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RIGIDITY OF A CLASS OF SPECIAL
LAGRANGIAN FIBRATIONS SINGULARITY *

JI-XIANG FUt

1. Introduction. In (8], Strominger, Yau and Zaslow conjectured that the mir-
ror pairs in mirror conjecture are pairs of dual special Lagrangian fibrations. Since
then there has been a lot of research on special Lagrangian submanifolds or special
Lagrangian fibrations. In this note, we will look at the possible singularities that
can arise from a special Lagrangian fibrations. We will show that a fiber of a spe-
cial Lagrangian fibration that has only isolated singularity of homogeneous type are
essentially of the type given by Harvey-Lawson.

We let C3 be the complex 3-space endowed with the standard Kaehler metric with
the associated Kaehler form wp and the (3,0) form Qy = dz1AdzaAdzz. A submanifold
L c C3is called a special Lagrangian submanifold (in short SL-submanifold) if wp|z =
0 and Im(§y)|r, = 0.

We let S° C C3 be the unit sphere. For p = (21,22,23) € C% and t € R we use
tp to denote the point (tz1,tz2,t23) € C3. For any subset & C S5 we define the cone
supposed on ¥ to be

C(x)={tp|teRT,peX}.

We say C(X) is an SL-cone if the smooth locus of C(X) is dense in C(X) and is an
SL-submanifold of C3.
Now we introduce the notion of homogeneous SL-fibration of C3.

DEFINITION 1. Let F: C3 — R3 be a smooth surjective map. We say F is
an SL-fibration if the components fi, fo and fs3 of F are real valued functions in
T1,T2,23, Y1, Y2, Y3, where zx = Tk + 1Yk, so that all Poisson brackets {f;, f;} =0 and
the real part Re{detc((8fi/0%;))} = 0. We say the fibration is homogeneous if all f;
are homogeneous polynomials and we say the fiber Ly = F~1(0) is a regular cone if
Lq has only isolated singularity 0 and all f; are irreducible.

Recall that the smooth locus of any fibers of F' as in the Definition are automat-
ically SL-submanifolds [3]. For convenience we denote the punctured cone Ly — {0}
by Lj. We first observe that in case Lo is a regular cone, then deg fr > 2 for all k.
Indeed, let Ty be the linear combination of all tangent spaces of points in L§, after
translating to the origin 0. We now show that dim 7Ty = 6. First, in case dim Ty = 4,
then there are two points p,q € L§ so that dim(7T,L§ N T,L§) = 2. Because T, L
and TyL§ are special Lagrangian subspaces in C3, we must have T,L§ = T L}, a
contradiction. Now assume dimTy = 5. Then there is an unit vector Jv € Tp. This
implies that Jv is normal to Lj everywhere and hence v is a vector field of L§. So we
can write Ly = tv x I, where I is a cone of dimension 2 with singularity 0. Thus Lg
has at least singularity R, a contradition. Now from dim T = 6, we can easily obtain
deg fx > 2 for all k. Moreover we can obtain that ¥ = Lo N S% is full in C3.

The prototype of SL-fibration in C? with homogeneous isolated singularity is the
example of Harvey and Lawson [3].
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EXAMPLE 2. Let F = (f1, fo, f3) be defined by
A=lal =zl fo=|af —lz® and fz=In(z12223).

Then F is a homogeneous SL-fibration of C3 and Lo = F~1(0) is a reqular SL-cone.

So far this is the only known example of homogeneous SL-fibration of C* whose
central fiber is a regular cone. The fibration given by (fi, fa, f3):C® — R3 with

fi=z1y2 — T2Y1, fa=z1y1 +22y2 and f3 = ys.

is a homogeneous SL-fibration but its central fiber is not regular.
In this note, we will prove the following uniqueness result on homogeneous SL-
fibrations with singular central fibers.

THEOREM 3. Let F = (f1, f2,f3) : C® — R3 be a homogeneous SL-fibration
so that its central fiber Lo is a regular cone. We let n; = deg f;, so arranged that
ny < ng < ng. Then we must have (ny,n2,n3) = (2,2,3). Furthermore, there is a
unitary matriz S so that if we make the Darboux coordinates change
)T

(p1,D2,P3,q1,92,93)T = S~ (1, %2, T3, Y1, Y2, ¥3)©

and let wg = pr +iqk. Then (f1, fa, f3) is linearly equivalent to
fi=lwif = wo’, fo=lw? - |ws® and fa = Im(wiwaws).

Acknowledgement. I like to take this opportunity to thank Jun Li for the
invaluable advice and guidance. Without his insights and help, this work would not
have been finished. I also thank Professor Gu Chaohao, Professor Hu Hesheng and
Professor Xin Yuanlong for their guidance.

2. Harmonic 1-forms on SL cone. In this section, we collect a few facts
concerning harmonic 1-forms on special Lagrangian cones in C3.

Let Lo be an SL cone of C* with isolated singularity 0. The question we will
address in section is whether there is a family of smooth proper SL-submanifolds L,
of C3 such that Ly — Lg as s — 0. In case such families exist, then on L we have
the associated normal vector field W (z) and the associated 1-form 6(z) = W(z)|wo.
In the following, we will call such 1-form the deformation 1-form associated to the
family Ls. By a result of McLean, 6 is a harmonic 1-form on Lg. Further since L,
are smooth @ is singular at 0.

