] and this paper, study- 
ing general 'mixed volume' preserving mean curvature flows, of which the volume 
preserving and surface area preserving mean curvature flows are special cases. 

1. Notation, definitions and well-known facts. We adopt similar notation 
to Huisken in [Hul] and [Hu2]. Let M be an n-dimensional Riemannian manifold. 
Vectors on M are denoted by X = {-X"2}, covectors by Y = {¥*} and mixed tensors by 
T = {T*-*}. The induced metric and the second fundamental form on M are denoted 
by g = {gij} and A = {hij} respectively. The surface area element of M is given by 

M= Ydet(^')' 

while the inner product of tensors T = {Tz
fcm} and S = {5\.m} on M is written as 

/rni        QI     \   kl jmnrpi     QJ     rpi     Q km 
K1 kmi 0 km/ — 9ij9   9      J- km^ In ~ 1 km^i       > 
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where gZJ is the (i,j) entry of the inverse of the matrix (gij). Unless otherwise 
indicated we always sum over repeated indices from 1 to n. So for the norm of the 
tensor T, 

(The notation (•, •) is also used to denote the ordinary scalar product of vectors in 
Rn+1.) For traces of the second fundamental form, we write 

o H = g^hij = h\, the mean curvature of M, 
© |J4| = g^gklhikhji = h3

khjk, the norm of the second fundamental form on 
M, 

• C = 9ij9klgmnhikhjmhln = h^h^, 

• Z = HC- \Af where \A\4 := (lAf)2. 

If F : U C 3Kn -» Mn+1 smoothly embeds M in ln+1, then 

^{x) = (Ml(x)' w,{x)) and hij ix) = (Ml{x)' w,{x)) 
respectively, for x € £/, where u (x) is the outer unit normal to M at F (x). The 
matrix of the Weingarten map of M is then 

(hi
j(x)) = (gii(x)){hij(x)). 

The eigenvalues of this matrix are the principal curvatures of M. M is strictly convex 
if all the eigenvalues of (ftj) are strictly positive. 

The induced connection on M is given via the Christoffel symbols, 

r& = ^ ( 
d d d 

so the covariant derivative of a vector X is 

\/ix
i = —-xi-{-riix

k. 3 dxj KJ 

The covariant derivative of a tensor T is denoted VT = {VjT*-fc}. The Laplacian of 
Tis 

ATzfc = v™VmT^. 

The Riemannian curvature tensor on M may be given through the Gauss equa- 
tions 

(3) Rijki = hikhji — huhjk- 

Then the formulas for interchanging second covariant derivatives are 

ViVjX11 - VjViXh = R^kX1* 

and 

VjViYk - VjViYk = RijiTYm. 
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LEMMA 1.1. 
i) Vihjk = Vj/ifci = Vfc/iij (the Codazzi equations,), 

ii) If F (x, t) is the position vector in Rn+1
; then 

AF(x,t) = -H(x,t)u(x,t). 

LEMMA 1.2 (Simons' Identity). 
i) Ahij = VtVjH + Hhuhfj - \A\2 hij} 

ii) 2hk
jAh) = A \A\2 - 2 |VA\2, 

iii) A |A\2 = 2h^ViVjH + 2 |V^|2 + 2Z. 
The following lemmas are used in [Hul] and [Hu2]. 

LEMMA 1.3.   The trace-free part of the second fundamental form, A0 = {/^j} 
where h^ = hij — ^Hgij, has the following properties: 

i) g^hij = 0 (hence the term trace-freej, 

ii) \A°\2 = \A\2-1H*, 

iii) |V^|2 = |VA|2-I|VF|2, 

iv) (V^, V, (\A\2 - i^2)) = 2<^V<ff, Vihlt). 

LEMMA 1.4. 
i) \A\2 > ±H\ 

ii) For weakly convex M, \A\   < H2. 

LEMMA 1.5. 
i) i|ViJ|2<|VA|2; 

ii) I^Vilii^Viff)! <2niJ|VA|2. 

LEMMA 1.6. 
i) |VA|2>^|V^ 

ii) Equivalently, \VA\2 - i \VH\2 > ^^ \VA\2. 

LEMMA 1.7. Let A = (a^) be a symmetric n x n matrix with eigenvalues 
Ai,..., An. If for some A € R, 

Ai>A 

/or eac/i i = 1,..., n, then each diagonal element of A satisfies 

an > A. 

This can be proved using a straightforward diagonalisation argument. 

LEMMA 1.8. If H > 0 and hij > eHgij with some e > 0, then 

i) Z>neW(\A\2-±\H\2), 

ii) \HVihu - hkiWiHf > \e2H2 (VJET|2, 

iii) nC - H |A|2 > 2nefl' (|A|2 - i \H\2\. 

Finally we will also need the following Bochner formula, the proof of which is a 
standard computation interchanging covariant derivatives and using the Gauss equa- 
tions. 
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LEMMA 1.9. 

A |V#|2 = 2 (ViAH, ViHy+ 2 | V2iJ|2 -I- 2H (hln, V/i?VniI> 

-2(hinVlH,hilVnH). 

2. Short time existence,  preservation of convexity and elementary 
properties of the flow. 

THEOREM 2.1 (Pihan, [P]). ForaG (0,1), let MQ be aC3>a compact, embedded, 
n-dimensional submanifold in Rn+1 without boundary, parametrised by a C3,a embed- 
ding FQ : Mn D U -»> FQ (U) C MQ C Rn+1. Assume also that H ^ 0 at some point of 
MQ . Then there exists TQ > 0 such that the initial value problem 

—F(x,t) = {1 - h(t) H(a:,t)}v(rr,t) forxGU.te (0,T) 

F(-,0) = Fo 

h{0)>0 

where h{t) is given by (2), has a unique solution F in C3'a (£/) x C1'^ ([0,ro))- 
In our case, MQ is strictly convex, so clearly H > 0 everywhere on Mo and 

h(0) > 0. As in [P], Theorem 2.1 implies short time continuity and positivity of 
various geometric quantities. As two important examples, 

COROLLARY 2.2. H > 0 for a short time. 

