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ON THE DISTRIBUTION OF CERTAIN HUA SUMS, II * 

S. J. PATTERSONt 

1. Introduction. Let f(x) be a polynomial with integral coefficients and, for 
c > 1, let 

j( mod c) 

where e(x) = exp(27rix). In [5] we proved that for A G Z, A ^ 0 there is a constant 
k(A) so that, for e > 0, 

]r 5(^3,c) = fc(^)X3 + (9(xt+5) 

but without being able to give a simple formula for fc(A). The purpose of this note is 
to complete this result by giving an explicit formula for k{A). 

THEOREM 1. For A^O we have 

k(A)       W2^    TT T (yK)   A-'* 
^)-24.i(2,(^))pl|l/^

) 

where 

Tp(pk)    =   p[k/3] +p[(fe-1)/3) -p'1 if       k>l,p=l    (mod 3) 
=    (p!*/3J+p[(*-i)/3j)i^_^    if      k>ltP^2   (mod3) 

=   sdl + slVl-I ,/       k>l,p = 3. 

Note that 

Tp(p)    =   2-p-1 if   p = l    (mod3) 
2/(1+p-2)    if   p = 2    (mod 3) 
5 
3 
5 if   p = 3 

Numerically we have 

(27r)2/3r(i) v    '    , VVN = 0.48646...     . 
24L(2,(^)) 

It should be noted that in [2, Theorem 1.3] R. Livne and the author proved an 
analogous theorem to the one above but now over Z[u;] where a; is a third root of 
unity. One notices that the coefficients of leading term of this theorem and of the 
theorem above have the same general structure.   One major difference, however, is 
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that there is an extra logarithmic term in leading term of the asymptotic expansion 
of [2, Theorem 1.3]; the situation is analogous to the parallel theories of the divisor 
function d(n) and r(n), the number of representations of a number as a sum of two 
squares. 

The proof of the theorem above is based on the methods of [5] but with variations 
in the details. It will be given in Section 2. In Section 3 we shall discuss some 
numerical experiments associated with the theorem. 

Unfortunately, for some unaccountable reason, the author gave the formula in [5, 
Lemma 2.4] incorrectly; it should read, when p /A, 

SiAx^p) = g{A, e, TT) + g{A, e, TT). 

The factor of 2 is then found in many of the other formulae of the paper. In fact, 
although the formulae are thereby distorted, the general conclusion of the main the- 
orem of [5] remains valid. The formula for the constant k(A) given in [5] not only 
has to corrected; in the form given there it was not useful. It is the main purpose of 
this paper both to correct it and to bring it into a useful form. Additionally we give 
a brief report about some numerical experiments around the asymptotic formula. 

2. Proof of the Theorem. We begin by considering the relevant analytic prob- 
lem, namely the analytic behaviour of certain series, in a more general setting. These 
series, defined first in Re(s) > |, are 

F(A,x,s)=   £   S(Ax3,c)x(c)c- 
c=l 

(c,/)=l 

where x '1S a primitive Dirichlet character of conductor /. We write A as 3a • Ai • A2 
where Ai is made up of primes = l(mod3) and A2 of primes = 2(mod3). We write 
the series as 

E E E E S(30iM2 • x3,3fcc1c2C3)x(3fcclC2c3)3-
fcscrsc2-scJs 

£=0    Ci       C2       C3 

where ci is made up of primes = l(mod3), C2 of primes dividing A2 and C3 of primes 
= 2(mod3) which do not divide A2. We can, by [5, Lemma 2.1], write this as: 

EEEE    SiZ-A^cjclcl 3fc)3-fesx(3fe) 
sha+2kA1A2C2

2clc1) -c^xicx) 
sha+2kA1A2c2

1clc2)crx(c2) 
S(3a+2*i4iA2C?^>C3)-^*x(c3). 