LEMMA 4. Let Ly = C(Z) be an SL-cone with isolated singularity 0 and let t be
the distance function t(z) = dist(z,0) on C3. Then the space of harmonic 1-forms on
Lj is spanned by

t7ln; d(t7Y); d(tT*i¢;) and d(t“'iq&i)

where 1 are harmonic I-forms on X, ¢; are eigenfunctions on ¥ with eigenvalues

Ai >0 with p; = (1 +V14+4X;)/2 and p} = (=1 4+ V1 +4N\;)/2.

Proof. Let T = Z’% be the unit tangent vector field on Lj. Let mg € ¥ be any
point. We pick an orthonormal vector fields (e, e2) on ¥ near mq that is covariantly
constant at mq with respect to the connection on ¥.. We then extend the vector fields
ek, considered as vector fields of £ C S° C C3, to the cone L by parallel translation
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along rays in the cone. Combined with 7, we obtain an orthonormal frame of L{j near
Rmyg. Now let [ : RT x & — C(Z) C C3 be defined via [(t,m) = tm. We give Rt x &
the metric § = dt? + t2d%, where d% is the metricon 5. Welet 7 : Rt x & — %

be the project. Then (7, E1(r,m), Ea(t,m)) forms an orthonormal frame on Rt x ¥

with 7 = 2, E1(t,m) = 17*e1(m) and Ea(t,m) = 1r*es(m). Its dual frame is given

by dt, wi(t,m) = tr*wi(m) and wa(t,m) = t7*wa(m). Clearly, we have
LE;(t,m) = e;(tm) = e;(m) and ["w;(tm) = "w;(m) = w;(t,m)
On L{ we have the structure equation
dw; (tm) = —w;;(tm) A w;(tm) — t ™ w;(tm) A dt

Our convention is that we use (£,m) to denote the point in Rt x ¥ while we use tm
to denote the corresponding point in C(X). Note l(t, m) = tm. Over Rt x ¥ we have
the structure equation

dwi(t,m) = d(I*wi(tm)) = ~1*(wi;(tm)) Aw;(t,m) -t~ wi(t,m) A dt
Let harmonic 1-form
0 = f(tm)dt + w(tm) = f(tm)dt + » _ cu(tm)w;(tm)
then
10 = f(t,m)dt + Y _ o (t, m)w;(t,m).

From di*6 = 0, we obtain

£ By Fltm) — 2 (ta(tym) = 0, for i = 1,2

Using the above equation, a straight forward computation shows that
t
d(/ f(r,m)dr) =1*0 — 7*n(m),
1

where n(m) = Zle a;(1,m)w;(m), a 1—form on ¥. Because [*§ is harmonic on
Rt x X, 7*n is closed on R x ¥ and hence n must be closed on £. Now let 1, be
the harmonic part of 7, namely, n = ny + dk. Then

¢
1*0 = d(/ fr,)dr + T*k) + 7R = dF + 70,
1

where F' = flt f(r,)dr + 7*k. Clearly, 7*np, is harmonic on R* x ¥. Since [*0 is
harmonic, dF' must be harmonic. Hence by [7, page 98]
Ax(F(t,m)) + 2t?—F(t m) + tz—a—z—F(t m) =0
E b at b 8t2 b - M

Now let ¢; be the eigenfunctions on ¥ with eigenvalues \;. Then

F(t;m) =) fi(t)ps(m)
i=0
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for some functions f;(t). From this we obtain

(e ¢]

S (=Xifi(t) + 21 (t) + £2F; (£)di(m) = 0.

i=0
Therefore f; satisfies the equation
—Xfit) + 2tF;(8) + £ (£) =0,

whose general solutions are f; = C’ilt"'i + Cigt™# with p} = (-1 4+ +/1+4);)/2 and
i =1+ VI+4N)/2.

When i = 0 then pp = 1 and ¢y is a constant. In this case d(t~1¢g) reduces to
the 1-form d(%) O

We now compute the deformation 1-forms of two examples of smoothing of SL-
cones. We begin with the deformation 1-forms of Harvey-Lawson’s example. Let 6
be the deformation 1-form on associated to the family L[sk] defined by fr = s and
fj = 0 for j # k. Here (f1, fa, f3) is the defining equation in Example 2. Then by
a direct computation we have ; = %(dal — 2dag + dag), 62 = %(dal + das — 2das)
and 03 = %d(%). Here ay is the function on ¥ defined by zx = rcos ak, yx = 7sin ag.
Note that 6;|s and 63|s are harmonic 1—forms on the 2-torus X.

Now we consider the case of a homogeneous SL-fibration F' = (fy, f2, f3) : C3 —
R3 whose central fiber is a regular cone, as defined in Definition 1. We let LLi] be the
family {f; = s, f; = 0 for j # i} and let W; be the deformation vector field associated

to the family Lt

LEMMA 5. Let W1 =3, c1i0z, + c1i430y, be the normal deformation vector field
of the family LE] at Lo. Then cy; can be written as c1; = h;/g;, where h; and g; are
homogeneous polynomials with degh; —degg; =1—n; for1=1,---,6.

