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QUASI-CONFORMAL RIGIDITY OF NEGATIVELY CURVED 
THREE MANIFOLDS * 

YONG HOUt 

Abstract. In this paper we study the rigidity of infinite volume 3-manifolds with sectional 
curvature — b2 < K < — 1 and finitely generated fundamental group. In-particular, we generalize the 
Sullivan's quasi-conformal rigidity for finitely generated fundamental group with empty dissipative 
set to negative variable curvature 3-manifolds. We also generalize the rigidity of Hamenstadt or 
more recently Besson-Courtois-Gallot, to 3-manifolds with infinite volume and geometrically infinite 
fundamental group. 

1. Introduction. Let M be a simply connected complete Riemannian manifold 
with sectional curvature — b2 <K< —1. Let ISO(M) denote the group of isometrics 
of M. Let F be a non-elementary, torsion-free, discrete subgroup of ISO(M), and set 
M := M/r. 

First we recall some terminologies that is required for the statement of the the- 
orem. Let 5oo denote the boundary of M. On £00 one can define^ a metric in the 
following way. Let v be a vector in the unit tangent bundle SM. The geodesic 
v(t) defines two points on 5^ given by t;(oo) and v(—oo). Let TT* be the pro- 
jection of SOQ\V{—CC) along the geodesies which are asymptotic to v{—00) to the 
horosphere which is tangent to v{—00) and passing through v{t). Let dist^ be 
the distance on the horosphere induced by restriction of the Riemannian distance, 
dist. On 5oo\^(—00) x Soo\v(—00) define a function rjv as rjv(^C) '•= e~lv^^ 
with lv{t;,0 '= sup{£| disty^i^tiO^tiO) ^ !}• By our curvature assumption 
—b2 < K < —1, the function r}v is a distance on 50o\'y(—00), see [25]. 

Every element of 7 G Y has either exactly one or two fixed points in SQO, and 
7 is called loxodromic if it has two fixed points [4]. The group Y is called purely 
loxodromic if all 7 G Y are loxodromic. The limit set of Y denoted by Ap is the unique 
minimal closed F-invariant subset of 5^ [22]. Iff is purely loxodromic and Ap = S^, 
then it can be either cocompact or M/Y is geometrically infinite, hence Y has infinite 
co-volume. The convex hull CHr is the smallest convex set in M U 5oo containing 
Ap. The group Y is called convex-cocompact if CHr/Y is compact. 

The critical exponent of Y is the unique positive number Dp such that the Poincare 
series of Y given by ^ r g-sdistfa/yz) js divergent for s < D? and convergent for 
s > DY • If the Poincare series diverges at s = D? then Y is called divergent. 

Let / : (X, px) —> (Y,PY) be a embedding between two topological metric 
spaces. Then / is called quasi-conformal embedding [47] if there exists a constant 
K > 0 such that, for any x G X and r > 0 there is 77(x, r) > 0 with 

f(X)nB'(f(x),rf(x,r)) C f(B(x,r)) C B'(f(x),Krf(x,r)). 

where B and B' denotes a ball in X and Y respectively. When f(X) = Y then / is 
a quasi-conformal homeomorphism. 

A torsion-free discrete subgroup Y of ISO (M) is called topologically tame if M/Y 
is homeomorphic to the interior of a compact manifold-with-boundary. 
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THEOREM 1.1. Let F' C PSL(2, C) be a topologically tame discrete group with 
Ap' = S^j and isomorphic x •' F' —> F to a convex-cocompact discrete subgroup F 
of ISO(M) (here M is n-dimensional). Let f : S2 —> 5^ be a quasi-conformal 
embedding which conjugate F' to T, i.e. /07 = ^(7) o/, for 7 £ F'. T/zen Dr > -Dr^ 
and equality if and only i/M3 embeds isometrically into M and the action o/F stabilizes 
the image. 

Tb^state our next theorem we need to introduce one additional terminology. We 
take M to be a 3-manifold in the following. 

Let Srt^ denote the A-dimensional hausdorff measure on (500\t'(—00),77,,). We 
say F is hausdorff-conservative if there exists a constant a(v) > 0 such that 
a-irDr < an^r(J3(^r) n Ar) < arDr for any ball -B(f,r) of radius r about $ £ Ar 
in (50o\,y(—oo),77v). From this definition, we note that if F is a finitely generated 
torsion-free discrete subgroup of PSL(2,C) with Dr = 2, then hausdorff-conservative 
implies conservative (classical definition, §5). Conversely, if F is a topologically tame, 
conservative, discrete subgroup of PSL(2,C), then F is hausdorff-conservative, see 
Proposition 5.2. We believe all finitely generated conservative discrete subgroup of 
PSL(2,C) are hausdorff-conservative, see Remark 5.3. For a convex-cocompact M/F 
with — b2 < K < — 1, it follows from [12], F is hausdorff-conservative. Now we are 
ready to state the theorem which generalizes Sullivan's quasi-conformal rigidity the- 
orem. 

