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QUASI-CONFORMAL RIGIDITY OF NEGATIVELY CURVED
THREE MANIFOLDS *

YONG HOUt

Abstract. In this paper we study the rigidity of infinite volume 3-manifolds with sectional
curvature —b? < K < —1 and finitely generated fundamental group. In-particular, we generalize the
Sullivan’s quasi-conformal rigidity for finitely generated fundamental group with empty dissipative
set to negative variable curvature 3-manifolds. We also generalize the rigidity of Hamenstddt or
more recently Besson-Courtois-Gallot, to 3-manifolds with infinite volume and geometrically infinite
fundamental group.

1. Introduction. Let M be a simply connected complete Riemannian manifold
with sectional curvature —b? < K < —1. Let ISO(M) denote the group of isometries
of M. Let T be a non-elementary, torsion-free, discrete subgroup of ISO(M ), and set
M := M/T.

First we recall some terminologies thit is required for the statement of the the-
orem. Let So denote the boundary of M. On S one can define a metric in the
following way. Let v be a vector in the unit tangent bundle SM. The geodesic
v(t) defines two points on S, given by v(co) and v(—oc0). Let m be the pro-
jection of Soo\v(—00) along the geodesics which are asymptotic to v(—o0) to the
horosphere which is tangent to v(—oo) and passing through v(t). Let dist,; be
the distance on the horosphere induced by restriction of the Riemannian distance,
dist. On Seo\v(—00) X Seo\v(—00) define a function 7, as 7,(&,¢) = e &<
with [,(€,¢) := sup{t|dist, (m(€),7(¢)) < 1}. By our curvature assumption
—b% < K < —1, the function 7, is a distance on So,\v(—00), see [25].

Every element of v € I' has either exactly one or two fixed points in S, and
v is called loxodromic if it has two fixed points [4]. The group I is called purely
lozodromic if all v € T" are loxodromic. The limit set of I' denoted by Ar is the unique
minimal closed I'-invariant subset of S, [22]. If I' is purely loxodromic and Ar = S,
then it can be either cocompact or M /T is geometrically infinite, hence I" has infinite
co-volume. The convexr hull C Hr is the smallest convex set in MU Seo containing
Ar. The group I is called convez-cocompact if CHp /T is compact.

The critical exponent of I is the unique positive number Dr such that the Poincaré
series of I" given by 27EP e~sdist(z:72) is divergent for s < Dr and convergent for
s > Dr. If the Poincaré series diverges at s = Dr then I is called divergent.

Let f: (X,px) — (Y,py) be a embedding between two topological metric
spaces. Then f is called quasi-conformal embedding [47] if there exists a constant
k > 0 such that, for any z € X and r > 0 there is r¢(z,7) > 0 with

f(X)NB(f(z),r¢(z,7)) C f(B(z,7)) C B'(f(z), rs(z,7)).

where B and B’ denotes a ball in X and Y respectively. When f(X) =Y then f is
a quasi-conformal homeomorphism. . ~

A torsion-free discrete subgroup I' of ISO(M) is called topologically tame if M /T
is homeomorphic to the interior of a compact manifold-with-boundary.
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THEOREM 1.1. Let IV C PSL(2,C) be a topologically tame discrete group with
Arr = 52, and isomorphic x : I' — T to a convex-cocompact discrete subgroup T’
of ISO(M ) (here M is n-dimensional). Let f : S? — S be a quasi-conformal
embedding which conjugate I to T, i.e. foy = x(y)o f foryeTI'. Then Dr > Drv,
and equality if and only if H® embeds isometrically into M and the action of T stabilizes
the image.

To state our next theorem we need to introduce one additional terminology. We
take M to be a 3-manifold in the following.

Let SD”(;}U denote the A-dimensional hausdorff measure on (Sy\v(—00),7,). We
say I' is hausdorff-conservative if there exists a constant a(v) > 0 such that
a~irPr < SJT,II?,F(B(ﬁ, )N Ar) < arPr for any ball B(£,r) of radius r about £ € Ar
in (Soo\v(—00),7n,). From this definition, we note that if I" is a finitely generated
torsion-free discrete subgroup of PSL(2,C) with Dr = 2, then hausdorff-conservative
implies conservative (classical definition, §5). Conversely, if I is a topologically tame,
conservative, discrete subgroup of PSL(2,C), then I' is hausdorff-conservative, see
Proposition 5.2. We believe all finitely generated conservative discrete subgroup of
PSL(2,C) are hausdorfl-conservative, see Remark 5.3. For a convex-cocompact M /T"
with —b* < K < —1, it follows from [12], T is hausdorff-conservative. Now we are
ready to state the theorem which generalizes Sullivan’s quasi-conformal rigidity the-
orem.

THEOREM 1.2 (Main). Let I' be a topologically tame, purely lozodromic discrete
subgroup of ISO(M ) with Ar = Seo. Let I be a topologically tame discrete subgroup
of PSL(2,C). Suppose f : Soo — S? is a quasi-conformal homeomorphism conjugate
[ toI'. Then Dr > Dy, andT' = vy~ withy € PSL(2,C) if and only if Dr = Dy
and I" is hausdorff-conservative.

COROLLARY 1.3. Let M = M /T be a complete topologically tame 3-manifold
with =% < K < —1, T purely lozodromic, and Ar = Seo. Let h : M — N be a
quasi-isometric homeomorphism to a hyperbolic manifold N. Then M is isometric to
N if and only if Dr = 2 and T is hausdorff-conservative.

Let us point out that Theorem 1.2, generalizes known rigidity theorems in two
directions for three dimensional manifolds.

