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THE SURFACE AREA PRESERVING MEAN CURVATURE FLOW *
JAMES McCcoYt

Let My be a compact, strictly convex hypersurface of dimension n > 2, without
boundary, smoothly embedded in R®*! and represented locally by some diffeomor-
phism Fp : R® D U — Fy (U) C My C R™*1. Under the surface area preserving mean
curvature flow, formulated by Pihan in [P], the family of maps F; = F (-,t) evolves
according to

0

(1) 5 F @) ={1-h®H(@t)}v(zt) ,2€U,0<t<T < oo,
F (" O) = FO’
where H is the mean curvature of M; = F; (U), v is the outer unit normal to M; and
f 4 Hdp,
(2) hit) = M
fM,H dpt

where dy, is the surface area element on M,. Pihan studied basic properties of this
flow for general n and showed that (1) has a unique solution for a short time. He
also proved for n = 1 that an initially closed, convex curve in the plane converges
exponentially to a circle with the same length as the initial curve. Analogous to
this result and those of Huisken in [Hul] and [Hu2] for the mean curvature flow and
the volume preserving mean curvature flow, we show here a similar result for the
surface area preserving flow, when n > 2. I would like to thank my PhD supervisor
Professor Klaus Ecker for introducing me to this topic and for his suggestions, advice
and encouragement throughout the production of this work. I would also like to thank
Professor Gerhard Huisken and Dr Ben Andrews for useful suggestions and Associate
Professors John Stillwell and Alan Pryde and Drs Maria Athanassenas and Marty
Ross for valuable discussions.

Recently in [M] we have generalised the results of [Hu2] and this paper, study-
ing general ‘mixed volume’ preserving mean curvature flows, of which the volume
preserving and surface area preserving mean curvature flows are special cases.

1. Notation, definitions and well-known facts. We adopt similar notation
to Huisken in [Hul] and [Hu2]. Let M be an n-dimensional Riemannian manifold.
Vectors on M are denoted by X = {X*}, covectors by Y = {Y;} and mixed tensors by
T= {T}k} The induced metric and the second fundamental form on M are denoted
by g = {gi;} and A = {hy;} respectively. The surface area element of M is given by

p =4/ det (gi),

while the inner product of tensors T = {T%_ .} and § = {S%,,} on M is written as
<T§cm’ Szkm> = gijgklgmn l;cmSJl‘n = Tl}cmsi km,
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8 J. MCCOY

where g% is the (4,j) entry of the inverse of the matrix (g;;). Unless otherwise
indicated we always sum over repeated indices from 1 to n. So for the norm of the
tensor T,

IT%m)” = 1T = (Tmms Thom)

(The notation (-,-) is also used to denote the ordinary scalar product of vectors in
R™*1.) For traces of the second fundamental form, we write

o H = g“h;j = h%, the mean curvature of M,

o |A]? = g9 g hikhj = h’khjk, the norm of the second fundamental form on

M, .
o C =g 9gMg™ hixhjmhin = W h;" B,
4 4 2\2
o Z=HC ~|A[' where |A|" == (|4 ) .
If F: U C R® — R™! smoothly embeds M in R™*!, then
oF oF OF ov
05 (0) = (5 @), g (3)) 0 by ) = (5 (). 5 o))

respectively, for z € U, where v (z) is the outer unit normal to M at F (z). The
matrix of the Weingarten map of M is then

(5 @) = (97 (2)) (ks ().

The eigenvalues of this matrix are the principal curvatures of M. M is strictly convex
if all the eigenvalues of (h%) are strictly positive.
The induced connection on M is given via the Christoffel symbols,

1 0 0 1o}
Ik = Z gkl PR AP
ij 9 g 9z, gt + 8mj gil o1, 9ij
so the covariant derivative of a vector X is

.0
ViX'= 2

— Xt 4T Xk
.’Ej + k]

The covariant derivative of a tensor T is denoted VT = { Vngk}. The Laplacian of
Tis
ik _ i k
AT = V™V,T5R.

The Riemannian curvature tensor on M may be given through the Gauss equa-
tions

(3) Rijki = hixhji — hahj.

Then the formulas for interchanging second covariant derivatives are
ViV, X" -v;v;x" = RM X*

and
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LEMMA 1.1.
i) Vihji = Vjhg; = Vihs; (the Codazzi equations),
ii) If F (z,t) is the position vector in R"*1  then

AF (z,t) = —H (z,t) v (z,t) .

LEMMA 1.2 (Simons’ Identity).
i) Ahij = ViV;H + Hhahl; — |A]® hyj,

ii) 2h,JARE = AJA]” - 2|VA]?,

iii) AJA]> =2r9V,V;H +2|VA]®> +2Z.

The following lemmas are used in [Hul] and [Hu2].

LEMMA 1.3. The trace-free part of the second fundamental form, A® = {hJ;

where h?j = hij — %H 9ij, has the following properties:

i) g”hY; =0 (hence the term trace-free),

i) |4°% = |4 - LH?,

iii) |VA°|* = VA - L |VH]?,

) <ViH, v (|A|2 - %H2)> = 2(h,V;H, V;hQ,).

v

LEMMA 1.4.
i) 4] 2 LH,
ii) For weakly convez M, |A|* < H2.
LEMMA 1.5.
i) % |VH <|VAP,
ii) j(vi |A]? ,ViH>| < 2nH [VAP.
LEMMA 1.6.
i) |VAI® > 255 [VHP,
ii) Equivalently, |VA|* — L |VH|> > %’;m;lz [VA].
LEMMA 1.7. Let A = (ai;) be a symmetric n X n matriz with eigenvalues
My.v oy dn. If for some A € R,

A=A
for eachi=1,...,n, then each diagonal element of A satisfies
ai; > A

This can be proved using a straightforward diagonalisation argument.
LEMMA 1.8. If H > 0 and h;; > eHg;; with some € > 0, then
) Z2ne?H? (JAP - 2181),
i) |[HVhp — hiaViH|? > 32H? |VH],
iii) nC — H|A® > 2neH (]A|2 -1 |H|2).
Finally we will also need the following Bochner formula, the proof of which is a

standard computation interchanging covariant derivatives and using the Gauss equa-
tions.
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LEMMA 1.9.

