QRADRATIC SHEAVES AND SELF-LINKAGE*

GIANFRANCO CASNATI[†] AND FABRIZIO CATANESE[‡]

0. Introduction and first results. The present paper is devoted to the proof of a structure theorem for self-linked pure subschemes $C \subseteq \mathbb{P}_k^n$ of codimension 2 over a field k of characteristic $p \neq 2$.

We use the symbol C because the classical case to be studied was the one of reduced curves in \mathbb{P}^3_k . In this case, one can describe the notion of self-linkage in non-technical terms, saying that C is self-linked if and only if there are surfaces F and G such that their complete intersection is the curve C counted with multiplicity 2. This is a special case of the notion of linkage (C is linked to C' if $C \cup C'$ is the complete intersection of two surfaces F and G), classically introduced by R. Apery, F. Gaeta (see [Ap], [Gae]) and later deeply investigated by the algebraic point of view by Ch. Peskine and L. Szpiro and by P. Rao (see [P-S], [Rao1]). The special case of self-linkage was however studied before, in the work of E. Togliatti (see [To1], [To2]), and later E0. Gallarati (see [Gal]), in the form of the theory of contact between surfaces.

In [Ca1] the theory of contact was related to a new theory, of the so called even sets of nodes, and later Rao used these ideas to obtain a structure theorem for projectively Cohen–Macaulay self–linked subschemes of codimension 2 in projective spaces (see [Rao2]).

Recently, Walter's structure theorem (see [Wa]) for subcanonical subschemes of codimension 3 opened the way to solving some old conjectures about even sets of nodes and contact of hypersurfaces (see [C–C]).

A basic ingredient was the algebraic concept of quadratic sheaves, generalizing to a greater extent the geometric notion of contact and even sets. This notion was applied in [C–C] to the classification of even sets of nodes on a surface $F \subseteq \mathbb{P}^3_k$ for low values of the degree d.

On the other hand, let $F \subseteq \mathbb{P}^3_k$ be a surface whose only singularities are an even set of nodes Δ . Then there is a curve C on F passing through the points of Δ , and a surface G such that $F \cap G = 2C$ as cycles (see [Ca1], [Gal]). With this in mind it is therefore only natural to apply the structure theorem for quadratic sheaves in order to obtain a structure theorem for self-linkage.

This is done in the present paper, where we generalize the previously cited result of P. Rao to arbitrary pure subschemes of \mathbb{P}^n_k of codimension 2, (see also the survey [Ca2] of the second author for a preliminary version of these results).

MAIN THEOREM. Let k be a field of characteristic $p \neq 2$ and $C \subseteq \mathbb{P}^n_k$ be a pure subscheme of codimension 2 which is self-linked through hypersurfaces $F := \{f = 0\}$ and $G := \{g = 0\}$ of respective degrees d, m. Let \mathfrak{I}_C be its sheaf of ideals and set $\mathcal{F}_F := \mathfrak{I}_C/f\mathcal{O}_{\mathbb{P}^n_k}(-d)$, $\mathcal{F}_G := \mathfrak{I}_C/g\mathcal{O}_{\mathbb{P}^n_k}(-m)$.

^{*} Received July 11, 2001; accepted for publication November 7, 2002.

[†] Dipartimento di Matematica, Politecnico di Torino, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy (casnati@calvino.polito.it).

[‡] Mathematisches Institut der Universität, Universitätstrasse 30, D-95447 Bayreuth, Germany (Fabrizio Catanese@uni-bayreuth.de).

Assume moreover that if $n \equiv 1 \mod 4$ and $d+m-n-1=2\varrho$, then the following two equivalent congruences hold:

$$\chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho)) - \chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho - d)) - \chi(\mathcal{O}_C(\varrho)) \equiv 0 \mod 2,$$
$$\chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho)) - \chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho - m)) - \chi(\mathcal{O}_C(\varrho)) \equiv 0 \mod 2.$$

Then there exist a locally free $\mathcal{O}_{\mathbb{P}^n_k}$ -sheaf \mathcal{E} , a symmetric map α : $\check{\mathcal{E}}(-d-m) \to \mathcal{E}$ and a resolution

$$(1) 0 \longrightarrow \mathcal{O}_{\mathbb{P}^n_k}(-d) \oplus \check{\mathcal{E}}(-d-m) \xrightarrow{\begin{pmatrix} \gamma & \iota_{\lambda} \\ \lambda & \alpha \end{pmatrix}} \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{E} \longrightarrow \mathcal{F}_F \longrightarrow 0$$

inducing exact sequences

(2)
$$0 \longrightarrow \check{\mathcal{E}}(-d-m) \xrightarrow{\binom{t_{\lambda}}{\alpha}} \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{E} \longrightarrow \Im_C \longrightarrow 0,$$

$$0 \longrightarrow \check{\mathcal{E}}(-d-m) \xrightarrow{\alpha} \mathcal{E} \longrightarrow \mathcal{F}_G \longrightarrow 0.$$

Conversely, given a subscheme C of codimension 2, assume that there does exist a sequence (2) with the above property of α being symmetric and $\deg(\det(\alpha)) = m$. Then C is self-linked through the hypersurfaces F and G of respective equations $f := \det\begin{pmatrix} 0 & t \\ \lambda & \alpha \end{pmatrix}$ and $g := \det(\alpha)$. \square

It was conjectured by Ph. Ellia that if moreover C is subcanonical then C is the complete intersection of two hypersurfaces (see [E–B]). We have been trying to deduce this statement from our main theorem. In the meantime, Ellia's conjecture has been proven in [Ar] if $n \geq 4$, and in [F–L–K] when $n \geq 3$ and $k \cong \mathbb{C}$.

Moreover, in section 3 we discuss the problem whether the self-linkage ideal (f,g) is uniquely determined once the generator g of higher degree is fixed, and prove that the answer is positive under the condition that the subscheme be locally Gorenstein.

Acknowledgements. Both the authors acknowledge support from the projects AGE, EAGER and Vigoni.

First results. For the reader's benefit we recall the following definitions and results proved from [C–C]. From now on we always assume that k is a field of characteristic $p \neq 2$.