First assume M is hyperbolic (b = 1) but not necessarily geometrically finite.
Since M is topologically tame and Ar = S? we have Dr = 2 by analytical tameness
(see Proposition 3.3). Hence by Theorem 1.2, M is quasi-conformal stable. This is
a case of the Sullivan rigidity theorem for topologically tame I' with empty dissipa-
tive set. Next let us assume M is compact with —b?> < K < —1. Then the critical
exponent Dr is equal to hps the topological entropy of M, and by [16], any homo-
topy equivalence between M and a compact hyperbolic 3-manifold is induced by a
homeomorphism. Therefore it follows from Corollary 1.3 we have: M is isometric to
a compact hyperbolic 3-manifold if and only if they are homotopically equivalent and
hay = 2. This is the Hamenstadt’s rigidity or more recently Besson-Courtois-Gallot
theorem for 3-manifolds.

Note that it also follows from Theorem 1.2, the quasi-conformal version of the
Hamenstéddt’s theorem for compact 3-manifold M can be stated as:

COROLLARY 1.4. Let I' be a cocompact discrete subgroup of ISO(M) Let
IV ¢ PSL(2,C) be a discrete group. Suppose f : Seo — S2 is a quasi-conformal
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homeomorphism conjugate I' to I', Then Dr > Dr+, and equality if and only if M /T
is isometric to H3/T".

The proves of these theorems relies on our next result,

THEOREM 1.5. Let M = M/F be a topologically tame 3-manifold with —b% <
K < —1. Suppose that T' is purely lozodromic and that A(T') = Seo. Then 2 < D and
I’ is harmonically ergodic. If D = 2 then T is also divergent.

In section 2, we state some of the topological properties of negatively pinched
3-manifolds. In particular, we define geometrically infinite ends for negatively
pinched 3-manifolds, and then state our theorem which describe the geometrical
properties of this type of end, it is a crucial step in the proof of Theorem 1.5. Section
3 discusses measures on S, and the ergodicity of I" with respect to these measures.
In section 4, we give proofs of part I of the theorems. And section 5 is used to
complete the proofs.

Acknowledgments: I am very grateful to Peter Shalen for his unwavering sup-
port and encouragement. I wish to thank Marc Culler, Dick Canary for their interest.

2. Topological Ends. Every isometry of M can be extend to a Lipschitz map
on Se 1= OM [22]. For a torsion-free I, every element v € I is one of the following
types: (1) parabolic if it has exactly one fixed point in ]\7{ U Soo which lies in Seo; (2)
lozodromic if it has exactly two distinct fixed points in M U Sy, both lying in S,.

Denote by A(I') € M the limit set of [, which is the unique minimal closed
I'—invariant subset of So,. Most of the important properties of the limit set in the
constant curvature space continue to hold in the variable curvature space [15]. In
particular: (i) A(T) = Tz N Seo; (ii) A(T)is the closure of the set of fixed points of
loxodromic elements of T; and (iii) A(T) is a perfect subset of T. The set Q(T) :=
Soo\A(T') is the region of discontinuity. The action of I' on M U (T") is proper and
discontinuous, see [15]. The manifold Mp := M U Q(T')/T" with possibly nonempty
boundary is traditionally called the Kleinian manifold. We also let A.(T") denote the
conical limit set of T, i.e. & € A.(T) if for some z € M (and hence for every z)
there exist a sequence (7,) of elements in I', a sequence (¢,) of real numbers, and a
real number C > 0, such that v,z — € and dist(c5 (t,),Ynx) < C where c§ is the
geodesic ray connecting z and €. Equivalently, a point belongs to A (T") if it belongs
to infinitely many shadows cast by balls of some fixed radius centered at points of
a fixed orbit of I". Note that A.(T') is a I'—invariant subset of A(T'), hence a dense
subset.

PROPOSITION 2.1 (Margulis Lemma). There erists a number e, which only de-
pend on the pinching constant b of M, such that the group ¢ generated by elements
in I of length at most €, with respect to a fized point in M is almost nilpotent of rank
at most 2. Then the number, 2¢, is called the Margulis constant.

Note that, if M is orientable and T" is torsion-free, then Margulis Lemma implies
T, is abelian.

Let € < €, be given. Then M may be written as the union of a thin part Mio,¢)
consisting of all points at which there is based a homotopically nontrivial loop of
length < € and a thick part M) = M — M, ). Note that Mi¢ o) is compact if
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M is of finite volume. Also the thin part of M is completely classified by the next
proposition.

PROPOSITION 2.2. Each connected component of Mg ) is diffeomorphic to one
of the following :
parabolic rank-1 cusp : S x R x [0, 00).
parabolic rank-2 cusp : 72 x [0, 00).
solid torus about the axis of a loxodromic v : D? x S*.

For simplicity we restrict to the case where M has no cusps. It follows from the
existence of a compact core C(M) for M [14], that M has only finitely many ends
(5]. In fact, each component of OC(M) is the boundary of a neighborhood of an end
of M, and this gives a bijective correspondence between ends of M and components
of 6C(M).

We define the simplicial ruled surfaces as follows. Let S be a surface of positive
genus and let Tp be a triangulation defined with respect to a finite collection P of
points of S. This means that T is a maximal collection of nonisotopic essential arcs
with end points in P; these arcs are the edges of the triangulation, and the components
of the complement in S of the union of the edges are the faces. Let f : S — M be
a map which takes edges to geodesic arcs and faces to nondegenerate geodesic ruled
triangles in M. The map f induces a singular metric on S. If the total angle about
each vertex of S with respect to this metric is at least 2, then the pair (S, f) is
called a simplicial ruled surface. It follows from the definition of the induced metric
on S that f preserves lengths of paths and is therefore distance non-increasing. Any
geodesic ruled triangle in M has Gaussian curvature at most —a2. This means that
each 2-simplex of S inherits a Riemannian metric of curvature at most —a2. Since we
have required the the total angle at each vertex to be at least 2w, by Gauss-Bonnet
theorem the curvature of S is negative in the induced metric.