In this sum it turns out that the internal sums over C2 and C3 are comparatively 
elementary. The sum over ci will lead to functions known from the theory of meta- 
plectic forms. We begin by investigating the sums over C2 and C3. The last two lines 
can be replaced by 
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S(A2X3,C2)'C^SX{C2) 

and 

S(x3,c3)-c3
sx(c3). 

respectively since any b coprime to C2 resp. C3 is of the form /33 (mod C2) resp. /33 

(mod C3). By [5, Lemma2.3] we have for C3 made up of primes = 2 (mod 3), 

S(x3,c3)=     Y,     dKildlfiids). 
dld%d%=C3 

We can also treat the term in C2 in a similar but more involved fashion. Let, for 
any integer m, Supp(m) be the set of primes dividing m. Then we consider, for any 
C2 the subset 

{p : p I A2,ordp(c2) > ordp(A2)}. 

We combine all the terms of the sum where this set is a fixed subset M of 
Supp^), and have then a sum over M. For M C Supp(A2) let 

MM)    =     0 pordr{A2K 
peM 

MM) =    n  pordp(yi2), 
p\A2,pgM 

c*2(M)     =   gcd(c2,A5(M)), 
C2(M)     =   c2/c*2(M). 

If {p : p I A2, ordp(c2) > oidp(A2)} = M then 

S{A2X3,02)    =   c5(M) • A2(M) • 5(^3,C2(M)/A2{M)) 
=    c*2(M)A2(M) J2 d?.^.^M(*). 

Note that for each M C Supp(i42) the set of possible c^M) is finite. The sum over 
C2 then becomes an outer sum over M and a inner sums over C2(M) and ^(M)!^^^)- 

We next consider the term in ci. This we shall treat as above, but the details are 
more involved. Let T C Supp(v4i) and we shall consider such ci = cu • cu • C13 for 
which 

Supp(ci3) n Supp(^i)    =0 
ordp(cii) < ordp(74i), p € Supp(a) 
ordp(ci2) > ordp(^i) p G T. 

Then 
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5(3Q+2fcA1A2cic|,c1) = A1(T) ■ en ■ S(3a+2kAl(T)A2cl1c
2

2cl {c^/A^T))^) 

where A^T) = [} p0^^ and Al{T) =     ft    pori^M). Also, if is coprime to 3 

and B is coprime to c then by [5, Lemma 2.7] 

5(Bx3,c)=     ^    g(B,£,5)-d2 

5,d 

N(5)-d3=c 

where 5 G Z[a;], S = 1 (mod 3) and d G N. 

Finally we observe that for B ^ 0 (mod 3) 

S{3a'B,3k)    =   3^ iia>k 
=   3a5(B,3fc-a)    ifa</c. 

Next let X9 be the primitive character of order 3 and conductor 9 given by 

X9(±(l + 3«))=e(|). 

Then 

2cos(^=e(i).X9(B) + e(-i)x5(B). 

From [5, Lemma 2.3] we have for B ^ 0 (mod 3) 

S{B,3l)    =   32i/3 ifi = 0   (mod3) 
=    0 if/ = l    (mod 3) 

=   32!f1(l + e(l)x9(B) + e(-l)MB))    HI = 2   (mod 3). 

Now we can combine all of these results.  What we obtain is a sum over M C 
Supp(A2) and T C Supp(Ai) of 

E     E    E    {cn'C*2(M))^\(cn-c^M)){A1(T)A2(M))1^ 
cii,C2(M) S,d di,d2,d3 

5(c214(M)AI(T)A^(M),£,5)iV(5)-sx(iV(<J))d2-3sx(<53)dl-2sdi-3sdr4s 

Kds)x(4d3
24)e ((^)3) {g 3*<i->X(3*)e ((^)3) + 

+ g 3a(l-S)3L(2-3S)x(30+3Z,) +  g 3a(l-S)-2S+l3L(2-3S)x^3a+2+3L) . £ ((&\   \ 
L=0 L=0 ^     ^3' 

x(l + e(i)x9(^(T)^(M)c?1^(M)2iV(6)2dd1dI) + 

+e(-i)x5(^(r)^(M)c?1^(M)2.iV((5)2dd1d|))} 
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where Supp(<ii),Supp(d2) and Supp^s) are subsets of M = {p : p prime ,p = 
2 (mod 3),p/i4$(M)} and Supp(ci) and Snpp(N{5)) are subsets of T = {p : 
p prime ,p = 1 (mod 3),pJM.J(T)}. The sums over en and c^M) are finite and 
are restricted as above. Now we observe that 

we can therefore express the sum over cfe as an Euler product. For convenience we 
write c* = en -c^Af), A(T, M) = Ai(r)^2(M), ^*(T, M) = ^(T) -^(M). We then 
see that the expression above is the sum of five terms (with D : Supp(.D) C M) 

c*yS,D 

Y; g(3a-kDc*2A*(T,M),e,S)N(5)-° ■ x(N(5)) 

