QUASI-CONFORMAL RIGIDITY OF NEGATIVELY CURVED THREE MANIFOLDS *

YONG HOUT

Abstract. In this paper we study the rigidity of infinite volume 3-manifolds with sectional curvature $-b^2 \le K \le -1$ and finitely generated fundamental group. In-particular, we generalize the Sullivan's quasi-conformal rigidity for finitely generated fundamental group with empty dissipative set to negative variable curvature 3-manifolds. We also generalize the rigidity of Hamenstädt or more recently Besson-Courtois-Gallot, to 3-manifolds with infinite volume and geometrically infinite fundamental group.

1. Introduction. Let \widetilde{M} be a simply connected complete Riemannian manifold with sectional curvature $-b^2 \leq K \leq -1$. Let $\mathrm{ISO}(\widetilde{M})$ denote the group of isometries of \widetilde{M} . Let Γ be a non-elementary, torsion-free, discrete subgroup of $\mathrm{ISO}(\widetilde{M})$, and set $M:=\widetilde{M}/\Gamma$.

First we recall some terminologies that is required for the statement of the theorem. Let S_{∞} denote the boundary of \widetilde{M} . On S_{∞} one can define a metric in the following way. Let v be a vector in the unit tangent bundle \widetilde{SM} . The geodesic v(t) defines two points on S_{∞} given by $v(\infty)$ and $v(-\infty)$. Let π_t be the projection of $S_{\infty} \setminus v(-\infty)$ along the geodesics which are asymptotic to $v(-\infty)$ to the horosphere which is tangent to $v(-\infty)$ and passing through v(t). Let $\operatorname{dist}_{v,t}$ be the distance on the horosphere induced by restriction of the Riemannian distance, dist. On $S_{\infty} \setminus v(-\infty) \times S_{\infty} \setminus v(-\infty)$ define a function η_v as $\eta_v(\xi,\zeta) := e^{-l_v(\xi,\zeta)}$ with $l_v(\xi,\zeta) := \sup\{t | \operatorname{dist}_{v,t}(\pi_t(\xi),\pi_t(\zeta)) \leq 1\}$. By our curvature assumption $-b^2 \leq K \leq -1$, the function η_v is a distance on $S_{\infty} \setminus v(-\infty)$, see [25].

Every element of $\gamma \in \Gamma$ has either exactly one or two fixed points in S_{∞} , and γ is called loxodromic if it has two fixed points [4]. The group Γ is called *purely loxodromic* if all $\gamma \in \Gamma$ are loxodromic. The limit set of Γ denoted by Λ_{Γ} is the unique minimal closed Γ -invariant subset of S_{∞} [22]. If Γ is purely loxodromic and $\Lambda_{\Gamma} = S_{\infty}$, then it can be either cocompact or \widetilde{M}/Γ is geometrically infinite, hence Γ has infinite co-volume. The convex hull CH_{Γ} is the smallest convex set in $\widetilde{M} \cup S_{\infty}$ containing Λ_{Γ} . The group Γ is called convex-cocompact if CH_{Γ}/Γ is compact.

The critical exponent of Γ is the unique positive number D_{Γ} such that the Poincaré series of Γ given by $\sum_{\gamma \in \Gamma} e^{-s \operatorname{dist}(x,\gamma x)}$ is divergent for $s < D_{\Gamma}$ and convergent for $s > D_{\Gamma}$. If the Poincaré series diverges at $s = D_{\Gamma}$ then Γ is called divergent.

Let $f:(X,\rho_X)\longrightarrow (Y,\rho_Y)$ be a embedding between two topological metric spaces. Then f is called *quasi-conformal* embedding [47] if there exists a constant $\kappa>0$ such that, for any $x\in X$ and r>0 there is $r_f(x,r)>0$ with

$$f(X) \cap B'(f(x), r_f(x, r)) \subset f(B(x, r)) \subset B'(f(x), \kappa r_f(x, r)).$$

where B and B' denotes a ball in X and Y respectively. When f(X) = Y then f is a quasi-conformal homeomorphism.

A torsion-free discrete subgroup Γ of $\mathrm{ISO}(\widetilde{M})$ is called *topologically tame* if \widetilde{M}/Γ is homeomorphic to the interior of a compact manifold-with-boundary.

^{*}Received July 17, 2002; accepted for publication September 13, 2002.

[†]Department of Mathematics, University of Iowa, Iowa City, Iowa 52242, USA (yhou@math.uiowa.edu).

Theorem 1.1. Let $\Gamma' \subset \mathrm{PSL}(2,\mathbb{C})$ be a topologically tame discrete group with $\Lambda_{\Gamma'} = S^2$, and isomorphic $\chi : \Gamma' \longrightarrow \Gamma$ to a convex-cocompact discrete subgroup Γ of $\mathrm{ISO}(\widetilde{M})$ (here \widetilde{M} is n-dimensional). Let $f : S^2 \longrightarrow S_{\infty}$ be a quasi-conformal embedding which conjugate Γ' to Γ , i.e. $f \circ \gamma = \chi(\gamma) \circ f$, for $\gamma \in \Gamma'$. Then $D_{\Gamma} \geq D_{\Gamma'}$, and equality if and only if \mathbb{H}^3 embeds isometrically into \widetilde{M} and the action of Γ stabilizes the image.

To state our next theorem we need to introduce one additional terminology. We take \widetilde{M} to be a 3-manifold in the following.

Let $\mathfrak{M}_{\eta_v}^{\lambda}$ denote the λ -dimensional hausdorff measure on $(S_{\infty}\backslash v(-\infty),\eta_v)$. We say Γ is hausdorff-conservative if there exists a constant $\alpha(v)>0$ such that $\alpha^{-1}r^{D_{\Gamma}}\leq \mathfrak{M}_{\eta_v}^{D_{\Gamma}}(B(\xi,r)\cap\Lambda_{\Gamma})\leq \alpha r^{D_{\Gamma}}$ for any ball $B(\xi,r)$ of radius r about $\xi\in\Lambda_{\Gamma}$ in $(S_{\infty}\backslash v(-\infty),\eta_v)$. From this definition, we note that if Γ is a finitely generated torsion-free discrete subgroup of PSL $(2,\mathbb{C})$ with $D_{\Gamma}=2$, then hausdorff-conservative implies conservative (classical definition, §5). Conversely, if Γ is a topologically tame, conservative, discrete subgroup of PSL $(2,\mathbb{C})$, then Γ is hausdorff-conservative, see Proposition 5.2. We believe all finitely generated conservative discrete subgroup of PSL $(2,\mathbb{C})$ are hausdorff-conservative, see Remark 5.3. For a convex-cocompact M/Γ with $-b^2 \leq K \leq -1$, it follows from [12], Γ is hausdorff-conservative. Now we are ready to state the theorem which generalizes Sullivan's quasi-conformal rigidity theorem.

THEOREM 1.2 (Main). Let Γ be a topologically tame, purely loxodromic discrete subgroup of $\mathrm{ISO}(\widetilde{M})$ with $\Lambda_{\Gamma} = S_{\infty}$. Let Γ' be a topologically tame discrete subgroup of $\mathrm{PSL}(2,\mathbb{C})$. Suppose $f: S_{\infty} \longrightarrow S^2$ is a quasi-conformal homeomorphism conjugate Γ to Γ' . Then $D_{\Gamma} \geq D_{\Gamma'}$, and $\Gamma = \gamma \Gamma' \gamma^{-1}$ with $\gamma \in \mathrm{PSL}(2,\mathbb{C})$ if and only if $D_{\Gamma} = D_{\Gamma'}$ and Γ is hausdorff-conservative.

COROLLARY 1.3. Let $M = \widetilde{M}/\Gamma$ be a complete topologically tame 3-manifold with $-b^2 \leq K \leq -1$, Γ purely loxodromic, and $\Lambda_{\Gamma} = S_{\infty}$. Let $h: M \longrightarrow N$ be a quasi-isometric homeomorphism to a hyperbolic manifold N. Then M is isometric to N if and only if $D_{\Gamma} = 2$ and Γ is hausdorff-conservative.

Let us point out that Theorem 1.2, generalizes known rigidity theorems in two directions for three dimensional manifolds.

First assume M is hyperbolic (b=1) but not necessarily geometrically finite. Since M is topologically tame and $\Lambda_{\Gamma}=S^2$ we have $D_{\Gamma}=2$ by analytical tameness (see Proposition 3.3). Hence by Theorem 1.2, M is quasi-conformal stable. This is a case of the Sullivan rigidity theorem for topologically tame Γ with empty dissipative set. Next let us assume M is compact with $-b^2 \leq K \leq -1$. Then the critical exponent D_{Γ} is equal to h_M the topological entropy of M, and by [16], any homotopy equivalence between M and a compact hyperbolic 3-manifold is induced by a homeomorphism. Therefore it follows from Corollary 1.3 we have: M is isometric to a compact hyperbolic 3-manifold if and only if they are homotopically equivalent and $h_M=2$. This is the Hamenstädt's rigidity or more recently Besson-Courtois-Gallot theorem for 3-manifolds.

Note that it also follows from Theorem 1.2, the quasi-conformal version of the Hamenstädt's theorem for compact 3-manifold M can be stated as:

COROLLARY 1.4. Let Γ be a cocompact discrete subgroup of $\mathrm{ISO}(M)$. Let $\Gamma' \subset \mathrm{PSL}(2,\mathbb{C})$ be a discrete group. Suppose $f: S_\infty \longrightarrow S^2$ is a quasi-conformal

homeomorphism conjugate Γ to Γ' , Then $D_{\Gamma} \geq D_{\Gamma'}$, and equality if and only if \widetilde{M}/Γ is isometric to \mathbb{H}^3/Γ' .