THEOREM 1.2 (Main). LetY be a topologically tame, purely loxodromic discrete 
subgroup oflSO(M) with Ar = 5oo- Let F' be a topologically tame discrete subgroup 
o/PSL(2,C). Suppose f : #00 —► S2 is a quasi-conformal homeomorphism conjugate 
F to F'. Then Dr > Dr, and F = 7r/7--1 with 7 £ PSL(2, C) if and only ifDT = Dr 
and F is hausdorff-conservative. 

COROLLARY 1.3. Let M = M/F be a complete topologically tame 3-manifold 
with —b2 < K < —1, F purely loxodromic, and Ap = Soo- Let h : M —> N be a 
quasi-isometric homeomorphism to a hyperbolic manifold N. Then M is isometric to 
N if and only if Dr ~ 2 and F is hausdorff-conservative. 

Let us point out that Theorem 1.2, generalizes known rigidity theorems in two 
directions for three dimensional manifolds. 

First assume M is hyperbolic (b = 1) but not necessarily geometrically finite. 
Since M is topologically tame and Ar = S2 we have Dr = 2 by analytical tameness 
(see Proposition 3.3). Hence by Theorem 1.2, M is quasi-conformal stable. This is 
a case of the Sullivan rigidity theorem for topologically tame F with empty dissipa- 
tive set. Next let us assume M is compact with — b2 < K < — 1. Then the critical 
exponent D? is equal to hu the topological entropy of M, and by [16], any homo- 
topy equivalence between M and a compact hyperbolic 3-manifold is induced by a 
homeomorphism. Therefore it follows from Corollary 1.3 we have: M is isometric to 
a compact hyperbolic 3-manifold if and only if they are homotopically equivalent and 
IIM — 2. This is the Hamenstadt's rigidity or more recently Besson-Courtois-Gallot 
theorem for 3-manifolds. 

Note that it also follows from Theorem 1.2, the quasi-conformal version of the 
Hamenstadt's theorem for compact 3-manifold M can be stated as: ^ 

COROLLARY 1.4. Let F be a cocompact discrete subgroup of ISO(M). Let 
V C PSL(2,C) be a discrete group.   Suppose f : S^ —► S2 is a quasi-conformal 
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homeomorphism conjugate V to V, Then Dp ^ -^r'; ^^^ equality if and only if M/F 
is isometric to HI3/!". 

The proves of these theorems relies on our next result, 

THEOREM 1.5. Let M = M/F be a topologically tame 3-manifold with —b2 < 
K < — 1. Suppose that F is purely loxodromic and that h(F) = Soo- Then 2 < D and 
F is harmonically ergodic. If D = 2 then F is also divergent. 

In section 2, we state some of the topological properties of negatively pinched 
3-manifolds. In particular, we define geometrically infinite ends for negatively 
pinched 3-manifolds, and then state our theorem which describe the geometrical 
properties of this type of end, it is a crucial step in the proof of Theorem 1.5. Section 
3 discusses measures on ^oo and the ergodicity of F with respect to these measures. 
In section 4, we give proofs of part I of the theorems. And section 5 is used to 
complete the proofs. 

Acknowledgments: I am very grateful to Peter Shalen for his unwavering sup- 
port and encouragement. I wish to thank Marc Culler, Dick Canary for their interest. 

2. Topological Ends. Every isometry of M can be extend to a Lipschitz map 
on 5oo := DM [22]. For a torsion-free F, every element 7 G F is one of the following 
types: (1) parabolic if it has exactly one fixed point in M U SQO which lies in S^; (2) 
loxodromic if it has exactly two distinct fixed points in M U Soo, both lying in S^. 

Denote by A(r) c dM the limit set of F, which is the unique minimal closed 
F—invariant subset of S^. Most of the important properties of the limit set in the 
constant curvature space continue to hold in the variable curvature space [15]. In 
particular: (i) A(r) = Fx n Soo; (h) A(r)is the closure of the set of fixed points of 
loxodromic elements of F; and (iii) A(r) is a perfect subset of F. The set O(r) := 
5oo\A(r) is the region of discontinuity. The action of F on M U fi(r) is proper and 
discontinuous, see [15]. The manifold Mr := M U fi(r)/r with possibly nonempty 
boundary is traditionally called the Kleinian manifold. We also let Ac(r) denote the 
conical limit set of F, i.e. £ £ Ac(r) if for some x € M (and hence for every x) 
there exist a sequence (7n) of elements in F, a sequence (tn) of real numbers, and a 
real number C > 0, such that jnx —► £ and dist(c|(tn),7nx) < C where c| is the 
geodesic ray connecting x and f. Equivalently, a point belongs to Ac(r) if it belongs 
to infinitely many shadows cast by balls of some fixed radius centered at points of 
a fixed orbit of F. Note that Ac(r) is a F—invariant subset of A(r), hence a dense 
subset. 