DEFINITION 2.3. An end E is said to be a geometrically infinite if there exists a
divergent sequence of geodesics, i.e: there exists a sequence of closed geodesics ag C
M2, such that for any neighborhood U of E, there exists some positive integer N such
that ar, C U for all k > N. If in addition for some surface Sg we have that U is
homeomorphic to Sg x [0,00), and there exists a sequence of simplicial ruled surfaces

: Sg LN U such that fi(Sg) is homotopic to Sg x 0 in U and leaves every compact

subset of M, then E is said to be simply degenerate. The sequence (Sg EiR U) is
called an exiting sequence. A end which is not geometrically infinite will be called
geometrically finite.

THEOREM 2.4 (Hou). Let M = M/T be a topologically tame negatively pinched
3-manifold with T' purely lozodromic. Then all geometrically infinite ends of M are
simply degenerate. And if A(I') = Soo, then there are no nonconstant positive super-
harmonic functions, or nonconstant subharmonic functions bounded above, on M.

3. I'-action. In this section we will study the action of I' on So and prove
ergodicity of I for topologically tame 3-manifolds with A(T') = S,,. We will prove
that for such a manifold, the Green series is divergent, and that the Poincaré series
is also divergent if D = 2. Theorem 1.5 will also be proved in this section.

In some situations we will take the dimension of M to be 3, otherwise we will
assume M is n-dimensional in general.
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Set the following notations throughout the paper. Let IV C PSL(2,C) be a
discrete orsion-free subgroup. Denote S2 := 9H?®, and S, := OM. There are many
equivalent ways of equipping Se, with a metric which is compatlble with [-action.
Fix a point z € M. Let £,¢ in So be given. Set cC( ) as the geodesic ray connecting
y and (.

In [22], Gromov defined a metric on So, as follows. For y,z € M, let us consider
arbitrary continuous curve c(t) in M with initial point and end point denoted by
c(to) = y and c(t1) = z respectively. Define a nonnegative real-valued function G, on
MxM by

gm(y,z) = inf e~ dist(z,c(t)) gz | .
all e [to,t1]

In particular, Gromov showed the function G, extends continuously to Soo X Seo-
Every element of " extends to S, as a Lipschitz map with respect to G, .
In [31] the following metrics are shown to be equivalent to the Gromov’s metric.

K, metric : Let B¢ denote the Busemann function based at z. Set B¢(z,y)
= B¢(z) — B¢(y), for z,y € M,
the function B¢(z,y) is called the Busemann cocycle. Define 8; : Soo X
Seo — R by Bz(&,¢) := Be(x,y)+Be(z, y) where y is a point on the geodesic
connecting ¢ and ¢. The K, metric is then defined by

K4 (&,¢) == e~ 3B=(6:0)

L, metric: Let a,(&,() denote the distance between z and the geodesic connecting
& and (. The function Ly : Seo X Sooc — R is then defined by

Ly(&,¢) 1= emo=(69),

d; metric: Define a function l; : Sooc X Seo — R by §;(§,() = sup{7|
dist(c§(7),cf(7)) = 1}. Geometrically, a neighborhood about { in S with
respect to the topology induced by I, is the shadow cast by the intersection
of 1-ball about c§(7) and 7-sphere about z. The d, metric is then defined by

do(€,¢) 1= €780,

It was originally observed for symmetric spaces by Mostow [36] that the boundary
map is quasi-conformal. This property continue to hold in negatively curved spaces,
see [25] and [40]. Here we give a proof of this fact with respect to the above metrics.

PROPOSITION 3.1. Let h be a quasiisometry between two negatively pinched curved
spaces. The boundary extension map h is quasi-conformal on the boundary with respect
to dg, Ly, Ky, my-metrics.

Proof. For the proof of n,-metric See Proposition 3.1 in [25]. Fix z € M. Let
us take dy-metric. Set A > L. Denote by S(z;y, R) the shadow cased from z of
the metric sphere S(y, R) with center located at y and radius R, i.e. S(z;y,R) =
{€ € Swo|cs N S(y,R) # 0}. Let B(£,7) be a ball of radius 7 in Seo. Using triangle
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comparison we can show there exists a constant a;, > 1 depends on pinching constant
b such that

S(w;cg(tr),/\) C B(,r) C S(z; cg(tr),ab/\)

for some t, > 0 which depends only on r. The images ¢(S(z;cé(t,),)\)) and
o(S(z; & (tr), ap))) are quasi-spheres, i.e. there exists a constant B4 > 0 depends
on ¢ such that S(¢(z); (s (t)), ,3¢1A) C ¢(S(z; cs(tr),N)) and (S(z; ki (tr), apA) C
S(d(z); p(cs(tr)), BsapA). On the other hand, by estimates in [11] there exists positive
numbers A;(8g, ) and Az(ow, B, A) such that

B((¢), Are™™) C S(d(2); $(c5 (t)), B3 ),

(B(z); B(E(tr)), Bsaw) C B((E), Aze™F)

where R = dlst(gb(.'z:) ¢(c(tr)). Hence the result follows by setting 74(¢,7) = Aje™F
and kK = Az/Al

ProprosITION 3.2. Let f: ON — Seo be a embedding conjugate 'y to I's under
isomorphism x : T1 — Ty (f oy = x(v) 0 f). Then f(Ar,) = Ar,.

Proof. Let v € Ty. Since vf~(Ar,) = f~(x(7)Ar,), and by I's-invariance of
Ar,, we have f~1(Ar,) is T';-invariant closed set. Note that f~1(As) is nonempty,
since fixed points of elements of I'; are also fixed points of elements of I's, hence
f(Ar,) € Ar,. Similarly we also have f(Ar,) 2 Ar,, and result follows. O

PROPOSITION 3.3. Let ' be a topologically tame, torsion-free, discrete subgroup of
ISO(M ) with Ar = Seo. Let I be a topologically tame, discrete subgroup of PSL(2, C).
Suppose f : Seo — S2 is a homeomorphism conjugate I to IV. Then Dy = 2 and I
is divergent.