A|VH|?> = 2(V,AH,VH) +2 |V2H|” + 2H (huyp, Vi HV o H) .
-2 (hinlea hilvnH) .

2. Short time existence, preservation of convexity and elementary
properties of the flow.

THEOREM 2.1 (Pihan, [P]). For a € (0,1), let My be a C** compact, embedded,
n-dimensional submanifold in R™*! without boundary, parametrised by a C** embed-
ding Fo : R* D U — Fy (U) C My C R, Assume also that H # 0 at some point of
My. Then there exists To > 0 such that the initial value problem

gt—F(:z:,t) ={1-h(t)H (z,t)}v(z,t) forzeUte(0,T)
F(,O) = Fo
h(0)>0

where h (t) is given by (2), has a unigue solution F in C3 (U) x CY% ([0, Tp)).

In our case, My is strictly convex, so clearly H > 0 everywhere on My and
h(0) > 0. As in [P], Theorem 2.1 implies short time continuity and positivity of
various geometric quantities. As two important examples,

COROLLARY 2.2. H > 0 for a short time.

COROLLARY 2.3. h(t) > 0 for a short time.

The ‘short times’ of Corollaries 2.2 and 2.3 may not be the same. When we refer
to a solution on [0,T), we always take the smallest T > 0 necessary such that all
relevant quantities are positive and finite.

A trivial modification to the proof of Hamilton’s maximum principle for tensors on
manifolds from [Ha| incorporates h (t) > 0 in front of the Laplacian. Then, similarly
as in [Hul] and [Hu2], we have:

THEOREM 2.4. If hij > 0 at t = 0, then it remains so on [0,T).

THEOREM 2.5. If initially H > 0 and hi; > eHg;; for some € € [0,1), then
hij > eHg;; remains true on [0,T).

We verify as in [P] that the surface area |[M| := |, 1, @ of the evolving hyper-
surface does indeed remain fixed under the flow (1), while the enclose volume does
not decrease. For convenience, we parametrise M; over S™, which is possible since M;
remains strictly convex for a short time by Corollary 2.2 and Theorem 2.5.

LEMMA 2.6. The surface area of M; remains constant throughout the flow, that
is,
d

— du; = 0.
dt M, it

Proof. We use the First Variation of Area Formula with the vector field %—f,

extended appropriately, and the Divergence Theorem.

d _ (0F B
E /Mt d,ll/t = /Mt dlth (5{) d[Lt = - o, (1 - hH) de/t =0
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using (1) and (2). o

LEMMA 2.7. The volume enclosed by M; does not decrease throughout the flow.
That is, if E, C R is the (n + 1)-dimensional set enclosed by M, then

d
5 Vol (Br) 2 0.

Proof. Extend F; smoothly off S” into all of R™*! such that F; (B; (0)) = E;
and F; (S*) = M; = OE;. Then by the First Variation Formula,

d . OF\ . OF
%VOI (Et) = 5 leRn+1 (—5{) dVv = / : < ot ,l/> dﬂt

= (l—hH)dﬂt=/ dl‘t“’
Mt Mt

(fMt H dl*‘t)z

(fMt H? d#t) ="

using (1), (2) and the Cauchy-Schwarz inequality. o

REMARK. If H is constant, then we have equality in Lemma 2.7. Hence if My is
a sphere, then the volume enclosed by M; remains constant under the flow. This is
consistent with the observation from equation (2) that if H is constant then h = %
and (1) becomes %—? = 0. Thus a sphere remains static under this flow.

We now state our main theorem to be proved.

THEOREM 2.8. If the initial n-dimensional hypersurface My, n > 2, is strictly
convez, then the evolution equation (1) has a smooth solution M, for all times 0 <
t < 0o, and the M;’s converge, as t — 0o, in the C°°-topology, to a sphere with the
same surface area as My.

3. The solution remains within a bounded region of R™*!. In this section
we show that the solution hypersurface M; remains within a large ball whose radius
depends only on the initial hypersurface My and is, in particular, independent of time.
The result is based upon a theorem from [CG].

Notation
e V and g denote the covariant derivative and metric on S™.
e Ry ={ae€R:a>0}
e For any unit vector n € S® C R™+1,
n =S (n) = {z €S": (z,n) 2 0}.
THEOREM 3.1 (Chow, Gulliver, [CG]). Letu € C?(S™ x [0,T)), 0 < T < oo, be
a solution to the PDE

(4) u =G (V2u+gu,t) for all (z,t) € S™ x (0,T)

u(+,0) =y

where the following hold:
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a) G is invariant under similarity transformations of the matriz V2u + gu. G
depends only on the eigenvalues r1,...,rn of V?u + gu.
b) G is differentiable with respect to each r; and g—rci >0 for each i.
c) ug is Lipschitz.
Then
i) Given any unit vector n € S™, there is a A = X (ug) € Ry such that, for all
(z,t) € ST x [0,T),

u(z —2(z,n)n,t) + A(z,n) > u(z,t).

i) With the same A as in 1), for all z1,2 € S, t € [0,T),

lu(z1,t) — u(z2,t)] < A

1
sin ('édiStSn (xl,m2)>, .

iil) maxgesn u(z,t) — mingesn u (z,t) < X for allt € [0,T).
iv) |[Vu(z,t)| < % for all (z,t) € S" x [0,T).