The proves of these theorems relies on our next result,

THEOREM 1.5. Let $M = \tilde{M}/\Gamma$ be a topologically tame 3-manifold with $-b^2 \leq K \leq -1$. Suppose that Γ is purely loxodromic and that $\Lambda(\Gamma) = S_{\infty}$. Then $2 \leq D$ and Γ is harmonically ergodic. If D = 2 then Γ is also divergent.

In section 2, we state some of the topological properties of negatively pinched 3-manifolds. In particular, we define geometrically infinite ends for negatively pinched 3-manifolds, and then state our theorem which describe the geometrical properties of this type of end, it is a crucial step in the proof of Theorem 1.5. Section 3 discusses measures on S_{∞} and the ergodicity of Γ with respect to these measures. In section 4, we give proofs of part I of the theorems. And section 5 is used to complete the proofs.

Acknowledgments: I am very grateful to Peter Shalen for his unwavering support and encouragement. I wish to thank Marc Culler, Dick Canary for their interest.

2. Topological Ends. Every isometry of \tilde{M} can be extend to a Lipschitz map on $S_{\infty} := \partial \tilde{M}$ [22]. For a torsion-free Γ , every element $\gamma \in \Gamma$ is one of the following types: (1) parabolic if it has exactly one fixed point in $\tilde{M} \cup S_{\infty}$ which lies in S_{∞} ; (2) loxodromic if it has exactly two distinct fixed points in $\tilde{M} \cup S_{\infty}$, both lying in S_{∞} .

Denote by $\Lambda(\Gamma) \subset \partial \tilde{M}$ the limit set of Γ , which is the unique minimal closed Γ -invariant subset of S_{∞} . Most of the important properties of the limit set in the constant curvature space continue to hold in the variable curvature space [15]. In particular: (i) $\Lambda(\Gamma) = \overline{\Gamma x} \cap S_{\infty}$; (ii) $\Lambda(\Gamma)$ is the closure of the set of fixed points of loxodromic elements of Γ ; and (iii) $\Lambda(\Gamma)$ is a perfect subset of Γ . The set $\Omega(\Gamma) := S_{\infty} \setminus \Lambda(\Gamma)$ is the region of discontinuity. The action of Γ on $\tilde{M} \cup \Omega(\Gamma)$ is proper and discontinuous, see [15]. The manifold $M_{\Gamma} := \tilde{M} \cup \Omega(\Gamma)/\Gamma$ with possibly nonempty boundary is traditionally called the Kleinian manifold. We also let $\Lambda_c(\Gamma)$ denote the conical limit set of Γ , i.e. $\xi \in \Lambda_c(\Gamma)$ if for some $x \in \tilde{M}$ (and hence for every x) there exist a sequence (γ_n) of elements in Γ , a sequence (t_n) of real numbers, and a real number C > 0, such that $\gamma_n x \longrightarrow \xi$ and $\operatorname{dist}(c_x^{\xi}(t_n), \gamma_n x) < C$ where c_x^{ξ} is the geodesic ray connecting x and ξ . Equivalently, a point belongs to $\Lambda_c(\Gamma)$ if it belongs to infinitely many shadows cast by balls of some fixed radius centered at points of a fixed orbit of Γ . Note that $\Lambda_c(\Gamma)$ is a Γ -invariant subset of $\Lambda(\Gamma)$, hence a dense subset.

PROPOSITION 2.1 (Margulis Lemma). There exists a number ϵ_b which only depend on the pinching constant b of M, such that the group Γ_{ϵ} generated by elements in Γ of length at most ϵ_b with respect to a fixed point in M is almost nilpotent of rank at most 2. Then the number, $2\epsilon_b$ is called the Margulis constant.

Note that, if M is orientable and Γ is torsion-free, then Margulis Lemma implies Γ_{ϵ_h} is abelian.

Let $\epsilon \leq \epsilon_b$ be given. Then M may be written as the union of a thin part $M_{[0,\epsilon)}$ consisting of all points at which there is based a homotopically nontrivial loop of length $\leq \epsilon$ and a thick part $M_{[\epsilon,\infty)} = \overline{M-M_{[0,\epsilon)}}$. Note that $M_{[\epsilon,\infty)}$ is compact if

M is of finite volume. Also the thin part of M is completely classified by the next proposition.

PROPOSITION 2.2. Each connected component of $M_{[0,\epsilon)}$ is diffeomorphic to one of the following:

parabolic rank-1 cusp : $S^1 \times \mathbb{R} \times [0, \infty)$. parabolic rank-2 cusp : $T^2 \times [0, \infty)$. solid torus about the axis of a loxodromic $\gamma : D^2 \times S^1$.

For simplicity we restrict to the case where M has no cusps. It follows from the existence of a compact core C(M) for M [14], that M has only finitely many ends [5]. In fact, each component of $\partial C(M)$ is the boundary of a neighborhood of an end of M, and this gives a bijective correspondence between ends of M and components of $\partial C(M)$.

We define the simplicial ruled surfaces as follows. Let S be a surface of positive genus and let T_P be a triangulation defined with respect to a finite collection P of points of S. This means that T_P is a maximal collection of nonisotopic essential arcs with end points in P; these arcs are the edges of the triangulation, and the components of the complement in S of the union of the edges are the faces. Let $f: S \longrightarrow M$ be a map which takes edges to geodesic arcs and faces to nondegenerate geodesic ruled triangles in M. The map f induces a singular metric on S. If the total angle about each vertex of S with respect to this metric is at least 2π , then the pair (S, f) is called a simplicial ruled surface. It follows from the definition of the induced metric on S that f preserves lengths of paths and is therefore distance non-increasing. Any geodesic ruled triangle in M has Gaussian curvature at most $-a^2$. This means that each 2-simplex of S inherits a Riemannian metric of curvature at most $-a^2$. Since we have required the the total angle at each vertex to be at least 2π , by Gauss-Bonnet theorem the curvature of S is negative in the induced metric.

DEFINITION 2.3. An end E is said to be a geometrically infinite if there exists a divergent sequence of geodesics, i.e. there exists a sequence of closed geodesics $\alpha_k \subset M_{\epsilon}^{\circ}$, such that for any neighborhood U of E, there exists some positive integer N such that $\alpha_k \subset U$ for all k > N. If in addition for some surface S_E we have that U is homeomorphic to $S_E \times [0, \infty)$, and there exists a sequence of simplicial ruled surfaces : $S_E \xrightarrow{f_1} U$ such that $f_l(S_E)$ is homotopic to $S_E \times 0$ in U and leaves every compact subset of M, then E is said to be simply degenerate. The sequence $(S_E \xrightarrow{f_1} U)$ is called an exiting sequence. A end which is not geometrically infinite will be called geometrically finite.

Theorem 2.4 (Hou). Let $M = \tilde{M}/\Gamma$ be a topologically tame negatively pinched 3-manifold with Γ purely loxodromic. Then all geometrically infinite ends of M are simply degenerate. And if $\Lambda(\Gamma) = S_{\infty}$, then there are no nonconstant positive superharmonic functions, or nonconstant subharmonic functions bounded above, on M.

3. Γ -action. In this section we will study the action of Γ on S_{∞} and prove ergodicity of Γ for topologically tame 3-manifolds with $\Lambda(\Gamma) = S_{\infty}$. We will prove that for such a manifold, the Green series is divergent, and that the Poincaré series is also divergent if D=2. Theorem 1.5 will also be proved in this section.

In some situations we will take the dimension of M to be 3, otherwise we will assume M is n-dimensional in general.

Set the following notations throughout the paper. Let $\Gamma' \subset \mathrm{PSL}(2,\mathbb{C})$ be a discrete orsion-free subgroup. Denote $S^2 := \partial \mathbb{H}^3$, and $S_\infty := \partial \widetilde{M}$. There are many equivalent ways of equipping S_∞ with a metric which is compatible with Γ -action. Fix a point $x \in \widetilde{M}$. Let ξ, ζ in S_∞ be given. Set $c_y^{\zeta}(t)$ as the geodesic ray connecting y and ζ .

In [22], Gromov defined a metric on S_{∞} as follows. For $y,z\in\widetilde{M}$, let us consider arbitrary continuous curve c(t) in \widetilde{M} with initial point and end point denoted by $c(t_0)=y$ and $c(t_1)=z$ respectively. Define a nonnegative real-valued function \mathcal{G}_x on $\widetilde{M}\times\widetilde{M}$ by

$$\mathcal{G}_x(y,z) := \inf_{ ext{all } c} \left(\int_{[t_0,t_1]} e^{-\operatorname{dist}(x,c(t))} \mathrm{d}t
ight).$$

In particular, Gromov showed the function \mathcal{G}_x extends continuously to $S_\infty \times S_\infty$. Every element of Γ extends to S_∞ as a Lipschitz map with respect to \mathcal{G}_x .

In [31] the following metrics are shown to be equivalent to the Gromov's metric.