Proof. By Proposition 3.2 the hyperbolic manifold N = H3/T” is topologically
tame and Apr = S2. It follows from analytical tameness and Theorem 9.1 of [10],
there exists no non-trivial positive superharmonic function on N with respect to the
hyperbolic Laplacian A. Let P(y,£) denote the Poisson kernel on H3. The Dr.-
dimensional conformal measure (Patterson-Sullivan measure, see end of §3) o, has

Radon-Nikodym derivative of P(y,&)Pr, ie. d:‘.’;y (€) = P(y1y,€)Pr'. The I'-
invariant function h(y) := 0,(S?) satisfies Ah = D/ (D — 2)h, which implies h is
non-trivial superharmonic if Dr: # 2. And it follows that T must also be divergent.

]

Let C be a subset of S,. Let A-dimensional Hausdorff measure of C on the metric
space(Se, pz) be denoted by EDTI},‘I (C). Observe that for any € M and any v € T,
we have y*My = DJT}‘(V_ ,,; this follows from the straightforward identity.

A family of finite Borel measures [vy]yeﬁ. will be called a A-conformal density
under the action of I if for every = € M and every v € I' we have v*v, = v,.,, and the
Radon-Nikodym derivative d—:?t(() at any point ¢ € S is equal to e~ Bc(Y '),
(This is to be interpreted as being vacuously true if, for example, the measures in
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the family are all identically zero). Although there can not be any I-invariant non-
trivial finite Borel measure on Ar for non-elementary I', we can always define a I'-
invariant non-trivial locally finite measure II,_ on Ar x Ar by setting dII,_(&,() =
e*=(69du, (€)dv,(¢). The measure II,, corresponds to the Bowen-Margulis measure
on the unit tangent bundle SM see [31].

Let us recall a fundamental fact about conformal density, which was originally
proved by Sullivan for I' € SO(n, 1) and generalized to the pinched negatively curved
spaces in [46]. It relates the divergence of I" at the critical exponent Dr with ergodicity
of the Dp-conformal density under the action of I'.

We will say that two Borel measures on S, are in the same I'-class if the Radon-
Nikodym derivative of v*1; with respect to v4 is equal to the Radon-Nikodym deriva-
tive of v*ve with respect to vs.

PROPOSITION 3.4 (see [46]). LetT' be a nonelementary, discrete, torsion-free and
divergent at Dr. Suppose [v] is a Dr-conformal density under the action of I', then
T act ergodically on Ar and Ar x Ar with respect to [v] and [I1,,] respectively.

PROPOSITION 3.5 (see [37]). Let I’ be nonelementary and discrete. Suppose that
I’ acts ergodically on So, with respect to a measure v defined on So. Then every
measure of Soo in the same measure class as v is a constant multiple of v.

PROPOSITION 3.6. Let I' be a non-elementary discrete subgroup of the isometry
group of M. If [Vy]fe iz 18 @ non-trivial T'-invariant D-conformal density, then D # 0.

Proof. Suppose D = 0. Then v, is a I-invariant non-trivial finite Borel measure.
Since I is non-elementary, there exists a loxodromic element v in I'. Let £,{ € S, be
the two distinct fixed points of 7. Let < v > be the group generated by . Then v,
is clearly < 7 >-invariant. But 7 is loxodromic, so we must have supp(v,) C {¢,(}.
Then, by the fact that A(T') is infinite, we have v, is an infinite measure, which is a
contradiction. O

PROPOSITION 3.7. Let ' be a discrete subgroup of ISO(M ). Suppose fm;‘{m is a
finite measure. Then Dﬁ}‘ﬁ is a A-conformal density under the action of I'.

There is a canonical way of constructing Dp-dimensional conformal density which
is due to Patterson-Sullivan as follows; By applying a adjusting function we can always
assume the Poincaré series diverges at Dr. The measures

E cr e""diSt(Z"n)&/x

. —— Y

Hz,s = S or e—s dist(z,72)
Y

18> Dr

converges weakly to a limiting measure pu, as s, — Dr through a subsequence.
It is trivial to see that u, is supported on Ar. The measure [p;] is called Patterson-
Sullivan measure which is Dr-conformal under I see [39], [42].
From now on for I'' € PSL(2,C), we will denote the Patterson-Sullivan measure
on Aps by oy.
Let Af denote the set of conical limit points in Ar. Recall a point £ € Ar is in
¢ if and only if there exists {7,} C I such that dist(y,c$(t.),z) < c for some ¢ > 0
and sequence of ¢,. Obviously A¢ is I-invariant, and non-empty (a loxodromic fixed
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points are in A{), hence it is a dense [-invariant subset of Ar. A equivalent definition
for the conical limit point £ is that it must be contained in infinitely many shadows
S(z; 1z, c). Hence Af = Uxso Nm>1 UnsmS(Z, 70z, A). It is a easy fact from the
construction of y, no points in Af can be a atom for pz, and if supp(uz) € Ag then
I' is divergent. In fact it is a deep result of Sullivan that T is divergent if and only if

supp(pz) C Af.

LEMMA 3.8 (see [12]; Sullivan’s Shadow Lemma). Let pu, be a Dr-conformal
density with respect to I, which is not a single atom. Then there ezists constants
a >0 and A\, > 0, such that,

a—le—Dl— dist(z,y " 'x) < /Jz:z:(S(fL';’YZ', )\)) < ae—Dr dist(z,’y"la:)+2DA,

forally €T and A > Ao

—~

PROPOSITION 3.9. Let I' C ISO(M) be a discrete subgroup. Suppose either
Ar = A} or Ar = Sy and T is divergent. Then p, is positive on all non-empty
relative open subsets of Ar.