Proof. Normal deformation vector field Wi satisfies the following equation:

A-(e11,c12, 0+ ,c6)T = (1,0,---,0)T

where
ofi  Ofi
oz ; o
A=| "% 3
9y;  9z5 ] 1<i,j<3
So,

(cin,c12, -+ e16)T = A7H(L,0,--+,0)T = (det A) " (A11,A12,- -+ , A16)T

Because deg(det A) = 2(n1 +na +n3) — 6 and deg(A41;) = 2(n2 +n3) —5, we can write
c1; = hi/g; with h; and g; are homogeneous and degh; —degg; =1—n,. 0

In this case we say the deformation 1-form 6; = W7 ]wp has order n; — 1.

The previous examples show that deformation 1-forms associated to the families
L, are spanned by 1-forms ¢~y or d(¢7!). In following, we will study a class of
SL-submanifolds that has similar property.

DEFINITION 6. Let L be a smooth SL-submanifold in C3 and let Ly be an SL-cone
in C3 with isolated singularity 0. We say L is asymptotically conical (in short AC) to
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Lo and call Ly the asymptotic cone of L if L is asymptotic to Lo to order O(t™!) as
t — o0.

Clearly, when L is AC to Lg than sL is also AC to Lg for s € Rt and sL — Lo as
s — 0. To obtain a deformation 1-form on L we need certain convergence condition
on sL.

DEFINITION 7. Let L be a smooth SL-submanifold in C3 that is AC to Ly. We
assume Ly = C(X) for a smooth ¥ C S°. We say L is strongly AC to Lo if there is
a constant ¢ > 0 and a smooth maps ®(-,s):Z x [0,1] — S5 such that
(1) ®(Z,s) = (s¥/119L) N S and B(-,s) is a diffeomorphism from T to its image;
(2) The family of maps Hy(p,t) = t®(p, s/t179) from T x [1,00) — C* C-converges
to the standard map ¥ X [1,00) — Lo — By when s — 0, where B is the unit ball in
C3;

(8) The vector field v(p) = % ls=0 ®(p, s) is a non-trivial vector field on each con-
nected component of & C S°.

The notion of SL-submanifolds AC to a cone was introduced in [5].

EXAMPLE. [3] Let
Ly ={(z,y) € C*| |aly = |ylz and Im(|z| +i[y])> = s}

Then Ly is a SL-submanifold strongly AC to a cone Ly that is the union of two linear
subspaces singular at 0. The associated ¢ is 2 in this case.

EXAMPLE. Let F = (f1, fo, f3) : C3 — R® be a homogeneous SL-fibration whose
central fiber is a regular cone. We let n; = deg f; with f; so arranged that ny < ns <
ng. By Sard theorem, there is a point ¢ # 0 € R® such that L = F~1(£) is a smooth
complete SL-submanifold. Then L is strongly AC to the cone Ly = F~1(0). The
associated q is 1/n; where 1 is the smallest index so that &; # 0.

Let L be an SL-submanifold which is strongly AC to an SL-cone Ly with the
associated constant ¢. It follows from the definition that the deformation 1-form on
L} associated to the family L, = s'/1*9L is a smooth non-trivial 1-form on L.

LEMMA 8. Let L, Ly and q be as before and let @ be the deformation 1-form on
Lj associated to the family Ls. Then q can only take values 1, 2 or p; + 1, where
wi = (14 1+ 4X;)/2. Further, when ¢ =1 (resp. q = 2; resp. q = p; + 1) the form
0 =t"1n (resp. 6 =dt™1; resp. 6 =d(t™*i¢;)), where n and @; are as in Lemma 4.

Proof. Let v(p) be the vector field on L§ that is the limit of d—‘iLs when s — 0.
Then by definition, v(p) is non-trivial on each component of L§. By the definition of
H,, it is direct to check that v(tp) = t~9v(p). Hence the deformation 1-form 6 on Lg
is also homogeneous, which must be of the forms %77, d(%), or d(t™H*i¢,;). 0

3. Harmonic 1-forms on SL-submanifolds. Let L be an SL-submanifold that
is strongly AC to an SL-cone Ly. We first give L a new metric that is quasi-isometric
to its induced metric g.

LEMMA 9. Let the notation be as before. Then there is a metric § on L that
is quasi-isomorphic to (L, g) so that § is isomorphic to a cone metric away from a
compact subset of L.

Proof. The proof is standard. It follows from the C! convergence of H; in Defi-
nition 7. 0
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Let M be a complete non-compact Riemannian manifold. We recall several groups
associated to M. Here we use ||0||2 to mean the Ly norm [, |0|? and use L? to denote
the space of L? finite functions or forms. We define

Hp(M)={f|Af =0, df € L’} and HF(M)={f € Hp(M)|fe L*}
and
HYM)={0|dd=00=0, 6 € L’} and H{(M)={df | Af =0, df € L?}.
Here f are functions and # are one forms on M. We also define
Hip (M) ={60|df =0, 6 € L}/{df | f € L?, df € L*}.