 K_x metric: Let B_{ζ} denote the Busemann function based at x_0 . Set $B_{\zeta}(x,y)$ = $B_{\zeta}(x) - B_{\zeta}(y)$, for $x,y \in \widetilde{M}$, the function $B_{\zeta}(x,y)$ is called the Busemann cocycle. Define $\beta_x: S_{\infty} \times S_{\infty} \longrightarrow \mathbb{R}$ by $\beta_x(\xi,\zeta):=B_{\xi}(x,y)+B_{\zeta}(x,y)$ where y is a point on the geodesic connecting ξ and ζ . The K_x metric is then defined by

$$K_x(\xi,\zeta) := e^{-\frac{1}{2}\beta_x(\xi,\zeta)}.$$

 L_x metric: Let $\alpha_x(\xi,\zeta)$ denote the distance between x and the geodesic connecting ξ and ζ . The function $L_x: S_\infty \times S_\infty \longrightarrow \mathbb{R}$ is then defined by

$$L_x(\xi,\zeta) := e^{-\alpha_x(\xi,\zeta)}.$$

 d_x metric: Define a function $l_x: S_\infty \times S_\infty \longrightarrow \mathbb{R}$ by $l_x(\xi, \zeta) := \sup\{\tau | \operatorname{dist}(c_\xi^x(\tau), c_\zeta^x(\tau)) = 1\}$. Geometrically, a neighborhood about ξ in S_∞ with respect to the topology induced by l_x is the shadow cast by the intersection of 1-ball about $c_x^\xi(\tau)$ and τ -sphere about x. The d_x metric is then defined by

$$d_x(\xi,\zeta) := e^{-l_x(\xi,\zeta)}.$$

It was originally observed for symmetric spaces by Mostow [36] that the boundary map is quasi-conformal. This property continue to hold in negatively curved spaces, see [25] and [40]. Here we give a proof of this fact with respect to the above metrics.

PROPOSITION 3.1. Let h be a quasiisometry between two negatively pinched curved spaces. The boundary extension map \bar{h} is quasi-conformal on the boundary with respect to d_x, L_x, K_x, η_v -metrics.

Proof. For the proof of η_v -metric See Proposition 3.1 in [25]. Fix $x \in M$. Let us take d_x -metric. Set $\lambda \geq L$. Denote by S(x;y,R) the shadow cased from x of the metric sphere S(y,R) with center located at y and radius R, i.e. $S(x;y,R) = \{\xi \in S_{\infty} | c_x^{\xi} \cap S(y,R) \neq \emptyset\}$. Let $B(\xi,r)$ be a ball of radius r in S_{∞} . Using triangle

comparison we can show there exists a constant $\alpha_b \geq 1$ depends on pinching constant b such that

$$S(x; c_x^{\xi}(t_r), \lambda) \subset B(\xi, r) \subset S(x; c_x^{\xi}(t_r), \alpha_b \lambda)$$

for some $t_r > 0$ which depends only on r. The images $\bar{\phi}(S(x; c_x^{\xi}(t_r), \lambda))$ and $\bar{\phi}(S(x; c_x^{\xi}(t_r), \alpha_b \lambda))$ are quasi-spheres, i.e. there exists a constant $\beta_{\phi} > 0$ depends on ϕ such that $S(\bar{\phi}(x); \bar{\phi}(c_x^{\xi}(t_r)), \beta_{\phi}^{-1}\lambda) \subset \bar{\phi}(S(x; c_x^{\xi}(t_r), \lambda))$ and $\bar{\phi}(S(x; c_x^{\xi}(t_r), \alpha_b \lambda) \subset S(\bar{\phi}(x); \bar{\phi}(c_x^{\xi}(t_r)), \beta_{\phi}\alpha_b \lambda)$. On the other hand, by estimates in [11] there exists positive numbers $A_1(\beta_{\phi}, \lambda)$ and $A_2(\alpha_b, \beta_{\phi}, \lambda)$ such that

$$B(\bar{\phi}(\xi), A_1 e^{-R}) \subset S(\bar{\phi}(x); \bar{\phi}(c_x^{\xi}(t_r)), \beta_{\phi}^{-1}\lambda),$$

$$S(\bar{\phi}(x); \bar{\phi}(c_x^{\xi}(t_r)), \beta_{\phi}\alpha_b\lambda) \subset B(\bar{\phi}(\xi), A_2e^{-R})$$

where $R = \operatorname{dist}(\bar{\phi}(x), \bar{\phi}(c_x^{\xi}(t_r)))$. Hence the result follows by setting $r_{\phi}(\xi, r) = A_1 e^{-R}$ and $\kappa = A_2/A_1$. \square

Proposition 3.2. Let $f: \partial \widetilde{N} \longrightarrow S_{\infty}$ be a embedding conjugate Γ_1 to Γ_2 under isomorphism $\chi: \Gamma_1 \longrightarrow \Gamma_2$ $(f \circ \gamma = \chi(\gamma) \circ f)$. Then $f(\Lambda_{\Gamma_1}) = \Lambda_{\Gamma_2}$.

Proof. Let $\gamma \in \Gamma_1$. Since $\gamma f^{-1}(\Lambda_{\Gamma_2}) = f^{-1}(\chi(\gamma)\Lambda_{\Gamma_2})$, and by Γ_2 -invariance of Λ_{Γ_2} , we have $f^{-1}(\Lambda_{\Gamma_2})$ is Γ_1 -invariant closed set. Note that $f^{-1}(\Lambda_2)$ is nonempty, since fixed points of elements of Γ_1 are also fixed points of elements of Γ_2 , hence $f(\Lambda_{\Gamma_1}) \subseteq \Lambda_{\Gamma_2}$. Similarly we also have $f(\Lambda_{\Gamma_1}) \supseteq \Lambda_{\Gamma_2}$, and result follows. \square

PROPOSITION 3.3. Let Γ be a topologically tame, torsion-free, discrete subgroup of $ISO(\widetilde{M})$ with $\Lambda_{\Gamma} = S_{\infty}$. Let Γ' be a topologically tame, discrete subgroup of $PSL(2,\mathbb{C})$. Suppose $f: S_{\infty} \longrightarrow S^2$ is a homeomorphism conjugate Γ to Γ' . Then $D_{\Gamma'} = 2$ and Γ' is divergent.

Proof. By Proposition 3.2 the hyperbolic manifold $N=\mathbb{H}^3/\Gamma'$ is topologically tame and $\Lambda_{\Gamma'}=S^2$. It follows from analytical tameness and Theorem 9.1 of [10], there exists no non-trivial positive superharmonic function on N with respect to the hyperbolic Laplacian Δ . Let $P(y,\xi)$ denote the Poisson kernel on \mathbb{H}^3 . The $D_{\Gamma'}$ -dimensional conformal measure (Patterson-Sullivan measure, see end of §3) σ_y has Radon-Nikodym derivative of $P(y,\xi)^{D_{\Gamma'}}$, i.e. $\frac{\mathrm{d}\sigma_y}{\mathrm{d}\gamma^*\sigma_y}(\xi)=P(\gamma^{-1}y,\xi)^{D_{\Gamma'}}$. The Γ' -invariant function $h(y):=\sigma_y(S^2)$ satisfies $\Delta h=D_{\Gamma'}(D_{\Gamma'}-2)h$, which implies h is non-trivial superharmonic if $D_{\Gamma'}\neq 2$. And it follows that Γ' must also be divergent. \square

Let C be a subset of S_{∞} . Let λ -dimensional Hausdorff measure of C on the metric space (S_{∞}, ρ_x) be denoted by $\mathfrak{M}_{\rho_x}^{\lambda}(C)$. Observe that for any $x \in \widetilde{M}$ and any $\gamma \in \Gamma$, we have $\gamma^*\mathfrak{M}_{K_x}^{\lambda} = \mathfrak{M}_{K_{\gamma^{-1}x}}^{\lambda}$; this follows from the straightforward identity.

A family of finite Borel measures $[\nu_y]_{y\in\widetilde{M}}$, will be called a λ -conformal density under the action of Γ if for every $x\in\widetilde{M}$ and every $\gamma\in\Gamma$ we have $\gamma^*\nu_y=\nu_{\gamma^*y}$, and the Radon-Nikodym derivative $\frac{d\nu_y}{d\gamma^*\nu_y}(\zeta)$ at any point $\zeta\in S_{\infty}$ is equal to $e^{-\lambda B_{\zeta}(\gamma^{-1}y,y)}$. (This is to be interpreted as being vacuously true if, for example, the measures in

the family are all identically zero). Although there can not be any Γ -invariant non-trivial finite Borel measure on Λ_{Γ} for non-elementary Γ , we can always define a Γ -invariant non-trivial locally finite measure Π_{ν_x} on $\Lambda_{\Gamma} \times \Lambda_{\Gamma}$ by setting $d\Pi_{\nu_x}(\xi,\zeta) = e^{\lambda \beta_x(\xi,\zeta)} d\nu_x(\xi) d\nu_x(\zeta)$. The measure Π_{ν_x} corresponds to the Bowen-Margulis measure on the unit tangent bundle \widetilde{SM} see [31].

Let us recall a fundamental fact about conformal density, which was originally proved by Sullivan for $\Gamma \subset SO(n,1)$ and generalized to the pinched negatively curved spaces in [46]. It relates the divergence of Γ at the critical exponent D_{Γ} with ergodicity of the D_{Γ} -conformal density under the action of Γ .

We will say that two Borel measures on S_{∞} are in the same Γ -class if the Radon-Nikodym derivative of $\gamma^*\nu_1$ with respect to ν_1 is equal to the Radon-Nikodym derivative of $\gamma^*\nu_2$ with respect to ν_2 .

PROPOSITION 3.4 (see [46]). Let Γ be a nonelementary, discrete, torsion-free and divergent at D_{Γ} . Suppose $[\nu]$ is a D_{Γ} -conformal density under the action of Γ , then Γ act ergodically on Λ_{Γ} and $\Lambda_{\Gamma} \times \Lambda_{\Gamma}$ with respect to $[\nu_x]$ and $[\Pi_{\nu_x}]$ respectively.