Proof. Suppose Ar = Seo. It suffices to show p, is positive for any non-empty
open ball B(¢, ) with respect to the dz-metric. Fix A > A,. Let ¢ € AfNB(E, ) (note
that AZ is dense in Ar so the intersection is nonempty). Then we can choose vy € T’
such that S(z;vz,A) C B(&,r). By assumption T' is divergent, we have supp(pz) C
A£. Since no points of A{ can be a atom for conformal density, the result follows from
Lemma 3.8. Same argument works if Ar = Af [0

Let us define a function © : M x M x Soe — RT by O(z,y,€) := exp(—Be(z, ).

Harmonic Density ;
Let A; and \; denote the first of the spectrum of A on M = M/I‘, and of A on M,
respectively. Recall that for a noncompact open manifold, the first of the spectrum
is defined as

/\1 =

: <f Vs |2)
inf 5
recz 20\ [ f
where CS° is the space of smooth functions on M with compact support. Note that

we always have Ay < 5\1.
The A;-harmonic functions has been studied by Ancona in [2] and (3].

PROPOSITION 3.10 (Ancona). For each s < Ay, the elliptic operator A + sI
has a Green function Gs(z,y), and there exists a function f : Rt — R:" such that
> ver Gs(z,7y) converges for s < A and diverges for s > A1, where G4(z,7y) =
exp(f(dist(y,vy)))Gs(z,vy). Furthermore, Ps(z,y,{) = lim,_,¢ %% defines the

Poisson kernel of A+ sI at ¢ € Suo.

Similarly to the construction of u, from Zr, one can also construct a family of
Borel measures from Y__ . Gs(z,7y).

PROPOSITION 3.11. Let z be any point of M. There ezists a family of Borel
measures [wzlz]ye i1 0N Soo such that (i) for all z,y € M, Radon-Nikodym derivative

dw}/dw} at any point ¢ € Seo is equal to P, (z,v,¢) and (i) wy is of mass 1.
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Let us denote the harmonic density of A by [wylye sz With wy normalized of mass
1. By definition this means that every harmonic function f on M with boundary
values fo, is given by

@)= | fool€)dws(§).

Soo

The existence and uniqueness of harmonic density follows from the solvability of the
Dirichlet problem on M U Su, see [1] and the Riesz Representation Theorem. The
Radon-Nikodym derivative of w, at £ € S, is given by the Poisson kernel B(z,y, &)
of A, ie. d—“’3*’-(5) = P(y,z,€). For any I'-invariant subset C C Seo, the function

dwg
he on M defined by ho(y) := fsoo XcPB(y, z,€)dwz(€) is T-invariant, hence defines a
harmonic function on M.

PROPOSITION 3.12. Let M = M /T be a negatively pinched topologically tame
3-manifold with A(T') = Se. Then T' is ergodic with respect to harmonic density

[wy]yEM :

Proof. Suppose not, and let C C S be a I'-invariant subset with w,(C) > 0
and wz(C°) > 0. By Fatou’s conical convergence theorem, we have xc(§) =
lim; o0 hc(cg(t)) for £ € S. Hence, h¢ defines a positive nonconstant I'-invariant
harmonic function, which contradicts Theorem 2.4. Therefore I' must be ergodic. O

PROPOSITION 3.13. Let M be noncompact and satisfy the hypothesis of Proposi-
tion 8.12. Then w} = w,.

Proof. Let us note that A\; = 0. This follows from the fact that for a non-
compact, complete Riemannian manifold M, if A;(M) > 0 then there exists a positive
Green’s function G on M. If such a G exists, then 1 — exp(—G) defines a positive

superharmonic function, which is a contradiction to Theorem 2.4. Hence we must
dw!

have Ay = 0. Therefore P, = P, ie 35t = -f%‘:. Hence, by Proposition 3.12 and
uniqueness, we have the desired result. O

Superharmonic Functions
Let £ € So, be given. Let £ be a continuous unit vector field on M with &(z) = &,(€).
Then by using the first length variation formula, one can show that B is C! and that
—grad B¢ = &. In fact, the Busemann function is C>®, see [27].

Let [uy]D denote D-conformal density. Let us define a nonnegative function u on
M by

) = [ ©° (1, duse).
PROPOSITION 3.14. The function u is a I'-invariant and positive. It is superhar-
monic if D < (n — 1)a, and subharmonic if (n —1)a < D < (n — 1)b.

Proof. We can write u(y) as jy(Se). Since u(vy) = v*1y(So0) = y(Seo) = u(y)
for v € I', we have that v is I-invariant.
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Let x € M be fixed. It follows from, |[VBe(y,z)| = |€] = 1 and Rauch’stheorem
that we have exp(—DBg¢(y,z))D(D — (n — 1)b) < AOP < exp(—DBe(y,z))D(D —
(n — 1)a). This implies the result. O

PROPOSITION 3.15. Suppose T' is nonelementary, i.e. has no abelian subgroup of
finite index. Suppose that there are no nontrivial I'-invariant positive-valued super-
harmonic function on M. Then (n—1)a < D < (n — 1)b.

Proof. Let 'z be the orbit of z under I'. Then the growth rate of the number
of points of I'z in ball(z,r) as 7 increases is bounded by vol(ball(z,r)). By the
volume comparison theorem we have C, exp((n — 1)br) > vol(ball(z,)), for some
constant C, which depends only on dimension n. Therefore, when s > (n — 1)b we
get Zr(z,s) < oo, which implies that D < (n — 1)b.

Next suppose that we have D < (n — 1)a. Then by Proposition 3.14, u(z) is a
T-invariant positive superharmonic and Au < D(D — (n — 1)a)u. It now follows from
the hypothesis that u is constant and that either D =0 or D = (n — 1)a. However,
since I' is nonelementary and [u,] is I'-invariant, Proposition 3.6 implies that D # 0.
Hence, D = (n — 1)a, and the result follows. O

The next proposition was originally proved by Sullivan [41] using a Borel-Cantelli
type of argument. The proof is purely measure theoretic (see [37], [46]). The propo-
sition relates the ergodicity of I’ with the divergence of the Poincaré series at D.