REMARK. Chow and Gulliver consider G which depends on the slightly more
general matrix V2u + cgu, where ¢ < 1 is a constant. Their G also depends explicitly
upon u. Consequently they require G to satisfy a monotonicity condition.

Unlike Chow and Gulliver, we have stated Theorem 3.1 without a Lipschitz con-
tinuity hypothesis on G. Then the theorem can be applied to the G’s arising for many
curvature flows including the surface area preserving mean curvature flow. The proof
remains the same, except that the comparison principle for nonlinear parabolic PDEs
is used instead of the Lipschitz continuity of G.

We will apply Theorem 3.1 to the real-valued support function of M;, defined as
in [Anl] and [U]. An alternative, equivalent definition, along with elementary prop-
erties of the support function, can be found in [L].

DEFINITION. The support function Z : S* — R of a strictly convex hypersurface
M = F (S") is given by

Z(z)=(F (v ' (z),z)

where v~1 : §* — S™ is the inverse Gauss map of M.

Geometrically, the support function Z (z) gives the perpendicular distance to the
origin of the tangent plane T, —1(g)) M.

M may be parametrised using its support function. The following result is from
[Anl].

LEMMA 3.2. If M is a strictly convez, compact hypersurface with support function
Z :S™ — R then M can be parametrised such that its Gauss map is the identity, by
the immersion F : S® — R"1 where

F(z)=Z(z)z+VZ(z).

As the flow (1) preserves strict convexity for a short time, the support function
of My, Z (-,t) : S® — R, can be defined by

Z(z,t) = (F (v (2),1),2)
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where v; 1 : §* — S" is the inverse Gauss map of M;.
It is straightforward to derive, similarly as in [U}, the evolution equation for the
support function under the flow (1).

LEmMMA 3.3. Under the flow (1),

5) O () =1-h() H (7 (2),1)

REMARK. The parametrisation in Lemma 3.2 will not be preserved by the flow
unless we incorporate a tangential diffeomorphism. However, here we will only need
to use Lemma 3.2 at a fixed time.

Also as in [U] we note that the support function of M; and the inverse of the
Weingarten map of M;, W~! are related by

(6) W (7! (2) ,t) = V2Z (2,t) + Z (z,1) g.

Hence the mean curvature is given in terms of the support function by

(7 H (v (z),t) = trace{(V2Z (z,t) + Z (z,1) g)_l} .

PROPOSITION 3.4. Fort € (0,T), My C B, (O), where r = (My).

Proof. Fix ¢t € [0,T) and set P = maxges~ Z (z,tp). Comparing equation (5)
with (4), in view of (6) and (7),

n

G=1-h(HY =,

r
i=1 "°

and so

0G 1
= = D>
a’l'i h (t) ,’,i2 = 07

by Corollary 2.3. By Theorem 2.5 and Corollary 2.2, strict convexity is preserved for
t € [0,T). Hence Theorem 3.1 can be applied to (5); part iii) gives that there is a
A = A (Mp) such that

. SP_\
il’ellSI’ItZ(x,to)_P A

Hence, assuming P > A, Bp_» (0O) C E;. By Corollary 2.2 and Theorem 2.5, M; is
strictly convex, so
|M;| > |Bp-» (0)].
Lemma 2.6 therefore implies
Mo| = (n+ 1) waps (P — A)"
and hence

| My )
P<\ -_— .
sAF ((n+1)wn+1
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Finally, combining this with by Lemma 3.2,

1
3\ | Mo d
< < — L
P (oto)] < 12 @to) + 192 (ot < 5+ (G pii—)

where we have also used Theorem 3.1, iv).

Hence the result, with r = %ﬁ + (G-ﬂ%-"j;—l) . 0

REMARKS.

1. As consequences of this result, the diameter of M; remains bounded under
the flow and M; does not drift out to oo in some direction.

2. A analogous argument to the above can be used to show solutions of the
volume preserving mean curvature flow, considered in [Hu2], remain within
a suitably large ball, using the fixed volume instead of the fixed area. The
argument would also work for other constrained flows such as those in [M].

3. Using Chow and Gulliver’s theorem we have achieved this result before ob-
taining uniform bounds on curvatures and their derivatives, in contrast to the
method of Huisken in [Hu2].

4. Evolution equations. The following evolution equations for the surface are
preserving mean curvature flow may be derived similarly as in [Hul] or [P]. From now
on, V and A denote the covariant derivative and Laplace-Beltrami operator on M;.

=

LEMMA 4.1. The metric of the evolving hypersurface M, satisfies

i =2(1— hH)hi;.

COROLLARY 4.2.
i) 244 =—2(1—hH)h9,
i) Zpe = H(1—hH)p, where p, = /det (g;).

LEMMA 4.3. The outward unit normal to M; evolves according to

7]

THEOREM 4.4. The second fundamental form of M; evolves by

6

573 = Whyj + (L= 2hH) g + AP hij.

COROLLARY 4.5. ‘ .

i) h% = h (ARG + |4 KY) — hihm,

i) 2H =hAH — (1-hH)|A]%,
iii) § 14" =h (A4 - 2|v4 +2]4") - 2C.
COROLLARY 4.6.

) 2H?=hAH? - 2h|VH]® —2(1 - hH) H|AP,

i) £ (14 - 182) =hA (141 - 18%) - 20 (VAP - 1 |VHP)

+ 2141 (14 - %H2) —2C+2H|AP.
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5. Positive bounds on A (t). By Proposition 3.4, the diameter of M; is bounded
by d := 2r (Mp) under the flow. We will use the diameter bound in this section,
however, we remark that in fact, upper and lower positive bounds on h () can be
obtained without Proposition 3.4, see Appendix A.