COROLLARY 2.3. h(t)>0 for a short time. 
The 'short times' of Corollaries 2.2 and 2.3 may not be the same. When we refer 

to a solution on [0, T), we always take the smallest T > 0 necessary such that all 
relevant quantities are positive and finite. 

A trivial modification to the proof of Hamilton's maximum principle for tensors on 
manifolds from [Ha] incorporates h (t) > 0 in front of the Laplacian. Then, similarly 
as in [Hul] and [Hu2], we have: 

THEOREM 2.4. Ifhij > 0 att = 0, then it remains so on [0,T). 

THEOREM 2.5. // initially H > 0 and hij > sHgij for some e G [0, ^), then 
hij > eHgij remains true on [0, T). 

We verify as in [P] that the surface area \Mt\ := /M d^t of the evolving hyper- 
surface does indeed remain fixed under the flow (1), while the enclose volume does 
not decrease. For convenience, we parametrise Mt over §n, which is possible since Mt 

remains strictly convex for a short time by Corollary 2.2 and Theorem 2.5. 

LEMMA 2.6. The surface area of Mt remains constant throughout the flow, that 
is, 

<tt JMt 

Proof. We use the First Variation of Area Formula with the vector field ^, 
extended appropriately, and the Divergence Theorem. 

I /„. *• - Ldivj" © ** - - L(1 -hH) H'** ■o 
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using (1) and (2).       D 

LEMMA 2.7.   The volume enclosed by Mt does not decrease throughout the flow. 
That is, if Et C W1^"1 is the (n 4-1)-dimensional set enclosed by Mt, then 

lvol{Et)>Q. 

Proof.  Extend Ft smoothly off §n into all of Rn+1 such that Ft (Si (O)) = Et 

and Ft (Sn) = Mt = dEt. Then by the First Variation Formula, 

ivo.(E,) = /adivR„„ (f) «r-J   {%.»)*. 

=        (1 - hH)diH =        din- V-5 -T > 0 
JMt JMt (fMtHidixt) 

using (1), (2) and the Cauchy-Schwarz inequality. D 

REMARK. If H is constant, then we have equality in Lemma 2.7. Hence if MQ is 
a sphere, then the volume enclosed by Mt remains constant under the flow. This is 
consistent with the observation from equation (2) that if H is constant then h = -^ 
and (1) becomes ~~ = 0. Thus a sphere remains static under this flow. 

We now state our main theorem to be proved. 

THEOREM 2.8. // the initial n-dimensional hypersurface MQ, n > 2, is strictly 
convex, then the evolution equation (1) has a smooth solution Mt for all times 0 < 
t < oo, and the MtJs converge, ast-^oo, in the C00-topology, to a sphere with the 
same surface area as MQ. 

3. The solution remains within a bounded region of Rn+1. In this section 
we show that the solution hypersurface Mt remains within a large ball whose radius 
depends only on the initial hypersurface MQ and is, in particular, independent of time. 
The result is based upon a theorem from [CG]. 

Notation 
• V and g denote the covariant derivative and metric on §n. 
• E+ = {a G R : a > 0}. 
• For any unit vector 77 G §n C Rri+1, 

SI =Sl(ri) = {x G§n : (X,TI) > 0}. 

THEOREM 3.1 (Chow, Gulliver, [CG]). Let u € C2 (§n x [0,T)), 0 < T < 00, be 
a solution to the PDE 

(4) ut = G (V2u + gu, t) for all (x, t) G §n x (0, T) 

w(-,0) = UQ 

where the following hold: 
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a) G is invariant under similarity transformations of the matrix V2u -f- gu. G 
depends only on the eigenvalues ri,..., rn of V2u -f gu. 

b) G is differentiable with respect to each r^ and |^ > 0 for each i. 
c) ^o is Lipschitz. 

Then 
i)  Given any unit vector rj G Sn, there is a A = A (UQ) G M+ such that, for all 

(rM)eS£x[0,r), 

u (x — 2 (x, ry) 77, £) + A (a;, rj) > u (x, t). 

ii)  1^2% tte same A as in zj, /or a// xi, X2 G §n, ^ G [0, T), 

|w(a;i,t) — iz(a;2,£)| < A sin ( -dist§n (xi,X2) 

iii) msXxQgn u (x, t) — mmX£§n u (x, t) < A /or a^/ £ G [0, T). 
iv) \Vu(x,t)\ < I /or a// (a,*) G §n x [0,T). 

REMARK. Chow and Gulliver consider G which depends on the slightly more 
general matrix V2u 4- cgu, where c < 1 is a constant. Their G also depends explicitly 
upon u. Consequently they require G to satisfy a monotonicity condition. 

Unlike Chow and Gulliver, we have stated Theorem 3.1 without a Lipschitz1 con- 
tinuity hypothesis on G. Then the theorem can be applied to the G's arising for many 
curvature flows including the surface area preserving mean curvature flow. The proof 
remains the same, except that the comparison principle for nonlinear parabolic PDEs 
is used instead of the Lipschitz continuity of G. 

We will apply Theorem 3.1 to the real-valued support function of Mt, defined as 
in [Anl] and [U]. An alternative, equivalent definition, along with elementary prop- 
erties of the support function, can be found in [L]. 

DEFINITION. The support function Z : Sn —> R of a strictly convex hypersurface 
M = F(§ri) is given by 

Z{x) = {F{v-1{x)),x) 

where v"1 : Sn —» §n is the inverse Gauss map of M. 
Geometrically, the support function Z {x) gives the perpendicular distance to the 

origin of the tangent plane Tp^-i^M. 
M may be parametrised using its support function. The following result is from 

[Anl]. 

