
ASIAN J. MATH. © 2002 International Press 
Vol. 6, No. 4, pp. 713-718, December 2002 006 

THE LIE TRIPLE SYSTEM 
OF THE SYMMETRIC SPACE F4/SPIN(9) * 

MYKYTYUK LV.t 

Abstract. The Lie triple system of the rank-one compact symmetric space F4/'Spin(9) (the 
Cayley projective plane) it is described in terms of an algebraic structure associated with the spinor 
representation of Spin(9). We also discuss related questions in this 16-dimensional representation 
using the octonion algebra approach. 

1. Introduction. Let G/K be the compact symmetric space F4/Spin(9). Let g 
and t be the Lie algebras of the Lie groups G and K respectively. Fix on fl the positive 
definite scalar product (,) = -$/72, where $ is the Killing form of g. Denote by m 
the orthogonal complement to 6 in g. The isotropy representation of the Cayley plane 
G/K Adm : K —> End(m), k »-» AdA:|m is the (16-dimensional) spinor representation 
of K ~ Spin(9). There exist nine orthogonal endomorphisms Ej : m —> m satisfying 
the relations 

EjEp + EpEj = Q, j^p,    J5? = Jd, E;=Er1=Ej,    j,p = 0,...J8 

and such that the linear 9-dimensional subspace U of End(m) spanned by Ej,j = 
0,..., 8 is invariant under conjugation by elements of Adm K : (Adm k)U(Adm fc"1) = 
U. In the present paper we prove that for any w^.rj G m the triple commutator 
[w, [£,77]] is given by the following formula 

In [My] we found a complicated expression for this commutator using the Lie 

bracket identity   U/—ad^(£), y -ad^r/)    .=   — [^,[£,77]],  where we consider the 

vector-functions w >-» J — ad^(C), C ^ nx ^s the vector fields on the set m0 of all 
nonzero w € m.   To simplify this expression we prove here that the vector fields 

{(|w|2Id - |w|w-ad^J(C), C G m} commute on m0 {\w\2 = (w,w)).  To this end 

we use the realization of the spinor representation of the Lie group K in terms of the 
octonion algebra. 
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2. The Lie triple system of F4/Spin(9). 

2.1. The spinor representation of Spin(9). Let G/K be the Riemannian 
symmetric space F^/Spin^), a unique exceptional compact symmetric space of rank 
one. We denote by Q and 6 the Lie algebras of the groups G and K respectively. Let 
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$ be the Killing form of the Lie algebra g and m be the orthogonal complement to £ 
in g with respect to <I>, i.e. 0 = 6©m is the AdK-invariant direct sum decomposition 
of 0. 

Fix a base {Wt} in m. Let {wb} be the coordinates in m with respect to this basis. 
With any vector-function r : m —> m, r = J2bTb(w)Wb we can associate the vector 
field YLbTb(w)'^- By [My, Corollary 3.10.1] for any vectors £,77 G m the following 
Lie bracket identity holds on the set m0 of all nonzero points w from m 

But for the symmetric space F^/Spin{^) (of rank one) the positive restricted root 
system E+ has only two elements cr and 2<7 with multiplicities TTV = 8 and 77120- = 
7 [He, Table VI]. Therefore for any w G m0 there exists a restricted root decomposition 
m = V%{w) 0 Vi{w) 0 \^i(it;) of the space m, where the subspaces V^iu), Vr(iy), VKiy) 
are eigenspaces of ad^ of dimension 8,7,1 respectively and the space Vi(iu) = {w) (the 

