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RIGIDITY OF A CLASS OF SPECIAL 
LAGRANGIAN FIBRATIONS SINGULARITY * 

JI-XIANG FUt 

1. Introduction. In [8], Strominger, Yau and Zaslow conjectured that the mir- 
ror pairs in mirror conjecture are pairs of dual special Lagrangian fibrations. Since 
then there has been a lot of research on special Lagrangian submanifolds or special 
Lagrangian fibrations. In this note, we will look at the possible singularities that 
can arise from a special Lagrangian fibrations. We will show that a fiber of a spe- 
cial Lagrangian fibration that has only isolated singularity of homogeneous type are 
essentially of the type given by Harvey-Lawson. 

We let C3 be the complex 3-space endowed with the standard Kaehler metric with 
the associated Kaehler form LUQ and the (3,0) form QQ = dzi/\dz2/\dz^. A submanifold 
L C C3 is called a special Lagrangian submanifold (in short SL-submanifold) if UJQ\L = 
0 andIm(fio)|L = 0. 

We let S5 C C3 be the unit sphere. For p = (^1,22,2:3) € C3 and t G R we use 
tp to denote the point (^1,^2,^3) G C3. For any subset E C 55 we define the cone 
supposed on E to be 

C(E) = {£p|£GlR+,pGE}. 

We say C(E) is an SL-cone if the smooth locus of C(E) is dense in C(E) and is an 
SL-submanifold of C3. 

Now we introduce the notion of homogeneous SL-fibration of C3. 

DEFINITION 1. Let F : C3 —> R3 be a smooth surjective map. We say F is 
an SL~fibration if the components fi, fo and fy of F are real valued functions in 
Zi,x2)X3iyiiy2,y3, where Zk = Xk -\-iyk, so that all Poisson brackets {fi)fj} = 0 and 
the real part Re{detc((dfi/dzj))} — 0. We say the fibration is homogeneous if all fi 
are homogeneous polynomials and we say the fiber LQ = F~1(0) is a regular cone if 
LQ has only isolated singularity 0 and all fi are irreducible. 

Recall that the smooth locus of any fibers of F as in the Definition are automat- 
ically SL-submanifolds [3]. For convenience we denote the punctured cone LQ — {0} 
by LQ. We first observe that in case LQ is a regular cone, then deg/^ > 2 for all k. 
Indeed, let TQ be the linear combination of all tangent spaces of points in LQ, after 
translating to the origin 0. We now show that dimTo = 6. First, in case dimTo = 4, 
then there are two points p, q G LQ SO that dim(TpLo ^ ^^o) = 2. Because TpLg 
and TqLQ are special Lagrangian subspaces in C3, we must have TPLQ = TqL^ a 
contradiction. Now assume dimTo = 5. Then there is an unit vector Jv G TQ. This 
implies that Jv is normal to LQ everywhere and hence v is a vector field of LQ. So we 
can write LQ = tv x F, where F is a cone of dimension 2 with singularity 0. Thus LQ 

has at least singularity R, a contradition. Now from dimTo = 6, we can easily obtain 
deg fk > 2 for all k. Moreover we can obtain that E = LQ fl 55 is full in C3. 

The prototype of SL-fibration in C3 with homogeneous isolated singularity is the 
example of Harvey and Lawson [3]. 
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EXAMPLE 2. Let F = (fi,f2,fo) be defined by 

fi = ki|2 - M2, /2 = Nil2 - l^sl2    and   h = Im(zi22*3). 

T/ien F is a homogeneous SL-fibration o/C3 and LQ = i?~1(0) is a regular SL-cone. 

So far this is the only known example of homogeneous SL-fibration of C3 whose 
central fiber is a regular cone. The fibration given by (/i, /2, /a) :C3 —> R3 with 

fi = xm - X2yi,    h = X\V\ + ^22/2    and   fs = ys- 

is a homogeneous SL-fibration but its central fiber is not regular. 
In this note, we will prove the following uniqueness result on homogeneous SL- 

fibrations with singular central fibers. 

THEOREM 3. Let F = (fi,f2,h) : C3 -> M3 be a homogeneous SL-fibration 
so that its central fiber LQ is a regular cone. We let ni = degfi, so arranged that 
ni < n2 < ns. Then we must have (ni,n2,n3) = (2,2,3). Furthermore, there is a 
unitary matrix S so that if we make the Darboux coordinates change 

(pi>P2iP3,qi,q2,q3)T = S-1(x1,x2,x3,yi>y2,y3)T 

and let Wk—Pk-\- iqk- Then (/i, /2, /s) is linearly equivalent to 

fi = kil2 - |w2|2,     h = hi|2 - ksl2    and   fs = Im^ii^ws)- 
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2. Harmonic 1-forms on SL cone. In this section, we collect a few facts 
concerning harmonic 1-forms on special Lagrangian cones in C3. 

Let LQ be an SL cone of C3 with isolated singularity 0. The question we will 
address in section is whether there is a family of smooth proper SL-submanifolds Ls 

of C3 such that L3 —> LQ as s —> 0. In case such families exist, then on LQ we have 
the associated normal vector field W^a;) and the associated 1-form 6(x) = W(X)\(JQ. 

In the following, we will call such 1-form the deformation 1-form associated to the 
family Ls. By a result of McLean, 8 is a harmonic 1-form on LQ. Further since Ls 

are smooth 9 is singular at 0. 