LEMMA 3.2. If M is a strictly convex, compact hypersurface with support function 
Z : Sn —> R then M can be parametrised such that its Gauss map is the identity, by 
the immersion F : Sn —> Rn+1 where 

F{x) = Z(x)x + VZ{x). 

As the flow (1) preserves strict convexity for a short time, the support function 
of Mu Z (•, t) : Sn -> R, can be defined by 

Z{x,t) = {F{v-l(x),t),x) 
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where z^-1 : §n —> Sn is the inverse Gauss map of M*. 
It is straightforward to derive, similarly as in [U], the evolution equation for the 

support function under the flow (1). 

LEMMA 3.3.  Under the flow (I), 

dZ 
(5) — (MHl-M*)-^-1^),*) 

REMARK. The parametrisation in Lemma 3.2 will not be preserved by the flow 
unless we incorporate a tangential diffeomorphism. However, here we will only need 
to use Lemma 3.2 at a fixed time. 

Also as in [U] we note that the support function of Mt and the inverse of the 
Weingarten map of M*, W-1 are related by 

(6) W"1 (i/j-1 (x), t) = V2Z (a?, t) + Z {x, t) g. 

Hence the mean curvature is given in terms of the support function by 

(7) H fa1 (x),t) = trace {(V2Z (x, t) + Z (x,t) ^)"1} . 

PROPOSITION 3.4. For t e [0,T), Mt c Br (O), where r = r (MQ). 

Proof.   Fix t G [0,T) and set P = maxx€§n Z (X^Q).   Comparing equation (5) 
with (4), in view of (6) and (7), 

and so 

i.ir' 

fS-MO-1 
ori r, 

= /l (t) • ^ > 0, 

by Corollary 2.3. By Theorem 2.5 and Corollary 2.2, strict convexity is preserved for 
t € [0,T). Hence Theorem 3.1 can be applied to (5); part hi) gives that there is a 
A = A (MQ) such that 

mmZ(x,to) > P-X. 
xe§n ~ 

Hence, assuming P > A, Bp-\ (O) C Et. By Corollary 2.2 and Theorem 2.5, Mt is 
strictly convex, so 

|Mt| > |Bp_A (0)|. 

Lemma 2.6 therefore implies 

|Mo|>(n + l)a;n+1(P-A)n 

and hence 

|Mo| 
P<A + 

(n +1) a;n+i 
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Finally, combining this with by Lemma 3.2, 

I^OMo)! < \z(x,t0)\ + \vz(x,to)\ ^T + LJn!1, 

where we have also used Theorem 3.1, iv). 

Hence the result, with r = f + ((Jffn+1) ". □ 

REMARKS. 

1. As consequences of this result, the diameter of Mt remains bounded under 
the flow and Mt does not drift out to oo in some direction. 

2. A analogous argument to the above can be used to show solutions of the 
volume preserving mean curvature flow, considered in [Hu2], remain within 
a suitably large ball, using the fixed volume instead of the fixed area. The 
argument would also work for other constrained flows such as those in [M]. 

3. Using Chow and Gulliver's theorem we have achieved this result before ob- 
taining uniform bounds on curvatures and their derivatives, in contrast to the 
method of Huisken in [Hu2]. 

4. Evolution equations. The following evolution equations for the surface are 
preserving mean curvature flow may be derived similarly as in [Hul] or [P]. Prom now 
on, V and A denote the covariant derivative and Laplace-Beltrami operator on Mt. 

LEMMA 4.1.  The metric of the evolving hypersurface Mt satisfies 

-gij=2(l-hH)hij. 

COROLLARY 4.2. 
0 m9ij = -2 (1 - hH) h**, 

ii) -jftUt = H(1- hH) fit where fit = y/detfaij). 

LEMMA 4.3.  The outward unit normal to Mt evolves according to 

THEOREM 4.4.  The second fundamental form of Mt evolves by 

jhij = hAhij + (1 - 2hH) h^hmj + h |A|2 hij. 

COROLLARY 4.5. 
i) &/»«, = h (AVj + |^|2 h)) - h^h^, 

ii) §-tH = hAH - (1 - hH) \A\2, 

iii) | \A\2 = h(A \A\2 - 2 \VA\2 + 2 \A\4) - 2C. 

COROLLARY 4.6. 
i)   d-tH

2 = hAH2 -2hjV-Hf -2{l-hH)H\A\2, 

ii) £ (|A|2 - iff2) = hA (|A|2 - iff2) - 2h (|V^|2 - 1 |Vff |2) 

+ 2h\A\2 (\A\2 - iff2) -2C + IH\A\2. 
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5. Positive bounds on h (t). By Proposition 3.4, the diameter of Mt is bounded 
by d := 2r (MQ) under the flow. We will use the diameter bound in this section, 
however, we remark that in fact, upper and lower positive bounds on h(t) can be 
obtained without Proposition 3.4, see Appendix A. 

LEMMA 5.1. Fort £ [0,T), JMtHdixt > ^j^. 

Proof. Applying the Divergence Theorem to the position vector F yields 

n|Mo| = n|Mt|< /   H\{F,v)\d^<t   H\F\dfit<d[   Hd^ 
JMt JMt JMt 

using Lemmas 2.6 and the diameter bound. Hence the result. D 

Applying the Cauchy-Schwarz inequality to Lemma 5.1, we immediately obtain: 

COROLLARY 5.2. For t e [0,T); JMt H
2 dm > ^^i. 

REMARK. For n — 2 we could alternatively use the elementary bound from [W], 

(8) /   H2dfit>A7r. 
JMt 

This is obtained as follows. Contracting the Gauss equations, (3), twice yields 

(9) R = H2- \A\2 

where R is the scalar curvature. Therefore 

(10) H2 = \A\2 + R>R. 