Cartan subspace) is generated by the vector w. Let liw', Uw , ILw be the orthogonal 
projectors from m onto the spaces Vg^X ^7(^)5 Vi(iy) respectively. Then there exists 
a unique positive definite scalar product (,) = c$ on the compact Lie algebra 0 such 

that ^-ad^m = |K;|(nL8) + 2nl7)), \w\2 d= (w,w).   Since Qfaw) d= TVad^ = 

2Tr(ad^ |m) and -ad^|m = (w.w)^^ +4nL7)), the constant c = -1/72. 
The Ad-representation Rm of K ~ Spin(9) in m is a faithful real representation 

in a 16-dimensional space [He, GG] and is a unique irreducible representation of the 
group Spin(9) in dimension 16 [On]. Moreover, Adm K c^ Spin(9) acts transitively on 
the 15-dimensional sphere of all vectors from m of constant length; the isotropy group 

Kw = {k G K : Ad£;(K;) = iy} of any nonzero w G m is isomorphic to Spin(7) [On, 
Ch.I, §5, Example 5]. The spaces V&(w)i Vr(w), Vi(w) are AdKw-invariant. It is clear 
that Vs{w) and ¥7(10) are simple K^-moduli (see [On, Ch.I, §5, Examples 4,5]). To 
describe the Lie triple system of F^/Spinty) in terms associated with the Lie group 
Adm K ~ Spin(9) we consider the construction of the spinor representation of Spin{9) 
in more detail. 

Let V be a real vector space of dimension 9 endowed with a positive definite 
bilinear form Q. Let eo,..,e8 be an orthonormal basis of V. The Clifford algebra 
Q+(9) in terms of this basis is defined as the real associative algebra with unit 1, 
generators eo,.., eg and defining relations 

ej-ep + ep-e,-=0,    j^p,        e) = 1,        j,p = 0,...,8. 

Let pm+(9) be the subgroup of the multiplicative group of all invertible elements of 
CZ+(9) generated by vectors of length one in V. If Q(v,v) = 1 then v • v = 1, so 
that v G pm+(9). The Lie group Spm+(9) ^ Spin{9) is the subgroup of pm+(9) 
consisting of even elements, i.e. 

Spin(9) = {vi'V2"" V2p, Qivj.Vj) = 1, j = 1,.., 2p, p G N}. 

Moreover, the group Spin(9) preserves under conjugation the space V: gVg'1 = 
V [Po, Lecture 13]. 

There exists a faithful 16-dimensional representation pis of pin+(9) by orthogonal 
matrices [Po, Lecture 15]. In other words, AdmK C pi6(pm+(9)) C 0(16). Therefore, 
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there exist nine orthogonal (with respect to the form (,) on m) linear transformations 
Ep : m —> tn satisfying the relations 

EjEp + EpEj = 0,j^ p, E] = Id, E* = EJ1 = E^ j,p = 0,.., 8. (2) 

Before going into further details we describe these transformations in terms of the 
octonion multiplication. To this end consider the algebra Ca of octonions with the 
standard basis ei = 1,62,..., eg, e^ = — l,p = 2...., 8. To simplify notation we shall 
often write ab • c and a • be instead of (ab)c and a(6c) for any elements a, 6, c of the 
nonassociative algebra Ca. Denote by aba the common element a(ba) = (ab)a (the 
flexible law). We can ic 
(see [Po, Lecture 15]): 
flexible law). We can identify m with Ca  such that for each w = (wi, W2) € tn = Ca 

EQ{WUW2) = (-Wi,W2), (3) 

Ep(w1,W2) = (epW2,w1ep)) p=l,...,8. (4) 

(the operators {SJEJ^SJ = ±l,j = 0, ..,8} also satisfy conditions (2)). Then for 
any vectors f = (£1^2),*? = (771,772) € tn we have (f>*7) = (£1,771) + (6,772), where 
(fi,7?*) = 5(ft77i+77t£t),2' = 1,2, and l^l2 = |wi|2 + |w2|2, where \wi\2 = wiWi = WiWi. 