PROPOSITION 3.5 (see [37]). Let Γ be nonelementary and discrete. Suppose that Γ acts ergodically on S_{∞} with respect to a measure ν defined on S_{∞} . Then every measure of S_{∞} in the same measure class as ν is a constant multiple of ν .

PROPOSITION 3.6. Let Γ be a non-elementary discrete subgroup of the isometry group of \tilde{M} . If $[\nu_y]_{y\in \tilde{M}}^D$ is a non-trivial Γ -invariant D-conformal density, then $D\neq 0$.

Proof. Suppose D=0. Then ν_y is a Γ -invariant non-trivial finite Borel measure. Since Γ is non-elementary, there exists a loxodromic element γ in Γ . Let $\xi, \zeta \in S_{\infty}$ be the two distinct fixed points of γ . Let $<\gamma>$ be the group generated by γ . Then ν_y is clearly $<\gamma>$ -invariant. But γ is loxodromic, so we must have $\sup\{\nu_y\}\subset\{\xi,\zeta\}$. Then, by the fact that $\Lambda(\Gamma)$ is infinite, we have ν_y is an infinite measure, which is a contradiction. \square

PROPOSITION 3.7. Let Γ be a discrete subgroup of $\mathrm{ISO}(\widetilde{M})$. Suppose $\mathfrak{M}_{K_x}^{\lambda}$ is a finite measure. Then $\mathfrak{M}_{K_x}^{\lambda}$ is a λ -conformal density under the action of Γ .

There is a canonical way of constructing D_{Γ} -dimensional conformal density which is due to Patterson-Sullivan as follows; By applying a adjusting function we can always assume the Poincaré series diverges at D_{Γ} . The measures

$$\mu_{x,s} := \frac{\sum_{\gamma \in \Gamma} e^{-s \operatorname{dist}(z,\gamma x)} \delta_{\gamma x}}{\sum_{\gamma \in \Gamma} e^{-s \operatorname{dist}(z,\gamma z)}} \quad ; s > D_{\Gamma}$$

converges weakly to a limiting measure μ_x as $s_n \to D_{\Gamma}$ through a subsequence. It is trivial to see that μ_x is supported on Λ_{Γ} . The measure $[\mu_x]$ is called Patterson-Sullivan measure which is D_{Γ} -conformal under Γ see [39], [42].

From now on for $\Gamma' \subset \mathrm{PSL}(2,\mathbb{C})$, we will denote the Patterson-Sullivan measure on $\Lambda_{\Gamma'}$ by σ_{u} .

Let Λ_{Γ}^c denote the set of conical limit points in Λ_{Γ} . Recall a point $\xi \in \Lambda_{\Gamma}$ is in Λ_{Γ}^c if and only if there exists $\{\gamma_n\} \subset \Gamma$ such that $\operatorname{dist}(\gamma_n c_x^{\xi}(t_n), x) < c$ for some c > 0 and sequence of t_n . Obviously Λ_{Γ}^c is Γ -invariant, and non-empty (a loxodromic fixed

points are in Λ_{Γ}^c), hence it is a dense Γ -invariant subset of Λ_{Γ} . A equivalent definition for the conical limit point ξ is that it must be contained in infinitely many shadows $S(x; \gamma_n x, c)$. Hence $\Lambda_{\Gamma}^c = \bigcup_{\lambda > 0} \cap_{m \geq 1} \bigcup_{n > m} S(x, \gamma_n x, \lambda)$. It is a easy fact from the construction of μ_x , no points in Λ_{Γ}^c can be a atom for μ_x , and if $\sup(\mu_x) \subseteq \Lambda_{\Gamma}^c$ then Γ is divergent. In fact it is a deep result of Sullivan that Γ is divergent if and only if $\sup(\mu_x) \subseteq \Lambda_{\Gamma}^c$.

LEMMA 3.8 (see [12]; Sullivan's Shadow Lemma). Let μ_x be a D_{Γ} -conformal density with respect to Γ , which is not a single atom. Then there exists constants $\alpha > 0$ and $\lambda_o \geq 0$, such that,

$$\alpha^{-1}e^{-D_{\Gamma}\operatorname{dist}(x,\gamma^{-1}x)} \le \mu_x(S(x;\gamma x,\lambda)) \le \alpha e^{-D_{\Gamma}\operatorname{dist}(x,\gamma^{-1}x) + 2D\lambda},$$

for all $\gamma \in \Gamma$ and $\lambda \geq \lambda_o$.

PROPOSITION 3.9. Let $\Gamma \subset \mathrm{ISO}(\widetilde{M})$ be a discrete subgroup. Suppose either $\Lambda_{\Gamma} = \Lambda_{\Gamma}^c$ or $\Lambda_{\Gamma} = S_{\infty}$ and Γ is divergent. Then μ_x is positive on all non-empty relative open subsets of Λ_{Γ} .

Proof. Suppose $\Lambda_{\Gamma} = S_{\infty}$. It suffices to show μ_x is positive for any non-empty open ball $B(\xi, r)$ with respect to the d_x -metric. Fix $\lambda > \lambda_o$. Let $\zeta \in \Lambda_{\Gamma}^c \cap B(\xi, r)$ (note that Λ_{Γ}^c is dense in Λ_{Γ} so the intersection is nonempty). Then we can choose $\gamma \in \Gamma$ such that $S(x; \gamma x, \lambda) \subset B(\xi, r)$. By assumption Γ is divergent, we have $\sup(\mu_x) \subseteq \Lambda_{\Gamma}^c$. Since no points of Λ_{Γ}^c can be a atom for conformal density, the result follows from Lemma 3.8. Same argument works if $\Lambda_{\Gamma} = \Lambda_{\Gamma}^c \square$

Let us define a function $\Theta: \tilde{M} \times \tilde{M} \times S_{\infty} \longrightarrow \mathbb{R}^+$ by $\Theta(x, y, \xi) := \exp(-B_{\xi}(x, y))$.

Harmonic Density

Let λ_1 and $\tilde{\lambda}_1$ denote the first of the spectrum of Δ on $M = \tilde{M}/\Gamma$, and of $\tilde{\Delta}$ on \tilde{M} , respectively. Recall that for a noncompact open manifold, the first of the spectrum is defined as

$$\lambda_1 := \inf_{f \in C_o^\infty, f \neq 0} \left(\frac{\int |\nabla f|^2}{\int f^2} \right)$$

where C_o^{∞} is the space of smooth functions on M with compact support. Note that we always have $\lambda_1 \leq \tilde{\lambda}_1$.

The λ_1 -harmonic functions has been studied by Ancona in [2] and [3].

PROPOSITION 3.10 (Ancona). For each $s < \lambda_1$, the elliptic operator $\tilde{\Delta} + sI$ has a Green function $G_s(x,y)$, and there exists a function $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ such that $\sum_{\gamma \in \Gamma} \hat{G}_s(x,\gamma y)$ converges for $s < \lambda_1$ and diverges for $s \ge \lambda_1$, where $\hat{G}_s(x,\gamma y) := \exp(f(\operatorname{dist}(y,\gamma y)))G_s(x,\gamma y)$. Furthermore, $\mathfrak{P}_s(x,y,\zeta) := \lim_{z \to \zeta} \frac{G_s(x,z)}{G_s(y,z)}$ defines the Poisson kernel of $\tilde{\Delta} + sI$ at $\zeta \in S_{\infty}$.

Similarly to the construction of μ_x from Z_{Γ} , one can also construct a family of Borel measures from $\sum_{\gamma \in \Gamma} \hat{G}_s(x, \gamma y)$.

PROPOSITION 3.11. Let x be any point of \tilde{M} . There exists a family of Borel measures $[\omega_y^1]_{y\in \tilde{M}}$ on S_∞ such that (i) for all $x,y\in \tilde{M}$, Radon-Nikodym derivative $\mathrm{d}\omega_y^1/\mathrm{d}\omega_x^1$ at any point $\zeta\in S_\infty$ is equal to $\mathfrak{P}_{\lambda_1}(x,y,\zeta)$ and (ii) ω_x^1 is of mass 1.

Let us denote the harmonic density of $\tilde{\Delta}$ by $[\omega_y]_{y\in \tilde{M}}$ with ω_x normalized of mass 1. By definition this means that every harmonic function f on M with boundary values f_{∞} is given by

$$f(x) = \int_{S_{\infty}} f_{\infty}(\xi) d\omega_x(\xi).$$

The existence and uniqueness of harmonic density follows from the solvability of the Dirichlet problem on $\tilde{M} \cup S_{\infty}$ see [1] and the Riesz Representation Theorem. The Radon-Nikodym derivative of ω_x at $\xi \in S_{\infty}$ is given by the Poisson kernel $\mathfrak{P}(x,y,\xi)$ of $\tilde{\Delta}$, i.e. $\frac{\mathrm{d}\omega_y}{\mathrm{d}\omega_x}(\xi) = \mathfrak{P}(y,x,\xi)$. For any Γ -invariant subset $C \subset S_{\infty}$, the function h_C on \tilde{M} defined by $h_C(y) := \int_{S_{\infty}} \chi_C \mathfrak{P}(y,x,\xi) \mathrm{d}\omega_x(\xi)$ is Γ -invariant, hence defines a harmonic function on M.

PROPOSITION 3.12. Let $M=\tilde{M}/\Gamma$ be a negatively pinched topologically tame 3-manifold with $\Lambda(\Gamma)=S_{\infty}$. Then Γ is ergodic with respect to harmonic density $[\omega_y]_{y\in \tilde{M}}$.