~n.(i-p2-3sx(p)3)"1-3fc(i-s)x(3fe), 
pefuM 

E    (sv-^r.M))1 'x(3a'-c*-^(r1A0|^)|^1-2'x(^)2 

giD-cT'-A'iT.M^S) ■ N(5)-*x{N(6)) 
n    (1 -P2-3*^)3)"1 • (1 - 32-3sx(3)3)"1, 

pefutii 

32      (S^cM^M))1 sx(3QcM(r)M))31-2sx(3)2 

IM^MDI^XP)2- 
g (c*2 3D A* (T, M), e, 5) iV((J) -sx (iV(<5)) 

n    (1 -P2-3SX(P)3)_1(1 - 32-^x(3)3)_1 

P€TUM 

and the two terms 

e(±i) E   (S-cM^.M))1 •x(30-c*-i4(r)M))31-2-x(3)2 

•  XQ^OT.MK
2
)*

1
 • l/ip)! IDI

1
-

2
^!?)

2
. 

g{c*'iZw±lDA*{T,M),e,5)N{8)-ax{N{5)) 
0    (1 -P2"3^^)3)"1 • (1 - 32-3'x(3)3)-1 

p^TUM 

where we have used: X§(N(5)) — e ((j)S)- 

We shall next show that the sum over 5 can be continued to Re(s) > |; we shall 
also determine the residue at s = |. What will also be evident from this discussion 
is that the series above are holomorphic in Re(s) > | if neither x nor X ' (~) is of 
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order 3. Since our main interest is to determine the residue at 5 = | we shall not 
pursue this further. 

In order to study the series 

5>(r,MW)-MW(*)) 
6 

we define, for any set R of primes of Z[UJ] excluding ^—3 the function 

Mr,**) = Y,9(r,e,5)N(5)-sx{N(5)) 

where 5 = 1 (mod 3) and 5 is not divisible by the primes in R. Then we have, if Q is 
a further such set, Q Pi R = 0 then if r is of the form ro^i^l where ro is not divisible 
by any prime in Q, but 5i and 62 are square-free and divisible only by primes in Q. 
Then 

1>RUQ(r,x,8)    =     I!  (l-x{N(Tr))3N(iT)*-z°)   * 

E Mrodo(5i/d1)dlx,s)x{N(dod2
1)) 

do,di 
N(d1)N(do(P1)-

3iJ.{d0d1)g(ro, e, do) 

5(ro)e,d1)£-((^)3); 

see [4, §2] for a rather more general formula. Here do^di = 1 (mod 3), Supp(<io) C 
Q — Supp(<Ji52) and di/5i. Also we have 

Res^RugO") X) 5) = 0       if (x 0 N)z is non-principal 

and 

Re4S^uQ(r,M)= 11 (l + ^^-^-'.Res^r,!^) 
S~3 7r€Q S"3 

- see [1, p. 134] for a variant. 
Next we recall, that if we use the estimates 

\g(r,e,c)\    =    iV(c)2    if c and r are coprime 
and 

|g(r,£,c)|    <    ip(c)       in general 

then, with the aid of the functional equation ([3, Theorem 6.1]) that, for any e > 0 
there is e' > 0 so that for s : | — e' < Re(s) < | + E', |Im(s)| > 1 one has 

V>{A}(r, 1,3) =0 (jV(r)i-B^+e I Im(S) |3-2-ReW+e) . 
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It follows that if R is contained in the set of primes which cover split primes then 
in Re(s) > | we can let Q exhaust the complete set of primes which divide the inert 
primes. Let Qoo be the set of all such primes, i.e. primes in Z which are also primes 
in Z[LJ]. Then we have additionally 

"""* q=2    (mod 3) S~^ *-* q=2 

We have (see, for example, [5, §3]) 

Res^(r,l,5) = K'T(r)/N(r)i JJ (l + ^(TT)-
1
)"

1 

where 

s~3 TteR 

K = 
(27r)2/3r(i) 

48V
/
3CQM(2)' 

Since we shall have to deal with the case where r £ N{l,c<;,u;2} we observe that 
r(r)/iV(r) e is invariant modulo cubes; suppose ri is now coprime to 3 and is cube-free. 