LEMMA 5.1. Fort € [0,T), [y, H du, > 21301
Proof. Applying the Divergence Theorem to the position vector F' yields

nldol =niMf< [ B(E dus [ HIFldu<d [ Hau
Mg Mt Mt

using Lemmas 2.6 and the diameter bound. Hence the result. |

Applying the Cauchy-Schwarz inequality to Lemma 5.1, we immediately obtain:
COROLLARY 5.2. Fort € [0,T), [y, H2du, > "1l

REMARK. For n = 2 we could alternatively use the elementary bound from [W],

(8) H? dy; > 4.
M,

This is obtained as follows. Contracting the Gauss equations, (3), twice yields
9 R=H?—|A]?

where R is the scalar curvature. Therefore

(10) H?2=|AP+R>R
For n = 2,
(11) R=2K

where K is the Gauss curvature of M;. The Gauss-Bonnet Theorem gives

(12) Kdy, =2
M,

since the surfaces M; have genus equal to one. Integrating (10) over M; and using
(11) and (12) on the right hand side yields (8). 0

Using the Cauchy-Schwarz inequality, Lemma 2.6 and Corollary 5.2, we easily
obtain:

COROLLARY 5.3. Fort € [0,T), h(t) < £ := S (n, My).
For an upper bound on || M, H? dy; we apply the maximum principle to the evolu-

tion equation for %Li and also use an Aleksandrov-Fenchel type inequality for mixed
volumes. The quantity l—flj; was considered by Huisken in [Hul] and [Hu3].
LEMMA 5.4. Fort € [0,T),

o (|A]? AP h AP
5t (%) < hA <1I—_I-‘§-> +ﬁ<vi (I—HLZ) »ViH2>-
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REMARK. Huisken derived a very similar inequality for the original mean curva-
ture flow in [Hu3], namely

3 () < (40) oo (4) o)

It is remarkable that such a similar inequality holds for the significantly different
surface area preserving mean curvature flow. The inequality has the ideal form for
applying the weak maximum principle!

Proof of Lemma. Using Corollaries 4.5, iii) and 4.6, i), we compute

o $()-0(8)-3(-(5) )

h<H2|VA| — A |VH]| )_ 2 (HC—IA(“)-

HA 03
Noting that
H2\VAP? — (A |\VH? = |HV;hix — hix V. H|> + H3 Al ViH
VA" = |AP VA" = |H Vil — b Vill|” + H*( Vi | 3

(13) becomes
% ('—f?;) = hA (%ﬁ) 2 <V, ('A' ) v, H2> - ;—3 (HC - 141")
;” <|Hv hjx — hixVH|® + H? <v ('gL) VH>>
o () () )

using Lemma 1.8, i) with Lemma 1.4, i) and Corollary 2.2. O

COROLLARY 5.5. There is a § € (0,1), depending only on My, such that, for
te0,T),

|A]? (z,2) < (1 —6) H? (z,1).

Proof. In view of Lemma 5.4, the maximum principle is applicable to J-I%;. This
gives

2 2
(19) 2L () < ma (u) = Co = Co (Mo)

Now the constant Cyp < 1 by Lemma 1.4, ii) and Theorem 2.4. In fact, Cp < 1, since
if maxpy, ('Al ) =1, then at some point p of My, by compactness,

|A]> = H2.
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In terms of the principal curvatures of My, this would mean that
Z Kikj = 0
i<j

at p, which is not possible for a strictly convex initial hypersurface M. Hence from
(14), for some § € (0,1), for each z € S™ and all ¢t € [0,T),

|A (z,t) < CoH? (z,t) = (1 — 6) H? (z,t).
O
COROLLARY 5.6. Fort € [0,T),

(15) H?dp; < C =C (n, My).
M,

Proof. Consider the case of n = 2 first. Using (9), (11) and the Gauss-Bonnet
Theorem, (12),

- =/ (2~ 1A®) due 26 [ HPde
Mg M,

using also Corollary 5.5. The result follows.
For n > 2, the Gauss-Bonnet theorem cannot so easily be applied. However, the
Aleksandrov-Fenchel inequality for mixed volumes can be employed.! If we write

(16) H2dp, = / |A]? dpy +2 / > ki dpy,
Mt Mt t

1<j
the second term on the right of (16) is a mixed volume. As shown in Appendix A,
/ an] dus < U (n, My)
M i<j
for some constant U. Using this in (16) together with Corollary 5.5 gives
H%dp, <(1-06) [ H?du,+U
Mt Mt

and hence the result. 0
Combining Corollary 5.6 and Lemma 5.1 we get:

COROLLARY 5.7. Fort € [0,T), h(t) > L = L(n,Mp) > 0.

6. A pinching estimate. As in [Hul] and [Hu2], the quantity
1« 1

S (ki) = AP -~ B,

n <~
1<j

a measure of the difference between the principal curvatures, is bounded by a power
of the mean curvature.

11 would like to thank Dr Ben Andrews for suggesting this.
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THEOREM 6.1. There ezists a 6 > 0 and a Cp < oo, depending only on n and
My such that, fort € [0,T),

A2 - %Hz < CoH2.