LEMMA 4. Let LQ = C(E) be an SL-cone with isolated singularity 0 and let t be 
the distance function t(x) = dist(x, 0) on C3. Then the space of harmonic 1-forms on 
LQ is spanned by 

rlr]\    d(t-l)\    d{t-^(j)i)    and   d^fa) 

where r] are harmonic 1-forms on S, 0, are eigenfunctions on E with eigenvalues 
Xi>0 with fii = (1 + \/l4-4Ai)/2 and /z< = (-1 + vT+4^)/2. 

Proof Let r = J^ be the unit tangent vector field on LQ. Let mo € S be any 
point. We pick an orthonormal vector fields (61,62) on E near mo that is covariantly 
constant at mo with respect to the connection on E. We then extend the vector fields 
ejb, considered as vector fields of E C 55 C C3, to the cone LQ by parallel translation 
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along rays in the cone. Combined with r, we obtain an orthonormal frame of LQ near 
Emo. Now let I : R+ x S -> (7(E) C C3 be defined via l(t, m) = tm. We give R+ x S 
the metric g = dt2 + t2d|, where <i| is the metric on E. We let r : M+ x E —♦ E 
be the project. Then (r, ^(r, m),^^, m)) forms an orthonormal frame on M+ x E 
with r = J^, Ei(t,m) ='|r*ei(m) and ^(t, m) = jr*e2(m). Its dual frame is given 
by dt, uji(t,m) = tT*LUi(m) and ^(t.m) = tT*uj2(m). Clearly, we have 

l*Ei(t,m) = ei(tm) = ei(ra)    and   l*Ui(tm) = l*uji(m) = ^(t, m) 

On LQ 
we have the structure equation 

dui(tm) = -u)ij(tm) A ujj(tm) — t^u^tm) A dt 

Our convention is that we use (£, m) to denote the point in M+ x E while we use tm 
to denote the corresponding point in C(E). Note Z(£, m) = tm. Over R+ x E we have 
the structure equation 

duji(t,m) = d(l*(Ji(tm)) = —l*(uJij(tm)) Auj(t,m) — t~1a;i(t, m) A dt 

Let harmonic 1-form 

6 = /(tm)dt + u(tm) = /(tm)dt + Y^ ai(tm)uji(tm) 

then 

;*^ = /(t, m)dt + Y^ ai (t, m)uji (t, m). 

From dl*9 = 0, we obtain 

* V£i(t,m) /(*» ^i) - gl^ai^ m)) ^ 0' for * ^ 1'2 

Using the above equation, a straight forward computation shows that 

d(     /(r,m)dr) /^-rXm), 

where ^(m) = X^=i CKi(l,7n)^i(m), a 1—form on E. Because Z*0 is harmonic on 
R+ x E, r*77 is closed on R+ x E and hence rj must be closed on E. Now let rjh be 
the harmonic part of 77, namely, rj = rjh + dk. Then 

l^ = d(f /(r, .)dr + T*/C) + r*% = dF + r*^, 

where F — Jl f(r,-)dr + r*fc. Clearly, r*?/^ is harmonic on R* x E. Since 1*6 is 
harmonic, dF must be harmonic. Hence by [7, page 98] 

AE(F(t, m)) + 2t-F(t, m) + t2^F{t, m) = 0. 

Now let ^ be the eigenfunctions on E with eigenvalues A*. Then 

00 

F(t,m) = J2Mt)4>i(m) 
i=0 
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for some functions fi(t). From this we obtain 

oo 

Et-AiMi) + Mf'dt) + t2f-(t))Um) = 0. 
i=0 

Therefore fa satisfies the equation 

-Xifi(t) + 2tf'i(t) + t2f'.(t) = 0, 

whose general solutions are fa = Cut*1* -f- Ci2t Mi with fi^ = (—1 + y/1 + 4:Xi)/2 and 
Hi = (1 + V1+4A0/2. 

When i = 0 then /XQ = 1 and (fro is a constant. In this case c^t-1^) reduces to 
the 1-form d(\). D 

We now compute the deformation 1-forms of two examples of smoothing of SL- 
cones. We begin with the deformation 1-forms of Harvey-Lawson's example. Let 0& 
be the deformation 1-form on associated to the family Li . defined by fk = s and 
fj = 0 for j ^ k. Here {h,f2,fz) is the defining equation in Example 2. Then by 
a direct computation we have 6i = ^(dai — 2da2 + das), 62 = §(dai + da2 — 2^0:3) 
and ^3 = 1^(7). Here ak is the function on S defined by Xk = rcosa^, yk = rsma:&. 
Note that 6i\z and O2|s are harmonic 1—forms on the 2-torus E. 

Now we consider the case of a homogeneous SL-fibration F = (/1, /2, /s) : C3 —> 
E3 whose central fiber is a regular cone, as defined in Definition 1. We let Ls be the 
family {fc = 5, fj = 0 for j ^ i} and let Wi be the deformation vector field associated 

to the family Ly. 

LEMMA 5. Let W\ = Y^i cii^xi + cii+s^ &e ^Ae normal deformation vector field 

of the family Li J at LQ. Then cu can be written as cu = hi/gi, where hi and gi are 
homogeneous polynomials with deg/i^ — deg^ = 1 — m for 1 = 1, • • • ,6. 