First, recall that we have the Hodge decomposition H'(M) = Hf, (M) [4]. In the
following, we will apply a theorem P.Li and L-H.Tam [6, Thm 4.2] to prove the
following fact.

LEMMA 10. Let L be an SL-submanifold strongly AC to an SL-cone Lo endowed
with the induced metric g and let L be L endowed with the metric § given in Lemma
9. Then we have

dimHE (L) = dim HE (L) = #(ends of L).

Proof. Let K(R) be B(R) N L. By the construction, for large enough R the
compliment L — K (R) with metric g is a union of cones. Our strategy is to apply [6,
Theorem 4.2] to (L, g).

We now check that this theorem can be applied in our situation. First, L is large
because L is strongly AC to the cone Lg. Now let E be an end of L — K(R). To
proceed, we need to check that there is a constant C so that the Ricci curvature of
(E, g) satisfies

X
(1 +r(2))?

where r(z) = dist(p, z) for a p in E. Because C(X) is minimal, we have

n ’—Z (h?]h% - (h' ) Z(hgy)2

(3.1) Ric(z) >

where h{; = h;(t,m) is the second fundamental form of C(X). Now let hg(m) be

the second fundamental form of ¥ in .5'5 Because hg;(t,m) = The; %(m) (on C( 2) we
have

Rii(m,t) = t-2Z(h (m))? > 720,

for C; = supl m 2j.a(he5(m))?. Because t* ~ r2(z), there is a constant Cs so that
Rii(z) > 7—2)1 on E. This shows that there is a constant C so that (3.1) holds.

Finally, we need to check that E satisfies the condition (VC) in [6, p.282]. Namely,
there is a constant ¢ > 0 such that for all r and all z € 0B,(r) N E, we have
Vp,B(r) < (Vi p(%). First, it is clear that it suffices to check this condition for r > R’
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for some constant R’. We choose an R’ so that 0B,(R') C E and that for any
z € 8By(R'), Bx(R'/2)NE C L — K(R). Then when r > R/, we have
.

T
Vz,E(E) = VRT'm,E‘(R//2) R3"

Let (4 = minmeaBp(R/),—,EVz,E(%'). Then Vi g(r/2) > CGR73r3.  Since
Vp,e(r) = Area(Z)(r® — (2R)3), therefore there is a constant ¢ so that

Vp,B(r) < (Va,p(r/2).

This shows that we can apply 6, Theorem 4.2] to L to conclude that the dimen-
sion of H¥ (L) is equal to the number of ends of L. Since L is quasi-isometric toL,
dimH¥ (L) = dimHE (L) [2]. Therefore dimH$(L) is equal to the number of ends
onL.0O

LEMMA 11. Let L be a SL submanifold which is strongly AC to SL cone Lo, then
dim H{(L) = #{ends of L} — 1.

Proof. From Lemma 4, we obtain Hp (L) = HE(L). Then the Lemma follows
from dim H3(L) = dimHp(L) — 1 and Lemma 10. O

Let
HI(L) = {0 | dd = 0,0 has compact support}/{df | f has compact support}

and let H*(L) be the first de Rham cohomology group. Consider the natural map
it : HX(L) — H*(L). Then

Ker(i}) = {dg | dg has compact support}/{df | f has compact support}

We continue to assume that L is an SL-submanifold strongly AC to an SL-cone Lg.
LEMMA 12. Ker(i}) = #(ends of L) — 1.

Proof. Let [dg] # 0 € Ker(i}). Because L is strongly AC to Lo, without loss
of generality, we can assume that the compact subset K C L of dg is so large that
L — K is diffeomorphic to the disjoint union of ¥; x (0,00). Hence when restricted
to the ends L — K g is locally constant but not constant. Now we see that Ker(i}) =
#(endsof L) — 1. O

Now we consider Im(i}). From [4, Page 9], any compactly supported cohomology
class on a complete Riemannian manifold that defines a non-trivial de Rham coho-
mology class is automatically represented by an L2-harmonic form. This defines a
natural Hodge projective

7 : Im(i}) — HY(D).
Define

(7] : Tm(i}) — HY(L)/H(L)-

LEMMA 13. Let L be an SL-submanifold strongly AC to an SL-cone Lg, then

Im(i7) = H'(L)/Hg(L)
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and the isomorphism is induced by above Hodge projection.

Proof. Clearly, [r] is injective. And we must prove [r] is surjective.

Let [w] € HY(L)/H}(L). Because L is strongly AC to Lo, we can pick a sufficiently
large compact subset K (2rg) C L so that L — K (2rp) is diffeomorphic to the disjoint
union of ¥; x (0,00). We let A; be the ith component of L — K(2rg). Then from
lemma 4, we can write

1
wlp=Cy- Mt df;,

where C; is some constant and 7); is some harmonic 1-form on ¥;, f; is a harmonic
function on A;. If C; # 0 for some i, then

1
/ |Cs - ?mlz = +00
A;
and

1
| <6 jmdn>=o
As t

Thus w ¢ H'(L). So we can write w|z_ K(2ro) = df , for some harmonic function f on
L — K(2r). Then we can write w = (w — d(pf)) +d(pf), where function p with takes
values between 0 and 1 and such that

p(z)=1, forz € L — K(2rg) and p(z) =0, for z € K(ro).