Let fo = ¢= (IAIZ - %H2>, a=2-o0,0 € (0,2). Theorem 6.1 will be proven
by bounding f,. From [Hul] and [Hu2], we have:
LEMMA 6.2.
8VA}2 - %ng"’) = 2 (Vifs, ViH) + 2550 £, |VH]?
+ g2 [HY; hkz hkzviﬂlz,
i) (H |A]* - nC) ALy . (|A| - Hc) —olAP L
111) Afy = H°‘ <th,V¢V]H> + HQZ + W IHV hi — hk,VzH[

§ /o AH + C=2fp=llf, |VH| ~2522 (V. H, Vif,),
iv) Letp > 2. Thenforany77>0 and any0<a< 5)

ne? [y, fEHdpe < (21p+5) [y, Hafp'11VH| dps
3 =1 fug, 272 IV Lol dpe

i) #=

Using Corollary 4.5, ii),
LEMMA 6.3. Fort € [0,T),
2H* = hAH* — a(a— 1) hH* 2 |VH|> —a (1 — hH) H* 1 [A].
Together with Corollary 4.6, we obtain
LEMMA 6.4. Fort e [0,T),

0 2h(a—1 2h
5ife = hAfe + ——LqH—) (Vifo,ViH) — 'ﬁ |HVihat — hiaVH|?
h
~ s (@=1) 2~ ) f, IVHP + oy (141" - HO)
2
a% (1-hH).

In view of Corollary 2.2 and Theorem 2.5, the inequalities of Lemma 1.8, i) and
ii) hold, so from Lemma 6.4, if we assume o € (0,1), then

COROLLARY 6.5. Fort € [0,T),

01 2t <h{as+ 28D @.p v - S VHP +olaR 1

A 2
~2ef, ol g,

This inequality is very similar to those obtained in [Hul] and [Hu2]. Consequently,
the following analysis proceeds similarly. However here we must also use that & (t) > 0
by Corollary 2.3.

LEMMA 6.6. For all p > max (2,100e~2) and o < min ( 2e3p™ %), we have for
allt € [0,T),

(/ fgdut)p < e =1 (M) < 0.
M,
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Proof. Choose

¢y = (|Mo| +1) sup sup fo.

66[0,%] Mo
It then suffices to show that for t € [0,T),
d
p <

Multiplying (17) by pf?~! and integrating over M;, we derive similarly as in [Hul]
and [Hu2|, using Corollary 4.2 and the assumption on p,

d h 1 1
S| st Soo-1) [ VAPt gethe [ it IVHP dug
dt M, 2 M, 2 M, Ha
(18) < (1 - 2pe? - op) / fPHdy, + (op—1)h / fPH?dy;.
Me Mt
Therefore, using Corollary 2.3,

d h ) 2 1y L o1 2
G [, e gpo=n) [ VAl gty [ st 1o

< h%eg’pf/ fPH%du,; by assumption on o
M,
<ngpt{ems) [ gorrtwatans D [ s i)

2 h 1)
<h(Sr+Bot) [ et VHP L | 19 du
v H 2 M,

where we have used Lemma 6.2, iv) with n = %p'%. Therefore

d 5¢ 1 Te? 1 2
— 4 < —p2 — _—_fp—1
dt/]mfadllt_h(sz 16p)/1\,hH°‘fa IVH|" dps <0

since h (t) > 0 by Corollary 2.3 and pt > —EQ. This completes the proof. O
Exactly as in [Hul], we then have

COROLLARY 6.7. If p > max (2, 100¢2, () 288—6) and
o < min (2) 35 f2 %, %6319_%), then for t € [0,T),

([ #msaw)’ <e
M,

To prove Theorem 6.1 we also need three well known results:
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LEMMA 6.8 (Michael-Simon Sobolev inequality, [MS]). For all
Lipschitz functions v on M,

(/M [v|7==T d;u)nT_1 <cs(n) (/M |Vv| dus +/M |H]| lvldut) _

COROLLARY 6.9. For all Lipschitz functions v on M, if
A={z €M :v#0} and ¢ = ;25 then

(19) ( / qudu)%Scw(n»lM!) [ 19 au

veso ([ 1) ([ o)’

LEMMA 6.10. Forr < s < w < and % = g + %9, ifue L™ (M)NL™” (M) then
u € L* (M) and

9
llullzsary < ||U||0Lr(M)”U||(Llw(A)4)-

LEMMA 6.11 (Stampacchia, [St]). Let ¢ : [k1,00) be a nonnegative, nonincreasing
function such that

C

Y
=k o (K)I

@ (h) <

for all h > k > kq, where C,  and y are positive constants and v > 1. Then
¢(ki+D)=0

where DP = 2751G o (k)"
Proof of Theorem 6.1. Following [Hul] and [Hu2], define pointwise on M;

fcr,k = max (fa - k,O)
for all k > ko = supy,, f,. For each ¢, f; is nonzero on the set
A(k),={z e M;: fo > k}.

This set will be denoted simply by A or A (k) where no confusion could arise.
Multiplying inequality (17) by p fg;l, we derive similarly as in [Hul] and [Hu2],

d

h _ _
G [ Fredue+ 500 -0 [ 200 < hop [ 12305 Hod e
A A A

Almost everywhere on A (k),

2

)

1 _ e
510(1)— 1) f,kz IVis? > lvfg,k
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P
so with v = f?, and using frx < fs on A(k),s

d
(20) G [ [ 190 du <hop [ f2Htu.

Recalling Lemma 2.6, we now apply Corollary 6.9 to the Vv term to obtain

— & ( H|"d 2"d>a w (1, | M, 2 du,.
(21) {1 : (/| | m) }(/M )" < cwnl ol)/M‘IWI ”
Now,
( / H"dm> <k ( / H"fpdut) <k ZEer

1

by Corollary 6.7 with m = n, provided p > 28¢7% and ¢ < 1%63])—"-". Choose k = k;
2
large enough such that 1 — & (n) ([, |H|" due) ™ > 3. Then (21) becomes

1
( / v“’Qdut)" < 2cu (u[Mol) [ V0 due
Mg Mt

and so (20) becomes

1
d / o2dp + ¢ (n, Mo, k) ( / v%t)" <h@op [ f2Hdue
dt J4 A A

This is the same inequality as at the corresponding point in [Hul] except for the
function h (t). But using Corollary 5.3,