PROPOSITION 2.1 (Margulis Lemma). There exists a number e& which only de- 
pend on the pinching constant b of M, such that the group Ft generated by elements 
in F of length at most e^ with respect to a fixed point in M is almost nilpotent of rank 
at most 2.  Then the number, 2eb is called the Margulis constant. 

Note that, if M is orientable and F is torsion-free, then Margulis Lemma implies 
Feh is abelian. 

Let e < 6b be given. Then M may be written as the union of a thin part M[o}e) 
consisting of all points at which there is based a homotopically nontrivial loop of 
length < e and a thick part M[e>00) = M — M[o)€).   Note that M[Cj00) is compact if 



648 Y. HOU 

M is of finite volume. Also the thin part of M is completely classified by the next 
proposition. 

PROPOSITION 2.2. Each connected component o/M[o,e) is diffeomorphic to one 
of the following : 
parabolic rank-1 cusp ; S1 x R x [0, oo). 
parabolic rank-2 cusp : T2 x [0,00). 
solid torus about the axis of a loxodromic 7 : D2 x S1. 

For simplicity we restrict to the case where M has no cusps. It follows from the 
existence of a compact core C(M) for M [14], that M has only finitely many ends 
[5]. In fact, each component of dC(M) is the boundary of a neighborhood of an end 
of M, and this gives a bijective correspondence between ends of M and components 
of<9C(M). 

We define the simplicial ruled surfaces as follows. Let S be a surface of positive 
genus and let Tp be a triangulation defined with respect to a finite collection P of 
points of S. This means that Tp is a maximal collection of nonisotopic essential arcs 
with end points in P; these arcs are the edges of the triangulation, and the components 
of the complement in 5 of the union of the edges are the faces. Let / : S —> M be 
a map which takes edges to geodesic arcs and faces to nondegenerate geodesic ruled 
triangles in M. The map / induces a singular metric on 5. If the total angle about 
each vertex of S with respect to this metric is at least 27r, then the pair (S, /) is 
called a simplicial ruled surface. It follows from the definition of the induced metric 
on S that / preserves lengths of paths and is therefore distance non-increasing. Any 
geodesic ruled triangle in M has Gaussian curvature at most —a2. This means that 
each 2-simplex of S inherits a Riemannian metric of curvature at most —a2. Since we 
have required the the total angle at each vertex to be at least 27r, by Gauss-Bonnet 
theorem the curvature of S is negative in the induced metric. 

DEFINITION 2.3. An end E is said to be a geometrically infinite if there exists a 
divergent sequence of geodesies, i.e: there exists a sequence of closed geodesies a^ C 
M°, such that for any neighborhood U of E, there exists some positive integer N such 
that ak C U for all k > N. If in addition for some surface SE we have that U is 
homeomorphic to SE X [0,OO), and there exists a sequence of simplicial ruled surfaces 

: SE —^ U such that //(Sg) is homotopic to SE X 0 in U and leaves every compact 

subset of M, then E is said to be simply degenerate. The sequence (SE —^ U) is 
called an exiting sequence. A end which is not geometrically infinite will be called 
geometrically finite. 

THEOREM 2.4 (Hou). Let M = M/T be a topologically tame negatively pinched 
3-manifold with T purely loxodromic. Then all geometrically infinite ends of M are 
simply degenerate. And if A(T) = SOQ, then there are no nonconstant positive super- 
harmonic functions, or nonconstant subharmonic functions bounded above, on M. 

3. F-action. In this section we will study the action of Y on $00 and prove 
ergodicity of Y for topologically tame 3-manifolds with A(r) = SOQ. We will prove 
that for such a manifold, the Green series is divergent, and that the Poincare series 
is also divergent if D = 2. Theorem 1.5 will also be proved in this section. 

In some situations we will take the dimension of M to be 3, otherwise we will 
assume M is n-dimensional in general. 
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Set the following notations throughout the paper. Let T' C PSL(2,C) be a 
discrete orsion-free subgroup. Denote S2 := 9H3, and S^ := dM. There are many 
equivalent ways jDf equipping 5oo with a metric which is compatible with F-action. 
Fix a point x G M. Let £, C in 5oo be given. Set c^(t) as the geodesic ray connecting 
y and £. ^ 

In [22], Gromov defined a metric on Soo'as follows. For y,z £ M, let us consider 
arbitrary continuous curve c(t) in M with initial point and end point denoted by 
c(^o) = y and c(ti) = z respectively. Define a nonnegative real-valued function Qx on 
M x M by 

gx{y,z):=in£ If      e'dist^c^dt) . 
al1 c \^[to,ti] / 

In particular, Gromov showed the function gx extends continuously to 5oo x Soo- 
Every element of F extends to S^ as a Lipschitz map with respect to Qx. 

In [31] the following metrics are shown to be equivalent to the Gromov's metric. 