Proof Normal deformation vector field W\ satisfies the following equation: 

^•(cii,ci2,... ,c16)
:r = (l,0,..- ,0)T 

where 

A- 

So, 

dxj dyj 

dyj      dxj l<i,j<3 

T 
(cii,c12,... ,ci6)T = A-Hl.O,--- ,0)T = (detA)-1(AiifAi2,--- ^is) 

Because deg(det A) = 2(ni + 712 + ns) - 6 and deg(A;u) = 2(n2 4-n^) — 5, we can write 
cii = /if/Pi with hi and ^ are homogeneous and deg/i^ — deg^ = 1 — n\. D 

In this case we say the deformation 1-form 61 = WI\UJQ has order ni — 1. 
The previous examples show that deformation 1-forms associated to the families 

Ls are spanned by 1-forms t'1^ or d^-1). In following, we will study a class of 
SL-submanifolds that has similar property. 

DEFINITION 6. Let L be a smooth SL-submanifold in C3 and let LQ be an SL-cone 
in C3 with isolated singularity 0.  We say L is asymptotically conical (in short AC) to 
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I/O and call LQ the asymptotic cone of L if L is asymptotic to LQ to order 0(i~1) as 
t —> oo. 

Clearly, when L is AC to LQ than sL is also AC to LQ for s € M+ and sL —> XQ as 
5 —> 0. To obtain a deformation 1-form on L\ we need certain convergence condition 
on sL. 

DEFINITION 7. Let L be a smooth SL-submanifold in C3 that is AC to LQ. We 
assume LQ = C(E) /or a smooth E C iS5. We sa?/ L 2«s strongly AC to LQ if there is 
a constant q > 0 and a smooth maps $(•, 5): E x [0,1] —* 55 such that 
(1) $(E,s) = (s1/14"9!,) n55 and $(-,s) is a diffeomorphism from E £0 its image; 
(2) The family of maps Hs(p, t) — t§(p, s/tl+q) from E x [1,00) -> C3 C1-converges 
to the standard map E x [1,00) —> LQ — Bi when s —> 0; where Bi is the unit ball in 
C3; 
(S) The vector field v{p) = ^ |5=o $(2?, 5) is a non-trivial vector field on each con- 
nected component of E C 55. 

The notion of SL-submanifolds AC to a cone was introduced in [5]. 

EXAMPLE. [3] Let 

Ls = {(x, y) G C3 I |ar|2/ = \y\x and Im(|a;| + %\y\f = 5} 

Then i5 is a SL-submanifold strongly AC to a cone LQ that is the union of two linear 
subspaces singular at 0. The associated q is 2 in this case. 

EXAMPLE. Let F = (/1, /2, /s) : C3 —> E3 be a homogeneous SL-fibration whose 
central fiber is a regular cone. We let n* = deg fo with fo so arranged that ni < 77-2 < 
723. By Sard theorem, there is a point £ 7^ 0 G M3 such that L = i7,"~1(£) is a smooth 
complete SL-submanifold. Then L is strongly AC to the cone LQ = F~1(0). The 
associated q is l/n^ where z is the smallest index so that ^ ^ 0. 

Let L be an SL-submanifold which is strongly AC to an SL-cone LQ with the 
associated constant q. It follows from the definition that the deformation 1-form on 
LQ associated to the family Ls = 51/1+gL is a smooth non-trivial 1-form on LQ. 

LEMMA 8. Let L, LQ and q be as before and let 6 be the deformation 1-form on 
LQ associated to the family Ls. Then q can only take values 1, 2 or fa + 1, where 
Hi = (1 + y/1 + 4Ai)/2. Further, when q = 1 (resp. q = 2; resp. q — fa + 1) the form 
6 — t^r) (resp. 9 = dt-1; resp. 6 = d^^^i)), where rj and fa are as in Lemma 4- 

Proof. Let v(p) be the vector field on LQ that is the limit of ^Z,s when s —> 0. 
Then by definition, v{p) is non-trivial on each component of LQ. By the definition of 
Hs, it is direct to check that v(tp) = t~Qv(p). Hence the deformation 1-form 6 on LQ 

is also homogeneous, which must be of the forms jry, ^(|), or d^^fa). D 

3. Harmonic 1-forms on SL-submanifolds. Let L be an SL-submanifold that 
is strongly AC to an SL-cone LQ. We first give L a new metric that is quasi-isometric 
to its induced metric g. 

LEMMA 9. Let the notation be as before. Then there is a metric g on L that 
is quasi-isomorphic to (L, g) so that g is isomorphic to a cone metric away from a 
compact subset of L. 

Proof. The proof is standard. It follows from the C1 convergence of Ht in Defi- 
nition 7. D 
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Let M be a complete non-compact Riemannian manifold. We recall several groups 
associated to M. Here we use ||0||2 to mean the L2 norm fM \0\2 and use L2 to denote 
the space of L2 finite functions or forms. We define 

WD(M) = {/|A/ = 0, df GL2}    and    «£(M) = {/ G HD(M) \ f G L00} 

and 

H1(M) = {e\de = 60 = 0, 0eL2}   and   Wj(M) = {df \ A/ = 0, df e L2}. 

Here / are functions and 6 are one forms on M. We also define 

^(M) = {0 I dfl = 0, 0 e L2}/{d/ \feL2,dfe L2}. 

First, recall that we have the Hodge decomposition W1(M) = iJL(M) [4]. In the 
following, we will apply a theorem P.Li and L-H.Tam [6, Thm 4.2] to prove the 
following fact. 