1
d / 2dut + C(TL Mo,kl) (/ Uzqdﬂt> S UPS/ ngzd/Jt
dt A A
and we may proceed again as in [Hul]. Integrating over [0,t], t € [0,T),
t q
(22) / vidu + ¢ (n, Mo, ki) / ( / v2qdut> dt
A(k), 0 A(k),

t
< opS / / fPH?dp, dt.
0 JAa(k),

Since v?? and fPH? are nonnegative, (22) shows for any t € [0,T),

T
(23) sup / v2dp, < apS/ / fEH?dp, dt
te(0,T) J A(k), 0 JA(k),

and

1

1

T q T
(24)  c(n, My, k1) / ( / vzqdut> dt < opS / / fPH?dy, dt.
o \JA®), 0 JAk),
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Let gp be such that 1 < gop < ¢ = . Lemma 6.10 gives

1 (q0—1)
/ v*Pdp, < ( / vz"dut) ( / vzdm)
A(k), A(k), A(k),
T (qO—l) T %
/ / v 0dpu,dt < { sup / v2dpu, / / v¥dp | dt.
0o JA), te[0,T) J A(k), 0 A(k),

Now using inequalities (23) and (24),

T T 9o
/ / v?Pdpdt < {c(n, Mo)op / / fPH2du, dt} .
0 JAR), 0 JA(k),

Exactly as in [Hul], we then find, using the Holder inequality, Corollary 6.7 and
Lemma 6.11, that

Hence

fo‘ S kl + Dv
where D? = 271Gy [A (k) [A(B)lp = fy [, diedt, v =7 (n) > 1 and ks
and Cy depend only on n and My. So for f, to be bounded, it remains to check that

|A (k)|p is bounded independently of T. We do this as follows.? From inequality (18),
since €2p > 100,

G| mams- [ pHAu+©@r-Vh [ f2H.
dt Ju, M, M,
Choose ¢ small enough such that op <1, so
d
/ 12 dig +/ fPH dp, < 0.
dt M,

Integrating over time ¢, we obtain
T
(25) / fg d/.tt't:T +/ / ng d,ut dt < / fg dﬂtlt:o =ct (Mo) < oo.
Mf, 0 Mt Mt

Now on A (k),, k < fy < H° by Lemma 1.4, ii), so k= < H. Therefore, on A (k),,
I8 H 1

(26) Sk SE R T )

HfP.

Finally

1 T ¢t (Mo)
—_ H fPdy, dt < by (25).
%) A M, fo l"/t = k(P"'%) y ( )

AWl <

This bound depends only on n and My and is, in particular, independent of T'.
This completes the proof of Theorem 6.1. 1]

2] would like to thank Professor Gerhard Huisken for supplying a similar argument for the volume
preserving mean curvature flow, which did not appear in [Hu2].
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7. Estimate for the gradient of the mean curvature.

THEOREM 7.1. For all n > 0 there is a constant C4 = C4 (n, My,n) < oo such
that, for all t € [0,T),

|VH|? < nH* + C4.

This is the same result as in [Hul] for the original mean curvature flow. In [Hu2],
Huisken obtained for the volume preserving mean curvature flow the slightly weaker
result

[VH[® < nH% + C (n, Mo, n),

where Hr = maxyc[o, ) maXzen, H (7,t) . However, using the Aleksandrov inequal-
ity for mixed volumes, we obtain in Section 9 the stronger estimate for the volume
preserving mean curvature flow as well.

Using Corollary 4.5, ii) and Lemma 1.9, we easily compute:

LEMMA 7.2. Forte [0,T),

% \VH|? = hA\VH? = 20 |V2H|* = 2h (hy;, V,HV;H) + 2| A |[VH|?
+ 20 (Vi HV H, himh™) — 2 (1 — hH) <vi 1A, viH> :
Then using the Cauchy-Schwarz inequality, Corollaries 2.2 and 2.3 and Lemmas

14, ii) and 1.5, we have
COROLLARY 7.3. Fort e [0,T),
0 2 2 2 2 2 2
5 [VH < hAVHP + 2nhH (VAP +dnH [V A + 8nhH? [VA”.
The following inequalities, similar to those in [Hu2], are easily obtained using
Theorem 6.1 and the Cauchy-Schwarz and Young’s inequalities.
LEMMA 7.4. Fort € [0,T),
i) ‘<V,~H, Vi (147 - 182))| < 1 { S50 H + o1 (n, Mo) } VAP,
if) HKViH, V. (147 - %H2)>l <HERHE + (0, M) } VAP
Using Lemma 7.4 and Corollaries 4.6, ii) and 4.5, we obtain
LEMMA 7.5. Fort € [0,T),
i) £ (142 - 1m°)
<h{Aa(JAF - 1H?) - 2520 \VAP + 2147 (4P - 1H?)},
i) & {H (14 - 18%)}
<h [A {H (147 - 2H2)} - S0 H VAP + |VA|2]
+ @RH = 1) AP (4P - 152),
iii) 2 {H2 (|A|2 - %H2)}
<h [A {H2 (1,412 - %H?)} D2 GAPR g |VA|2]
—2h|A? 1 - 2hH) |AP (|A|2 - %Hz).
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Here ¢ (n, My) and c2 (n, Myp), are the constants of Lemma 7.4.

Proof of Theorem 7.1. Consider the function
(27) g=|VH] + (N1 + NoH + N3 H?) ([A|2 _ %H2>

where N1, Ny and Nj are large constants to be chosen later. In [Hu2|, Huisken instead
used

—(H+h)H ((A|2 - %HZ)

1
o= () (14 - 7)
then
= |VH[? + Nagi + N2N1ge

for N; and N, suitably large. By using g we avoid the evolution equation for h (t),
but we do need the bounds on h (¢) from Section 5.
We compute using Corollary 7.3 and Lemma 7.5,

(28)
0 4(n—1
atg < hAg +h {NQCl + N3ca — _(WZNI} IVA[2

+ {2nh+4n— (n— l)th}HIVA|2 +h{8n— (n = 1)N3}H2 VAP
3n 3n
+ {2hNy + (3hH — 1) Ny + 2H (2hH — 1) N3} |A]? (|A|2 - %HQ) .