For n = 2, 

(11) R = 2K 

where K is the Gauss curvature of Mt. The Gauss-Bonnet Theorem gives 

(12) /    Kdfit = 27r 
JMt 

since the surfaces Mt have genus equal to one. Integrating (10) over Mt and using 
(11) and (12) on the right hand side yields (8). D 

Using the Cauchy-Schwarz inequality, Lemma 2.6 and Corollary 5.2, we easily 
obtain: 

COROLLARY 5.3. Forte [0,T), h(t) < % :=S{n,M0). 
For an upper bound on fM H2 d/z* we apply the maximum principle to the evolu- 

tion equation for i^V and also use an Aleksandrov-Fenchel type inequality for mixed 

volumes. The quantity ^r was considered by Huisken in [Hul] and [Hu3]. 

LEMMA 5.4. Fort e [0,T); 
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REMARK. Huisken derived a very similar inequality for the original mean curva- 
ture flow in [Hu3], namely 

It is remarkable that such a similar inequality holds for the significantly different 
surface area preserving mean curvature flow. The inequality has the ideal form for 
applying the weak maximum principle! 

Proof of Lemma. Using Corollaries 4.5, hi) and 4.6, i), we compute 

-2h 

Noting that 

H2 \VA\2 - \A\Z \VH\Z = \HVihjk - hjkViH\* + H3 ( V* I ^ 1 , Viff r2|r7^|2      \A \2 lT7 ZT|2 _ i trvr u .       U.TTZT^   ,   ZTS / ^   I \A\ 
2X 

(13) becomes 

using Lemma 1.8, i) with Lemma 1.4, i) and Corollary 2.2. D 

COROLLARY 5.5.   There is a 5 e (0,1), depending only on MQ, such that, for 
te[o,r), 

\A\2{x,t)<{l-8)H2(x,t). 

Proof. In view of Lemma 5.4, the maximum principle is applicable to ^r. This 
gives 

(14) ^ (•,*) < max f 14! J = Co = Co (Mo) 

Now the constant Co < 1 by Lemma 1.4, ii) and Theorem 2.4. In fact, Co < 1, since 

if maxM0 (^r) = 1, then at some point p of Mo, by compactness, 

\A\2 = H2. 
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In terms of the principal curvatures of Mo, this would mean that 

y      rC^ rVo"   —- U 

at p, which is not possible for a strictly convex initial hypersurface MQ. Hence from 
(14), for some b £ (0,1), for each x 6 Sn and all * 6 [0,T), 

IA\2 (z, t) < C0H
2 (x, *) = (!- 5) H2 (s, t). 

D 

COROLLARY 5.6. Forte [0,r), 

(15) /   H2diJit<C = C(n,Mo). 

Proof.  Consider the case of n = 2 first. Using (9), (11) and the Gauss-Bonnet 
Theorem, (12), 

TT = f   (H2
- \A\2) d^ > S f   H2diit 

JMt V / JMt 

using also Corollary 5.5. The result follows. 
For n > 2, the Gauss-Bonnet theorem cannot so easily be applied. However, the 

Aleksandrov-Fenchel inequality for mixed volumes can be employed.1 If we write 

(16) /    H2dfit= I   \A\2d^t + 2l    Y^KiKjdiJLt, 
JMt JMt JMt i<i 

the second term on the right of (16) is a mixed volume. As shown in Appendix A, 

/    y^ niK3 dlH < U (n, MQ) 
JMt .^ 

for some constant U. Using this in (16) together with Corollary 5.5 gives 

/   H2dnt<(l-6) [   H2diit + U 
JMt JMt 

and hence the result. D 
Combining Corollary 5.6 and Lemma 5.1 we get: 

COROLLARY 5.7. Forte [0,T), h(t) >L = L(n,Mo) > 0. 

6. A pinching estimate. As in [Hul] and [Hu2], the quantity 

a measure of the difference between the principal curvatures, is bounded by a power 
of the mean curvature. 

1I would like to thank Dr Ben Andrews for suggesting this. 
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THEOREM 6.1. There exists a 5 > 0 and a Co < oo, depending only on n and 
MQ such that, forte [0,r), 

\A\2-±H2<CoH2-s. 
n 

Let /„ = J- (\A\2 - ±H2\ a = 2 - a, a € (0,2). Theorem 6.1 will be proven 
by bounding fa. From [Hul] and [Hu2], we have: 

LEMMA 6.2. 
i) & (|VA|2 - i |Vtf |2) = jj (VJ,, Vifi) + 2-^U \VH|2 

ii) J^ (fl- |A|2 - nC) + ^/, = jgrr (|>1|4 - ^C) - a \A\2 %, 

iii) A/, = ^ (^., ViV.if) + j^Z + ^ I^Vi/iw - hkiViHl2 

-fifrAH+V-^rVf* |VF|2 -21^11 (ViH^iU), 
iv) Lef p > 2. TTien /or an?/ 77 > 0 and any 0 < cr < |, 

ne2 /Wt /Pif2dMt < (2IB» + 5) /Me ^/r1 |VH|2 dMt 

+^(p-i)/Me/r
2iv/.i2^. 

Using Corollary 4.5, ii), 

LEMMA 6.3. Fort e [0,T), 

f i?a = /iA#a - a (a - 1) hHa-2 |VF|2 - a (1 - hH) if""1 |A|2. 
Together with Corollary 4.6, we obtain 

LEMMA 6.4. For t e [0, T), 

^U = ftA/. + 2/tfo-l) {v./(r) V.F) _ ^_ |FV.ftw _ ^v^l2 

- A (a _ i) (2 - a) /„ | VF|2 + ^ (|^|4 - HC) 

-a^{l-hH). 