LEMMA 10. Let L be an SL-submanifold strongly AC to an SL-cone LQ endowed 
with the induced metric g and let L be L endowed with the metric g given in Lemma 
9.  Then we have 

dimH%{L) = dim7-^(1,) = #(ends of L). 

Proof. Let K(R) be B(R) fl L. By the construction, for large enough R the 
compliment L — K(R) with metric g is a union of cones. Our strategy is to apply [6, 
Theorem 4.2] to (L,#). 

We now check that this theorem can be applied in our situation. First, L is large 
because L is strongly AC to the cone LQ. NOW let E be an end of L — K(R). To 
proceed, we need to check that there is a constant C so that the Ricci curvature of 
(E,g) satisfies 

on 
(3-1) ****) > -JTT7W 

where r(x) = dist(p, x) for a p in E. Because C(£) is minimal, we have 

Ru =£ (/^ - (^)2) = - E(^)2 

ctj oc,j 

where hfj = hfj(t,m) is the second fundamental form of C(E). Now let hfj(m) be 
the second fundamental form of E in 55. Because hfj(t,m) = jhfj(m) (on C(E)), we 
have 

2S^fh<*t RuM = -r2 »£(m))2 > t-'d 
a,3 

for Ci = supimJ2ja(^ij(rn))2'  Because t2 ~ r2(x), there is a constant C2 so that 

Rii{x) ^ ^TTxF on ^', ^^ s^ows ^^^ there is a constant C so that (3.1) holds. 
Finally, we need to check that E satisfies the condition (VC) in [6, p.282]. Namely, 

there is a constant £ > 0 such that for all r and all x € dBp(r) fl J5, we have 
Vp^Eir) < CKE,#(§)• First, it is clear that it suffices to check this condition for r > R' 



A RIGIDITY OF SPECIAL LAGRANGIAN FIBRATION SINGULARITY 669 

for some constant i?'. We choose an B! so that dBp(R
f) C E and that for any 

x £ dBp(R'), Bx(R'/2) fl E C L - K(R). Then when r > R', we have 

Let Ci = ^i^xedBp(Rf)nEV^E(^)' Then Vx^(r/2) > Ci^'"3^3. Since 
Vp^ir) « Area(E)(r3 — (2J?)3), therefore there is a constant £ so that 
WO < (VXtE(r/2). 

This shows that we can apply [6, Theorem 4.2] to L to conclude that the dimen- 
sion of Wg)(Z) is equal to the number of ends of L. Since L is quasi-isometric toZ, 
dim TifiiL) = dim Wg^Z) [2]. Therefore dimWg)(Z) is equal to the number of ends 
onL. D 

LEMMA 11. Let L be a SL submanifold which is strongly AC to SL cone LQ, then 
dim Wj(£) = #{ends ofL}-l. 

Proof. Prom Lemma 4, we obtain HD(L) = Ti^(L). Then the Lemma follows 
from dimWo(Z) = dimW/)(Z) — 1 and Lemma 10. D 

Let 

Hl(L) = {6 | d6 = 0,6 has compact support}/!^/ | / has compact support} 

and let i?1(Z) be the first de Rham cohomology group. Consider the natural map 
il :ifc

1(L)-->if1(L). Then 

Ker(zJ) = {dg \ dg has compact support}/{<i/ | / has compact support} 

We continue to assume that L is an SL-submanifold strongly AC to an SL-cone LQ. 

LEMMA 12. Ker(il) = #(ends of L) - 1. 

Proof. Let [dg] ^ 0 G Ker^J). Because L is strongly AC to LQ, without loss 
of generality, we can assume that the compact subset K C L of dg is so large that 
L — K is diffeomorphic to the disjoint union of £* x (0, oo). Hence when restricted 
to the ends L — K g is locally constant but not constant. Now we see that Kei(il) = 
#(endsofZ)-l. D 

Now we consider Im(iJ). Prom [4, Page 9], any compactly supported cohomology 
class on a complete Riemannian manifold that defines a non-trivial de Rham coho- 
mology class is automatically represented by an L2-harmonic form. This defines a 
natural Hodge projective 

7r:Im(2*)—>W1(Z). 

Define 

LEMMA 13. Let L be an SL-submanifold strongly AC to an SL-cone LQ, then 

lm{il)&Hl{L)/Hl{L) 
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and the isomorphism is induced by above Hodge projection. 

Proof. Clearly, [TT] is injective. And we must prove [TT] is surjective. 
Let [u] € 7i1(Z)/Ho(L). Because L is strongly AC to LQ, we can pick a sufficiently 

large compact subset K(2ro) C L so that L — K(2ro) is diffeomorphic to the disjoint 
union of Si x (0,oo). We let A* be the ith component of L — K(2ro). Then from 
lemma 4, we can write 

v \Ai=Ci' -rji + dfi, 

where d is some constant and T^ is some harmonic 1-form on S^, fa is a harmonic 
function on Aj. If Ci ^ 0 for some i, then 

L i hi 

and 

|Ci--?7<|2 = +oo 

L <Ci--r}i,dfi>=0. 

Thus LU (£ TCl(L). So we can write w\L-K(2ro) ~ df, for some harmonic function / on 
L — K(2rQ). Then we can write UJ = (u — d(pf)) + d(pf), where function p with takes 
values between 0 and 1 and such that 

p(x) = 1, for x G L — K{2rQ)    and    p{x) = 0, for x G ^(ro). 