DEFINITION 0.1. Let X be a projective, locally Cohen–Macaulay scheme. We say that a coherent, locally Cohen–Macaulay sheaf of \mathcal{O}_X –modules \mathcal{F} is a $\delta/2$ –quadratic sheaf on X, $\delta=0,1$, if there exists a symmetric bilinear map

$$\mathcal{F} \times \mathcal{F} \to \mathcal{O}_X(-\delta)$$

inducing an isomorphism $\sigma \colon \mathcal{F}(\delta) \xrightarrow{\sim} \mathcal{H}om_{\mathcal{O}_X} \big(\mathcal{F}, \mathcal{O}_X \big)$.

REMARK 0.2. If \mathcal{F} is $\delta/2$ -quadratic, then it is reflexive since the natural map $\mathcal{F} \to \mathcal{F}^{\sim}$ equals $\check{\sigma}^{-1} \circ \sigma(-\delta)$.

Assume now that $F\subseteq \mathbb{P}^n_k$ is a hypersurface of degree d and that \mathcal{F} is a $\delta/2-$ quadratic sheaf on F.

The main result of sections 1 and 2 of [C–C] concerns a characterization of quadratic sheaves on hypersurfaces in \mathbb{P}_k^n (including the needed parity condition as pointed out in theorem 9.1 of [E–P–W]).

THEOREM 0.3. Let $F \subseteq \mathbb{P}_k^n$ be a hypersurface of degree d and let \mathcal{F} be a $\delta/2$ quadratic sheaf on F. Then \mathcal{F} fits into an exact sequence of the form

$$(0.3.1) 0 \longrightarrow \check{\mathcal{E}}(-d-\delta) \xrightarrow{\varphi} \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow 0$$

where \mathcal{E} is a locally free $\mathcal{O}_{\mathbb{P}^n_k}$ -sheaf and φ is a symmetric map if and only if the following parity condition holds: if $n \equiv 1 \mod 4$ and $n+1-d-\delta=2r$, then also $\chi(\mathcal{F}(-r))$ is even.

Moreover we can choose $\mathcal E$ such that $H^j_*ig(\mathbb P^n_k,\mathcal Eig)=0$ for n>j>(n-1)/2. \qed

REMARK 0.4. Following [Ca1] we say that \mathcal{F} is split symmetric if one can choose \mathcal{E} to be a direct sum of line bundles. This is possible if and only if \mathcal{F} is arithmetically Cohen-Macaulay i.e., if and only if $H^i_*(\mathbb{P}^n_k,\mathcal{F})=0$ for each $i=1,\ldots,n-2$.

1. From self-linkage to quadratic sheaves. Our first main theorem is an application of the theory of quadratic sheaves. For another application see [C-C].

DEFINITION 1.1. Let $C \subseteq \mathbb{P}^n_k$ be a pure subscheme of codimension 2 and let $\mathfrak{I}_C \subseteq \mathcal{O}_{\mathbb{P}^n_k}$ be its sheaf of ideals: C is said to be self-linked with respect to the complete intersection $X := F \cap G$ of the two hypersurfaces F, G of respective degrees d, m, if $C \subseteq X$ and one of the following equivalent conditions holds

- i) \Im_X : $\Im_C = \Im_C$;
- ii) $\Im_C/\Im_X = \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n}}(\mathcal{O}_C, \mathcal{O}_X).$

For the above well-known equivalence see e.g. theorem 21.23 of [Ei] (see also [P-S]).

REMARK 1.2. Indeed, since \Im_C and \Im_X coincide with $\mathcal{O}_{\mathbb{P}^n_k}$ in codimension 1 and are torsion free, every $\phi \in \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}(\Im_C,\Im_X)$ is given by a rational function, which is in turn regular by the normality of $\mathcal{O}_{\mathbb{P}^n_k}$.

Condition i) of definition 1.1 can be thus rewritten as (see [Ca2], proposition 2.6)

$$(1.2.1) \Im_C = \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n}} (\Im_C, \Im_X).$$

By duality for finite maps (see [Ha], exercise II.6.10),

$$(1.2.2) \ \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n}}\left(\mathcal{O}_C,\mathcal{O}_X\right) = \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n}}\left(\mathcal{O}_C,\omega_X(n+1-m-d)\right) = \omega_C(n+1-m-d).$$

Finally, let C, $F := \{f = 0\}$, $G := \{g = 0\}$ be as above, and assume $m = \deg(G) \ge d = \deg(F)$. Then we can replace g by g+af (a is a homogeneous polynomial of degree m-d), and obtain by Bertini's theorem that G is smooth outside G. Indeed, if G is reduced we can even have that G is smooth at the generic points of G, so that G is a normal, whence irreducible, hypersurface. Moreover in this case (cfr. [Ca1], proposition 2.6) condition i) is equivalent to cycle(X) = 2C.

DEFINITION 1.3. Let $\mathcal{F}_G := \Im_C/g\mathcal{O}_{\mathbb{P}^n_k}(-m), \ \mathcal{F}_F := \Im_C/f\mathcal{O}_{\mathbb{P}^n_k}(-d).$

By the above definition it follows that both \mathcal{F}_G and \mathcal{F}_F are obviously locally Cohen–Macaulay. By remark 1.2, since

$$\Im_X/g\mathcal{O}_{\mathbb{P}^n_k}(-m)\cong (f\mathcal{O}_{\mathbb{P}^n_k}(-d)+g\mathcal{O}_{\mathbb{P}^n_k}(-m))/g\mathcal{O}_{\mathbb{P}^n_k}(-m)\cong f\mathcal{O}_G(-d),$$

we have pairings

$$\mathcal{F}_G \times \mathcal{F}_G \longrightarrow \Im_X/g\mathcal{O}_{\mathbb{P}^n_k}(-m) \cong f\mathcal{O}_G(-d),$$

and analogously

$$\mathcal{F}_F \times \mathcal{F}_F \longrightarrow q\mathcal{O}_F(-m).$$

To verify that a twist of \mathcal{F}_G yields a quadratic sheaf on G (similarly for \mathcal{F}_F on F) we have to show that the pairing is perfect, i.e. $\mathcal{F}_G \cong \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n}}(\mathcal{F}_G, \mathcal{O}_G(-d))$.