In view of Corollary 2.2 and Theorem 2.5, the inequalities of Lemma 1.8, i) and 
ii) hold, so from Lemma 6.4, if we assume a G (0,1), then 

COROLLARY 6.5. For t e [0,7), 

(17)    i^<fc{A/a + 2(21^ 

-2e2Hfr-*^fa. 

This inequality is very similar to those obtained in [Hul] and [Hu2]. Consequently, 
the following analysis proceeds similarly. However here we must also use that h (t) > 0 
by Corollary 2.3. 

LEMMA 6.6. For allp > max (2, HXte"2) and a < min f |, |£3p~2 j, we have for 

allte [o,r), 

(f   fid/H)    <c1=c1(Mo)<oo. 
V/Mt 
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Proof. Choose 

ci = (|Mo| + 1)   sup   sup/^. 
"€[0,4] Mo 

It then suffices to show that for t € [0,T), 

|/ fSd^<o. 
dt JMt 

Multiplying (17) by p/J"1 and integrating over M*, we derive similarly as in [Hul] 
and [Hu2], using Corollary 4.2 and the assumption on p, 

i-j   ftdpt + lpb-l) [   fr2\Vf<r\2d»t + le2hp[   ±;fP-i\VH\2dtzt 
M JMt l JMt Z JMt H 

(18) < (1 - 2Ve2 - op) I   f*Hdfit + {op-l)ht   ftlPdiH. 
JMt JMt 

Therefore, using Corollary 2.3, 

H fSdiH+%p<p-i) [ fr2\vM2dvt + le2hp[ -^/rMvtfi2^ 
^ JMt 2 JMt 2 JMt H 

< aph [   FaH
2diit 

JMt 

< h—e^p*  /    fPH2diit by assumption on a 
8 JMt 

< hiPk {(2,p+5) j^ J,/r. ,vin> *,+fe^l /Mi /r
2 IV/.I' *.} 

where we have used Lemma 6.2, iv) with 77 = fp". Therefore 

IL*** ^(!^-^) L, ^«-iv^*.<fl 
since /i (t) > 0 by Corollary 2.3 and pa > ^. This completes the proof. D 

Exactly as in [Hul], we then have 

COROLLARY 6.7. Ifp > max (2, lOO^"2, (f )2 28£-6) and 

a<min(i,fe3p-^^3P"2), then forte [0,T), 

d/"^*') p 

<Cl. 

To prove Theorem 6.1 we also need three well known results: 
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LEMMA 6.8 (Michael-Simon Sobolev inequality, [MS]). For all 
Lipschitz functions v on M, 

n-l 

(I M^cW)  n   <cs(n)([ \Vv\dtit+ [  \H\\v\dfM 

COROLLARY 6.9. For all Lipschitz functions v on M, if 
A = {x e M : v ^ 0} and q = ^ then 

(19)     ( / v2qdfi) q < cw (n, |Af|) / |Vv\2dfi 
\JM J JM 

+ cs(n)(j \H\ndX (J v^dfi 

LEMMA 6.10. For r < s < w < and ± = f + 1^} ifueLr (M) n Lw (M) then 
u G Ls (M) and 

IMILS(M) < II^IIL-(M)II^IIL-~(M)- 

LEMMA 6.11 (Stampacchia, [St]). Lety : [fci,oo) be a nonnegative, nonincreasing 
function such that 

W(h)<       C    -\tp{k)\ 7 

for allh> k>ki, where C, p and 7 are positive constants and 7 > 1. Then 

<p(k1+D) = 0 

where D? = 2^C|^(/ci)|7"1. 

Proof of Theorem 6.1. Following [Hul] and [Hu2], define pointwise on Mt 

fatk =max(/a.-A:,0) 

for all k > ko = supMo f(T. For each t, /^ is nonzero on the set 

A(k)t = {xeMt :/*■>!*}. 

This set will be denoted simply by A or A (k) where no confusion could arise. 
Multiplying inequality (17) by p/^1, we derive similarly as in [Hul] and [Hu2], 

dt 

Almost everywhere on A (&), 

^(p-i)/rfc
2iv/.i2>|v/|fc 
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£ 
so with v = f*k and using /^ < fa on A (k)v 

(20) ^ / i;2^t + / \Vv\2 dfH < hap f f^H2dfit. 
<tt JA JA JA 

Recalling Lemma 2.6, we now apply Corollary 6.9 to the Vv term to obtain 

(21) jl-cs(n)( / \H\ndtitY \(J   v2qd^ty <cw(n,\Mo\)J   \Vv\2 d^. 

Now, 

2. 2. 

(j Hnd^ n < k-% (J ITfSd^ n < k-^cf 

by Corollary 6.7 with m = n, provided p > 28£~6 and a < j^esp~^. Choose k = ki 
2. 

large enough such that 1 - cs (n) (/A |iJ|n d/it) n > ^. Then (21) becomes 

([   v2«dtit)
q <2cw(n,\Mo\) l   \Vv\2diit 

\jMt J JMt 

and so (20) becomes 

d_ 
dt 

f v2diit + c(n,Mo,fci) ( j v2qdiJi\ q <h{t)ap f f^H2dfit. 