Thus, 0 = UJ — d(pf) has compact support ^(2^). But from the Hodge projection 
TT, we can write 9 = irQ + dtp for some function <p with / \d(p\2 < +oo. So we 
have UJ = 7r8 + dcp + d(pf) = 7r8 + d{cp + p/) with / \d(<p + p/)|2 < +oo and thus 
d(<p + p/) G WJ(L). So [7r]fl = [UJ]. D 

THEOREM 14. Le^ L be an SL submanifold which is strongly AC to an SL cone, 
then dim Hl(L) = dimHl{L). 

Proof. Prom lemma 11, 12 and 13, we have dim H1(£) = dimiJ^(L). Combined 
with W^L) = W^L), we prove the Lemma. D 

4. Proof of the main result. 

LEMMA 15. Let F — (/i, /2, /s) : C3 —> E3 fee a homogeneous SL fibration so that 
its central fiber LQ is a regular cone. Then every connected component L of regular 
fiber is diffeomorphic to R x T2,R2 x S1 or R3. 

Proof. Let 

r, for i = 1,2,3, 

then 

{9i,9j} =< Jgr&d 9i, grad Qj > 

 2^i < Jgrad /i)grad /,■ >= 0. 
(H-/?)2(l + //) 
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So G = (91,92,93) - C3 —► M3 defines a 3-degree of freedom Liouville integrable 
Hamiltonian system. Because fc are homogeneous polynomials, Hamiltonian vector 
fields Xg. are bounded on C3.   So from a theorem in [10, Cor 2, p.17] solutions of 
Cauchy problem:  ^ = Xg.^z^o) = ZQ are complete, i.e., Xgi are complete.   Thus 
by the generalized Liouville theorem, every connected component of regular fiber 
G~1(viJV2,va) is differential homeomorphic to R x r2,R2 x 51,M3 or T3. Now every 
connected component L of regular fiber F~1 (31,82,83) is a connected component of 

2 
regular fiber G~1(vi,V2,vs), where Vi = JTJZ- SO L is differential homeomorphic to 

R x T2, R2 x 51, R3 or T3. But from Example in section 2, we know that L is strongly 
AC to SL cone and is not compact, so L is not diffeomorphic to T3. D 

Now we can prove the following 

PROPOSITION 16. Let F = (/i,/2,/3) • C3 -» R3 be a homogeneous SL-fibration 
so that its central fiber LQ is a regular cone. We let rii = degfa, so arranged that 
ni l^^ <n3.  Then we must have (ni,n2,n3) = (2,2,3). 

Proof. By observation in section 1, we have deg/& > 2 for all k. Let 6i denote 
the deformation 1-form associated to the family LSi = {fa = Si\fj = 0 for j ^ i}. 
Because we assume that fa are irreducible, 61,62 and ^3 are linearly independent at 
any point p G XQ- Note that dt is 1-form in LQ. NOW we prove the proposition by 
studying case by case: 

Case 1: degF = (2,2,713) with 713 ^ 3. 
In this case, 61 and 62 have order 1.   By Lemma 4, we can let 61 = \r]i and 

62 — ^2, where 771 and 772 are harmonic 1—forms on £ = LQ fl 55. Now if 713 = 2, 
we can also let #3 = J773, where 773 is the harmonic form on S. Thus < 6i,dt >= 0 
for i = 1,2,3 and 61,62 and 63 are linearly dependent on LQ. This is impossible. If 
^3 ^ 4, by Lemma 4 we can let 63 = d(t~"^ <^), where <^ is an eigenfunction of E 
which is not constant. Since E is compact, we know that there is a point p of E such 
that 0i(p) = 0. So 63(p) doesn't contain dt as component at point p and thus 61,62 
and #3 are linearly dependent at point p. 

Case 2: degF = (2,3,713). 
In this case, the deformation 1—form 62 of LS2 has order 2. Hence 62 = C2^( j) 

and therefore 713 can not be 3. The 1—form associated to the family LS3 can be 
written 63 = d^^^i), where fa is a non-constant eigenfunction on E. Because E is 
compact, then there is a point m E £ such that fa attains maximum at point m. So 
63(m) = ^(m)^-^, and 62(171) and 63(771) is linearly dependent at point m. This is 
a contradiction. 

Case 3: degF = (711,77,2,713) with 713 > 712 > 4. 
If there exists such F, then there is a point so = (510,520,530) G R3, such that 

LSo = ir,~1(5io,52o,53o) is a smooth SL submanifold. We have proven that LSo is 
strongly AC to an SL cone LQ in the example before Lemma 8. Let L be a connected 
component of LSo. By Theorem 14, we have dimW1(I/) = dimf^(L). By Poincare 
Lemma and Lemma 15, we have dim Hl(L) < 1. Thus dimHl(L) < 1. 

Because L is smooth, we can get three deformation l-forms #i,#2 and #3. Cer- 
tainly these forms are harmonic on L. But we assume that 7^3 > 77-2 > 4, so 62 and 
63 has order at least 3. Now by the homogeneous, we can get 62,63 £ W1(I/), which 
contradicts to dimW1(L) < 1. D 
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In order to discuss the case of (711,712,713) = (2,2,3), we need the following 
Lemma. In the following we denote by diag(ai10,2, • • • ,an) the nxn diagonal matrix 
with diagonal entries ai, a2, • • • , an. 