Thus, § = w — d(pf) has compact support K(2rg). But from the Hodge projection
m, we can write § = 70 + dp for some function ¢ with [|dp|? < +0co0. So we
have w = 70 + dy + d(pf) = m0 + d(p + pf) with [|d(¢ + pf)|> < +0co and thus
d(e+pf) € HA(L). So []6 = [w]. O

THEOREM 14. Let L be an SL submanifold which is strongly AC to an SL cone,
then dim HY(L) = dimH}(L).

Proof. From lemma 11, 12 and 13, we have dim HY(L) = dimH}(L). Combined
with HY(L) = H(L), we prove the Lemma. O

4. Proof of the main result.

LEMMA 15. Let F = (f1, f2, fa) : C* — R® be a homogeneous SL fibration so that
its central fiber Lo is a regular cone. Then every connected component L of regular
fiber is diffeomorphic to R x T? R? x St or R3.

Proof. Let

gi = ——f’? fori=1,2,3
1+f1?7 k)

then

{9:,9;} =< Jgrad g;, grad g; >
_ 2fif;
T+ 21+ f2)?

< Jgrad fj;, grad f; >=0.
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So G = (91,92,93) : C> — R® defines a 3-degree of freedom Liouville integrable
Hamiltonian system. Because f; are homogeneous polynomials, Hamiltonian vector
fields X,, are bounded on C3. So from a theorem in [10, Cor 2, p.17] solutions of
Cauchy problem: ‘fi—j = Xg,,2(to) = 2o are complete, i.e., Xy, are complete. Thus
by the generalized Liouville theorem, every connected component of regular fiber
G~(v1,vz,v3) is differential homeomorphic to R x T2, R? x S*,R3 or T3. Now every

connected component L of regular fiber F~!(s1, s2,s3) is a connected component of
2
regular fiber G~ (v, v2,v3), where v; = T_%;y So L is differential homeomorphic to

RxT?% R?x S1,R3 or T3. But from Example in section 2, we know that L is strongly
AC to SL cone and is not compact, so L is not diffeomorphic to 73. O

Now we can prove the following

PROPOSITION 16. Let F = (f1, fa, f3) : C2 — R® be a homogeneous SL-fibration
so that its central fiber Lo is a regular cone. We let n; = deg f;, so arranged that
n1 < ng < ng. Then we must have (ny,nz,n3) = (2,2, 3).

Proof. By observation in section 1, we have degfy > 2 for all k. Let 6; denote
the deformation 1-form associated to the family Ls, = {f; = s;; f; = 0 for j # i}.
Because we assume that f; are irreducible, 61,6, and 63 are linearly independent at
any point p € Lj. Note that dt is 1-form in L§. Now we prove the proposition by
studying case by case:

Case 1: degF = (2,2,n3) with ng # 3.

In this case, 6; and 62 have order 1. By Lemma 4, we can let 6; = %771 and
62 = 172, where 7; and 7, are harmonic 1—forms on ¥ = Lo N S5. Now if ng = 2,
we can also let 03 = %ng, where 73 is the harmonic form on ¥. Thus < 68;,dt >= 0
for ¢ =1,2,3 and 60,02 and 603 are linearly dependent on L. This is impossible. If
n3g > 4, by Lemma 4 we can let 3 = d(t™#i¢;), where ¢, is an eigenfunction of ¥
which is not constant. Since ¥ is compact, we know that there is a point p of ¥ such
that ¢;(p) = 0. So 63(p) doesn’t contain dt as component at point p and thus 6y, 6,
and 03 are linearly dependent at point p.

Case 2: deg F' = (2,3, n3).

In this case. the deformation 1—form 6, of L,, has order 2. Hence 0, = Cad()
and therefore n3 can not be 3. The 1—form associated to the family L;, can be
written 03 = d(t™*i¢;), where ¢; is a non-constant eigenfunction on ¥. Because ¥ is
compact, then there is a point m € ¥ such that ¢; attains maximum at point m. So
03(m) = ¢;(m)dt~*:, and O,(m) and 63(m) is linearly dependent at point m. This is
a contradiction.

Case 3: deg F' = (n1,ng,n3) with ng > ny > 4.

If there exists such F, then there is a point so = (519,520, 530) € R3, such that
L, = F‘1(310,320,330) is a smooth SL submanifold. We have proven that L, is
strongly AC to an SL cone Ly in the example before Lemma 8. Let L be a connected
component of Ly,. By Theorem 14, we have dimH!(L) = dim H(L). By Poincare
Lemma and Lemma 15, we have dim H}(L) < 1. Thus dimH!(L) < 1.