Kx metric : Let B^ denote the Busemann function based at XQ. Set B^(x,y) 

= B^x) - Bc(2/), for x.yGM, 
the function B^(x,y) is called the Busemann cocycle. Define (3X : S^ x 
^oo —> M by (3X(£, C) := B^(x, y)+B^(x, y) where y is a point on the geodesic 
connecting £ and £. The i^x metric is then defined by 

Lx metric: Let OLX{^X) denote the distance between x and the geodesic connecting 
£ and £. The function Z^ : 5oo x 5oo —> K is then defined by 

Lx{U):=e-"^. 

dx metric: Define a function lx : 5^ x ^oo —> R by lx{£,,() '-= sup{r| 
dist(c|(r),c^(r)) = 1}. Geometrically, a neighborhood about £ in 5^ with 
respect to the topology induced by lx is the shadow cast by the intersection 
of 1-ball about cf (r) and r-sphere about x. The dx metric is then defined by 

_ p-/*te,c) dxfaCl :=e' 

It was originally observed for symmetric spaces by Mostow [36] that the boundary 
map is quasi-conformal. This property continue to hold in negatively curved spaces, 
see [25] and [40]. Here we give a proof of this fact with respect to the above metrics. 

PROPOSITION 3.1. Let h be a quasiisometry between two negatively pinched curved 
spaces. The boundary extension map h is quasi-conformal on the boundary with respect 
to dx,LXi Kx, r)v-metrics. 

Proof. For the proof of ^-metric See Proposition 3.1 in [25]. Fix x € M. Let 
us take dx-metric. Set A > L. Denote by S(x;y,R) the shadow cased from x of 
the metric sphere S(y, R) with center located at y and radius i?, i.e. S(x; y, R) — 
{£ G 5oo|<4 n S(y^R) 7^ 0}. Let B(^r) be a ball of radius r in 5oo. Using triangle 
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comparison we can show there exists a constant cty, > 1 depends on pinching constant 
6 such that 

S(x;4(ir), A) C fl(£,r) c 5(x;4(tr),abA) 

for some tr > 0 which depends only on r. The images ^(5(a;;c|(tr), A)) and 
(/>(S(a;;c4(£r),a&A)) are quasi-spheres, i.e. there exists a constant (3$ > 0 depends 
on 0 such that 5(0(a;);^(c|(*r)),i801A) C 0(5(a:;c|(tr), A)) and 0(5(a:;4(tr),afeA) C 
5(0(x); 0(c|(tr)), fi^abX). On the other hand, by estimates in [11] there exists positive 
numbers AL(/?0, A) and ^(a^,^, A) such that 

B(#0, j^e-*) c 5(0(a;);0(4^)),^^), 

5(^(0;); 0(4(tr)),l3tah\) C B(0(O,^2e-fi) 

where i? = dist(0(o;),0(4(^r))- Hence the result follows by setting ^(^r) = Aie~R 

and hi = A2/A1. U 

PROPOSITION 3.2. Let f : dN —> Soo be a embedding conjugate Fi to r2 under 
isomorphism x ' Ti —> r2 (f o 7 = ^(7) o /j. T/ien /(ApJ = Ar2. 

Proof. Let 7 G Fi. Since 7/_1(Ar2) = /~1(x(7)Ar2)? an(i by r2-invariance of 
Ar2, we have /~1(Ar2) is Fi-invariant closed set. Note that /~1(A2) is nonempty, 
since fixed points of elements of Fi are also fixed points of elements of r2, hence 
/(ArJ C Ar2. Similarly we also have /(ArJ 2 Ar2, and result follows. D 

PROPOSITION 3.3. LetV be a topologically tame, torsion-free, discrete subgroup of 
ISO(M) with Ar = Soo- LetV be a topologically tame, discrete subgroup o/PSL(2,C). 
Suppose f : SOQ —> S2 is a homeomorphism conjugate F to F7. Then Drf = 2 and F7 

is divergent. 

Proof. By Proposition 3.2 the hyperbolic manifold N = H3/r/ is topologically 
tame and Ap' = S2. It follows from analytical tameness and Theorem 9.1 of [10], 
there exists no non-trivial positive superharmonic function on N with respect to the 
hyperbolic Laplacian A. Let P(2/,0 denote the Poisson kernel on H3. The Dr'- 
dimensional conformal measure (Patterson-Sullivan measure, see end of §3) ay has 

Radon-Nikodym derivative of P(y^)Dr^ i-e. d?S^(0 = ^"^.O^1"- The r/- 
invariant function h(y) := cFy(S2) satisfies Aft, = Dr>{Dr' — 2)/i, which implies h is 
non-trivial superharmonic if Dr' ^ 2. And it follows that Tf must also be divergent. 
D 

Let C be a subset of SQQ. Let A-dimensional Hausdorff measurejof C on the metric 
space(Soo,Pa;) be denoted by DJlpx(C). Observe that for any x € M and any 7 € F, 
we have 7*93?^   = 9Jt^ _   ; this follows from the straightforward identity. 