Proof. Suppose not, and let $C \subset S_{\infty}$ be a Γ-invariant subset with $\omega_x(C) > 0$ and $\omega_x(C^c) > 0$. By Fatou's conical convergence theorem, we have $\chi_C(\xi) = \lim_{t\to\infty} h_C(c_y^{\xi}(t))$ for $\xi \in S_{\infty}$. Hence, h_C defines a positive nonconstant Γ-invariant harmonic function, which contradicts Theorem 2.4. Therefore Γ must be ergodic. \square

PROPOSITION 3.13. Let M be noncompact and satisfy the hypothesis of Proposition 3.12. Then $\omega_x^1 = \omega_x$.

Proof. Let us note that $\lambda_1=0$. This follows from the fact that for a non-compact, complete Riemannian manifold M, if $\lambda_1(M)>0$ then there exists a positive Green's function G on M. If such a G exists, then $1-\exp(-G)$ defines a positive superharmonic function, which is a contradiction to Theorem 2.4. Hence we must have $\lambda_1=0$. Therefore $\mathfrak{P}_{\lambda_1}=\mathfrak{P}$, i.e $\frac{\mathrm{d}\omega_y}{\mathrm{d}\omega_x}=\frac{\mathrm{d}\omega_y}{\mathrm{d}\omega_x}$. Hence, by Proposition 3.12 and uniqueness, we have the desired result. \square

Superharmonic Functions

Let $\xi \in S_{\infty}$ be given. Let \mathcal{E} be a continuous unit vector field on \tilde{M} with $\mathcal{E}(x) = \Phi_x(\xi)$. Then by using the first length variation formula, one can show that B_{ξ} is C^1 and that $-\operatorname{grad} B_{\xi} = \mathcal{E}$. In fact, the Busemann function is $C^{2,\alpha}$, see [27].

Let $[\mu_y]^D$ denote D-conformal density. Let us define a nonnegative function u on \tilde{M} by

$$u(y) := \int_{S_{\infty}} \Theta^{D}(y, x, \xi) d\mu_{x}(\xi).$$

PROPOSITION 3.14. The function u is a Γ -invariant and positive. It is superharmonic if $D \leq (n-1)a$, and subharmonic if $(n-1)a \leq D \leq (n-1)b$.

Proof. We can write u(y) as $\mu_y(S_\infty)$. Since $u(\gamma y) = \gamma^* \mu_y(S_\infty) = \mu_y(S_\infty) = u(y)$ for $\gamma \in \Gamma$, we have that u is Γ -invariant.

Let $x \in \tilde{M}$ be fixed. It follows from, $|\nabla B_{\xi}(y,x)| = |\mathcal{E}| = 1$ and Rauch'stheorem that we have $\exp(-DB_{\xi}(y,x))D(D-(n-1)b) \leq \Delta\Theta^D \leq \exp(-DB_{\xi}(y,x))D(D-(n-1)a)$. This implies the result. \square

PROPOSITION 3.15. Suppose Γ is nonelementary, i.e. has no abelian subgroup of finite index. Suppose that there are no nontrivial Γ -invariant positive-valued superharmonic function on \tilde{M} . Then $(n-1)a \leq D \leq (n-1)b$.

Proof. Let Γx be the orbit of x under Γ . Then the growth rate of the number of points of Γx in ball(x,r) as r increases is bounded by vol(ball(x,r)). By the volume comparison theorem we have $C_n \exp((n-1)br) \geq \text{vol}(\text{ball}(x,r))$, for some constant C_n which depends only on dimension n. Therefore, when s > (n-1)b we get $Z_{\Gamma}(x,s) < \infty$, which implies that $D \leq (n-1)b$.

Next suppose that we have $D \leq (n-1)a$. Then by Proposition 3.14, u(x) is a Γ -invariant positive superharmonic and $\Delta u \leq D(D-(n-1)a)u$. It now follows from the hypothesis that u is constant and that either D=0 or D=(n-1)a. However, since Γ is nonelementary and $[\mu_y]$ is Γ -invariant, Proposition 3.6 implies that $D \neq 0$. Hence, D=(n-1)a, and the result follows. \square

The next proposition was originally proved by Sullivan [41] using a Borel-Cantelli type of argument. The proof is purely measure theoretic (see [37], [46]). The proposition relates the ergodicity of Γ with the divergence of the Poincaré series at D.

PROPOSITION 3.16 (Sullivan). Suppose that Γ is nonelementary, discrete and torsion-free, and is divergent at D. Then Γ is ergodic with respect to $[\mu]^D$.

PROPOSITION 3.17. Suppose D = (n-1)a and there are no nontrivial positive superharmonic functions on M. Then Γ is divergent.

Proof. Fix a point $y \in \tilde{M}$. Let us assume the Poincaré series converges at D (i.e. $\sum_{\gamma \in \Gamma} \exp(-(n-1)a\operatorname{dist}(x,\gamma y)) < \infty$). Then this series defines a nontrivial Γ-invariant function on \tilde{M} . Let us denote this function by h(x). Since $\exp(-D\operatorname{dist}(z,\gamma y)) \leq \exp(D\operatorname{dist}(x,z))\exp(-D\operatorname{dist}(x,\gamma y))$ for $z \in \tilde{M}$, it follows that for any given number N>0 there is a constant C>0 such that $\sum_{\gamma \in \Gamma} \exp(-D\operatorname{dist}(z,\gamma y)) \leq C\sum_{\gamma \in \Gamma} \exp(D\operatorname{dist}(x,\gamma y))$ for $\operatorname{dist}(z,x) \leq N$. Hence the series converges uniformly on compact subsets of \tilde{M} . We will show that the convergence of the Poincaré series at (n-1)a implies existence of nontrivial positive superharmonic function on M.

Set $dist_{\gamma y}(x) := dist(x, \gamma y)$. First, we have

$$\Delta h(x) = \sum_{\gamma \in \Gamma} \exp(-D \operatorname{dist}_{\gamma y}(x)) D(D|\nabla \operatorname{dist}_{\gamma y}(x)|^2 - \Delta \operatorname{dist}_{\gamma y}(x)).$$

By Rauch's theorem and $|\nabla \operatorname{dist}_{\gamma y}(x)|^2=1$ we get

$$\Delta h(x) \le \sum_{\gamma \in \Gamma} \exp(-D \operatorname{dist}(x, \gamma y)) D(D - (n-1)a),$$

which implies $\Delta h \leq 0$. We consider the series $\sum_{\gamma \in \Gamma} \log \tanh(\frac{(n-1)a \operatorname{dist}_{\gamma y}(x)}{2})$. It is easy to see that the convergence of this series on the set of points bounded away from

 Γy follows from the convergence of the Poincaré series at D=(n-1)a. Denote this series by -f. Then by direct computation and Rauch's theorem we have $\Delta f(x) \leq 0$ for $x \in \tilde{M} \setminus \Gamma y$. Hence $1-\exp(-f(x))$ defines a nontrivial positive Γ -invariant superharmonic function on \tilde{M} .

Therefore, the convergence of the Poincaré series at D=(n-1)a give raise to contradictions to our hypothesis, and the result follows. \square

COROLLARY 3.18. Suppose D = (n-1)a and there are no nontrivial positive superharmonic functions on M. Then, Γ is ergodic with respect to $[\mu]^D$.

Proof. The corollary follows from Proposition 3.16 and Proposition 3.17. \square

COROLLARY 3.19. Let $M = \tilde{M}/\Gamma$ be a topologically tame 3-manifold with $-b^2 \leq \mathcal{K} \leq -1$ and $\Lambda(\Gamma) = S_{\infty}$. If D = 2, then Γ is divergent, hence ergodic with respect to $[\mu]^D$.

Proof. The corollary follows from Theorem 2.4, Proposition 3.17 and Corollary 3.18. \square

Proof. [Proof of Theorem 1.5] Under the hypothesis of Theorem 1.5, it follows from Proposition 3.15 that $D \in [2, 2b]$. That Γ is harmonically ergodic follows from Proposition 3.12. If D = 2, then by Corollary 3.19 we have Γ is divergent. \square

4. Part I of Theorems 1.1 and 1.2. Let Γ be a torsion-free discrete subgroup of $\mathrm{ISO}(\widetilde{M})$ with $D_{\Gamma}=2$. We assume Γ is either convex-cocompact or $\Lambda_{\Gamma}=S_{\infty}$, hausdorff-conservative and divergent.

PROPOSITION 4.1. The measure $\mathfrak{M}_{K_x}^2$ is finite and positive on all non-empty relative open subsets of Λ_{Γ} , and $\mathfrak{M}_{K_x}^2(A)=0$ if and only if $\mathfrak{M}_{\eta_v}^2(A)=0$ for $A\subset \Lambda_{\Gamma}\backslash v(-\infty)$.

Proof. First note that if we replace $\operatorname{dist}_{v,t}$ with dist in the definition of η_v we get a equivalent metric by Lemma 4 in [26].