By (2) for any nonzero w € tn the vectors EjW,j = 0,..., 8 form an orthogonal 
basis of some subspace VQ(W) C tn. Moreover, since gVg~l = V, where g G 5pm(9), 
for each k G K^j = 0,..., 8 the endomorphism (Adm k)Ej(kdm A:"1) is a linear combi- 
nation of endomorphisms Ep,p = 0,..., 8. Hence AdKw(Vg{w)) — V${w). Using the 
dimension arguments we obtain the splitting VQ{W) — Vs(w) 0 Vi{w) and the identity 

^{EJW^EJW = H2(nw +nW)(0 d^f kl2ni9)(0,   w,t e m0.      (5) 
i=o 

2.2. Two operator-functions. We continue with the previous notations. Our 
interest in this subsection focuses on what will be shown to be the most important 
ingredients of the calculation of the Lie triple system. Consider on tn0 two operator- 
functions: A : w H-> Aw, 

AW ^ M2
(-II£> +ni1)) = H2(-/d+iiL9) +ni1)) (6) 

and B : w i—> B^, 

PROPOSITION 1. For any w = (wi,W2),€ = (6^2) ^ na0 

A^^i,^) = (w^Wi +Wi€2 'W2,   ^2?2^2 + ^1 ' ^1^2). (8) 

Proof. By (5) and definition (6) 

A„,(£) = -(w,w)Z + Y?jxQ(EjW,Z)EjU> + (w,£)v>' (9) 
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Since EQ(WI,W2) = (—wi,W2), we first readily verify that 

- (klP + \W2\2m^2) + ((-WUW2), (Zu&K-WlM) (10) 

+ ((Wl,W2),(£l,£2)}(wi,W2) 

= (witiWi - |W2|2£l>   ^2?2^2 - |^l|26)) 

using the identities (ab)b = a(bb) and b(ba) = (66)a, a, 6 G Ca.   By relations (4) 
8 _ 8 __ 

J2(EjW^)EjW = ((/i-f ^)u>2) ^Ji(/x + i^)), where /x =   J2(ejw2>€i)ej aild ^ = 

8 _ 
X)(^iej»^2)ej- But for any octonions a, 6, c : (ca, 6) = (c, 6a) [Ok, (1.36),(3.8)] and 

since (ca, 6) = (ca, 6) we have also the identity (ac, 6) = (c,a6).   Therefore // = 
8 8 

E (ej^iw2}e3 = C1W2, ^ = E (ej^i6)ej = ^16 and 

8 

5^(15^,0^7^ = (W1^2'W2.+ \W2\2tu   Wi ' &W2 + |^l|2&) (H) 

Adding equations (10) and (11) we obtain the assertion of Proposition 1. □ 

We wish to describe some defining relations between the operator-functions A 
and B. 

PROPOSITION 2. For any nonzero w = (wi,W2),f = (£1162) € tn = Ca2 

Bw(0=2(ti;it(;2.?2, Ji • ^1^2) + (M2 - K|2)(-Ci, 6) (12) 

and 

BW = 4|U;|2ni1) - H2Jd - 2AW = |t«|2(-n£8) + ni7) + ni1)).       (13) 

Proof. To prove (12) it is sufficient to see that (EQ'W,
,
W)EQ^ = ((—ttfi,W2)> 

(^i,^2))(-6^2) and Tf*=1{Ejw,w)Ej€ = ((/x + ^)?2» ?I(A* + ^ where the oc- 
tonion n + v is given by: 

// + 1/ = ^ .=1((ej^2, ^1) + (w1ej)W2))ej 

= ^.^(^i'^i^) + (ej,wiW2))ej = 2^i?i;2 

(see the proof of Proposition 1). To check the second assertion of the proposition, we 
can use the already proved relations (8) and (12). Indeed, since a6-c+ac'6 = a(6c+c6), 
6 • ca + c • 6a = (6c + c6)a [Po, Lecture 15,(1)] and (a, 6) = (a, 6), we have 

4(w,£)w-(w,w)S-2Aw(Z) = 

2((^1?1 +6^l)^l+^l(W2?2+&^2), (^lCl+?l^l)^2 + ^2(^26+12^2)) 

-(l^!!2 + |lU2|2)($l,6) - 2(Wl€iWi + Wi€2'W2,   W2^2w2+Wi • &W2) 
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= 2(w1W2'Z2, ?i ' ^1^2) + ((M2 - I^H^i, (M2 - M2)6) = B,,. 