PROPOSITION 3.16 (Sullivan). Suppose that " is nonelementary, discrete and
torsion-free, and is divergent at D. Then T is ergodic with respect to [u]P.

PROPOSITION 3.17. Suppose D = (n — 1)a and there are no nontrivial positive
superharmonic functions on M. Then I' is divergent.

Proof. Fix a point y € M. Let us assume the Poincaré series converges at
D (ie. 3 crexp(—(n — 1)adist(z,7y)) < oo). Then this series defines a non-
trivial T-invariant function on M. Let us denote this function by h(z). Since
exp(—Ddist(z,7y)) < exp(Ddist(z, z)) exp(—Ddist(z,vyy)) for 2z € M, it fol-
lows that for any given number N > 0 there is a constant C > 0 such that
Y ver exp(—Ddist(z,7y)) < C ) crexp(Ddist(z,vy)) for dist(z,z) < N. Hence
the series converges uniformly on compact subsets of M. We will show that the con-
vergence of the Poincaré series at (n — 1)a implies existence of nontrivial positive
superharmonic function on M.

Set distyy(z) := dist(z,vy). First, we have

Ah(z) = exp(—D distyy (z)) D(D|V distyy ()|* — A distyy(z)).
~y€eT

By Rauch’stheorem and |V dist.y(z)|? = 1 we get

Ah(z) <) exp(—D dist(z, 7)) D(D — (n — 1)a),

yel

which implies Ah < 0. We consider the series }__ . log tanh((L_-l)—a;i—St’LM). It is
easy to see that the convergence of this series on the set of points bounded away from
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Iy follows from the convergence of the Poincaré series at D = (n — 1)a. Denote this
series by —f. Then by direct computation and Rauch’s theorem we have Af(z) <
0 for z € M\l'y. Hence 1 — exp(—f(z)) defines a nontrivial positive I-invariant
superharmonic function on M.

Therefore, the convergence of the Poincaré series at D = (n — 1)a give raise to
contradictions to our hypothesis, and the result follows. O

COROLLARY 3.18. Suppose D = (n — 1)a and there are no nontrivial positive
superharmonic functions on M. Then, T is ergodic with respect to [u]P.

Proof. The corollary follows from Proposition 3.16 and Proposition 3.17. O

COROLLARY 3.19. Let M = M /T be a topologically tame 3-manifold with —b% <
K <-1and A(T') = Sy. If D=2, then T is divergent, hence ergodic with respect to
[u]P.

Proof. The corollary follows from Theorem 2.4, Proposition 3.17 and Corollary
3.18.0

Proof. [Proof of Theorem 1.5] Under the hypothesis of Theorem 1.5, it follows
from Proposition 3.15 that D € [2,2b]. That I is harmonically ergodic follows from
Proposition 3.12. If D = 2, then by Corollary 3.19 we have I is divergent. O

4. Part I of Theorems 1.1 and 1.2. Let I' be a torsion-free discrete subgroup
of ISO(M ) with Dr = 2. We assume I is either convex-cocompact or Ar = S,
hausdorfl-conservative and divergent.

PROPOSITION 4.1. The measure 9)‘(2 is finite and positive on all non-empty
relative open subsets of Ar, and M3 (A) =0 if and only if M2 (A) =0 for A C
Ar\v(—o0).

Proof. First note that if we replace dist, ; with dist in the definition of 7, we get
a equivalent metric by Lemma 4 in [26].

Let z € M be any point. Denote H,, the horosphere tangent to v(co) and
passing through z. Take two vectors US, U¢ in SM that are asymptotic to v(—oo) and
passing through H, , with U¢(c0) = ¢ and U%(0c0) = £. Then there exists a positive
constant a such that for any unite tangent vectors v¢,v¢ at z which are asymptotic
to ¢ and ¢ respectively, we have dist(g:U¢, g;v¢) < ae™t and dist(g:U¥, g;v¢) < et
where g; is the flow. This gives dist(g,U¢, g,U¢) < 2ae™™ + 1 with 7 = 15(¢,£).
On the other hand we also have f~tet < dist(g;US, g;U¢) < Be for some positive
constant 3, which gives e™* > 87! and e~* < /% when dist(g,U¢, g,U¢) = 1. Hence
BB s < e~ 7 < Be~*. Therefore n, and K, are equivalent on all points in S, 4,

2a+1
where S, ; is the shadow of H, , cased from v(—o00). By compactness of Sy, there

are {v1,...,v,} C SM such that UTSy; o = Seo- Since 0 < E)JT%W (Svi,e NAr) < 00,
we have 9% is positive and finite on Ar. It follows from Propositions 3.7, 3.5 and
3.9 the measure 9?2 is positive on all relative open subsets. Let A C So,\v(—00)
be a M2 -null set. Let d > 0. Note that U .77, = Seo\v(—00). Hence there is
BcA w1th B C 8y, such that 9% (A\B) < 4. But M%_(B) < M2 (B) for some
¢ > 0. By finiteness we have MM% ( ) < 4. Same argument holds for the rest of the
proposition. O
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COROLLARY 4.2. The measures p, and 9;712 are absolutely continuous with re-
spect to each other. In-particular smz is supported on Ar.

Proof. The result follows from Proposition 3.7, 3.5 and Proposition 4.1. 0

We use Mostow and Gehring’s original idea to show the regularity of quasicon-
formal map (36], [20]. This method was extended in [25]. We will follow their presen-
tations, but with necessary generalizations that will allow us to prove our theorems
using results from previous sections.