A family of finite Borel measures [^L^JJ- will be called a X-conformal density 

under the action ofT if for every x € M and every 7 G F we have 7*^ = v^y, and the 

Radon-Nikodym derivative d ^ (C) at aily point ( € SQO is equal to e~AB^(7 2,,2/). 
(This is to be interpreted as being vacuously true if, for example, the measures in 
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the family are all identically zero). Although there can not be any F-invariant non- 
trivial finite Borel measure on Ap for non-elementary F, we can always define a F- 
invariant non-trivial locally finite measure E^ on Ar x Ar by setting dll^ (£, () = 
e^te^dvxiQdvxiC)- T^e measure JIVx corresponds to the Bowen-Margulis measure 
on the unit tangent bundle SM see [31]. 

Let us recall a fundamental fact about conformal density, which was originally 
proved by Sullivan for F C SO(n, 1) and generalized to the pinched negatively curved 
spaces in [46]. It relates the divergence of F at the critical exponent Dr with ergodicity 
of the Dr-conformal density under the action of F. 

We will say that two Borel measures on SOQ are in the same F-class if the Radon- 
Nikodym derivative of 7*1/1 with respect to 1/1 is equal to the Radon-Nikodym deriva- 
tive of 7*z/2 with respect to z/2- 

PROPOSITION 3.4 (see [46]). LetT be a nonelementary, discrete, torsion-free and 
divergent at Dp. Suppose [u] is a Dr-conformal density under the action ofY, then 
F act ergodically on Ap and Ap x Ap with respect to [i/x] and [n^J respectively. 

PROPOSITION 3.5 (see [37]). Let F be nonelementary and discrete. Suppose that 
F acts ergodically on Soo with respect to a measure u defined on Soo- Then every 
measure of SQQ in the same measure class as v is a constant multiple of v. 

PROPOSITION 3.6. Let F be a non-elementary discrete subgroup of the isometry 
group of M. If [vy}D ^ is a non-trivial T-invariant D-conformal density, then D ^ 0. 

Proof. Suppose D — 0. Then Vy is a F-invariant non-trivial finite Borel measure. 
Since F is non-elementary, there exists a loxodromic element 7 in F. Let f, £ € 5^ be 
the two distinct fixed points of 7. Let < 7 > be the group generated by 7. Then Vy 
is clearly < 7 >-invariant. But 7 is loxodromic, so we must have supp(z/2/) C {£, C}- 
Then, by the fact that A(r) is infinite, we have Vy is an infinite measure, which is a 
contradiction. D 

PROPOSITION 3.7. Let F be a discrete subgroup oflSO(M). Suppose SUl^ is a 
finite measure. Then 971^   is a X-conformal density under the action ofY. 

There is a canonical way of constructing .Dp-dimensional conformal density which 
is due to Patterson-Sullivan as follows; By applying a adjusting function we can always 
assume the Poincare series diverges at Dp. The measures 

Ep-sd\st(z,ix)x 

/iX)S .-      ^ e-sdist(z,7z) ' S >      r 

converges weakly to a limiting measure iix as sn —> Dp through a subsequence. 
It is trivial to see that /ix is supported on Ap. The measure [nx] is called Patterson- 
Sullivan measure which is -Dp-conformal under F see [39], [42]. 

From now on for F' C PSL(2,C), we will denote the Patterson-Sullivan measure 
on Ap/ by ay. 

Let Ap denote the set of conical limit points in Ap. Recall a point £ G Ap is in 
A£ if and only if there exists {jn} C F such that dist(7nc£(£n),:c) < c for some c > 0 
and sequence of tn. Obviously Ap is F-invariant, and non-empty (a loxodromic fixed 
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points are in Ap), hence it is a dense F-invariant subset of Ap. A equivalent definition 
for the conical limit point £ is that it must be contained in infinitely many shadows 
5(a:;7nx,c). Hence Ap =.UA>O nm>i [Jn>mS(x,jnx, A). It is a easy fact from the 
construction of jUx, no points in Ap can be a atom for /ix, and if supp(/Xz) C Ap then 
F is divergent. In fact it is a deep result of Sullivan that T is divergent if and only if 
supp(/xx) C A£. 

LEMMA 3.8 (see [12]; Sullivan's Shadow Lemma). Let nx be a Dr-conformal 
density with respect to F, which is not a single atom. Then there exists constants 
a > 0 and X0 > 0, such that, 

a-ie~Drdist(x^x) < ^s(xnx,X)) < ae-Drdist^~lx^2DX, 

for all 7 G F and A > AQ. 

PROPOSITION 3.9. Let F c ISO(M) be a discrete subgroup. Suppose either 
Ap = Ap or Ap = JSOQ and F is divergent. Then fix is positive on all non-empty 
relative open subsets o/Ap. 

Proof. Suppose Ap = 5oo« It suffices to show /i^ is positive for any non-empty 
open ball B(€, r) with respect to the dc-metric. Fix A > A0. Let £ € A£n.B(£, r) (note 
that Ap is dense in Ar so the intersection is nonempty). Then we can choose 7 £ F 
such that S(x\7x, A) C B(£,r). By assumption F is divergent, we have supp^) C 
A^. Since no points of Ap can be a atom for conformal density, the result follows from 
Lemma 3.8. Same argument works if Ap = Ap D 

Let us define a function 9 : M x M x SOQ —> R+ by Q(x, y, ^) := exp(-^(x, y)). 