Let $x\in M$ be any point. Denote $H_{v,x}$ the horosphere tangent to $v(\infty)$ and passing through x. Take two vectors U^ζ, U^ξ in $S\widetilde{M}$ that are asymptotic to $v(-\infty)$ and passing through $H_{v,x}$ with $U^\zeta(\infty)=\zeta$ and $U^\xi(\infty)=\xi$. Then there exists a positive constant α such that for any unite tangent vectors v^ζ, v^ξ at x which are asymptotic to ζ and ξ respectively, we have $\mathrm{dist}(g_tU^\zeta,g_tv^\zeta)\leq \alpha e^{-t}$ and $\mathrm{dist}(g_tU^\xi,g_tv^\xi)\leq \alpha e^{-t}$, where g_t is the flow. This gives $\mathrm{dist}(g_\tau U^\zeta,g_\tau U^\xi)\leq 2\alpha e^{-\tau}+1$ with $\tau=l_x(\zeta,\xi)$. On the other hand we also have $\beta^{-1}e^t\leq \mathrm{dist}(g_tU^\zeta,g_tU^\xi)\leq \beta e^{bt}$ for some positive constant β , which gives $e^{-s}\geq \beta^{-1}$ and $e^{-s}\leq \beta^{1/b}$ when $\mathrm{dist}(g_sU^\zeta,g_sU^\xi)=1$. Hence $\frac{\beta^{-1}\beta^{1/b}}{2\alpha+1}e^{-s}\leq e^{-\tau}\leq \beta e^{-s}$. Therefore η_v and K_x are equivalent on all points in $S_{v,x}$, where $S_{v,x}$ is the shadow of $H_{v,x}$ cased from $v(-\infty)$. By compactness of S_∞ there are $\{v_1,\ldots,v_n\}\subset S\widetilde{M}$ such that $\bigcup_1^n S_{v_i,x}=S_\infty$. Since $0<\mathfrak{M}^2_{\eta_v}(S_{v_i,x}\cap\Lambda_\Gamma)<\infty$, we have $\mathfrak{M}^2_{K_x}$ is positive and finite on Λ_Γ . It follows from Propositions 3.7, 3.5 and 3.9 the measure $\mathfrak{M}^2_{K_x}$ is positive on all relative open subsets. Let $A\subset S_\infty\backslash v(-\infty)$ be a $\mathfrak{M}^2_{\eta_v}$ -null set. Let $\delta>0$. Note that $\bigcup_{x\in \widetilde{M}} S_{v,x}=S_\infty\backslash v(-\infty)$. Hence there is $B\subset A$ with $B\subset S_{v,z}$ such that $\mathfrak{M}^2_{K_z}(A\backslash B)<\delta$. But $\mathfrak{M}^2_{K_z}(B)\leq c\mathfrak{M}^2_{\eta_v}(B)$ for some c>0. By finiteness we have $\mathfrak{M}^2_{K_z}(A)<\delta$. Same argument holds for the rest of the proposition. \square

COROLLARY 4.2. The measures μ_x and $\mathfrak{M}^2_{\eta_v}$ are absolutely continuous with respect to each other. In-particular $\mathfrak{M}^2_{\eta_v}$ is supported on Λ_{Γ} .

Proof. The result follows from Proposition 3.7, 3.5 and Proposition 4.1. \square

We use Mostow and Gehring's original idea to show the regularity of quasiconformal map [36], [20]. This method was extended in [25]. We will follow their presentations, but with necessary generalizations that will allow us to prove our theorems using results from previous sections.

Take the unite ball model of \mathbb{H}^3 . Let u be a unit tangent vector at the origin. Let \mathcal{O}_u be the unit circle on $\partial \mathbb{H}^3 = S^2$ which is contained in the unique totally geodesic plane perpendicular to u and passing through the origin. Also denote the point $u(\infty)$ on S^2 by ς . Then for any pair $(p,\varsigma) \in \mathbb{B}_u := \mathcal{O}_u \times \varsigma$ there is a unique semi-circle connecting them. The bundle of all these semi-circles is the upper hemisphere Ω_u of S^2 . We denote this bundle space by $(\Omega_u, \pi_u, \mathbb{B}_u)$

where π_u is the projection.

Let $\phi: S^2 \longrightarrow S_{\infty}$ be a quasi-conformal embedding conjugate Γ' to Γ under isomorphism $\chi: \Gamma' \longrightarrow \Gamma$, here Γ' is a topologically tame, torsion-free, discrete subgroup of $\mathrm{PSL}(2,\mathbb{C})$ with $\Lambda_{\Gamma'} = S^2$. And let ψ be the inverse of ϕ when it is a quasi-conformal homeomorphism.

Let ρ_u be the metric on $S^2 \setminus u(-\infty)$ which is defined same as η_v with $v(-\infty) = \phi(u(-\infty))$. The hausdorff measure $\mathfrak{M}_{\rho_u}^2$ on $S^2 \setminus u(-\infty)$ with respect to ρ_u -metric is the usual Lebesgue measure. Hence there exists a constant $\omega > 0$ such that for all $\theta \in S^2 \setminus u(-\infty)$, we have $\mathfrak{M}_{\rho_u}^2(B_{\rho_u}(\theta,r)) = \omega r^2$.

PROPOSITION 4.3 (see [36], [25]). The measure $\phi^*\mathfrak{M}^1_{\eta_v}$ is absolutely continuous with respect to measure $\mathfrak{M}^1_{\rho_u}$ on semi-circles. Here $\mathfrak{M}^1_{\eta_v}$ and $\mathfrak{M}^1_{\rho_u}$ are 1-dimensional hausdorff measures with respect to the η_v -metric and ρ_u -metric respectively.

Proof. Let \mathfrak{L} be the Lebesgue measure on \mathbb{B}_u . Then for all $P \in \mathbb{B}_u$ we have the following derivative

$$\lambda(P) := \lim_{r \to 0} \frac{\mathfrak{M}^2_{\eta_v}(\bar{\phi} \circ \pi_u^{-1}(B_{\rho_u}(P, r) \cap \mathbb{B}_u))}{\mathfrak{L}(B_{\rho_u}(P, r) \cap \mathbb{B}_u)}$$

exists and finite for \mathcal{L} -almost everywhere, see [18].

Choose $P \in \mathbb{B}_u$ with $\lambda(P) < \infty$. For a semi-circle $l := \pi_u^{-1}(P)$, let $U_r(l)$ denote the r-neighborhood of l, then $\limsup_{r \to 0} \mathfrak{M}^2_{\eta_v}(\bar{\phi}(U_r(l)))/r < \infty$. For any compact $K \subset l$ with $\mathfrak{M}^1_{\rho_u}(K) = 0$, choose a number C > 0 with $\mathfrak{M}^2_{\eta_v}(\bar{\phi}(U_r(l)))/r < C$. Let $\epsilon > 0$ be given, by Besicovic's covering theorem there exists $\{\theta_1, \ldots, \theta_k\} \subset K$ such that $kr < \epsilon$, $K \subset \bigcup_1^k B_\rho(\theta_i, r)$ and any three of the balls $B_\rho(\theta_i, r)$ with distinct centers are disjoint.

Let $s_i := \inf\{s > 0 | \bar{\phi}(B_{\rho}(\theta_i, r)) \subset B_{\eta}(\bar{\phi}(\theta_i), s)\}$ and $\kappa > 0$ (conformal constant) provided by Proposition 3.1. Then we have $\bar{\phi}(K) \subset \cup_1^k B_{\eta}(\bar{\phi}(\theta_i), s_i)$, $\bar{\phi}(S^2) \cap B_{\eta}(\bar{\phi}(\theta_i), s_i/\kappa) \subset \bar{\phi}(B_{\rho}(\theta_i, s_i))$. Since Γ is hausdorff-conservative and by Proposition 3.2, Corollary 4.2, there exists $\alpha > 0$ such that

$$\left(\sum_{1}^{k} s_{i}\right)^{2} \leq k \sum_{1}^{k} s_{i}^{2} \leq k \kappa^{2} \alpha \sum_{1}^{k} \mathfrak{M}_{\eta_{v}}^{2}(\bar{\phi}(B_{\rho}(\theta_{i}, r)))$$

$$\leq 2\kappa^{2} \alpha k \mathfrak{M}_{\eta_{v}}^{2}(\bar{\phi}(U_{r}(K))) \leq 2\kappa^{2} \alpha k \mathfrak{M}_{\eta_{v}}^{2}(\bar{\phi}(U_{r}(l)))$$

$$\leq 2\kappa^{2} C \alpha(kr) \leq \text{const} \quad \epsilon.$$

Note the fact that any three of $\bar{\phi}(B_{\rho}(\theta_i, r))$ do not intersect is used to bound $\sum_{1}^{k} \mathfrak{M}_{\eta_{v}}^{2}(\bar{\phi}(B_{\rho}(\theta_{i},r)))$ by $2\mathfrak{M}_{\eta_{v}}^{2}(\bar{\phi}(U_{r}(K)))$.

Therefore the result follows from the last inequality. \square

The balls $B_{\rho}(\theta, r)$, $\theta \in S^2 \setminus u(-\infty)$, r > 0 form a Vitali relation for the Lebesgue measure $\mathfrak{M}_{o.}^2$. The following derivative

$$J(\theta) := \lim_{r \to 0} \frac{\mathfrak{M}_{\eta_v}^2(\phi(B_{\rho}(\theta, r)))}{\mathfrak{M}_{\rho}^2(B_{\rho_v}(\theta, r))}$$

exists and finite for \mathfrak{M}^2_{ρ} -almost every $\theta \in S^2 \setminus u(-\infty)$.