This is the same inequality as at the corresponding point in [Hul] except for the 
function h(t). But using Corollary 5.3, 

f v2dfit + c(n, Mo, h) ( f v2qdii^\q < apS f f^dfit 

and we may proceed again as in [Hul]. Integrating over [0,t], t € [0,T), 

d_ 
dt 

(22)     /      ^2d/it + c(n,Mo,fci) /   ( /      v2qdfit)   dt 
JA(k)t JO    \JA(k)t J 

<apS j   j      f^H2dfitdt. 
Jo   JA(k). 

rt 

lA(k)t 

Since v2q and fgH2 are nonnegative, (22) shows for any t £ [0,T), 

(23) sup    f      v2dfit < apS [    f      f^H2d^t dt 
«€[0,T)./j4(fc)t ^0    JA(k)t 

and 

(24) c(n,Afo,fci) I   ([      v2qdnt)   dt<apsf    [      fPH2dfitdt. 
Jo    \JA(k)t J Jo   JA(k)t 
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Let go be such that 1 < qo < q = ^j. Lemma 6.10 gives 

f       v2qodVt < I [       v^d^t) q I f       v2dfit 
JAik). \JA(k). /      \JA(k). j 

Hence 

[    j       v2qodiitdt < \   sup    /       v2d^t \ f   ( f      v2qdfit)   dt. 
JO    JA(k)t [t€[0,T)JA(k)t J JO     \JA(k)t J 

Now using inequalities (23) and (24), 

/    /       v2*>dvtdt<\c(n,M0)<jp [    [       f>H2diH 
Jo    JA(k)t { Jo    JA{k)t 

dt\ 

Exactly as in [Hul], we then find, using the Holder inequality, Corollary 6.7 and 
Lemma 6.11, that 

where D? = 2^C2\A(ki)\1T~
1, \A{k)\T := JQ JA{k)t dindt, 7 = l{n) > 1 and fa 

and C2 depend only on n and MQ. SO for fa to be bounded, it remains to check that 
\A (k)\T is bounded independently of T. We do this as follows.2 Prom inequality (18), 
since e2p > 100, 

±[   f*dH<-[   f2Hdto + (<Tp-l)h [   PaH
2d^. 

az JMt JMt JMt 

Choose cr small enough such that ap < 1, so 

^ /   f$dpt+ [   tfHd^KO. 
az JMt JMt 

Integrating over time t, we obtain 

(25) /   f2dto\t=T+ f    [   fVHdntdt<f   fSdiit\t=o = c+(Mo)<oo. 
JMt JO    JMt JMt 

Now on A (k)v k < /<, < Ha by Lemma 1.4, ii), so k* < H. Therefore, on A (k)t 

fp      fp    H 1 

Finally 

Wk)]r S 3^1 CL ^^ ' IM ^ (25)' 
This bound depends only on n and MQ and is, in particular, independent of T. 

This completes the proof of Theorem 6.1. D 

21 would like to thank Professor Gerhard Huisken for supplying a similar argument for the volume 
preserving mean curvature flow, which did not appear in [Hu2]. 
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7. Estimate for the gradient of the mean curvature. 

THEOREM 7.1. For all rj > 0 there is a constant CA = CU (n, Mo, 77) < 00 such 
that, for all t G [0,T), 

\VH\2<rjH4 + CA. 

This is the same result as in [Hul] for the original mean curvature flow. In [Hu2], 
Huisken obtained for the volume preserving mean curvature flow the slightly weaker 
result 

|Vtf|2<77fT£ + C(ra,Afo,7?), 

where HT = maxte[o,T) max^Mt H {x,t). However, using the Aleksandrov inequal- 
ity for mixed volumes, we obtain in Section 9 the stronger estimate for the volume 
preserving mean curvature flow as well. 

Using Corollary 4.5, ii) and Lemma 1.9, we easily compute: 

LEMMA 7.2. Forte [0,T), 

— |Vtf |2 = /iA |Vtf |2 - 2h \V2H\2 - 2h (hij, ViHVjH) + 2h \A\2 |Vtf |2 

+ 2h (ViHVjH, himhTj) - 2 (1 - hH) (Vi \A\2 , Vifl1) . 

Then using the Cauchy-Schwaxz inequality, Corollaries 2.2 and 2.3 and Lemmas 
1.4, ii) and 1.5, we have 

COROLLARY 7.3. Fort e [0,T), 

!- |Vi7|2 < hA \WH\2 + 2nhH \VA\2 + AnH |VA|2 + 8nhH2 |VA|2 . 

The following inequalities, similar to those in [Hu2], are easily obtained using 
Theorem 6.1 and the Cauchy-Schwarz and Young's inequalities. 

LEMMA 7.4. Fort e [0,T), 

i) |(viff,Vi(|A|2-iH2))|<|{^fr + c1(nlMo)}|VA|2, 
ii) H |(V^, V, (\A\2 - ^2j)| < I {^H> + c2(n,M0)}m

2. 
Using Lemma 7.4 and Corollaries 4.6, ii) and 4.5, we obtain 

LEMMA 7.5. Forte [0,T), 

i) i (l^l2 " ^2) 

< ft {A (|A\2 - ±H2) - i^ll |VA|2 + 2 \A\2 (\Af - ±H2) }, 

ii)£{tf(|A|2-I^)} 

<h[A{H (\A\2 - ^H2) } - ^H \VA\2 + ex | V^l2^ 

+ (3/iF-l)|A|2(|A|2-lF2); 

iii)i{^(m2-I^)} 
< ft [A {^ ^,2 _ !#2) | _ iz^i) F2,Vj4|2 + C2,VA|2 

-2ft|A|2(l-2ftF)|^|2(|A|2-i^. 
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Here ci (n, MQ) and C2 (n, MQ), are the constants of Lemma 7.4- 

Proof of Theorem 7.1. Consider the function 

(27) g = \VH\2 + (iVi + N2H Hh N3H
2) f\A\2 - ±H2) 

where Ni, N2 and iVs are large constants to be chosen later. In [Hu2], Huisken instead 
used 

then 

g1 = (H + hv)H(\A\2-±HA 

92 = (1 + hv)   \A\' - -H< n 

gz = \VH\2 + N2gi + JV2W102 

for iVi and N2 suitably large. By using g we avoid the evolution equation for h (t), 
but we do need the bounds on h (t) from Section 5. 