LEMMA 17. Let A = diag(\,— k, 0,1,— fc,0) with k > 0 and let matrix B be 
symmetric such that (1) AEB = BE A, where matrix E has the form 

E = 
0 

-Lnxn 0 

and (2) there is a SQ € R such that exp(EBso) = /, then there is a symplectic matrix 
Q such that QTAQ = A and QTBQ has the form diag(a,P,j, a, /?, 7). 

Proof. From AEB = BE A, we find that B has the following form: 

\ 

B = 

and furthermore, 

(4.1) 

Let 

/ a c 0 0 e 0 
c b 0 e 0 0 
0 0 ha 0 0 &36 

0 e 0 a -c 0 
e 0 0 -c b 0 

^0 0 &63 0 0 &66 

c = e 0    when    k ^ 1. 

Bi 

\ 

a c 0 e 
c b e 0 
0 e a —c 
e 0 —c b 

,B2 

) 

&33 

&36 

&36 

fyse 

From exp(i£.Bso) = /, we can obtain exp^-BiSo) = J and exp^i^So) ::= I- Now we 
first consider the matrix B2. Let A be an eigenvalue of EB2 with the corresponding 
eigenvector £, (i.e., (EB2)t; = A^,) then exp^jE^s^ = eA5^. Since exp(Ej525o) = /, 
we have eAso = 1. Thus A must be ±fii for /z e R. If 633 = 0, then 636 = 0. Thus B2 
has the diagnol form and we abe done. If 633 ^ 0, without loss of generality, we can 

assume 633 > 0. Take w = ( 33 f|~ 2Q)^ and cosider the symplectic matrix 

Qi 
w 
0 

^36   1 
633  W 

then 

QIB2Q1 
y/bssh '33066 

0 
^6 

V^33^ '33066 bh 

Next we consider the matrix J3i. Prom exp(SBiSo) = /, the eigenvalues of EBi 
are ±m for i/ 6 R. But by direct calculation, the eigenvalues of EBi are 

A 
±(o - b)i ± ^(e2 + c2) - (a + 6)2 
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So we obtain 

(4.2) 4(e2 + c2)<(a4-6)2 

If a + b = 0, then e = c = 0 and Bi is of the diagonal form. So without loss of 
generality, we can assume a + b > 0. From (4.2), we have (a + 6)2 —4c2 > 0. If c = 0, 
we take u = 0.   If c ^ 0, we take u = ^[(a -\- b) — yj(a + b)2 — 4c2].  Notice that 
1 - u2 > 0. If 1 ■ ,2 _ 0, then a 4- b = ±2c and e = 0. It is easy to prove that in this 
case there isn't any $Q such that exp(EBiSQ) = I. Thus 1 — u2 > 0. So we can take 
the symplectic matrix 

Q2 = 
VT^' 

One easily checks that 

/ 1 u 0 
u 1 0 
0    0     1 

\ 0    0    -u 

0   \ 
0 

—u 
1 / 

f ai 0 0 
0 6i e 
0     e    ai 

\   e     0     0 

e \ 
0 
0 Bs = Q2B1Q2 = 

where ai = Yr^'(^2 + ^cu + a) and &i = j~^-(aw2 + 2cu + 6). One verifies 

(4.3) (a1+61)
2 = (a + 6)2-4c2. 

Now from (4.2) and (4.3) we have (ai + &1)2 - 4e2 > 0. If e = 0, we take v = 0. If 
e ^ 0, we take v = ^-(ai 4- 61 — ^/(ai +^i)2 - 4e2). Again we have 1 — v2 > 0. 

If 1 — v2 = 0, then ai + 61 = ±2e. If we take the symplectic matrix 

R = 

/1 0 0 
0 0 0 
0 0 1 

Vo 1 0 

then we have 

ri   B3R = 

( fll 
e 
0 

V 0 

e 
61 
0 
0 

0 
-1 
0 
0 

0 
0 
Oi 

0 
0 

—e 
61  / 

As before, we can prove that 1 — v2 = 0 is impossible. 
Now we are reduced to the case 1 - v2 > 0. We take symplectic matrix 

Q3 = VT 

Then 

BA = Q3 BzQz 

(1 
0 
0 

0 0    v \ 
1 v   0 
v    1    0 
0   0    1/ 

I  0,2 
0 
0 

\ 0 

0     0     0 
62    0     0 
0    02    0 
0     0    62 
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We let 

Q 

/ 1 u 0 uv V 0      \ 
u 1 0 V uv 0 

1        1 0 
-uv 

0 
V 

w 
0 

0 
1 

0 
—u 

633 w 

0 VI -u2Vl- V2 

V —uv 0 —u 1 0 

\ 0 0 0 0 0 1       j 

where w, v and w are taken as before. Then we can check that QTBQ has diagonal 
form. If k = 1, we have QTAQ = A. If fc ^ 1, from (4.1) we can take u — v = 0. 
Thus QTA(5 = A This proves the Lemma. D 

Now we discuss the case of (2,2,3). 