Let $\psi \in \mathcal{H}om_{\mathcal{O}_{\mathbb{P}_{k}^{n}}}(\mathcal{F}_{G}, \mathcal{O}_{G}(-d))$, then ψ induces $\psi': \mathfrak{I}_{C} \to \mathcal{O}_{G}(-d) \cong \mathfrak{I}_{X}/g\mathcal{O}_{\mathbb{P}_{k}^{n}}(-m)$. If ψ' is in the image of a $\phi \in \mathcal{H}om_{\mathcal{O}_{\mathbb{P}_{k}^{n}}}(\mathfrak{I}_{C}, \mathfrak{I}_{X})$, then, by remark 1.2, $\phi \in \mathfrak{I}_{C}$, and clearly ϕ induces a zero ψ if and only if $\phi \in g\mathcal{O}_{\mathbb{P}_{k}^{n}}(-m)$.

Thus, we are left with the verification that

$$\mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}(\Im_C,\Im_X) \to \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}(\Im_C,\Im_X/g\mathcal{O}_{\mathbb{P}^n_k}(-m))$$

is surjective. By the $\mathcal{E}xt^i_{\mathcal{O}_{\mathbb{P}^n_k}}$ -exact sequence, the above surjectivity is equivalent to the injectivity of j: $\mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n_k}}\left(\Im_C, g\mathcal{O}_{\mathbb{P}^n_k}(-m)\right) \to \mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n_k}}\left(\Im_C, \Im_X\right)$.

To this purpose, consider

$$0 \longrightarrow \mathcal{E}xt^{1}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C}, \Im_{X}\right) \xrightarrow{i} \mathcal{E}xt^{1}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C}, \mathcal{O}_{G}(-d)\right) \longrightarrow \\ \longrightarrow \mathcal{E}xt^{2}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C}, g\mathcal{O}_{\mathbb{P}^{n}_{k}}(-m)\right) \xrightarrow{j'} \mathcal{E}xt^{2}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C}, \Im_{X}\right)$$

where j' corresponds to j via the natural equivalence $\mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n_k}}(\mathfrak{I}_C,\cdot)\cong \mathcal{E}xt^2_{\mathcal{O}_{\mathbb{P}^n_k}}(\mathcal{O}_C,\cdot)$. It follows that j is injective if and only if i is an isomorphism. We have the exact sequence

$$\mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}\big(\mathcal{O}_{\mathbb{P}^n_k}, \Im_X\big) \longrightarrow \mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}\big(\Im_C, \Im_X\big) \longrightarrow \\ \longrightarrow \mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n}}\big(\mathcal{O}_C, \Im_X\big) \longrightarrow \mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n}}\big(\mathcal{O}_{\mathbb{P}^n_k}, \Im_X\big) \cong 0.$$

Since $\mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}(\mathcal{O}_{\mathbb{P}^n_k}, \Im_X) \cong \Im_X$ and $\mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}(\Im_C, \Im_X) \cong \Im_C$ then

$$\mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n_k}}\big(\mathcal{O}_C,\Im_X\big)\cong\Im_C/\Im_X\cong\mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}\big(\mathcal{O}_C,\mathcal{O}_X\big)\cong\omega_C(n+1-m-d).$$

We also have

$$\mathcal{E}xt^{1}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C},\mathcal{O}_{\mathbb{P}^{n}_{k}}(-d)\right) \longrightarrow \mathcal{E}xt^{1}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C},\mathcal{O}_{G}(-d)\right) \longrightarrow \\ \longrightarrow \mathcal{E}xt^{2}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C},g\mathcal{O}_{\mathbb{P}^{n}_{k}}(-m-d)\right) \stackrel{g}{\longrightarrow} \mathcal{E}xt^{2}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}\left(\mathcal{O}_{C},\mathcal{O}_{\mathbb{P}^{n}_{k}}(-d)\right).$$

Since $C \subseteq G$, then the multiplication by g is zero. Moreover, $\mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n_k}}(\mathcal{O}_C, \mathcal{O}_{\mathbb{P}^n_k}(-d)) = 0$ since C is locally Cohen–Macaulay. We obtain that

$$\mathcal{E}xt^{1}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}(\mathcal{O}_{C},\mathcal{O}_{G}(-d)) \cong \mathcal{E}xt^{2}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}(\mathcal{O}_{C},g\mathcal{O}_{\mathbb{P}^{n}_{k}}(-m-d)) \cong \omega_{C}(n+1-m-d).$$

The following easy lemma thus concludes the proof that $i: \omega_C(m+d-n-1) \to \omega_C(m+d-n-1)$ is an isomorphism.

LEMMA 1.4. If \mathcal{H} is a coherent $\mathcal{O}_{\mathbb{P}^n_k}$ -sheaf and $\varrho: \mathcal{H} \to \mathcal{H}$ is either injective or surjective, then it is an isomorphism.

Proof. Let ϱ be injective (resp. surjective) and $\mathcal{K} := \operatorname{coker}(\varrho)$ (resp. $\mathcal{K} := \ker(\varrho)$). By Serre'stheorem B we get $h^1(\mathbb{P}^n_k, \mathcal{H}(t)) = 0$ (resp. $h^1(\mathbb{P}^n_k, \mathcal{K}(t)) = 0$) for each t large

enough, hence $h^0(\mathbb{P}^n_k, \mathcal{K}(t)) = 0$ for t large enough, whence $\mathcal{K} = 0$ by Serre's theorem A. \square

Set $d=2d'+\delta$, $m=2m'+\mu$, δ , $\mu\in\{0,1\}$. Then $\mathcal{F}_G(d')$ is a $\delta/2$ -quadratic sheaf on G, and similarly $\mathcal{F}_F(m')$ is a $\mu/2$ -quadratic sheaf on F. According to theorem 0.3, we obtain two locally free $\mathcal{O}_{\mathbb{P}^n_k}$ -sheaves \mathcal{E}'_G and \mathcal{E}'_F provided that the respective parity conditions hold.