Take the unite ball model of H3. Let u be a unit tangent vector at the origin. Let
O, be the unit circle on H® = S? which is contained in the unique totally geodesic
plane perpendicular to v and passing through the origin. Also denote the point u(co)
on S? by . Then for any pair (p,s) € B, := O, x < there is a unique semi-circle
connecting them. The bundle of all these semi-circles is the upper hemisphere €, of
52, We denote this bundle space by (Qu, Ty, By,)

where T, is the projection.

Let ¢ : 82 — S, be a quasi-conformal embedding conjugate I’ to T' under
isomorphism x : I — T, here I is a topologically tame, torsion-free, discrete
subgroup of PSL(2,C) with Ar» = S2. And let ¢ be the inverse of ¢ when it is a
quasi-conformal homeomorphism.

Let p, be the metric on S?\u(—o0) which is defined same as 1, with v(—o00) =
¢(u(—00)). The hausdorff measure M2 on S*\u(—oo) with respect to p,-metric is
the usual Lebesgue measure. Hence there exists a constant w > 0 such that for all

0 € S*\u(—00), we have M2 _(B,,(0,r)) = wr?.

PROPOSITION 4.3 (see [36], [25]). The measure ¢*9MN} is absolutely continuous
with respect to measure I on semi-circles. Here M}, and M are 1-dimensional
hausdorff measures with respect to the n,-metric and pu-metmc respectively.

Proof. Let £ be the Lebesgue measure on B,,. Then for all P € B,, we have the
following derivative

M2, (§ 0 w7 (Byu (P,r) N L))
MP) = limy = B, (Pr) 1 Bu)

exists and finite for £-almost everywhere, see [18].

Choose P € B, with A\(P) < co. For a semi-circle [ := m;1(P), let U,(l) denote
the r-neighborhood of I, then limsup,_o M2 (¢(U.(1)))/r < oo. For any compact
K c I with M} (K) = 0, choose a number C > 0 with M2 (4(U(1)))/r < C. Let
€ >0 be glven by Besicovic’s covering theorem there eXlStS {61,...,6k} C K such
that kr < ¢, K C U¥B,(0;,7) and any three of the balls B,(6;,) Wlth distinct centers
are disjoint. B

Let s; = inf{s > 0|¢(Bo(6:s7)) C By($(6:),s)} and & > 0 (conformal
constant) provided by Proposition 3.1. Then we have ¢(K) C USB,(4(6;),s:i),
#(S?) N By,(4(8:),8:/k) C ¢(Bp(6s,5:)). Since T is hausdorff-conservatlve and by
Proposition 3.2, Corollary 4.2, there exists a > 0 such that

k 2 k
(Zsi> <k 2 <k a}jamz 5(8,(6:,1))
1 1
< 2n2ak9ﬁfh(q—>(Ur(K))) < 2620k ($(U-(1)))
< 2n2Ca(k‘r) < const €.
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Note the fact that any three of ¢(B,(6;,7)) do not intersect is used to bound

Y102 (B(By(6:,7))) by 292 (B(Ur(K)))-
Therefore the result follows from the last inequality. 0

The balls B,(6,7), § € S?\u(—0), r > 0 form a Vitali relation for the Lebesgue
measure 92 . The following derivative

9 (8(B,(6,7)))
0) = b =B, 0,)

exists and finite for SUI%—almost every 0 € S?\u(—00).

PROPOSITION 4.4. Let Lip, be defined by Lipy : & — limsup,_o74(6,7)/7.
Then Lip, € LY (S*\u(—00), M3 ). In-fact there ezists a constant k > 0 such that

loc

VvVJ(0)/k < limrir_x.%r,ﬁ(@,r)/r < lirnfE}()er,(O,r)/r < k+/J(6).

Proof. Let € > 0. There is r¢ > 0 such that for any r < r. we have
wf(0)r?/2 <M ((B,(6,7))) < (2wf(6) + e)r

where the fact that mgu is Lebesgue measure, i.e. imf,u (B,.(8,7)) = wr? for some
constant w > 0 has been used. Since I' is hausdorff-conservative and by Proposition
3.2, Corollary 4.2, there exists some constant a > 0 such that

(r(8,7)/B)* /o < M3 ($(B,(8,7))) < ax(ry (6, 7))

Hence we have

V(w/2af(0)r <14(0,7) < Va(2f(O)w +€))Br

and the result follows by letting e — 0. O

LEMMA 4.5. The image under ¢ of almost every semi-circle has locally finite

fm}, -measure.
v

Proof. Let f : Q, — B, x [0,1] be a diffeomorphism which maps 7 1(P) over

P onto P x [0,1]. For every compact subset C C 2, we can find a positive number «
such that

e For all z € f(C) the Jacobian of f~! at z are < ¢,

e For all P € B, and y € n;}(P) N C the local dilations at y of flaz1(p) are

< .

Since ¢ is a embedding, ¢(£2,) is relative compact subset of S \v(—00) and we have
by Proposition 4.4, f, Lip; d2 < k202 (4(Q)) < oo, and Holder inequality
gives [, Lipy d93 < co. Hence

/ ( / 1 Lipg dﬂﬂ,l,u) d¢<a Lip, of ~d£dt
B. \/=i'(P)nC f(©)

< az/ Lip, dI2, < 0o
c
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where dt is Lebesgue measure on [0,1]. Now by Proposition 4.3, ¢ is absolutely
continuous on 7 !(P) therefore

M, (¢(r; (P)NC)) < / . Lipy dO}, < oo.
w5 Y(P)NC

Next we adapt the idea in [25] to prove the inequality part of Theorems 1.1.