Harmonic Density 
Let Ai and Ai denote the first of the spectrum of A on M — M/F, and of A on M, 
respectively. Recall that for a noncompact open manifold, the first of the spectrum 
is defined as 

Ai:=    in[    fJWf 
/ec-,/#oV   J/2 

where C^ is the space of smooth functions on M with compact support. Note that 
we always have Ai < Ai. 

The Ai-harmonic functions has been studied by Ancona in [2] and [3]. 

PROPOSITION 3.10 (Ancona). For each s < Ai, the elliptic operator A + si 
has a Green function Gs(x,y), and there exists a function f : M+ —> R+ such that 
Y^^r^s(x^y) converges for s < Ai and diverges for s > Ai, where Gs(x^y) := 

exp(/(dist(2/,72/)))G!
a(a;,72/). Furthermore, <#s(x,y,C) := limz_c §^^ defines the 

Poisson kernel of A -f si at ( £ SOQ . 

Similarly to the construction of nx from Zp, one can also construct a family of 
Borel measures from ^2ierGs{x^y). 

PROPOSITION 3.11. Let x be any point of M. There exists a family of Borel 
measures [wfyy^M on ^o suc^ ^a^ ft) for a^ x-> V ^ M, Radon-Nikodym derivative 
dujy/dujl at any point C G Soo is equal to ^x1 (x, y, Q and (ii) col is of mass 1. 



QUASICONFORMAL RIGIDITY OF THREE-MANIFOLDS 653 

Let us denote the harmonic density of A by [wy]yeM with UJX normalized of mass 
1. By definition this means that every harmonic function / on M with boundary 
values /oo is given by 

The existence and uniqueness of harmonic density follows from the solvability of the 
Dirichlet problem on M U ^oo see [1] and the Riesz Representation Theorem. The 
Radon-Nikodym derivative of LJX at £ G Soo is given by the Poisson kernel ^(x, y, £) 
of A, i.e.   ^-(0 = ^P(y,a;,£).   For any F-invariant subset C C Soo, the function 

he on M defined by hc(y) '•= Js Xcty(y,x,£)dux(t;) is F-invariant, hence defines a 
harmonic function on M. 

PROPOSITION 3.12. Let M = M/T be a negatively pinched topologically tame 
3-manifold with A(r) = 5oo.    Then F is ergodic with respect to harmonic density 

Proof. Suppose not, and let C C ^oo be a F-invariant subset with (JOX{C) > 0 
and OJX(C

C
) > 0. By Fatou's conical convergence theorem, we have xc(£) = 

lim^^oo hc{c^(t)) for £ € SQO- Hence, he defines a positive nonconstant F-invariant 
harmonic function, which contradicts Theorem 2.4. Therefore F must be ergodic. D 

PROPOSITION 3.13. Let M be noncompact and satisfy the hypothesis of Proposi- 
tion 3.12. Then UJI = UJX. 

Proof Let us note that Ai = 0. This follows from the fact that for a non- 
compact, complete Riemannian manifold M, if Ai(M) > 0 then there exists a positive 
Green's function G on M. If such a G exists, then 1 — exp(—G) defines a positive 
superharmonic function, which is a contradiction to Theorem 2.4.   Hence we must 

have Ai = 0. Therefore ^Ai = 5JJ, i.e ^ = H^T- Hence, by Proposition 3.12 and 
uniqueness, we have the desired result. D 

Superharmonic Functions 
Let £ € £00 be given. Let £ be a continuous unit vector field on M with £(x) — $a:(£)- 
Then by using the first length variation formula, one can show that B^ is C1 and that 
— gradZ?£ = £. In fact, the Busemann function is C2,Q;, see [27]. 

Let \\Xy\D denote D-conformal density. Let us define a nonnegative function u on 
Mby 

w(2/) 

PROPOSITION 3.14.  The function u is a Y-invariant and positive. It is superhar- 
monic if D < (n — l)a; and subharmonic if (n — l)a < D < (n — 1)6. 

Proof. We can write u(y) as /iy(Soo)- Since ufry) = 7*^(800) = ^y(Soo) = u(y) 
for 7 € F, we have that u is F-invariant. 
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Let x G M be fixed. It follows from, \VB^(y9x)\ = \£\ = 1 and Rauch'stheorem 
that we have exp(-DB^y,x))D(D - (n - 1)6) < AGD < exp{-DB^y,x))D{D - 
(n — l)a). This implies the result. D 

PROPOSITION 3.15. Suppose T is nonelementary, i.e. has no abelian subgroup of 
finite index. Suppose that there are no nontrivial T-invariant positive-valued super- 
harmonic function on M. Then (n — l)a < D < (n — 1)6. 