Taking into account definition (6) we complete the proof. D 

We can now supplement Proposition 2 with 

COROLLARY 2.1. For any w e m0, p = 0,... ,8 : 
1) BWEP + EPBW = 2(EpW, w)Id\ 

2) nL^JSpH^ = 0; 

3) nL7)Epni7) = (£pw,ti;)M-2nl7). 

Proof. The first assertion is an consequence of (7) and defining relations (2). The 
second holds because V7(w)±Epw and E* = Ep. To prove 3) it is sufficient to see that 

2M2nL7) =BW + \w\2Id - 2M2r41), BWU{^ = |^|2nL7) and use 1), 2). Indeed, 
(B* + \w\2Id - 2\w\2U^)Epn^ = {-EPBW + 2{Epw,w)Id)U^ + M2£pnl7). D 

The following property of the mapping A is needed for the proof of Proposition 4. 

PROPOSITION 3.   For any vectors f, 77 e m the vector fields J2b(^0b-^ and 

IC&CA^J&g^ commute on m0. 

Proo/.       It   is   sufficient   to   show   that   the   vector-function   ^(£,77)     = 
(d/dt)oA(w+tAw£)(r)) is symmetric for exchanges of two variables £ and 77.   Since 

2AW = 4|^|2nL1) - |^|2/d - B^, 

8 

2AWC = 4(w, Z)w - (w, w)£ - ^(Epw, w)Ep^ (14) 
p=0 

Therefore 

41^(f,»?) = 16(7i;, 77)(iy, ^)«; - 4(^, iy> (£, 77)^ - 4 > (£pw, ty)(Ep^, 77)^ 
'*—*p=U 

E8 
(Epw,w)EP€ 

p=0 

-%{w,w){>w,£)r) + 2(w, w) (w, Ov + 2 2^ =0 (^P^ ^) (^P^ W)*7 

- 8(ti;, 0 ^0^'^'W)E^ + 2^' ^ E^o^'^' ^Ejr] 

Since all generators Ep are symmetric operators and w € Vg(w), 
Ylp=o(Ep'w1w)(Ep^w)ri — (w)w)(w^)rj. Taking into account relations (2) we 
obtain 

Q O 
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Hence 

4yw(£,77) = S(ti/,£,i7)ti>-4^ 

where S(w, £, rf) = S{w, rj,0 G R and we put £Li d=f Id. Thus Y^^, 77) = Yw{r), £). D 

But for w G m0 ^/-ad^|m = MCTI^ + 2n£)) = |io|Jd - 1^1"^^ and the 

function w »-> |iy| is constant along any vector field y — ad^(^), ^ G m, so that as 
an immediate consequence of (1) and Proposition 3 we have the equality [w, [£, 77]] = 
(d/dt)oA(li;+^)(7j) - (d/Gtt;)oA(lu_f_tT?)(£). Now, using (9) or (14) and Proposition 1, we 
obtain 

PROPOSITION 4. For any ^,£,77 G m 

^8 

2\ 

^, K, T?]] = 3(ti;, 77)^ - 3^, Or] + Ej==o(£^' ^^'^ " 5^=0^'w)Ejrj' 

or in terms of the octonion algebra (m = Ca ) 

[(^1,^2), [(6,6), (771,772)]] (15) 

= [i^iVi - wi + 6% • ^2 + ^1^1 • 6 + W1772 • £2) 

- (7716 • W! + 7716 • ^2 4- wifi • 771 4- W1C2 * 772)? 

(6 • 772^2 + ?1 • 771^2 + W<2 ' 7726 + tWl • 77l6) 

- (772 • £2^2 + rji' 6^2 + W2 - ?2^2 + ^1 • ^772) J . 
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