We compute using Corollary 7.3 and Lemma 7.5, 

(28) 

~g <hAg + h jiVad + N3c2 - i^-^ j |V^|2 

+ fznh + 4n - ^p-hN2\ H \VA\2 + h jsn - ^^3} H2 \VA\2 

+ {2hN1 + (ZhH - 1) JVb + 2H (2hH - 1) N3} \A\2 (\A\2 - -HA . 

We estimate the terms above not involving \VA\  using the bounds on h (t), Theorem 
6.1 and Young's inequality: 

{2hN1 + {ZhH - 1) JV2 + 2H (2hH - 1) N3} \A\2 (\A\2 - -H2) 

< (2SNi + 3SN2H + 4SN3H
2) CQH

4
-

6
 < r)H6 + CB (n, MQ, 77) H2, 

for all 77 > 0. 
Also, using Corollaries 5.3 and 5.7, 

2nh + 4n - ^~    ^^2 < 2n (5 + 2) - ^ ~ ^ LN2 
on 3n 

so if we take N2 >   7n-t)L, 1 the H \VA\   term in (28) may be neglected, leaving 

^g <hAg + h /JV2ci + iV3C2 - ^^^1} I V^|2 

+ hUn- fc^JVs j i72 |VA|2 + 77i?6 + Cs (n, MQ, 77) i?2. 
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We now show by contradiction that for any rj > 0 there is a constant CA (ft> M^^rf) 
such that, for 0 < t < T, 

g<rjH4 + CA. 

Choose CA large enough that the inequality holds at t = 0 and then suppose there is 
a first time t = to < T where g = r]HA + CA at some XQ E Mt0. This point is a local 
maximum of p, so 

0 <h{ JVsd + JV3C2 - 4(rL ^iVi \ IVA|2 

3n 

+ h I 8n - 
(n-1) 

N3\H2\VA\2 + nH6 + CBH2 

N2Cl + ^^ - i^ivj + (8n - ^iVa \ H> 

3n 

+ r]H6 + CBH2 

3n 3n 
■IVi/l2 

by Lemma 1.5, i), since iVi, iV2 and N3 are to be chosen so large that the coefficients 
of all the \VA\ terms are negative. Now substitute for |Vi?| using (27). Hence at 
so, 

0<h ^ci + i^-i*^^ 
1 
n 

(29) 
3n J      [ 3n 

LH
4
 + CA~ (iVi + iV2F + N3H

2) (\A\2 - ^H2) I 

+ VHe + CBH2. 

Using Theorem 6.1 and Young's inequality, 

(30) (JVi + N2H + TVaiJ2) (|A|2 - ±HA < ^H* + hjA (n, Mo, T?) 

where we may take a larger CU (n, Mo,rj) earlier if necessary for inequality (30) to 
also hold. CA would then also depend upon iVi, iV2 and N3, but these will all be 
chosen depending only on n, MQ and ry. Hence 

VH4 + CA- (JVi + N2H + N3H
2) (\A\2 - ±HA > ^H4 + ±CA 

so substituting into (29) 

_     h JA^ + A^-i^i^j + j 
(^H' + ^CA+V^ + CBH

2 

8n-^m\H2 

= 1 m {8n _ (=zi) ^,1 fl. + 2 {iV.c, + ATsc, - ^NA H4} 
Tl 12   I 3n J 2   1 3n J J 

+ £ [{8n - ^iVa} C^2 + {jV^ + iV3C2 - ^N1} CA 

+ T]H6 + CBH2. 
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and 
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Grouping the like powers of H and again using Corollary 5.7 gives 

(31) 

os^-^^ + ^ + ^^+i^-l^^}^ 
+[£{8»-^Mc*HH2+^W2Ci+"3C2-1^",}c'- 

Now choose JV3 = N3 (n, MQ, rj) large enough such that both 

J8n - ^p-N3\ CA (n,M0, tj) + CB (n, Mo,T?) < 0 

Then choose JVi = iVi (n, Mo, 77) large enough that 

^ci + iV3C2 - -4 ^^1 < 0. 3n 

This gives a contradiction in (31). Thus on 0 < t < T, 

g = IVF|2 + {Nx + iV2^ + iVs^2) (\A\2 - 1-HA < rjH4 + CA (n, Mo, 77) 

and so 

|Vi7|2<77#4 + ^(n,Mo,77). 

This completes the proof of Theorem 7.1. D 
As in [Ha], [Hul] and [Hu2] we next use 

THEOREM 7.6 (Myer's Theorem).   If Rij > (n — l)Kgij along a geo-desic of 
length at least 7rK~^ on M, then the geodesic has conjugate points. 

Similarly as in [Hul] and [Hu2], to use Myer's theorem we need 

LEMMA 7.7.  The inequality 

Rij>(n-l)e2H2gij 

is preserved for t £ [0,T); where e > 0 is the constant of Lemma 2.5, 
The proof of this lemma is a straightforward contraction of the Gauss equations 

followed by two applications of the inequality of Theorem 2.5. 

COROLLARY 7.8. Under the surface area preserving mean curvature flow, the 
mean curvature H of M* is uniformly bounded above for t G [0, T). 

The proof of this corollary is almost identical to the corresponding proof in [Hu2], 
using Theorem 7.1, Theorem 2.5 and Myer's theorem to show that if H were not 
uniformly bounded, then all principal curvatures of Mt would tend to infinity every- 
where. In [Hu2] this contradicts the constant volume property, while here this would 
contradict the constant surface area property, Lemma 2.6. 
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8. Estimates for higher derivatives of curvature and long time exis- 
tence. Following closely the technique of Huisken in [Hu2], inspired by Hamilton in 
[Ha], and also using the bounds on-ft {t) from Section 5, it is straightforward to derive 
the following result. 