Proof. Let Fx be the orbit of x under F. Then the growth rate of the number 
of points of Tx in ball(a;,r) as r increases is bounded by vol(ball(a:,r)). By the 
volume comparison theorem we have Cnexp((n — l)br) > vol(ball(x,r)), for some 
constant Cn which depends only on dimension n. Therefore, when s > (n — 1)6 we 
get Zr(x, s) < oo, which implies that D < (n — 1)6. 

Next suppose that we have D < (n — l)a. Then by Proposition 3.14, u(x) is a 
F-invariant positive superharmonic and Aix < D{D — (n — l)a)u. It now follows from 
the hypothesis that u is constant and that either D = 0 or D = (n — l)a. However, 
since F is nonelementary and [fly] is F-invariant, Proposition 3.6 implies that D ^ 0. 
Hence, D — (n — l)a, and the result follows. D 

The next proposition wets originally proved by Sullivan [41] using a Borel-Cantelli 
type of argument. The proof is purely measure theoretic (see [37], [46]). The propo- 
sition relates the ergodicity of F with the divergence of the Poincare series at D. 

PROPOSITION 3.16 (Sullivan). Suppose that F is nonelementary, discrete and 
torsion-free, and is divergent at D.  Then F is ergodic with respect to [/i]D. 

PROPOSITION 3.17. Suppose D = (n — l)a and there are no nontrivial positive 
superharmonic functions on M.  Then F is divergent. 

Proof. Fix a point y £ M. Let us assume the Poincare series converges at 
D (i.e. S7Grexp(-(n - l)adist(x^y)) < oo). Then this series defines a non- 

trivial F-invariant function on M. Let us denote this function by h(x). Since 
exp(—Ddist(z,7y)) < exp(Ddist(:c,£))exp(—Ddist(a;,7y)) for z G M, it fol- 
lows that for any given number N > 0 there is a constant C > 0 such that 
^7€rexp(-Z}dist(2:,7y)) < CX^7GrexP(J^(^ist(a;'72/)) ^or dist(z,x) < N. Hence 
the series converges uniformly on compact subsets of M. We will show that the con- 
vergence of the Poincare series at (n — l)a implies existence of nontrivial positive 
superharmonic function on M. 

Set dist7y(x) := dist(x,/yy). First, we have 

Ah{x) = ^exp(-JDdist7y(a:))D(D|Vdist7y(x)|2 - Adist72/(:r)). 

By Rauch'stheorem and |Vdist7y(x)|2 = 1 we get 

Ah(x) < ^exp(-JDdist(a;,7y))i?(D - (n - l)a), 

which implies Ah < 0.  We consider the series ^ €rlogtanh(^n~ >a ^ 1V^X').  It is 
easy to see that the convergence of this series on the set of points bounded away from 
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Fy follows from the convergence of the Poincare series at D = (n — l)a. Denote this 
series by -/. Then by direct computation and Ranch's theorem we have A/(re) < 
0 for x G M\Ty. Hence 1 — exp(—f(x)) defines a nontrivial positive F-invariant 
super harmonic function on M. 

Therefore, the convergence of the Poincare series at D — (n — I)a give raise to 
contradictions to our hypothesis, and the result follows. D 

COROLLARY 3.18. Suppose D = (n — l)a and there are no nontrivial positive 
superharmonic functions on M. Then, F is ergodic with respect to [fj]D. 

Proof. The corollary follows from Proposition 3.16 and Proposition 3.17. D 

COROLLARY 3.19. Let M = M/F be a topologically tame 3-manifold with —b2 < 
/C < — 1 and A(r) = S^. If D = 2, then F is divergent, hence ergodic with respect to 

Proof The corollary follows from Theorem 2.4, Proposition 3.17 and Corollary 
3.18. D 

Proof [Proof of Theorem 1.5] Under the hypothesis of Theorem 1.5, it follows 
from Proposition 3.15 that D G [2,26]. That F is harmonically ergodic follows from 
Proposition 3.12. If D = 2, then by Corollary 3.19 we have F is divergent. D 

4. Part I of Theorems 1.1 and 1.2. Let F be a torsion-free discrete subgroup 
of ISO(M) with Dr — 2.   We assume F is either convex-cocompact or Ar = £< 
hausdorff-conservative and divergent. 

OOj 

PROPOSITION 4.1. The measure ^IKX is finite and positive on all non-empty 
relative open subsets of Ar, and 9Jl^(^4) = 0 if and only if dJl2v(A) = 0 for A C 
Ar\v (—oo). 

Proof First note that if we replace dist^ with dist in the definition of rjv we get 
a equivalent metric by Lemma 4 in [26]. 