We estimate the terms above not involving |[VA|® using the bounds on A (t), Theorem
6.1 and Young’s inequality:

{2hNy + (3hH — 1) Ny + 2H (2hH — 1) N3} |A]? (|A|2 - %H2)
< (2SN; + 3SN2H + 4SN3; H?) CoH*~? < nH® + Cp (n, My, n) H?,

for all n > 0.
Also, using Corollaries 5.3 and 5.7,

onh + dn — (” )hN <2n(S+2)— ( )LNQ

so if we take Ny > ‘T:—g-%)" the H IVAI2 term in (28) may be neglected, leaving

2g <hAg+h {1\/'2(:1 + Nacy — 4(—’;;—1)1\71} [VAP?

ot
_(n-1) 2 19 412 6 2
+h{8n = Nz ¢ H?|VA|* +nHS + Cg (n, My, n) H>.
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We now show by contradiction that for any 7 > 0 there is a constant C4 (n, My, 7)
such that, for 0 <t < T,

g < nH*+C4.

Choose C4 large enough that the inequality holds at ¢ = 0 and then suppose there is
a first time t = tg < T where g = nH* + C4 at some zo € M;,. This point is a local
maximum of g, so

4(n

0<h {N2Cl + N3¢y — —%—)Nl} IVA]z

(n—1)

+h{8n—

<h [{Nzcl + N3zcp — fl-(%;—lle} + {Sn — (lg—;—lzNg} HZ] ’l’}l. lVH|2

Ng} H?|VA)? + nH® + CpH?

+nH® + CgH?

by Lemma 1.5, i), since N1, Ny and N3 are to be chosen so large that the coefficients
of all the ]V7A|2 terms are negative. Now substitute for [VH|? using (27). Hence at

Zo,
0<h [{Nm + Naca — é—(T;T—l—)Nl} + {Sn - (—7?3;—1)1\13} Hz] %
(29) {77H4 +Ca — (N + NoH + N3H?) (|A]2 - %H2> }
+nHS + CpH?.
Using Theorem 6.1 and Young’s inequality,

(30)  (Ni+NoH + N3H?) ([A|2 - %H2> < %nH“ + %CA (n, Mo, m)

where we may take a larger C4 (n, My, n) earlier if necessary for inequality (30) to
also hold. C4 would then also depend upon N;, N and N3, but these will all be
chosen depending only on n, My and 7. Hence

nH* + Ca — (N1 + NoH + N3H?) <|A12 - %H2> > %nH‘* + %C’A

so substituting into (29),

0< ﬁ [{N201+N302—§£L;1—)N1} 4 {Sn—(—n——l)Ng}Hz] .
n 3n 3n

(%nH" + -;—CA> +nH® 4 CpH?

4(n-1)

[g {877, — (n_l)N;;} HS + g {N201 4+ N3co —

3n

N} H"]

+ Eh; [{Sn - (na;l)Ns} CsH? + {N2cl + N3cz — 4(7;;1) Nl} CA]

+nH® + CgH?.
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Grouping the like powers of H and again using Corollary 5.7 gives

(31)

< | — — —_ _——_—
0< [27}.” {877. i Ng} + 7}] H® + o Nacy + Nscg 3 N ¢ H

4(n—1)
3n

+ [—I'/— {Sn— (n~ l)Ns}CA +CB:| H? + i {N201 + N3cp —

2n 3n 2n Nl} Ca.

Now choose N3 = N3 (n, Mp,n) large enough such that both

L n—1
o {sn _ = )Ns}CA (n,Mop,n) + CB (n,Mo,n) <0

and

Ln{Sn—(n_l)Ns}+nS0-

57_1- 3n
Then choose N1 = Nj (n, Mg, n) large enough that

4(n—1)

Njey + Nzcp — N; <0.

This gives a contradiction in (31). Thuson 0 <t < T,
1
g=|VHP + (N1 + NoH + N3 H?) (|A|2 - ;HQ) < nH*+ Ca (n, Mo, )

and so
|VH|? < nH* + Ca (n, Mo, n).

This completes the proof of Theorem 7.1. o
As in [Ha], [Hul] and [Hu2] we next use
THEOREM 7.6 (Myer’s Theorem). If R;; > (n—1) Kg;; along a geo-desic of
length at least TK 3 on M , then the geodesic has conjugate points.
Similarly as in [Hul] and [Hu2], to use Myer’s theorem we need

LEMMA 7.7. The inequality
Rij Z (n - 1) 52Hzg,-j

is preserved for t € [0,T), where € > 0 is the constant of Lemma 2.5.
The proof of this lemma is a straightforward contraction of the Gauss equations
followed by two applications of the inequality of Theorem 2.5.

COROLLARY 7.8. Under the surface area preserving mean curvature flow, the
mean curvature H of My is uniformly bounded above for t € [0,T).

The proof of this corollary is almost identical to the corresponding proof in [Hu2],
using Theorem 7.1, Theorem 2.5 and Myer’s theorem to show that if H were not
uniformly bounded, then all principal curvatures of M; would tend to infinity every-
where. In [Hu2] this contradicts the constant volume property, while here this would
contradict the constant surface area property, Lemma 2.6.
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8. Estimates for higher derivatives of curvature and long time exis-
tence. Following closely the technique of Huisken in [Hu2], inspired by Hamilton in
[Ha), and also using the bounds on h (t) from Section 5, it is straightforward to derive
the following result.