THEOREM 18. Let F = (fi, /2, /s) : C3 —* R3 be a homogeneous SL-fibration with 
(ni, 712, ns) = (2,2,3) so that its central fiber LQ is a regular cone. Then there is a 
unitary matrix S so that if we make the Darboux coordinates change 

{Pi,P2,P3,qi,q2,q3)T = S-1(x1,X2,x3,y1,y2,y3)T 

and let Wk = Pk 4- iQk- Then (/1, /2, fs) is linearly equivalent to 

fi = |wi|2 - |w2|2,    /2 = |wi|2 - l^sl2    and   fs = Im^i^wa)- 

Proof Let LQ = i?~1(0) and let XQ G LQ. Let E be a connected component 
of LQ fl S5 containing XQ. Let fi{x) = xTAx and /2(^) = xTBx, where xT = 
(EI,2:2,#3,2/1,2/2,2/3). Because A and 5 are symmetric matrices, EA,EB G sp(6,R), 
the later is the Lie algebra of symplectic group £p(6,R). So 

G = {exp(Bi4t),exp(JS;B5)|*,5 € R} C 5p(6,R) 

is a Lie subgroup of the symplectic group. Prom {/1, f2] = 0, we know that AUI? = 
£iL4 and thus (EA)(EB) = (EB)(EA). Thus G is a commutative Lie subgroup of 
5p(6, i?). On R6 we define the distribution 

D = {(EA)x,{EB)x\x GR6}. 

Then the distribution D is completely integrable because 

[{EA)x, (EB)x} = V(BA)a(JE?B)a; - ViEB)x(EA)x = (EB)(EA)x - (EA)(EB)x = 0. 

Thus the orbit G-XQ is the maximal connected integral submanifold of D through XQ. 

On the other hand, we will prove E is also the maximal connected integral sub- 
manifold of D through XQ. Let W3 be the normal deformation vector field of LQ 

associated to the family LSi = {/1 = /2 = 0, /s = 53}. As in the proof of Lemma 5, 
we have 

(4.4) < W3, grad/i >=< W3, grad/2 >= 0. 

Because deg/3 = 3, from Lemma 4, we have 6$ = WS\UJQ = Czt~2dt, where C3 is 
a constant on E. Thus W^x) = Cs\x\~3Jx for any x € E. So from (4.4) we have 
equations 

(4.5) < x, {EA)x >=< x, {EB)x >= 0. 
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On the other hand Jgrad/i = 2EAx and Jgrad/2 = 2EBx are vector fields on LQ. 

Then (4.5) says that (EA)x and {EB)x are 2 linearly independent vector fields on E. 
So E is also the integral submanifold of D through XQ. Thus we have E = G • XQ. 

On E, there are 2 commuting linearly independent vector fields {EA)x and (EB)x. 
From [1, Lemma 2, p.274] and its proof, we know that E is a 2-torus and that 
exi[)(EAt) - XQ is a circle on E. Let to be the first t such that exp(EAto)xo = XQ. 

Thus for any x = exp(EAt) exip(EBs) • XQ G E, we have ex.-p(EAto)x = x, namely, 
(exp(EAto) — I)x = 0. But E is full as the submanifold of M6 as we observed in sec- 
tion 1, so we must have exp(E,Ato) = / and ex^{EAt) is a circle on G. For the same 
reason, exip(EBs) is a circle on G. We let so be the first s such that exp(EBso) = /. 

Now by Williammson's theorem [9], we can reduce A to normal forms by means 
of a real symplectic transformation. In [1, Appendix 6] we can find the list of normal 
forms. Prom exp(EAto) = /, eigenvalues of EA are of the form 0 or ±^i for JJ, e R. 
Thus we only need to discuss the case with eigenvalues 0 or i/zz. In other words, 
we need to check which symmetric matrices C with eigenvalues 0 or ±//i satisfy the 
equation exp(ECto) = I. After that we can find a symplectic matrix Pi such that 

A' = P[AP1 = diag(±/if, ±nl ±nl ±SU ±62, ±63), 

where ±i^ji{j = 1,2,3) are eigenvalues of EA and 5j = 1 if fij ^ 0; 5j = 0 if ftj = 0. 
Certainly there is another symplectic matrix P2 such that 

1= (P^fAiP^) = diag(r1,r2,r3)r1)r2,r3), 

where rj = i/^'O = 1, 2,3). 
Without loss of generality, we can assume that det(EA) = 0 and ±i are 

eigenvalues of EA. This is because if not, we can take Ai = (uA — vB) for 
u,v £ R such that det(EAi) = 0 and ±i are eigenvalues of (EAi). If we take 
fi = ufi - vf2 = usi - VS2, h = h = s2 and f3 = f3 = 53, then F = (/1, /2, /s) also 
defines homogeneous SL fibration. This SL fibration has the same geometric structure 
as the SL fibration F. This is the meaning of "linearly equivalent" in the theorem. 

Let P = P1P2, then A = PTAP = diag(l, -M, 1, -M). We note that k > 0. 
Because if k < 0, then C(E) = {0}. Let B = PTBP. First we have exp(EBso) = L 
On the other hand, from AEB = BEA, we have 

AEB = (PTAP)E(PTBP) = PTAEBP = PTBEAP = BEA 

So from Lemma 17, there is a symplectic matrix Q such that QTAQ = A and QTBQ = 
^ap(a,/3,7,a,/3,7). 

Thus if we take S = PQ, then STAS = ^a^(l, -A:,0,1, -M) and 5T
JB5 = 

diag(a, (3,7, a, /?, 7). If we take suitable linearly transformation, we can take STBS — 
diag{l, 0, -/, 1,0, -/) with I > 0. 