It is convenient to rewrite such conditions. If $n \equiv 1 \mod 4$ and $d+m-n-1=2\varrho$, then we want that $\chi(\mathcal{F}_F(\varrho)) \equiv \chi(\mathcal{F}_G(\varrho)) \equiv 0 \mod 2$. By two obvious exact sequences the above conditions are equivalent to the two congruences

(1.5)
$$\chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho)) - \chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho - d)) - \chi(\mathcal{O}_C(\varrho)) \equiv 0 \mod 2,$$

$$\chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho)) - \chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho - m)) - \chi(\mathcal{O}_C(\varrho)) \equiv 0 \mod 2.$$

In turn the two congruences above are equivalent each other. In fact, it suffices to show that

$$\chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho-d)) + \chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho-m)) = 0.$$

To this purpose recall that

$$\chi(\mathcal{O}_{\mathbb{P}^n_k}(h)) = \frac{(h+n)\dots(h+1)}{n!}.$$

In our case n = 4a + 1 and ϱ is even. Since, by the linkage condition, dm is even too, the parity of d + m - n - 1 yields d = 2d', m = 2m', hence

$$\chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho - d)) = \frac{(2a+i)\dots(-2a+i)}{(4a+1)!} = -\frac{(2a-i)\dots(-2a-i)}{(4a+1)!} = \chi(\mathcal{O}_{\mathbb{P}^n_k}(\varrho - m)),$$

where i = m' - d'.

We define $\mathcal{E}_G := \mathcal{E}'_G(-d')$ and $\mathcal{E}_F := \mathcal{E}'_F(-m')$. Then theorem 0.3 rewrites as follows.

PROPOSITION 1.6. Assume that if $n \equiv 1 \mod 4$ and $n+1-d-m=2\varrho$ then the two equivalent congruences (1.5) above hold.

Then there exist two locally free $\mathcal{O}_{\mathbb{P}^n_k}$ -sheaves \mathcal{E}_G and \mathcal{E}_F , such that $H^i_*(\mathbb{P}^n_k, \mathcal{E}_G) = H^i_*(\mathbb{P}^n_k, \mathcal{E}_F) = 0$ for n > i > (n-1)/2, fitting into exact sequences

(1.6.1)
$$0 \longrightarrow \check{\mathcal{E}}_F(-d-m) \xrightarrow{\alpha_F} \mathcal{E}_F \longrightarrow \mathcal{F}_F \longrightarrow 0, \\ 0 \longrightarrow \check{\mathcal{E}}_G(-d-m) \xrightarrow{\alpha_G} \mathcal{E}_G \longrightarrow \mathcal{F}_G \longrightarrow 0,$$

where ${}^t\alpha_F = \alpha_F$, ${}^t\alpha_G = \alpha_G$.

In the above proposition and in what follows, the superscript t denotes the dual morphism twisted by -d-m.

REMARK 1.7. Let $\ell \subseteq \mathbb{P}^n_k$ be a line disjoint from C. Then the restrictions of the sequences (1.6.1) to ℓ are still exact. On the other hand $\mathcal{F}_{F|\ell} \cong \mathcal{O}_{F\cap \ell}$ and $\mathcal{F}_{G|\ell} \cong \mathcal{O}_{G\cap \ell}$, hence

$$c_1(\mathcal{E}_F) = -\frac{1}{2}\operatorname{rk}(\mathcal{E}_F)(d+m) + \frac{d}{2}, \qquad c_1(\mathcal{E}_G) = -\frac{1}{2}\operatorname{rk}(\mathcal{E}_G)(d+m) + \frac{m}{2}.$$

2. From quadratic sheaves to self-linkage. From now on we will assume that the parity condition holds.

Let $\mathcal{O}_{\mathbb{P}_k^n}(-d) \xrightarrow{f} \mathcal{O}_{\mathbb{P}_k^n}$ be the multiplication by f. Then it induces a map $\vartheta \colon \mathcal{O}_{\mathbb{P}_k^n}(-d) \to \mathcal{F}_G$. Since we have a chain of homomorphisms

$$\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^n_k}}\left(\mathcal{O}_{\mathbb{P}^n_k}(-d), \mathcal{E}_G\right) \longrightarrow \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^n_k}}\left(\mathcal{O}_{\mathbb{P}^n_k}(-d), \mathcal{F}_G\right) \longrightarrow \\
\stackrel{\partial}{\longrightarrow} \operatorname{Ext}^1_{\mathcal{O}_{\mathbb{P}^n_k}}\left(\mathcal{O}_{\mathbb{P}^n_k}(-d), \check{\mathcal{E}}_G(-d-m)\right) \cong \\
\cong H^1(\mathbb{P}^n_k, \check{\mathcal{E}}_G(-m)) \cong H^{n-1}(\mathbb{P}^n_k, \mathcal{E}_G(m+d-n-1)) = 0$$

we can lift ϑ to a map $\lambda: \mathcal{O}_{\mathbb{P}_n^n}(-d) \to \mathcal{E}_G$.

Argueing as in (2.1) we obtain that the natural map

$$\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^n}}\left(\mathcal{E}_G, \Im_C\right) \to \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^n}}\left(\mathcal{E}_G, \mathcal{F}_G\right)$$

is surjective whence we infer that the surjection $\mathcal{E}_G \to \mathcal{F}_G$ can be lifted to $\nu \colon \mathcal{E}_G \to \Im_C$. Notice that the map $\nu \circ \lambda$ is given by $\widetilde{f} \in H^0(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d))$ congruent $f \mod g$.

Let $r := \operatorname{rk}(\mathcal{E}_G)$. We have a map

$$\Lambda^{r-1}(\alpha_G): \Lambda^{r-1}(\check{\mathcal{E}}_G(-d-m)) \to \Lambda^{r-1}\mathcal{E}_G.$$

Since $\Lambda^{r-1}\check{\mathcal{E}}_G \cong \mathcal{E}_G \otimes \det(\mathcal{E}_G)^{-1}$ and $\Lambda^{r-1}\mathcal{E}_G \cong \check{\mathcal{E}}_G \otimes \det(\mathcal{E}_G)$, twisting by $\det(\mathcal{E}_G)^{-1}(-d)$ and taking remark 1.7 into account, we obtain a map $\alpha_G^{adj}: \mathcal{E}_G \to \check{\mathcal{E}}_G(-d)$ such that $\alpha_G \circ \alpha_G^{adj}(-m): \mathcal{E}_G(-m) \to \mathcal{E}_G$ is the multiplication by g and $\alpha_G^{adj}(d) = \check{\alpha}_G^{adj}$ since α_G , hence α_G^{adj} , is symmetric.