THEOREM 8.1. For t e [0,T) and each m e N, 

\VmA\2 < Cm 

uniformly on Mt, where Cm = Cm (n, MQ). 

Here VmT denotes the rath iterated coyariant derivative of a tensor T. Since the 
uniform bounds on |Vm>l|   for all ra do not depend on t, 

COROLLARY 8.2. We may take T - oo. 
Exponential convergence to the sphere follows as in [Hul], using a standard inter- 

polation argument and the Sobolev inequality. In particular, |i4| — ^H2, the speed 
of the Mt*s and all curvature derivatives decay exponentially to zero. Hamilton's 
theorem for uniformly equivalent metrics, from [Ha], can be used to show that the 
metrics gij (-,1) converge uniformly to a smooth, positive definite metric gij (-,00) as 
t —» 00. Since |i4| — ^H2 —» 0, gij (-,00) is the metric of a sphere. By Lemma 2.6 
this sphere has surface area equal to |Mo|. This completes the proof of Theorem 2.8. 

9. Alternative |ViI| bound for the volume preserving mean curvaiture 
flow. The volume preserving mean curvature flow, with flow equation 

(32) JtF{Xyt) = (M*) - # (M)MM) 

where 

lMt
HdVt 

(33) hy (t) = 
\Mt\ 

is shown in [Hu2) to preserve the volume V enclosed by Mt, while the surface area \Mt\ 
is nonincreasing. Furthermore, the flow preserves strict convexity for a short time, so 
using the Aleksandrov-Fenchel inequality for mixed volumes to estimate /M H cfy^, 
we can bound |Vif | in a similar way as in Section 5. This simplifies the argument in 
[Hu2] and also avoids computing the evolution equation for hy (£). 

By the Favard inequality, (38), 

/ 
JM 

FdMt<c(n)'Mt' 

Therefore, recalling (33), 

(34) hv (t) < c (n) 1^ < c (n) 1^1 := Sv (n, Mo) 

since |Mt| is nonincreasing under the flow. It was shown in [Hu2] that 

^ \S7H|2 < A |VJJ|2 + 8nH (H + hv) |VA|2 , 

^H = M{+tH-hv)\A\2 
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and 

Using these we compute that the function 

g = |V#|2 + {Nx + N2H + N3H
2} f\A\2 - ^-HA , 

where iVi, iV2 and N3 are large constants to be chosen later, satisfies 

§jg<Ag + (N2CI + iV3c2 - 
4(n

3~
1)7v1| \VA\

2 

(35) + {8n/i - ^^ J ^ |V^|2 + jsn - ^^^3] i?2 |V^|2 

+ {2^ + 3HN2 + 4H2N3} \A\2 f\A\2 - ^HA 

where Ci and C2, constants depending only on n and MQ, arise in the same way as in 
Section 7. It follows similar as in Section 7, using (34) and the equivalent pinching 
estimate from [Hu2] to Theorem 6.1, that for all 77 > 0, 

\VH\2<riH4 + C(n,Mo,v)> 

A lower positive bound on hy (t) is not needed here. 

Appendix A. Curvature integral estimates using mixed volumes and 
applications. As in [BZ], we write the m-th mixed volume of a convex region Et as 

(36) Vm(Et)= ,nv     /        ^Kji-'Kjn-nd/lt 
(n + !) Km) JMt   j 

where Efis the solid (n +1)-dimensional region bounded by M$, Mt has principal 
curvatures «i,..., Kn and the sum is taken over the (n ™m) various finite sequences 

The (n + 1)-^A mixed volume is 

(37) VB+1(^)=Vol(JSe). 

Two consequences of the Aleksandrov-Fenchel inequality for mixed volumes are 
the Favard inequality, 

(38) ^2(^)>^-i(^)^+i(^) 

which holds for any i = 1,..., n and 

(39) V^1 (Et) > uZtl^V (Et) = ^tl-'Vo? (Et) 

where a;n+i is the volume of the (n 4- l)-dimensional unit ball. Remembering Lemma 
2.7, for the surface area preserving mean curvature flow this becomes 

(40) ^(J^^+J-'Vol* (£*,). 
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For an upper bound on JM Y^i<j KiK3 dv>t, note from (36), 

(41) VB_2 {Et) = {n+l)
2

n{n_l) f^ E Wn dlH, 

(42) Vn_1(Ek) = 7-±r-[HdH 
[n + 1) n JMi 

and using also Lemma 2.6, 

(43) VB(^) = _1_ |^| = -^^01. 

Now from (38), 

Vn-2 (Et) < 
Vn(Et)   ' 

so substituting in (41), (42) and (43) gives 

(44) L^Ki^-^m(LHd,H) 
Using (42), (43) and (37) in (38) with i = n yields 

2 

/ ^- (n + l)"Vol(£7t)- (n + l)    Vol(^) 

by Lemma 2.7. So we have an upper bound on fM H dfit without using the diameter 
bound. (For this we could instead have used the Cauchy-Schwarz inequality, Lemma 
2.6 and Corollary 5.6, again not needing the diameter bound.) 

Substituting this into (44) gives 

f   V- j    /     (n-l)n|Mo|3 ...    ... 

MZZ      3 2(n + l)2Vol(Eo) 0;, 

which is the bound required in the proof of Corollary 5.6. 
We can also obtain a lower bound on /M Hdnt, avoiding the diameter estimate. 

Setting i = n — 1 in (39) and recalling (42), 

{ra/«,H<*"rla""+iVol""1(Eo)' 
yielding the desired positive lower bound. Corollaries 5.2 and 5.3, the upper bound 
on /i, then follow without the diameter estimate. 

The lower bound on fM H dfit also combines with the upper bound on fM H2dfit 
of Corollary 5.6 to yield the lower bound on h, Corollary 5.7, again without the 
diameter estimate. 
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