Because L is smooth, we can get three deformation 1-forms 6,8, and 65. Cer-
tainly these forms are harmonic on L. But we assume that ng > ng > 4, so 65 and
63 has order at least 3. Now by the homogeneous, we can get 62,05 € H!(L), which
contradicts to dim H!(L) < 1. 0
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In order to discuss the case of (ni,n2,n3) = (2,2,3), we need the following
Lemma. In the following we denote by diag(ai,as,--- ,an) the n x n diagonal matrix
with diagonal entries a1, as, - ,an,.-

LEMMA 17. Let A = diag(1,—k,0,1,—k,0) with k > 0 and let matriz B be
symmetric such that (1) AEB = BEA, where matriz E has the form

— 0 —Inxn
E= ( L 0 )

and (2) there is a So € R such that ea:p(EBso) 1, then there is a symplectic matriz
Q such that QTAQ A and QTBQ has the form diag(a, 8,7, @, 3,7).

Proof. From AEB = BEA, we find that B has the following form:

a ¢ 0 0 e O
c b 0 e 0 O
B 0 0 b3z 0 0O b3
"1 0 e 0 a - O
e 0 0 —c b O
0 0 b3 O 0 s
and furthermore,
(4.1) c=e=0 when k#1.
Let
a ¢ 0 e
|l cb e O _( b3z b3s
Bi=l9 ¢ o — ’B2_<b36 b66>.
e 0 —c b

From exp(EBsg) = I, we can obtain exp(EB;so) = I and exp(EBsso) = I. Now we
first consider the matrix Bs. Let A be an eigenvalue of E'By with the corresponding
eigenvector &, (i.e., (EB2)¢ = AE,) then exp(EBss)¢ = e**¢. Since exp(EBasy) = I,
we have e** = 1. Thus A must be +ui for u € R. If bgz = 0, then bsg = 0. Thus B
has the diagnol form and we abe done. If b33 # 0, without loss of generality, we can

32
assume b3z > 0. Take w = (’-’13—”53—”1&)% and cosider the symplectic matrix
33
Ql = ( 0 bj_s w > ’
w

QT Q1 = ( Vbasbos = s 0 ) .
1 0 /b3zbes — b2

Next we consider the matrix B;. From exp(EBjsg) = I, the eigenvalues of EB;
are vt for v € R. But by direct calculation, the eigenvalues of EB; are

then

£(a —b)i£ A4(e2 +c?) — (a+b)?

A= 5
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So we obtain

(4.2) 4 +c%) < (a+b)2

Ifa+b6 =0, then e = ¢ = 0 and B; is of the diagonal form. So without loss of
generality, we can assume a + b > 0. From (4.2), we have (a4 )% —4c? > 0. If ¢ = 0,
we take u = 0. If ¢ # 0, we take u = 52[(a + b) — /(a + )% — 4c?]. Notice that
1—-u?2>0.If1—u%=0, then a+b = 32c and e = 0. It is easy to prove that in this

case there isn't any sg such that exp(EB;sp) = I. Thus 1 — u? > 0. So we can take
the symplectic matrix

1 u 0 0

Qs = 1 u 1 0 0
T A2l 00 1 —u

0 0 —u 1

One easily checks that
a; O e
AT _ 0 bl e 0
B3 - Q2 Bl Q2 - 0 e o 0 )

€ 0 0 bl

where a1 = =7 (bu? + 2cu + a) and by = L7 (au? + 2cu + b). One verifies

(4.3) (a1 +b1)% = (a +b)? — 4c2.
Now from (4.2) and (4.3) we have (a; + b;)%2 —4e? > 0. If e = 0, we take v = 0. If

e # 0, we take v = 32 (a3 + b1 — /(a1 + b1)% — 4e2). Again we have 1 —v% > 0.
If 1 — 9?2 =0, then a; + b; = +2e. If we take the symplectic matrix

1 0 0 O

0 0 0 -1

R= 0 01 O

01 0 O

then we have

ay e O 0
T _ [ b1 0 0
R* B3R = 0 0 a1 -—e
0 0 -—e b]

As before, we can prove that 1 — v? = 0 is impossible.
Now we are reduced to the case 1 — v? > 0. We take symplectic matrix

1 0 0 v

0 = - 01 v 0

ST =2l 0 v 10

v 0 0 1

Then

as 0 0 0
0 b 0 O
By =QIB3Qs = 0 02 4 0
0 0 0 b
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We let
1 U 0 w v 0
- U 1 0 v w 0
bas 1
Q= 1 1 0 0 w O 0 "3’2?6
V1—u2+1 -2 —uv v 0 1 -—u 0
v —uwv 0 —-u 1 0
0 0 0 0 0 L

where u,v and w are taken as before. Then we can check that QTBQ has diagonal
form. If k =1, WehaveQTAQ A If k # 1, from (4.1) we can take u = v = 0.
Thus QTAQ A. This proves the Lemma. O

Now we discuss the case of (2,2, 3).

THEOREM 18. Let F' = (f1, f2, f3) : C3 — R3 be a homogeneous SL-fibration with
(n1,n2,n3) = (2,2,3) so that its central fiber Ly is a regular cone. Then there is a
unitary matriz S so that if we make the Darbouz coordinates change

(plap21p31 q1,42, Q3)T = S_l(xl’ T2,T3,Y1,Y2, yS)T
and let wy = pr + iqx. Then (fi1, f2, f3) is linearly equivalent to

= lel2 — l’wgl2, fg = |wl|2 — |w3|2 and fo, = Im(wywaws).