Proof. [Proof. Part I of Theorems 1.1 and 1.2] For Theorem 1.2, the inequality
follows from Theorem 1.5 and Proposition 3.3. Let I' and I be as in Theorem 1.1
and satisfies those conditions. Note that by Proposition 3.3, Dr» = 2. Let g be the
Riemannian metric of M. Set h = (Dr/2)g as the new metric of M. The boundary
space of (M,g) and (]Vf ,h) can be trivially identified, and 7/ppyy = 7711,7 /2 The
critical exponent of I" with respect to & is 2, hence by Lemma 4.5 there is a non-trivial
curve in S \v(—00) with finite Dr /2-dimensional hausdorff measure with respect to
n,. However as noted before the curvature assumption —b? < K < —1 of g implies
the 7,-metric is a distance on Seo\v(—00), but the distance-hausdorff dimension is
> 1 for any non-trivial curves. Therefore we have Dr/2 > 1. 0

LEMMA 4.6. Let IV be a divergent, torsion-free discrete subgroup of PSL(2,C)
with Apr = S% and Dr» = 2. Then the maps ¢ and 1 are absolutely continuous with
respect to oy and fiz.

Proof. By ergodicity of I', T” and equivariance of ¢, % and also Proposition
4.2, its suffices to show there exists a A C S*\u(—o0) with 92 (A) > 0 such that
the Radon-Nikodym derivative of ¢ at every z € A with respect to 9% and M2,
is non-zero. Using the fact that 7, is a distance function, it follows from Propo-
sition 4.3, for £-almost all P € B, the length of ¢(n;1(P)) > 0 is bounded by
Jez1(py Lipg A, . Hence if we set A := {z € Qu|Lipy(z) > 0}, then for £-almost
all P € By, M}, (75 (P)N A) > 0 which implies 912 (A) > 0. Therefore the result
follows from Proposition 4.4. O

5. Part II of Theorems 1.1 and 1.2. Let £1,£2,£3,£4 € So. The cross-ratio
|€1, &2, &3, E4] of these four points is defined as
e_ﬂw(§1y€2)e",31(€3164)
l§1a§2’§3a§4| = e—Ba(€1,63) o—Bx(€2,64)

This definition is consistent with the hyperbolic space cross-ratio.

If Iy, T2 are discrete subgroups of M such that both I'y,T's are divergent, and
there exists a equivariant (under some group morphism x), nonsingular (with respect
to p1, uo Patterson-Sullivan measures on Ar, and Ar, respectively), measurable map
fi+Ar; — Ar,. Then

d(f x f)*Ta(€,¢) = e PraPvlF&fOg(6) g(¢)dpa (§)dp2(¢)

where g := %’1‘—)’), and II; is the measure defined in §3 through p;. From the proper-

ties of f, (f x f)*IIy is a constant a > 0 multiple of IT;. Hence ePr2A+(f&:/0g(£)g(¢) =
aePr18=(6:0)  Therefore for pi-almost everywhere we have

|£(&1), £(&2), F(€3), F(€a)| = |€1, €2, €3, 4] Pra/Pra.
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This was the idea of Sullivan for the following lemma:

LEMMA 5.1. Let I'y, Ty be discrete subgroups of ISO(M) with Dr, = Dr, and
1,0 are divergent. Suppose there exists a equivariant nonsingular measurable map
f : Ar, — Ar, with respect to Patterson-Sullivan measures space (Ar,,p1) and
(Ar,, u2). Then f preserves cross-ratio pi-almost everywhere.

For a finitely generated discrete subgroup I' of PSL(2,C). The conservative set
of T on 52 coincides with Ar up-to Lebesgue measure zero. The group I is called
conservative if and only if Ar has full Lebesgue measure. Since for a topologically
tame T, the hausdorff dimension of Ar is equal to Dr, therefore we have the following:

PROPOSITION 5.2. Let I' be a topologically tame, torsion-free discrete subgroup
of PSL(2,C) with conservative T, then I" is hausdorff-conservative.

REMARK 5.3. It is a conjecture that all finitely generated discrete subgroup I' of
PSL(2,C) are topologically tame.

Next we recall the statement of Sullivan’s quasi-conformal stability' for discrete
subgroups of PSL(2, C).

THEOREM 5.4 (Sullivan [43]). Let T be a discrete subgroup of PSL(2,C). Then
T is quasi-conformally stable (i.e. if f is a quasi-conformal automorphism of S?
with fTf~1 C PSL(2,C), then f is a Mdbius transformation) if and only if T is
conservative.

COROLLARY 5.5. Let N = H3/T be a complete hyperbolic 3-manifold for a con-
servative I'. Then N is quasi-isometrically stable, i.e. If there is a quasi-isometric
homeomorphism h : N — M to a hyperbolic manifold M, then N is isometric to M.

Proof. [Proof. Theorem 1.2 part II] By Theorem 1.5, I is divergent for Dr = 2.
From Proposition 3.3, I is also divergent and D+ = 2. Lemma, 4.6 then implies f is
absolutely continuous with respect to oy and p;. Hence by Lemma 5.1, f preserves
cross ratio o-everywhere. By Proposition 3.2, Ar» = S$% and since o, is non-zero
constant multiple of Lebesgue measure, we can modify f on the Lebesgue measure
null subset of S? to a map which is cross ration preserving on S2. We denote the new
map alsq\lgy f. By Bourdon’s theorem [9], f extends into the space as a isometry, i.e.

H® and M are isometric. Hence the result follows from Theorem 5.4. O

Proof. [Proof. Theorems 1.1 part II] Here f embeds S? into Se. If we suppose
Dr = Dr+ = 2, then by using same argument as the proof of Theorem 1.2, f extends
to a isometric embedding of H3 into M by [9]. Since f(S?) is a Ap-invariant closed
subset of S, by Proposition 3.2, f(S2?) = Ar. Hence the boundary space of the
isometric embedded image of H?® coincides with Ar, therefore the result follows. O

Proof. [Proof. Corollary 1.3] This follows from Propositions 3.1, 3.3, and Theorem
1.2. 0
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