We can then define

$$\mu := \check{\lambda}(-d) \circ \alpha_G^{adj} : \mathcal{E}_G \to \mathcal{O}_{\mathbb{P}^r}.$$

PROPOSITION 2.2. \mathfrak{F}_C coincides with the sheaf of ideals of $\mathcal{O}_{\mathbb{P}^n_k}$ generated by g and $\operatorname{im}(\mu)$.

Proof. Let us consider the second sequence in (1.6.1). We have a chain map

$$(2.2.1) \qquad 0 \longrightarrow \check{\mathcal{E}}_{G}(-d-m) \xrightarrow{\alpha_{G}} \mathcal{E}_{G} \longrightarrow \mathcal{F}_{G} \longrightarrow 0$$

$$\downarrow^{\beta} \qquad \downarrow^{\nu} \qquad \downarrow^{id}$$

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}_{C}}(-m) \xrightarrow{g} \Im_{C} \longrightarrow \mathcal{F}_{G} \longrightarrow 0$$

where β is induced by the restriction of ν .

By the mapping cone construction we obtain a resolution

$$0 \longrightarrow \check{\mathcal{E}}_G(-d-m) \stackrel{s}{\longrightarrow} \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{E}_G \longrightarrow \Im_C \longrightarrow 0$$

where s has components β , α_G . Recall that $\alpha_G(m) \circ \alpha_G^{adj}$ is the multiplication by g whence $(\nu \circ \alpha_G)(m) \circ \alpha_G^{adj} = g\nu$, since $(\nu \circ g)(m) = g\nu$.

Diagram (2.2.1) yields $g\beta = \nu \circ \alpha_G$. Composing on the right with $\alpha_G^{adj} \circ \lambda$, we obtain

$$g\beta(m)\circ\alpha_G^{adj}\circ\lambda=g\nu\circ\lambda\colon\mathcal{O}_{\mathbb{P}^n_+}(-d)\to\Im_C(m)\subseteq\mathcal{O}_{\mathbb{P}^n_+}(m).$$

Since g is obviously a non-zero divisor in \mathfrak{F}_C , then $\nu \circ \lambda = \beta(m) \circ \alpha_G^{adj} \circ \lambda \colon \mathcal{O}_{\mathbb{P}^n_k}(-d) \to \mathcal{O}_{\mathbb{P}^n_k}$ and since $\nu \circ \lambda$ is given by $\widetilde{f} \equiv f \mod g$ the same is true for $\beta(m) \circ \alpha_G^{adj} \circ \lambda$.

It follows from the above identities that $s \circ^t \mu = (\nu \circ \lambda(-m), g\lambda(-m))$ is represented by the product matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} \widetilde{f} \\ g \end{pmatrix}.$$

Thus we obtain the following commutative diagram

$$(2.2.2) \qquad \begin{array}{c} 0 \longrightarrow \mathcal{O}_{\mathbb{P}^n_k}(-d-m) \stackrel{\left(\tilde{f}\right)}{\longrightarrow} \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{O}_{\mathbb{P}^n_k}(-d) \longrightarrow \Im_X \longrightarrow 0 \\ \downarrow^{t_{\mu}} & \downarrow \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} & \downarrow \\ 0 \longrightarrow \check{\mathcal{E}}_G(-d-m) \stackrel{s}{\longrightarrow} & \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{E}_G & \longrightarrow \Im_C \longrightarrow 0 \end{array}$$

whose right column is the inclusion.

The mapping cone of (2.2.2) is a resolution of $\Im_C/\Im_X \cong \omega_C(n+1-d-m)$ (see (1.2.2)). Therefore the dual of the mapping cone of diagram (2.2.2) yields a resolution of \Im_C (see proposition 2.5 of [P–S]) and \Im_C coincides with the sheaf of ideals locally generated by the maximal minors of

$$\begin{pmatrix} \beta & 1 & 0 \\ \alpha_G & 0 & \lambda \end{pmatrix}$$

which is the ideal locally generated by the maximal minors of (α_G, λ) . Our statement follows then from the very definition of μ and the identity $\det(\alpha_G) = g$.

Since $\mu \circ \alpha_G = g({}^t\lambda)$, then μ induces an endomorphism ψ of \mathcal{F}_G fitting into the following commutative diagram

$$0 \longrightarrow \check{\mathcal{E}}_{G}(-d-m) \xrightarrow{\alpha_{G}} \mathcal{E}_{G} \longrightarrow \mathcal{F}_{G} \longrightarrow 0$$

$$\downarrow^{t_{\lambda}} \qquad \downarrow^{\mu} \qquad \downarrow^{\psi}$$

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}_{k}^{n}}(-m) \xrightarrow{g} \Im_{C} \longrightarrow \mathcal{F}_{G} \longrightarrow 0.$$

Since $\mathcal{F}_G := \mathfrak{I}_C/g\mathcal{O}_{\mathbb{P}^n_k}(-m)$, proposition 2.2 implies the surjectivity of ψ . Moreover ψ is also injective by lemma 1.4 above. We can replace the given surjection $\pi\colon \mathcal{E}_G \to \mathcal{F}_G$ with $\psi \circ \pi$, whence we may also replace ν by μ in the arguments of proposition 2.2, thus obtaining the following

PROPOSITION 2.3. There exists $\gamma \in H^0(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(d-m))$ such that

$$f = \det \begin{pmatrix} \gamma & {}^t \lambda \\ \lambda & \alpha_G \end{pmatrix}.$$

Proof. Recall that we are now assuming $\nu = \mu$, whence by the very definition of μ , $\mu \circ \lambda \equiv f \mod g$. Since

$$\mu \circ \lambda = \det \begin{pmatrix} 0 & {}^t \lambda \\ \lambda & \alpha_G \end{pmatrix},$$

then we obtain the existence of a γ such that

$$f = \det \begin{pmatrix} 0 & {}^t \lambda \\ \lambda & \alpha_G \end{pmatrix} + \gamma g = \det \begin{pmatrix} 0 & {}^t \lambda \\ \lambda & \alpha_G \end{pmatrix} + \det \begin{pmatrix} \gamma & {}^t \lambda \\ 0 & \alpha_G \end{pmatrix} = \det \begin{pmatrix} \gamma & {}^t \lambda \\ \lambda & \alpha_G \end{pmatrix}. \quad \Box$$