Proposition 4.4. Let $\operatorname{Lip}_{\phi}$ be defined by $\operatorname{Lip}_{\phi}:\theta\longrightarrow \limsup_{r\to 0}r_{\phi}(\theta,r)/r$. Then $\operatorname{Lip}_{\phi}\in L^2_{\operatorname{loc}}(S^2\backslash u(-\infty),\mathfrak{M}^2_{\rho_u})$. In-fact there exists a constant k>0 such that

$$\sqrt{J(\theta)}/k \le \lim \inf_{r \to 0} r_{\phi}(\theta, r)/r \le \lim \sup_{r \to 0} r_{\phi}(\theta, r)/r \le k\sqrt{J(\theta)}.$$

Proof. Let $\epsilon > 0$. There is $r_{\epsilon} > 0$ such that for any $r < r_{\epsilon}$ we have

$$\omega f(\theta)r^2/2 \le \mathfrak{M}_{n_n}^2(\bar{\phi}(B_{\rho}(\theta,r))) \le (2\omega f(\theta) + \epsilon)r^2$$

where the fact that $\mathfrak{M}_{\rho_u}^2$ is Lebesgue measure, i.e. $\mathfrak{M}_{\rho_u}^2(B_{\rho_u}(\theta,r)) = \omega r^2$ for some constant $\omega > 0$ has been used. Since Γ is hausdorff-conservative and by Proposition 3.2, Corollary 4.2, there exists some constant $\alpha > 0$ such that

$$(r_{\phi}(\theta, r)/\beta)^2/\alpha \leq \mathfrak{M}_n^2(\bar{\phi}(B_{\rho}(\theta, r))) \leq \alpha(r_{\phi}(\theta, r))^2.$$

Hence we have

$$\sqrt{(\omega/2\alpha f(\theta))}r \le r_{\phi}(\theta,r) \le \sqrt{\alpha(2f(\theta)\omega + \epsilon)}\beta r$$

and the result follows by letting $\epsilon \to 0$. \square

The image under ϕ of almost every semi-circle has locally finite LEMMA 4.5. $\mathfrak{M}_{n_{v}}^{1}$ -measure.

Proof. Let $f: \Omega_u \longrightarrow \mathbb{B}_u \times [0,1]$ be a diffeomorphism which maps $\pi_u^{-1}(P)$ over P onto $P \times [0,1]$. For every compact subset $C \subset \Omega_u$ we can find a positive number α such that

- For all $x \in f(C)$ the Jacobian of f^{-1} at x are $< \alpha$, For all $P \in \mathbb{B}_u$ and $y \in \pi_u^{-1}(P) \cap C$ the local dilations at y of $f|_{\pi_u^{-1}(P)}$ are

Since $\bar{\phi}$ is a embedding, $\bar{\phi}(\Omega_u)$ is relative compact subset of $S_{\infty} \setminus v(-\infty)$ and we have by Proposition 4.4, $\int_{\Omega_u} \operatorname{Lip}_{\phi}^2 \mathrm{d}\mathfrak{M}_{\rho_u}^2 \leq k^2 \mathfrak{M}_{\eta_v}^2(\bar{\phi}(\Omega_u)) < \infty$, and Hölder inequality gives $\int_{\Omega_u} \operatorname{Lip}_{\phi} d\mathfrak{M}_{\rho_u}^2 < \infty$. Hence

$$\int_{\mathbb{B}_{u}} \left(\int_{\pi_{u}^{-1}(P) \cap C} \operatorname{Lip}_{\phi} d\mathfrak{M}_{\eta_{v}}^{1} \right) d\mathfrak{L} \leq \alpha \int_{f(C)} \operatorname{Lip}_{\phi} \circ f^{-1} d\mathfrak{L} dt$$

$$\leq \alpha^{2} \int_{C} \operatorname{Lip}_{\phi} d\mathfrak{M}_{\rho_{u}}^{2} < \infty$$

where dt is Lebesgue measure on [0,1]. Now by Proposition 4.3, $\bar{\phi}$ is absolutely continuous on $\pi_u^{-1}(P)$ therefore

$$\mathfrak{M}^1_{\eta_v}(\bar{\phi}(\pi_u^{-1}(P)\cap C)) \le \int_{\pi_u^{-1}(P)\cap C} \operatorname{Lip}_{\phi} d\mathfrak{M}^1_{\rho_u} < \infty.$$

Next we adapt the idea in [25] to prove the inequality part of Theorems 1.1.

Proof. [Proof. Part I of Theorems 1.1 and 1.2] For Theorem 1.2, the inequality follows from Theorem 1.5 and Proposition 3.3. Let Γ and Γ' be as in Theorem 1.1 and satisfies those conditions. Note that by Proposition 3.3, $D_{\Gamma'}=2$. Let g be the Riemannian metric of \widetilde{M} . Set $h=(D_{\Gamma}/2)g$ as the new metric of \widetilde{M} . The boundary space of (\widetilde{M},g) and (\widetilde{M},h) can be trivially identified, and $\eta_{(2/D_{\Gamma})v}=\eta_v^{D_{\Gamma}/2}$. The critical exponent of Γ with respect to h is 2, hence by Lemma 4.5 there is a non-trivial curve in $S_{\infty}\backslash v(-\infty)$ with finite $D_{\Gamma}/2$ -dimensional hausdorff measure with respect to η_v . However as noted before the curvature assumption $-b^2 \leq K \leq -1$ of g implies the η_v -metric is a distance on $S_{\infty}\backslash v(-\infty)$, but the distance-hausdorff dimension is ≥ 1 for any non-trivial curves. Therefore we have $D_{\Gamma}/2 \geq 1$. \square

LEMMA 4.6. Let Γ' be a divergent, torsion-free discrete subgroup of $PSL(2,\mathbb{C})$ with $\Lambda_{\Gamma'} = S^2$ and $D_{\Gamma'} = 2$. Then the maps ϕ and ψ are absolutely continuous with respect to σ_y and μ_x .

Proof. By ergodicity of Γ , Γ' and equivariance of $\bar{\phi}$, $\bar{\psi}$ and also Proposition 4.2, its suffices to show there exists a $A \subset S^2 \backslash u(-\infty)$ with $\mathfrak{M}^2_{\rho_u}(A) > 0$ such that the Radon-Nikodym derivative of $\bar{\phi}$ at every $x \in A$ with respect to $\mathfrak{M}^2_{\rho_u}$ and $\mathfrak{M}^2_{\eta_v}$ is non-zero. Using the fact that η_v is a distance function, it follows from Proposition 4.3, for \mathfrak{L} -almost all $P \in \mathbb{B}_u$ the length of $\bar{\phi}(\pi_u^{-1}(P)) > 0$ is bounded by $\int_{\pi_u^{-1}(P)} \operatorname{Lip}_{\phi} d\mathfrak{M}^1_{\rho_u}$. Hence if we set $A := \{x \in \Omega_u | \operatorname{Lip}_{\phi}(x) > 0\}$, then for \mathfrak{L} -almost all $P \in \mathbb{B}_u$, $\mathfrak{M}^1_{\rho_u}(\pi_u^{-1}(P) \cap A) > 0$ which implies $\mathfrak{M}^2_{\rho_u}(A) > 0$. Therefore the result follows from Proposition 4.4. \square

5. Part II of Theorems 1.1 and 1.2. Let $\xi_1, \xi_2, \xi_3, \xi_4 \in S_{\infty}$. The *cross-ratio* $|\xi_1, \xi_2, \xi_3, \xi_4|$ of these four points is defined as

$$|\xi_1,\xi_2,\xi_3,\xi_4|:=\frac{e^{-\beta_x(\xi_1,\xi_2)}e^{-\beta_x(\xi_3,\xi_4)}}{e^{-\beta_x(\xi_1,\xi_3)}e^{-\beta_x(\xi_2,\xi_4)}}.$$

This definition is consistent with the hyperbolic space cross-ratio.

If Γ_1, Γ_2 are discrete subgroups of \widetilde{M} such that both Γ_1, Γ_2 are divergent, and there exists a equivariant (under some group morphism χ), nonsingular (with respect to μ_1, μ_2 Patterson-Sullivan measures on Λ_{Γ_1} and Λ_{Γ_2} respectively), measurable map $f: \Lambda_{\Gamma_1} \longrightarrow \Lambda_{\Gamma_2}$. Then

$$d(f \times f)^* \Pi_2(\xi, \zeta) = e^{-D_{\Gamma_2} \beta_y (f\xi, f\zeta)} g(\xi) g(\zeta) d\mu_1(\xi) d\mu_2(\zeta)$$

where $g := \frac{\mathrm{d} f^*(\mu_2)}{\mathrm{d}(\mu_1)}$, and Π_i is the measure defined in §3 through μ_i . From the properties of f, $(f \times f)^*\Pi_2$ is a constant a > 0 multiple of Π_1 . Hence $e^{D_{\Gamma_2}\beta_y(f\xi,f\zeta)}g(\xi)g(\zeta) = ae^{D_{\Gamma_1}\beta_x(\xi,\zeta)}$. Therefore for μ_1 -almost everywhere we have

$$|f(\xi_1), f(\xi_2), f(\xi_3), f(\xi_4)| = |\xi_1, \xi_2, \xi_3, \xi_4|^{D_{\Gamma_1}/D_{\Gamma_2}}.$$

This was the idea of Sullivan for the following lemma:

LEMMA 5.1. Let Γ_1, Γ_2 be discrete subgroups of $ISO(\widetilde{M})$ with $D_{\Gamma_1} = D_{\Gamma_2}$ and Γ_1, Γ_2 are divergent. Suppose there exists a equivariant nonsingular measurable map $f: \Lambda_{\Gamma_1} \longrightarrow \Lambda_{\Gamma_2}$ with respect to Patterson-Sullivan measures space $(\Lambda_{\Gamma_1}, \mu_1)$ and $(\Lambda_{\Gamma_2}, \mu_2)$. Then f preserves cross-ratio μ_1 -almost everywhere.

For a finitely generated discrete subgroup Γ of PSL(2, \mathbb{C}). The conservative set of Γ on S^2 coincides with Λ_{Γ} up-to Lebesgue measure zero. The group Γ is called conservative if and only if Λ_{Γ} has full Lebesgue measure. Since for a topologically tame Γ , the hausdorff dimension of Λ_{Γ} is equal to D_{Γ} , therefore we have the following:

PROPOSITION 5.2. Let Γ be a topologically tame, torsion-free discrete subgroup of $PSL(2,\mathbb{C})$ with conservative Γ , then Γ is hausdorff-conservative.