THEOREM 8.1. Fort € [0,T) and each m € N,
V™A < Cp

uniformly on My, where Cp, = Cp, (n, Mp).
Here V™T denotes the mth iterated covariant derivative of a tensor T'. Since the
uniform bounds on IV"‘AIZ for all m do not depend on ¢,

COROLLARY 8.2. We may take T = oo.

Exponential convergence to the sphere follows as in [Hul], using a standard inter-
polation argument and the Sobolev inequality. In particular, |A|2 - %H 2, the speed
of the M;’s and all curvature derivatives decay exponentially to zero. Hamilton’s
theorem for uniformly equivalent metrics, from [Ha], can be used to show that the
metrics g;; (+,t) converge uniformly to a smooth, positive definite metric g;; (-, 00) as
t — oo. Since |A|2 - %H2 — 0, g4 (-,00) is the metric of a sphere. By Lemma 2.6
this sphere has surface area equal to |Mg|. This completes the proof of Theorem 2.8.

9. Alternative |[VH| bound for the volume preserving mean curvature
flow. The volume preserving mean curvature flow, with flow equation

(32) %F(w, t) = {hy (t) — H (z,t)} v (z,t)
where

_ fMtHd”'t
(33) hv (t) = AR

is shown in [Hu2] to preserve the volume V enclosed by M, while the surface area | M|
is nonincreasing. Furthermore, the flow preserves strict convexity for a short time, so
using the Aleksandrov-Fenchel inequality for mixed volumes to estimate |, M, Hdy,,
we can bound |V H| in a similar way as in Section 5. This simplifies the argument in
[Hu2] and also avoids computing the evolution equation for hy (t).

By the Favard inequality, (38),

2
Hpy < c(n) 2L
Mt V
Therefore, recalling (33),

< = Sy (n, M)

(34) hy () < ¢ (n) W‘;_' <e(n) l_ﬁé_d

since | M| is nonincreasing under the flow. It was shown in [Hu2| that

% \VH|? < A|VH? +8nH (H + hy) |[VA]?,

%H = AH + (H - hy) |A
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and

2 (|A[2 - %H2> <A <|A|2 - -71;112) 20D 1942 12147 (|A| 2) .

Using these we compute that the function
1
g= !Vle + {N1 + NoH + N3H2} (lAlz - HHz) ,

where N1, N and N3 are large constants to be chosen later, satisfies

) 4(n—1) .
559 < Ag+ {NQC]_ + N3co — —31’),—N1} 'VAI
(35) {8 nh - "= . )Nz} HIVAP + { (”3;111)1\73} H2 VAP

+ {2N1 + 3HN, +4H?N3} |A)? (|A|2 - 5H2>

where ¢; and ¢z, constants depending only on n and Mpy, arise in the same way as in
Section 7. It follows similar as in Section 7, using (34) and the equivalent pinching
estimate from [Hu2] to Theorem 6.1, that for all n > 0,

|VH? < nH* + C (n, Mo,n).

A lower positive bound on hy (t) is not needed here.

Appendix A. Curvature integral estimates using mixed volumes and
applications. As in [BZ], we write the m-th mized volume of a convex region E; as

1
36 Vin (B ————/ Kiy ** Kjo . Gl
(36) <)(+1)()M';h -
where E; is the solid (n + 1)-dimensional region bounded by M, M; has principal
curvatures Ky, ..., K, and the sum is taken over the (nfm) various finite sequences

j = (j1:~'-ajn—m): 1 SJZ S n.
The (n 4 1)-th mized volume is

(37) Vir1 (Ep) = Vol (By).

Two consequences of the Aleksandrov-Fenchel inequality for mixed volumes are
the Favard inequality,

(38) V;2 (Et) 2 Vie1 (By) Vig1 (Er)
which holds for any i =1,...,n and
(39) V(B 2 w7 V(B = wifi T Vol (By)

where wy11 is the volume of the (n + 1)-dimensional unit ball. Remembering Lemma
2.7, for the surface area preserving mean curvature flow this becomes

40 V(B > w1 ol (Bp) .
i n+1
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For an upper bound on [ M, Kikj dpe, note from (36),

z<]
(41) Vo2 (By) = W/Mtzj:nhnh dpi,
(42) Vies (B) = i [ H b

and using also Lemma 2.6,

1
(43) Vo (E) = i | My = Y 1 [Mo].
Now from (38),
Vn2—1 (Et)
L -
V’n——2 (Et) = Vn (Et) )

so substituting in (41), (42) and (43) gives

(44) /MQZMRJ dus < 2n|M0| (/ tHd,LLt>2.

i<j

Using (42), (43) and (37) in (38) with ¢ = n yields

S D Vel(B) S mr D) Vol (B)

by Lemma 2.7. So we have an upper bound on || u, H dpe without using the diameter
bound. (For this we could instead have used the Cauchy-Schwarz inequality, Lemma
2.6 and Corollary 5.6, again not needing the diameter bound.)

Substituting this into (44) gives

(n—1)n|Mol®
/MZ; Fatis dpie < 2(n+ 1)2Vol (Eg) U (n, Mo)

which is the bound required in the proof of Corollary 5.6.
We can also obtain a lower bound on | mH dp, avoiding the diameter estimate.
Setting i =n — 1 in (39) and recalling (42),

1 n+1
(s [ mam) 2t @),
t

yielding the desired positive lower bound. Corollaries 5.2 and 5.3, the upper bound
on h, then follow without the diameter estimate.

The lower bound on [ u, H dp also combines with the upper bound on [ M, H2dp;
of Corollary 5.6 to yield the lower bound on h, Corollary 5.7, again without the
diameter estimate.
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