Since $f \neq 0$ we get a coherent sheaf \mathcal{F} supported on F and an exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n_k}(-d) \oplus \check{\mathcal{E}}_G(-d-m) \stackrel{\binom{\gamma}{\lambda} \stackrel{t_{\lambda}}{\alpha_G}}{\longrightarrow} \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{E}_G \longrightarrow \mathcal{F} \longrightarrow 0.$$

It follows that $\mathcal{F}(m')$ is $\mu/2$ -quadratic and we can easily construct the following exact sequence of the vertical complexes C_i 's

The associated long exact sequence gives $\mathcal{O}_{\mathbb{P}^n_k}(-d) \cong H_1(C_1) \cong H_0(C_3) \cong \ker(\eta)$. On the other hand $f \in \ker(\eta)$, thus $\mathcal{F} \cong \mathcal{F}_F$.

If we set $\mathcal{E} := \mathcal{E}_G$ and $\alpha := \alpha_G$, the above discussion proves the "only if" part of the statement of the following main theorem.

THEOREM 2.4. Let k be a field of characteristic $p \neq 2$ and $C \subseteq \mathbb{P}_k^n$ be a pure subscheme of codimension 2 which is self-linked through hypersurfaces $F := \{f = 0\}$ and $G := \{g = 0\}$ of respective degrees d, m. Let \mathfrak{D}_C be its sheaf of ideals and set $\mathcal{F}_F := \mathfrak{D}_C/f\mathcal{O}_{\mathbb{P}_L^n}(-d)$, $\mathcal{F}_G := \mathfrak{D}_C/g\mathcal{O}_{\mathbb{P}_L^n}(-m)$.

Assume that if $n \equiv 1 \mod 4$ and $d+m-n-1=2\varrho$, then the following two equivalent congruences hold:

$$\chi(\mathcal{O}_{\mathbb{P}_k^n}(\varrho)) - \chi(\mathcal{O}_{\mathbb{P}_k^n}(\varrho - d)) - \chi(\mathcal{O}_C(\varrho)) \equiv 0 \mod 2,$$

$$\chi(\mathcal{O}_{\mathbb{P}_k^n}(\varrho)) - \chi(\mathcal{O}_{\mathbb{P}_k^n}(\varrho - m)) - \chi(\mathcal{O}_C(\varrho)) \equiv 0 \mod 2.$$

Then there exist a locally free $\mathcal{O}_{\mathbb{P}^n_k}$ -sheaf \mathcal{E} , a symmetric map α : $\check{\mathcal{E}}(-d-m) \to \mathcal{E}$ and a resolution

$$(2.4.1) 0 \longrightarrow \mathcal{O}_{\mathbb{P}^n_k}(-d) \oplus \check{\mathcal{E}}(-d-m) \stackrel{\binom{\gamma}{\lambda} \stackrel{\iota_{\lambda}}{\alpha}}{\longrightarrow} \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{E} \longrightarrow \mathcal{F}_F \longrightarrow 0$$

inducing exact sequences

$$(2.4.2) 0 \longrightarrow \check{\mathcal{E}}(-d-m) \xrightarrow{\binom{\iota_{\lambda}}{\alpha}} \mathcal{O}_{\mathbb{P}^n_k}(-m) \oplus \mathcal{E} \longrightarrow \Im_C \longrightarrow 0,$$

$$(2.4.3) 0 \longrightarrow \check{\mathcal{E}}(-d-m) \xrightarrow{\alpha} \mathcal{E} \longrightarrow \mathcal{F}_G \longrightarrow 0.$$

Conversely, given a subscheme C of codimension 2, assume that there does exist a sequence (2.4.2) with the above property of α being symmetric and $\deg(\det(\alpha)) = m$. Then C is self-linked through the hypersurfaces F and G of respective equations $f := \det\begin{pmatrix} 0 & t\lambda \\ \lambda & \alpha \end{pmatrix}$ and $g := \det(\alpha)$.

Proof. There remains to prove the converse assertion. Let $P \in \mathbb{P}^n_k$ and consider in $\mathcal{O}_{\mathbb{P}^n_k,P}$ the maximal minors f_i of the matrix $(\lambda \alpha)$ obtained by deleting the i^{th} column: in particular $g = f_1$. Recall that $\Im_{C,P} = (f_1,\ldots,f_{r+1})$ in $\mathcal{O}_{\mathbb{P}^n_k,P}$, hence for each pair of indices $i,j=2,\ldots r+1$ we have

$$u_{i,j}f + v_{i,j}g = f_i f_j$$

for suitable $u_{i,j}, v_{i,j} \in \mathcal{O}_{\mathbb{P}^n_k, P}$ (the determinantal identity (1.2) of [Ca1] with k = j = 1).

It follows that neither f nor g are identically zero, else C would have a codimension one component. The same identity shows that $\mathfrak{I}_C^2 \subseteq \mathfrak{I}_X$. Moreover it is always true that $\mathfrak{I}_X \subseteq \mathfrak{I}_C$, thus F and G have no common components.

We now prove that $\Im_X : \Im_C = \Im_C$. To this purpose we first check that $\mathcal{F} := \operatorname{coker}(\alpha) \cong \Im_C / g \mathcal{O}_{\mathbb{P}^n_k}(-m)$. Indeed the diagram

induces a surjection $\Im_C \to \mathcal{F}$. Argueing as above we obtain that its kernel is $g\mathcal{O}_{\mathbb{P}^n_L}(-m)$.

The map α induces an isomorphism $\mathcal{F} \cong \mathcal{H}om_{\mathcal{O}_{\mathbb{P}_k^n}} (\mathcal{F}, \mathcal{O}_G(-d))$, since $\deg(f) = d$. We have $h \in \Im_{X,P} : \Im_{C,P}$ if and only if $h\Im_{C,P} \subseteq \Im_{X,P}$.