Then if ri is square-free 

T(ri)/JV(ri)* =    2\/3r1"^ 

r(3cjri)/iV(3a^i)*      -    2V/3e(-i)^(^)r1"J 

riScor^/NiSuj2^    =    2v/3e(+|)x9(ri)r1"^ 

and for any other r £ N • {l,a;,a;2} not in a cube-class containing one of the above 
satisfies r(r) = 0. 

We shall now take set R to be {TT : TT | J4*(T)}. We conclude that the (simple) 
pole of F(A, s) = F(A, 1,5) at 5 = | is a sum over T, M of the five terms arising from 
the decomposition above. These are 

K- E (c*A(T,M))-°\»(D)\ 
c',D 

xD-4/3^ T(c,a3a-fcDi4*(T,M))JV(c*!,3a-A!I>i4*(r>Af))~* 

n (i+p-*)-1-   n   (i+9-2)-i-3-*- n a-p-2)-1, 
p|AJ(r) q=    (mod 3) pgfuM 

if £ (3ac*i4(r>M))   s|Ai(I>)|-i3-*T(c*a-Z?.i4*(r,M))JV(c*9i4*(r,M))" 

fi^a+p-)-1-    n   a+r2)-1 n a-p-2)-1, 
p|^J(r) 9=2    (mod 3) pzfuM 
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K J2 (3acM(T,M))~*|fi(D)|ir6/3 

c',D 

x 3-
5
/
3
T (c*2 3D A* (T, M)) N (c*2 3 • D ■ A* (T, M)) ~ * 

n (i+p-2)-1-    n   (I+Q-
2
)-

1
- n (I-JO-MI-D-

1
, 

p|>lJ(T) q=2    (mod 3) peTUM 

and the two terms 

tf-e(±i) E (3ac*A(T,M))   3 

c*,£l 

x \n(D)\D-5^xq(A*{T, M)C*
2
)
2±1

T(C*
2
3UJ

±1
DA*{T, M)) 

N{c*2 -Z-u^-D-A^TiM))-*    n   (l+P-2)-1        11       (1 + q-2)-1 

p\Al{T) g=2    (mod3) 

n (i-p-2)-1^-^-1. 
pgfuM 

These expressions now simplify. First of all in view of the formulae for r we see 
that the last three terms are all equal. Also we can carry out the sums over D. These 
now lead to three terms: 

KY:(C*A(T,M))->   n   T^-
3-1

- nu-pr2)-1 

c* p\A*[T,M) Pi7*3 

*£ T(C*
2
A*{T,M) ■ Za-k)N(c*2A*{T,M)da-k)~i, 

fc=0 

KJ2 (3ac*A(T,M))   3T(c*2A*{T,M))N(c*2A*{T,M)y 

n   i^ n( 
p\A*(TM) Pi#3 

n   i^ na+pr2)-1- 

and 

X.X:(3ac*A(T,M))   ^3-tr(3-c*2A*(T)M))iV(3cM*(T,M))   6 

n   T^- na-pr2)-1. 
p\A*(TM) Pi #3 

In view of the definitions above and the evaluation of r given above we see that 
k(A)/k(l) is multiplicative. The evaluation of the primary factors is a laborious but 
entirely routine calculation which we shall not reproduce here. 

The author does not understand why the method used in [5] appears less effective 
in finding a calculable expression for k(A). It may merely be a matter of incompetence, 
but it seems that by making use of all the available relationships between the I/JR one 
reduces the evaluation of r to a set where this function is much more manageable 
than in general. 