Now if we take the Darboux coordinates 

{Vi,V2,P3,qi,q2,q3)T = S~1{xi,X2,x3,yl,y2,y3)T, 

we have proven that 

7i = {p{ + ql)-k{p22 + ql) 

f2 = (p2
1+q2

1)-l(p23+q23)- 
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Because Poisson bracket is preserved by the symplectic transformation, we still 
have {fi/fj} = 0 at the Darboux coordinates (Pj,qj). From {fj/fs} = 0 for j = 1,2, 
we have 

dh        dh     ,/    dfs        df3 dfc        df3 

dqi dpi dq2 dp2 dq3 dps' 

Using above equations, by observation, fa can not contain the following items: 

phuPiQhphQhphj^Phj^PiQ^QiQhPiPjQ^PiQiQj^ ^ J)- 

So fa only contains following items: 

P\P2Pz,piP2qz,piq2Pz,Piq2qz, qmps, qiP2q3,qiq2P3,qiq2q3- 

Using {/j, fj} = 0, a straight forward computation shows that k = I = 1 and 

fa = a(p1p2P3 - PI4243 - qiP2q3 - qiq2P3) + b{piP2q3 + Piq2P3 + qiP2P3 - qiq2q3) 

= aRe(pi + iqi)(p2 + iq2){P3 + iqz) + blm(p1 + 2(?i)(p2 + ^Os + igs), 

where a and 6 are constants. So if let sin 6 —   , %'   2, cos^ =   , a
b   a, then 

/s  = x/a2 + &2Im[et*(pi + 2gi)(p2 + ^2)(P3 + ^s)]- 

So we can assume that 

fa = Im(pi + 2gi)(p2 + ^2)(P3 + nz) = P1P293 + P192P3 + ^lP2P3 - 91^2^3 

by some unitary translation and linear translation. 

Now we must prove S € 0(6, R). Let 

U = diag(l, -1,0,1,-1,0) 

and let 

V = diag(l, 0,-1,1,0,-1). 

We have proven that STAS = C/ and STBS = V. Then 

S"1 exp(EAt)5 = exp(5"1£,A5t) = exp(E5TA5t) 

= exp(EUt) = dioflf(ett, c"**, 1) 

and 

S-1 exp(E55)5 = exp(EVs) = diag(eis, 1, c""). 

So we have S^GS = T2 = {diagie** ,(?**, e-^+^lhM G R} or G = STS"1. Let 
0(2') = {ffaq) =fa(p,q) = /sfeg) =0} andpo = ^(1,1,1,0,0,0)T E C(E'), 

then there is a point XQ € E such that 5~1a;o = cpo, where c is a constant.  Prom 
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G - XQ — E C S^l), we have < gxo.gxo >= 1 for any g G G. So for any r G T2, we 
have 

< STS^XOTSTS^XQ >= c2 < STPO,STPO >= 1, 

or 

(4.6) (rpo)T(STS)(rpo)=c-2. 

Let r = diag(e^1,e^2, e"*(*1+*2)) and let u = cost^v = cos^. Let STS = (m^) and 
let 

/l(u, u) = 77233 + 77244 -f 77155 — 2m4QV — 2msQU + 2mi2UV 

+ 2(mi3 + m46)u2v + 2(m25 + m^uv2 + (mn - m^u2 

+ (^22 - mss)^2 + (mss - ra66)(2u2i'2 - w2 - v2) 

+ {-2m35 + 2(mi4 + rase)^ + 2m24^ + 2(77134 - m^uv 

+2(77235 - m26)v2 - 4ms6uv2}\n- u2 

+ {-277234 + 2(77225 4- 77236)^ + 277215^ + 2(?7234 - m^U2 

+2(77235 - rn2e)uv — Am^u2v}\/l - v2 

-I- {277245 - 2(mi3 + 77246)^ - 2(77223 + rn^V 

—2(77233 — msojuv} v 1 ~ u2yl — v2 

Then (4.6) can be rewritten 

(4.7) h(u,v) = 3c -2 

for any —l<u,v<l. So we have dundyi-n = 0. By direct calculation, we can get 

\u=v=0 = ^33 - ^66 = 0 
du3dv3 

06 L, 

u-O = -18(77213 + 77246M1 " V2)~^ = 0 
du3dv3 

d6h 

dusdv3 \v=0 = -18(77223 +77256)^(1 - U2)    3=0 

06 L 

= 1877745^(1 -^2)" 2(l-^2)~£ =0 
du3dv3 

From above equations, we can obtain 77245 = 0, 77233 = m66j ^13 = —^246 and 77223 = 
—77256. Thus h can be write in the following form: 

h(u, v) = 77233 + m44 + 77255 + 277213?; 4- 277223^ 4- 2mi2uv 

4- (mn - 77244)^ 4- (77222 - mss)v2 

4- {-277235 4- 2(mi4 4- mse)^ 4- 277224^ 4- 2(77234 - mie)uv 

4-2(77235 - m2e)v2 - 477236Uf2} v 1 - u2 

4- {-277234 4- 2(m25 -f- mse)v 4- 277215U 4- 2(77234 - m16)u
2 

4-2(77235 - m2e)uv — 477236^2f} v 1 - v2 
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Using the same method, at last, we can obtain 

(4.8) STS = diag(mii, 77122, ^33, ran, 77122, msa) 

and 

ran + 77122 + rass = 3c~2. 

But 5 is the symplectic matrix, so S-1 and 5T are symplectic matrices too. Thus we 
have 

(4.9) STSESTS = STES = E 

Now from (4.8) and (4.9), we easily can get ran = 77122 = raas = 1. From above 
discussion, we have STS = / and 5 G 0(6, R). Thus we have proven S € 17(3) and 
this completes the proof of theorem 18. D 
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