Taking residue classes $\mod g$, this is equivalent to $h\mathcal{F}_P \subseteq \Im_{X,P}/g\mathcal{O}_{\mathbb{P}^n_k,P}(-m) \cong \mathcal{O}_{G,P}(-d)$, since $g \in \Im_X$, hence to the fact that $h \mod g$ is in $\mathcal{H}om_{\mathcal{O}_{\mathbb{P}^n_k,P}}(\mathcal{F}_P,\mathcal{O}_{G,P}(-d)) \cong \mathcal{F}_P$, i.e. $h \in \Im_{C,P}$. \square

3. Self-linkage of generically Gorenstein subschemes. In this section we shall inspect more deeply the case when C is a generically Gorenstein pure subscheme of codimension 2 of \mathbb{P}^n_k which is self-linked through two hypersurfaces $F:=\{f=0\}$ and $G:=\{g=0\}$ of degrees $\deg(F)=:d\leq m:=\deg(G)$.

The first hypothesys implies that C is also generically locally complete intersection since its codimension is 2. Owing to the isomorphism (1.2.2) we have

$$\Im_C/\Im_X \cong \omega_C(n+1-m-d)$$

whence at each generic point $P \in C$ the sheaf $\omega_{C,P}$ is invertible and a lift of a generator yields y such that $\Im_{C,P} = (f,g,y)\mathcal{O}_{\mathbb{P}^n_k,P}$. Since C is generically complete intersection and $\Im_X = (f,g)$ then \Im_C is either (f,y) or (g,y) at P. In the first case we have locally g = af + by. By changing globally g with g + cf for a suitable c we can assume that a is invertible at each generic point of C, hence at each generic point $P \in C$ we may assume that we are in the case $\Im_C = (g,y)$ holds generically.

Let now $H := \{h = 0\}$ be another hypersurface such that C is also self-linked through H and G. Recall that we defined $X := F \cap G$. If we set $\overline{X} := H \cap G$, then the following proposition holds.

PROPOSITION 3.1. Let C be a generically Gorenstein pure subscheme of codimension 2 of \mathbb{P}^n_k which is self-linked through the two complete intersections $X = F \cap G$ and $\overline{X} = H \cap G$. If $\deg(F) \leq \deg(G)$ then $X = \overline{X}$

Proof. At each generic point $P \in C$ we have $\Im_C = (y,g)$ and $\Im_X = (f,g)$. By the factoriality of $\mathcal{O}_{\mathbb{P}^n_k,P}$ and since (y,g) is a system of parameters for the regular local ring $\mathcal{O}_{\mathbb{P}^n_k,P}$, the condition $\Im_X \colon \Im_C = \Im_C$ amounts to the identity $f = gz - y^2$ up to units

Moreover C is self-linked with respect to both X and \overline{X} , whence in $\mathcal{O}_{\mathbb{P}^n_k,P}$

$$(f,g)$$
: $(y,g) = (y,g) = (h,g)$: (y,g) .

It follows that $y^2 \in (h,g)$, hence $(f,g) = (y^2,g) \subseteq (h,g)$ in $\mathcal{O}_{\mathbb{P}^n_k,P}$. Since such an inclusion holds at each generic point $P \in C$ then $(f,g) \subseteq (h,g)$. Changing the roles of f and h we obtain $(h,g) \subseteq (f,g)$, hence equality must hold.

REMARK 3.2. The condition $\deg(F) \leq \deg(G)$ is necessary as shows the following easy example. Let C be the origin in the affine plane with coordinates h, g. Let $f = h^2 - g^2$. Then $(f, g) \neq (f, h)$.

In order to clarify the role of the hypothesys that C is generically Gorenstein in proposition 3.1, in the remaining part of this section we shall give an example where:

- a) C is a pure subscheme of codimension 2 of \mathbb{P}_k^n , which is not generically Gorenstein;
- b) C is self-linked through $X := F \cap G$, with $F := \{f = 0\}$ and $G := \{g = 0\}$ of degrees $\deg(F) =: d \leq m := \deg(G);$
- c) for each choice of the second generator $\widehat{g} := af + g$ of \Im_X , there exists h with $\deg(h) = \deg(f)$ such that C is self-linked through $\overline{X} := H \cap \widehat{G}$, where $\widehat{G} := \{\widehat{g} = 0\}$ and $H := \{h = 0\},\$
 - d) but $\overline{X} \neq X$.

EXAMPLE 3.3. Let $n \geq 2$, x and y independent linear forms in \mathbb{P}^n_k and $C \subseteq \mathbb{P}^n_k$ the subscheme associated to the ideal (x^2, xy, y^2) . Notice that C is not generically Gorenstein.

CLAIM 3.3.1. Let C be as above. Assume that C is self-linked through two hypersurfaces $F := \{f = 0\}$ and $G := \{g = 0\}$, with $\deg(F) =: d \leq m := \deg(G)$. Then d=2, m=3 and there exist two other linear forms x',y' on \mathbb{P}^n_k such that (x,y)=(x',y') and

- i) either $f = x'^2$ and $g = y'^3 \mod f$, ii) or f = x'y' and $g = x'^3 y'^3 \mod f$.

Proof. Since $\deg(C) = 3$ then $\deg(F \cap G) = 6$ hence d = 2 and m = 3. There exists a Hilbert-Burch resolution of \Im_C

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}_{\mu}^{n}}(-3)^{2} \xrightarrow{A} \mathcal{O}_{\mathbb{P}_{\mu}^{n}}(-2)^{3} \xrightarrow{B} \Im_{C} \longrightarrow 0$$

where

$$A := \begin{pmatrix} y & 0 \\ -x & y \\ 0 & -x \end{pmatrix}, \qquad B := (x^2, xy, y^2).$$

Then the module $\omega_C(n-4) := \mathcal{E}xt^1_{\mathcal{O}_{\mathbb{P}^n_k}}(\mathfrak{I}_C, \mathcal{O}_{\mathbb{P}^n_k}(-5))$ has a dual resolution

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n_k}(-5) \xrightarrow{t_B} \mathcal{O}_{\mathbb{P}^n_k}(-3)^3 \xrightarrow{t_A} \mathcal{O}_{\mathbb{P}^n_k}(-2)^2 \longrightarrow \omega_C(n-4) \longrightarrow 0.$$

In particular $\omega_C(n-4)$ has two generators e_1 , e_2 subject to the relations $ye_1 =$ $xe_2 = xe_1 - ye_2 = 0$. On the other hand we have an isomorphism $\Im_C/\Im_X \cong \omega_C(n-4)$.