Proof. Let Lo = F~'(0) and let zp € Lo. Let ¥ be a connected component
of Lo N S® containing zg. Let fi(x) = 2T Ar and fp(z) = z7 Bz, where 27 =
(z1,72,73,Y1,Y2,y3). Because A and B are symmetric matrices, EA, EB € sp(6,R),
the later is the Lie algebra of symplectic group Sp(6,R). So

G = {exp(EAt),exp(EBs)|t,s € R} C Sp(6,R)

is a Lie subgroup of the symplectic group. From {fi, fa} = 0, we know that AEB =
BEA and thus (EA)(EB) = (EB)(EA). Thus G is a commutative Lie subgroup of
Sp(6, R). On R® we define the distribution

D = {(EA)z, (EB)z|z € R%}.
Then the distribution D is completely integrable because
[(EA)z,(EB)z] = V(£a):(EB)3 — V(£B):(EA)z = (EB)(EA)z — (EA)(EB)z = 0.

Thus the orbit G-z is the maximal connected integral submanifold of D through zg.

On the other hand, we will prove X is also the maximal connected integral sub-
manifold of D through zo. Let W3 be the normal deformation vector field of Lg
associated to the family Lg, = {fi = fo =0, f3 = s3}. As in the proof of Lemma 5,
we have

(4.4) < W3, gradf; >=< Wz, gradfs >= 0.

Because deg f3 = 3, from Lemma 4, we have 63 = W3]wy = Cst™2dt, where C3 is
a constant on ¥. Thus W3(z) = Cs|z|~3Jz for any z € £. So from (4.4) we have
equations

(4.5) <z,(FA)z >=<=z,(EB)x >=0.
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On the other hand Jgradf; = 2EAx and Jgradf, = 2E Bz are vector fields on Lg.
Then (4.5) says that (FA)z and (EB)z are 2 linearly independent vector fields on X.
So ¥ is also the integral submanifold of D through xg. Thus we have ¥ = G - xy.
On Z, there are 2 commuting linearly independent vector fields (EA)z and (EB)z.
From [1, Lemma 2, p.274] and its proof, we know that ¥ is a 2-torus and that
exp(EAt) - zg is a circle on X. Let to be the first ¢t such that exp(EAtg)zo = zo.
Thus for any z = exp(EAt)exp(EBS) - g € X, we have exp(EAty)r = z, namely,
(exp(EAtg) — I)x = 0. But X is full as the submanifold of R® as we observed in sec-
tion 1, so we must have exp(FAtg) = I and exp(EAt) is a circle on G. For the same
reason, exp(EBs) is a circle on G. We let sg be the first s such that exp(EBsg) = I
Now by Williammson’s theorem [9], we can reduce A to normal forms by means
of a real symplectic transformation. In [1, Appendix 6] we can find the list of normal
forms. From exp(EAtg) = I, eigenvalues of EA are of the form 0 or +ui for p € R.
Thus we only need to discuss the case with eigenvalues 0 or +ui. In other words,
we need to check which symmetric matrices C' with eigenvalues 0 or +ut satisfy the
equation exp(ECtg) = I. After that we can find a symplectic matrix P; such that

A" = PTAP, = diag(£p2, 13, £p3, £61, 202, £03),

where +p;i(j = 1,2,3) are eigenvalues of EA and 0; = 1 if p; # 0;6; =0 if pu; = 0.
Certainly there is another symplectic matrix P, such that

A= (PIPQ)TA(Pl.PQ) = diag(r1,72,73,T1,72,73),

where 7; = £4;(j = 1,2, 3).

Without loss of generality, we can assume that det(EFA) = 0 and =i are
eigenvalues of EA. This is because if not, we can take A; = (uA — vB) for
u,v € R such that det(EA;) = 0 and +i are eigenvalues of (EA;). If we take
fi=ufi —vfo=us; —vss, fo = fo = sz and f3 = f3 = s3, then F = (f1, fo, f3) also
defines homogeneous SL fibration. This SL fibration has the same geometric structure
as the SL fibration F. This is the meaning of "linearly equivalent” in the theorem.

Let P = P, P,, then A = PTAP = diag(1,-k,0,1,—k,0). We note that k£ > 0.
Because if k < 0, then C() = {0}. Let B = PTBP. First we have exp(EBso) = I.
On the other hand, from AEFB = BEA, we have

AEB = (PTAP)E(PTBP) = PTAEBP = PTBEAP = BEA.

So from Lemma, 17, there is a symplectic matrix Q such that QT,ZQ = Aand QTEQ =

diag(a, B,7, @, 8,7).

Thus if we take S = PQ, then STAS = diag(1,-k,0,1,~k,0) and STBS =
diag(a, 8,7, &, B,7). If we take suitable linearly transformatlon we can take STBS =
diag(1,0,-1,1,0,—1) with [ > 0.