REMARK 5.3. It is a conjecture that all finitely generated discrete subgroup Γ of $PSL(2,\mathbb{C})$ are topologically tame.

Next we recall the statement of Sullivan's quasi-conformal stability for discrete subgroups of $PSL(2, \mathbb{C})$.

THEOREM 5.4 (Sullivan [43]). Let Γ be a discrete subgroup of $PSL(2,\mathbb{C})$. Then Γ is quasi-conformally stable (i.e. if f is a quasi-conformal automorphism of S^2 with $f\Gamma f^{-1} \subset PSL(2,\mathbb{C})$, then f is a Möbius transformation) if and only if Γ is conservative.

COROLLARY 5.5. Let $N=\mathbb{H}^3/\Gamma$ be a complete hyperbolic 3-manifold for a conservative Γ . Then N is quasi-isometrically stable, i.e. If there is a quasi-isometric homeomorphism $h:N\longrightarrow M$ to a hyperbolic manifold M, then N is isometric to M.

Proof. [Proof. Theorem 1.2 part II] By Theorem 1.5, Γ is divergent for $D_{\Gamma}=2$. From Proposition 3.3, Γ' is also divergent and $D_{\Gamma'}=2$. Lemma 4.6 then implies f is absolutely continuous with respect to σ_y and μ_x . Hence by Lemma 5.1, f preserves cross ratio σ_y -everywhere. By Proposition 3.2, $\Lambda_{\Gamma'}=S^2$ and since σ_y is non-zero constant multiple of Lebesgue measure, we can modify f on the Lebesgue measure null subset of S^2 to a map which is cross ration preserving on S^2 . We denote the new map also by f. By Bourdon's theorem [9], f extends into the space as a isometry, i.e. \mathbb{H}^3 and \widetilde{M} are isometric. Hence the result follows from Theorem 5.4. \square

Proof. [Proof. Theorems 1.1 part II] Here f embeds S^2 into S_{∞} . If we suppose $D_{\Gamma} = D_{\Gamma'} = 2$, then by using same argument as the proof of Theorem 1.2, f extends to a isometric embedding of \mathbb{H}^3 into M by [9]. Since $f(S^2)$ is a Λ_{Γ} -invariant closed subset of S_{∞} , by Proposition 3.2, $f(S^2) = \Lambda_{\Gamma}$. Hence the boundary space of the isometric embedded image of \mathbb{H}^3 coincides with Λ_{Γ} , therefore the result follows. \square

Proof. [Proof. Corollary 1.3] This follows from Propositions 3.1, 3.3, and Theorem 1.2. \square

REFERENCES

- [1] ANDERSON, M., SCHOEN, R., Positive harmonic functions on complete manifolds of negative curvature, Ann. Math., 121 (1985), pp. 429-461.
- [2] ANCONA, A., Negatively curved manifolds, Elliptic operators, and Martin boundary, Ann. Math., 122 (1990), pp. 495-536.
- [3] ANCONA, A., Théorie du potentiel sur les graphes et les variétés, Lect. Notes in Math., 1427 (1990), Springer, Berlin.
- [4] BALLMAN, W., GROMOV, M., SCHROEDER, V., Manifolds of nonpositive curvature, Birkhäuser, Boston, (1985).
- [5] BENEDETTI, R., PETRONIO, C., Lecture on hyperbolic geometry, Springer, Universitext, (1992).
- [6] Besse, A., Einstein manifolds, Springer, Berlin, (1986).
- [7] BESSON, G., COURTOIS, G., GALLOT, S., Entropies et rigidités des espaces localement symétriques de courbure strictement négative, G.A.F.A, 5 (1995), pp. 731-799.
- [8] BONAHON, F., Bouts des variétés hyperboliques de dimension 3, Ann. Math., 124 (1986), pp. 71–158.
- [9] BOURDON, M., Sur le birapport au bord des CAT(-1)-espaces, IHES. Publ. Math, No. 83, (1996).
- [10] CANARY, R., Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc., 6 (1993), pp. 1-35.
- [11] CORLETTE, K., Hausdorff dimension of limit sets I, Invent. Math., 102 (1990), pp. 521-542.
- [12] COORNAERT, M., Mesures de Patterson-Sullivan, Pacif. J. Math., Vol. 159, No 2, (1990), pp. 241-270.
- [13] DOUADY, A., EARLE, C., Conformally nature extension of homeomorphism of the circle, Acta Math., 157 (1986), pp. 23-48.
- [14] FEIGHN, M., MCCULLOUGH, D., Finitness conditions for 3-manifolds with boundary, Amer. J. Math., 109 (1987), pp. 1155-1169.
- [15] EBERLIN, P., O'NEIL, B., Visibility manifolds, Pacific. J. Math., 46 (1973), pp. 45-109.
- [16] GABAI, D., MEYERHOFF, R., THURSTON, N., Homotopy hyperbolic 3-manifolds are hyperbolic MSRI, preprint.
- [17] EBIN, D., The manifolds of Riemannian metrics, Global Analysis, editor S.S. Chern and S. Smale. Proc. Symp. Pure. Math., 15 (1970), AMS, Providence.
- [18] FEDDER, H., Geometric Measure Theory, Springer, 153 (1969).
- [19] GAO, L.Z., The construction of negative Ricci curved manifolds, Math. Ann., 271 (1985), pp. 185-208.
- [20] GEHRING, F,W., The definition and exceptional sets for quasiconformal mappings, Ann. Acad. Sci. Fenn. A.I., 281 (1960), pp. 1-28.
- [21] GAO, L.Z., YAU, S.T., The existence of negatively Ricci curved metrics on three manifolds, Inv. Math., 85 (1986), pp. 637-652.
- [22] GROMOV, M., Hyperbolic Groups. In essays in group theory, Gersten (editor) M.S.R.I. Publ., 8 (1987), Springer, Berlin., pp 75-263.
- [23] GROMOV, M., SCHOEN, R., Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank-1, Publ. Math. IHES, 78 (1994), pp. 165-246.
- [24] Gromov, M., Thurston, W., Pinching constants for hyperbolic manifolds, Inv. Math., 89 (1987), pp. 1-12.
- [25] HAMENSTÄDT, U., Entropy-rigidity of locally symmetric spaces of negative curvature, Ann. Math., 131 (1990), pp. 35-51.
- [26] HAMENSTÄDT, U., A new description of the Bowen-Margulis measure, Ergod. Th Dynam. Sys., 9 (1989), pp. 455-464.
- [27] HEINTZE, E., IM HOF, H.C., On the geometry of horospheres, J. Diff. Geo., 12 (1977), pp. 481-491.
- [28] HEMPEL, J., 3-manifolds, Ann. Math. Studies., 86 (1976), Princeton Univ. Press.
- [29] HOU, Y., Critical exponent and displacement of negatively curved free groups, J. Diff. Geo., vol. 57 (2001), pp. 173-193.
- [30] JOST, J., YAU, S. T., Harmonic map and superrigidity, Proc. Symp. Pure. Math. AMS, 54 (1993), pp. 245-280.
- [31] KAIMANOVICH, V.A., Invariant Measures for the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. Henri Poincaré, Physique Théorique. 53, No 4 (1990), pp. 361-393.
- [32] MARGULIS, G.A., Discrete subgroups of semisimple Lie groups, Ergebnisse der Math. Springer, NY, (1991).
- [33] MEEKS, W., YAU, S.T., The equivariant Dehn's lemma and loop theorem, Comm. Math. Helv., 56 (1981), pp. 225-239.

- [34] MORGAN, J., On Thurston's uniformization theorem for thress-dimensional manifolds, The Smith Conjecture. Editor, Morgan. J., Bass. H., Academic Press, New York, pp. 37–125, (1984).
- [35] MOK, N., SIU, Y.T., YEUNG, S.K., Geometric superrigidity, Invent. Math., 113 (1993), pp. 57-83.
- [36] Mostow, G.D., Strong rigidity of locally symmetric spaces, Ann. Math. Studies., 78 (1973), Princeton.
- [37] NICHOLLS, P.J., The ergodic theory of discrete groups, Cambridge Univ. Press., (1989).
- [38] OTAL, P.J., Thurston's hyperbolization of Haken manifolds, École Normale Supérieure de LYON. Prépublication on Rapport de Recherche n° 208, (1997).
- [39] PATTERSON, S.J., Measures on limit sets of Kleinian groups, Analytical and Geometrical Aspects of hyperbolic space. Cambridge Univ. Press., pp 291–323, (1987).
- [40] PANSU, P., Dimension conforme et sphere à L'infini des variétés à conrburé négative, Ann. Acad. Sci. Fenn, A 14 (1989), pp. 177-212.
- [41] SULLIVAN, D., Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc., 6 (1982), pp. 57-73.
- [42] SULLIVAN, D., The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.E.S., 50 (1979), pp. 171-202.
- [43] SULLIVAN, D., On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surface and related topics, Ann. Math. Stud., V97 (1981), pp. 465-496.
- [44] SULLIVAN, D., Discrete conformal groups and measurable dynamics, Bull. AMS, 6 (1982), pp. 57-73.
- [45] THURSTON, W., The geometry and topology of 3-manifolds, Lecture notes, Princeton Univ.
- [46] YUE, C.B., The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348 (1996), pp. 4965-5005.
- [47] YUE, C.B., Dimension and Rigidity of Quasi-fuchsian representations, Ann. Math., vol 143, 2 (1996), pp. 331-355.