3. Remarks. It is instructive to compare the results above with experimental 
determinations of  ^ S(Ax3,c)/X3 for large X.  In practice "large" means of the 

c<X 
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order of 105. The calculation of S(Ax3,c) involves O(clogc) steps and consequently 
the calculation of the sum above requires of the order X2 log X steps. As the amount of 
information gained, measured in the number of decimal digits which can be estimated 
with any certainty, presumably grows as logX (i.e. the error term is of the form 
(^(X-77) with some rj > 0. there is little to be gained by extending the calculation 
from, say 105 to 2 • 105. Whereas the cost increases fourfold the increase in logX and, 
so essentially in the information gained is perhaps around 6%. The formula of the 
Theorem gives 

fe(l) = J2^/3r^  - 0,48646... 

and 

k(2) = §A:(l)-2-4 = 0.6177.. 
A(3) = §&(l)-3-s = 0.5621.. 
jfe(4) = §jfe(l)-4-4 = 0.4903.. 
Jfe(5) = f§£:(l)-5-3 = 0.5470.. 
&(6) = §*(!)• 6-* = 0.7138.. 
fc(7) = ^*(l)-7-i = 0.4722.. 
&(8) = ^A;(l)-8-* = 0.6810.. 
k(9) = |A;(l)-9-* = 0.3897.. 

The corresponding experimental values (X = 105) are 

1 0.4765 
2 0.6081 
3 0.5633 
4 0.4936 
5 0.5514 
6 0.7088 
7 0.4508 
8 0.6468 
9 0.4046 

The accuracy given in the second list is not meaningful as it stands as small 
variations in X give rise to much larger variations than the data of the last two 
decimal places given. This can be seen from Fig.2. It is merely given for the sake of 
comparison with the first list. The corresponding convergence can be seen, in the case 
A = 1 from the graph of X~3 J2c<x S(x3ic) for ^e range x < 105 (Fig.l), sampled 
(linearly) at multiples of 500. In this case a closer look at the convergence is afforded 
by Fig.2. In several cases, A = 1,2,4,7 and 8 in the range X < 105 the error term is 
of a fixed sign over a long interval, as in the case shown. In the cases A = 1,2,7 and 
8 it is negative, in the case A = 4 it is positive. In view of [5, Theorem 2.8] and [3, 
Theorem 6.1] it seems plausible that F(A, s) has poles at the zeros of L(3s — 2, i^)), 
and thus in the half-plane Re(s) > |. We therefore expect that the error term in 

J2 S(Ax3,c) - k(A)Xz cannot be O(X's)] the same would hold for Riesz means. If, 
c<X 
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40    60    80    100    120    140 

FlG. 1. The convergence in the case of x3. 

200 

as one would expect, most of the zeros of L(3s — 2, (-^)) yield poles of F(A, s) then 
one would have that the spectrum of X~ e ( ]r S^AE

3
, C)) considered as a function of 

c<X 
£ with X = exp(£) would contain so many high-frequency components that it would 
presumably be impossible to improve the estimates by suppressing them by means of a 
"filter", nor does it appear feasible to estimate them numerically and to subtract them 
("anti-noise"). Prom the point of of view of analytic number theory one would need a 
summation formula such as Riemann's explicit formula or one of Voronoi's type to do 
better and these do not exist at present. In other words, there seems to be no method, 
in the present state of knowledge, of obtaining a better estimate for k{A) from the 
knowledge of the 5(Ax3,c) with c< X than that given by X"^ ]r S(Ac3,c). This 

c<X 
is regrettable as one also expects that for an arbitrary integral cubic polynomial / 
the asymptotic expansion 

c<X 

where 

S{f(x),c)=     X)     ' 
j    (mod c) 

m 

In view of the above, one cannot expect to be able to estimate kf well with a 
reasonable amount of calculation.  The results above show that, even when Ai and 
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FIG. 2. The convergence in the case of x3 examined more closely. 

A2 are such that A1/A2 is a rational cube, k(Ai)/k(A2) can be a relatively complex 
rational number which we could not recognize from experimental evidence. 

Finally, there were a number of errors and misprints in [5] which we shall now cor- 
rect. The most serious was in Lemma 2.4 which we noted above. Further corrections 
are: 

In Lemma 2-3 the sign of 2 cos ^ should be "+", not "-". 

In the first line of the proof of Lemma 2.6 the formula should be 

;rt(,4,c)c-*, 

with an analogous correction three lines later. 

In §3, definition of r: in the third case a "=" is missing. 
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