Now if we take the Darboux coordinates

(Pl,Pz,p3»QI,Q2,Q3)T = S_l($1,$2a-’33,y1,y2,ys)T,
we have proven that

fi=0+a) - kB3 +ad)
fo= (02 +a3) — 1} + @3).
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Because Poisson bracket is preserved by the symplectic transformation, we still
have { fir f,} = 0 at the Darboux coordmates (pj,q;). From { f], f3} 0 for j =1,2,
we have

Plgﬁ— 18f3 (26f3 6}; =1 6—@— 3%
0q1 3p2 aq Ops

Using above equations, by observation, f; can not contain the following items:
PGi, PiG7, D2, 431 PIDs DI Pide, G, PiDi i, Piis (i # J)-
So fg only contains following items:
P1p2P3, P1P293, P192P3, P19293; 91P2P3, 41P293, 9192P3, 419243-

Using {fi, f]} = 0, a straight forward computation shows that k ={ =1 and

f3 = a(p1p2ps — P19293 — q1P293 — q192p3) + b(P1P2g3 + P1g2P3 + q1P2P3 — 41G203)

= aRe(p1 + iq1)(p2 + ig2)(p3 + ig3) + bIm(p1 + iq1) (P2 + ig2) (p3 + ig3),

where a and b are constants. So if let sin§ = \/T:?ﬂb—’ cosf = \/W’ then

= Va2 + b2Im[e® (p; + iq1)(p2 + iq2) (P3 + ig3)]-
So we can assume that
f3 =Im(p1 +1iq1)(p2 + ig2) (p3 + iq3) = P1P2g3 + P192p3 + q1P2P3 — q1G2G3

by some unitary translation and linear translation.

Now we must prove S € O(6,R). Let

U = diag(1,-1,0,1,~1,0)
and let

V = diag(1,0,~1,1,0,~1).
We have proven that STAS = U and STBS = V. Then

S~ lexp(EAt)S = exp(S~1EASt) = exp(EST ASt)
= exp(EUt) = diag(e®,e™%,1)
and
S~lexp(EBs)S = exp(EVs) = diag(e®®, 1,e™%).

So we have S1GS = T? = {diag(et1,eit2, e~i(t1tt2))|¢; tg € R}or G=STS™!. Let
C(®) = {filp,q) = fa(p,q) = fs(p,q) = 0} and po = 2(1,1,1,0,0,0)” € C(X),
then there is a point zo € ¥ such that S~lzy = cpg, where c is a constant. From
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G 1o =X C S5(1), we have < gzo, gz >=1 for any g € G. So for any 7 € T?, we
have

< 818 tzg, S8 rg >= % < STpo, STPO >= 1,

(4.6) (po) T (STS)(1po) = ¢ 2.

Let 7 = diag(e®’, e't2, e~(t1+%2)) and let u = cost;,v = coste. Let STS = (m;;) and
let
h(u,v) = mag + Mmaqg + Mss — 2Myev — 2MsU + 2M12UV
+ 2(mq3 + mag)u?v + 2(mas + mse)uv? + (my; — mag)u?
+ (mag — mss)v? + (maz — mes) (2uv? — u® — v?)
+ {—2mg35 + 2(m14 + mag)u + 2ma4v + 2(Mgg — M16)uvV
+2(mas — mag)v? — dmageuv?}V/1 — u?
+ {—2maq + 2(mas + mae)v + 2Mmasu + 2(M3g — Mg )u’
+2(mas — mag)uv — dmaguv}y/1 — v2
+ {2mys — 2(ma3 + mye)u — 2(maz + Mmse)v

_2(m33 - mee)uv}\/ 1 —u2+4/1 —12

Then (4.6) can be rewritten
(4.7) h(u,v) = 3¢™2

for any —1 < uw,v < 1. So we have -51;,%11'7‘1—_-; = 0. By direct calculation, we can get

o%h
Wiu:v:O =mg3 — mee =0

o%h _s
W|u=0 = —18(m13 + m46)v(1 - ’U2) 2 =0

a%h _5
m|v=0 = —18(m23 + mse)u(l - u2) g =0

Bﬁh 2y~ 5 2\—3
W = 18m45'u,v(1—'u, ) 2(1—"0 ) 2 =9
From above equations, we can obtain mys = 0, m3s = mgg, M13 = —Myg and moz =

—msg. Thus h can be write in the following form:

h(u,v) = mgs + maq + Mmss + 2m13v + 2magsu + 2miuv
+ (ma1 — mag)u® + (maz — mss)v*
+ {—2mss5 + 2(m14 + m3e)u + 2ma24v + 2(m3g — Myg)uv
+2(mss — mgs)’U2 — 4m36uv2} V1—u?
+ {—2mg4 + 2(mas + mse)v + 2m15u + 2(M3q — M) U
+2(mas — mag)uv — dmagulv}y/1 — v2
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Using the same method, at last, we can obtain
(4.8) ST S = diag(ma1, maa, mas, mi1, maz, Ma3)
and
ma1 + mag +ma3 = 3¢ 2.

But S is the symplectic matrix, so S~! and ST are symplectic matrices too. Thus we
have

(4.9) STSESTS = STES = E

Now from (4.8) and (4.9), we easily can get mi11 = mo2 = maz = 1. From above
discussion, we have STS = I and S € O(6,R). Thus we have proven S € U(3) and
this completes the proof of theorem 18. O
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