Therefore \Im_C/\Im_X has two generators, which lie in degree 2, satisfying the above relations.

Up to a linear change $(x,y) \to (x',y')$ of generators we can assume $f=x'^2$ or f = x'(x' + cy).

We consider then the two possible cases.

c=0, whence $f=x'^2$. Hence, modulo f, we can find y'=ay+bx' such that either $g=x'y'^2$ or $g=y'^3$. The first case is impossible since (f,g) must be a regular sequence. In the second case let $e_1=y'^2$, $e_2=x'y'$ mod \Im_X . We obtain therefore a self-linkage of C.

 $c \neq 0$ whence we may set y' = x' + cy and therefore f = x'y'. Hence, modulo $f, g = ax'^3 + by'^3$ where $ab \neq 0$, thus we can assume $g = x'^3 - y'^3$. In this case $e_1 = x'^2$, $e_2 = y'^2 \mod \Im_X$.

Claim 3.3.2. For each linear form $L \in k[x,y]$ there exist linear forms $\xi, \eta, M \in k[x,y]$ such that

$$v^3 + Lx^2 = \eta^3 + M\xi^2$$

where x and ξ (resp. ξ and η) are linearly independent.

Proof. Let $L := L_0x + L_1y$.

Assume that $L_0 \neq 0$. Then we may set

$$\eta := R' \left(x + \frac{L_1}{3L_0} y \right), \qquad \xi = y, \qquad M := -\frac{L_1^2}{3L_0} x + \left(1 - \frac{L_1^3}{27L_0^2} \right) y,$$

where R' is a fixed cube root of L_0 .

Next consider the case $L_0 = L_1 = 0$. Then we may take $\eta = y$, ξ arbitrary and M = 0.

Finally let $L_0 = 0$ and $L_1 \neq 0$. Let a be such that

$$(3.3.2.1) (3a2 - L1)2 - 12a4 = 0.$$

Notice that $a \neq 0$. It follows that $3ay^2 + 3a^2xy + a^3x^2 - L_1xy$ is the square of a linear form $\xi := R''(6ay + (3a^2 - L_1)x)$, where R'' is a fixed square root of $(12a)^{-1}$. Setting $\eta := y + ax$ and M := -x, then $y^3 + Lx^2 = \eta^3 + M\xi^2$. Notice that x and ξ are independent, else a = 0 which is not a root of equation (3.3.2.1). On the other hand also ξ and η are independent for $L_1 \neq -3a^2$, in which case substituting in (3.3.2.1) we would obtain $24a^4 = 0$, a contradiction.

Set now $f := x^2$, $g := y^3$, $\widehat{g} := y^3 + Lx^2$ and $h := \xi^2$. Since ξ and η are independent $(h, \widehat{g}) = (\eta^3, \xi^2)$ so that C is self–linked through $H := \{h = 0\}$ and $\widehat{G} := \{\widehat{g} = 0\}$, but $f \notin (h, g)$, since x and ξ are independent.

Thus we have checked that our example satisfies conditions a), b), c) and d) above.

REFERENCES

- [Ap] R. APÉRY, Sur certaines variétés algébriques a (n 2) dimensions de l'espace á n dimensions, C. R. Acad. Sci. Paris, 222 (1946), pp. 778-780.
- [Ar] A. Arsie, On two simple criteria for recognizing complete intersections in codimension 2., Comm. Algebra, 29 (2001), pp. 5251-5260.
- [C-C] G. CASNATI, F. CATANESE, Even sets of nodes are bundle symmetric, J. Differential Geom., 47 (1997), pp. 237–256.
- [Ca1] F. CATANESE, Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math., 63 (1981), pp. 433-465.
- [Ca2] F. CATANESE, Homological algebra and algebraic surfaces, in Algebraic Geometry, Santa Cruz 1995, Proceedings of symposia in pure mathematics 62, J. Kollár, R. Lazarsfeld, D.R. Morrison, eds., 1997, pp. 3-56.

- [Ei] D. EISENBUD, Commutative Algebra with a view towards Algebraic Geometry, Springer, 1994.
- [E-P-W] D. EISENBUD, S. POPESCU, C. WALTER, Lagrangian subbundles and codimension 3 subcanonical subschemes, Duke Math. J., 107 (2001), pp. 427-467.
 - [E-B] V. BEORCHIA, PH. ELLIA, Norma bundle and complete intersections, Rend. Sem. Mat. Univ. Pol. Torino, 48 (1990), pp. 553-562.
- [F-K-L] D. FRANCO, S.L. KLEIMAN, A.T. LASCU, Gherardelli linkage and complete intersections, Dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J., 48 (2000), pp. 271-279.
 - [Gae] F. GAETA, Sulle curve algebriche di residuale finito, Ann. Mat. Pura Appl., 27 (1948), pp. 177-241.
 - [Gal] D. GALLARATI, Ricerche sul contatto di superficie algebriche lungo curve, Acad. Royale de Belgique Memoires Coll., 32 (1960).
 - [Ha] R. HARTSHORNE, Algebraic geometry, Springer, 1977.
 - [P-S] C. PESKINE, L. SZPIRO, Liaison des varietes algebriques, Inv. Math., 26 (1974), pp. 271-302.
 - [Rao1] P. RAO, Liaison among curves in \mathbb{P}^3 , Inv. Math., 50 (1979), pp. 205-217.
 - [Rao2] P. RAO, On self-linked curves, Duke Math. J., 49 (1982), pp. 251-273.
 - [To1] E. TOGLIATTI, Una notevole superficie di 5° ordine con soli punti doppi isolati, Vierteljschr. Naturforsch. Ges. Zürich, 85 (1940), pp. 127-132.
 - [To2] E. Togliatti, Sulle superficie col massimo numero di punti doppi, Rend. Sem. Mat. Univ. Pol. Torino, 9 (1950), pp. 47-59.
 - [Wa] C. WALTER, Pfaffian subschemes, J. Algebraic Geom., 5 (1996), pp. 671-704.