Let x € M be any point. Denote Hv^x the horosphere tangent to v(oo) and 
passing through x. Take two vectors U^, U^ in 5M that are asymptotic to v(—oo) and 
passing through Hv,x with C/^(oo) = ( and U^(oo) = £. Then there exists a positive 
constant a such that for any unite tangent vectors v^, v^ at a; which are asymptotic 
to ( and f respectively, we have distfatU^, gtvG) < ae~t and dist(gtU^,gtv^) < ae_t, 
where gt is the flow. This gives d\st(gTU^,gTU^) < 2ae~r + 1 with r = /x(CO- 
On the other hand we also have (3~1et < dist(gtU^,gtU*) < (3ebt for some positive 
constant /?, which gives e~s > /J"1 and e~s < p1^ when dist(^sC/^,^sC/^) = 1. Hence 

204-1 e S — e r - ^e ^ Therefore r}v and Kx are equivalent on all points in SVlx, 
where SViX is the shadow of Hv,x cased from v(—oo). By compactness of S^ there 

are {vi,...,vn} C SM such that U?SVitX = Soo. Since 0 < 971^. (SVijX fl Ar) < oo, 

we have 9ft|fx is positive and finite on Ar- It follows from Propositions 3.7, 3.5 and 
3.9 the measure ^Ol2Kx is positive on all relative open subsets. Let A C 500\?;(—oo) 
be a 9Jl^o-null set. Let 5 > 0. Note that UX£MSVIX = 5oo\^(—oo). Hence there is 
B c A with B C Sv,z such that m2

Kz(A\B) < 5. But VJl2Kt(B) < cm2
v(B) for some 

c > 0. By finiteness we have 971^ (A) < S. Same argument holds for the rest of the 
proposition. D 
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COROLLARY 4.2.   The measures nx and 9Jtj?   are absolutely continuous with re- 
spect to each other. In-particular Vtii   is supported on Ar- 

Proof. The result follows from Proposition 3.7, 3.5 and Proposition 4.1. □ 

We use Mostow and Gehring's original idea to show the regularity of quasicon- 
formal map [36], [20]. This method was extended in [25]. We will follow their presen- 
tations, but with necessary generalizations that will allow us to prove our theorems 
using results from previous sections. 

Take the unite ball model of H3. Let u be a unit tangent vector at the origin. Let 
Ou be the unit circle on dH3 = S2 which is contained in the unique totally geodesic 
plane perpendicular to u and passing through the origin. Also denote the point u(oo) 
on S2 by <;. Then for any pair (p, q) E Bn := Ou x <; there is a unique semi-circle 
connecting them. The bundle of all these semi-circles is the upper hemisphere £2^ of 
S2. We denote this bundle space by (Qu,7ru,Bu) 

where 7ru is the projection. 
Let (j) : S2 —> Soo be a quasi-conformal embedding conjugate I" to F under 

isomorphism x : F' —> F, here F' is a topologically tame, torsion-free, discrete 
subgroup of PSL(2,C) with Ar' = 52. And let ?/> be the inverse of </> when it is a 
quasi-conformal homeomorphism. 

Let pu be the metric on S2\u(—oo) which is defined same as r]v with v(—oo) = 
0(^(-oo)). The hausdorff measure 97t2u on 52\'u(-oo) with respect to pw-metric is 
the usual Lebesgue measure. Hence there exists a constant u > 0 such that for all 
9 e 52Vz(-oo), we have im2

Pu(BPu(0,r)) = ur2. 

PROPOSITION 4.3 (see [36], [25]). The measure 0*2)^ is absolutely continuous 
with respect to measure dJl1^ on semi-circles. Here DJl^ and 9JtJu are 1-dimensional 
hausdorff measures with respect to the r]v-metric and pu-metric respectively. 

Proof. Let £ be the Lebesgue measure on Bu. Then for all P € Bn we have the 
following derivative 

A(JP) :~ -o XKB^^.rJnB,,) 
exists and finite for £-almost everywhere, see [18]. 

Choose P e Bu with A(P) < oo. For a semi-circle I := 7r~1(P), let l7r(Z) denote 
the r-neighborhood of /, then limsuvr^Q9Jl2v((j)(Ur(l)))/r < oo. For any compact 
K C I with fBlUK) = 0, choose a number C > 0 with 9}t2w(^([/r(0))/r < C. Let 
e > 0 be given, by Besicovic's covering theorem there exists {#i,... ,6k} C K such 
that kr < e, K C UiBp(0i, r) and any three of the balls Bp{6i,r) with distinct centers 
are disjoint. 

Let Si := inf{s > O|^(J3p(0*,r)) C Br7(0(^),5)} and « > 0 (conformal 
constant) provided by Proposition 3.1. Then we have <j>(K) C UijB77(^(^),5i), 
0(52) fl B^^Oij^Si/n) C 4>{Bp{0i,Si)). Since F is hausdorff-conservative and by 
Proposition 3.2, Corollary 4.2, there exists a > 0 such that 

/   u        \  2 i u 

<2K2afc9K2u(^(i7I.(ff))) 

< 2K2Ca(A;r) < const   e, 

i/i i 

< 2K2akm.2riv{$(Ur(K))) < 2K2akm2
nv{4>{Ur{l))) 
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Note the fact that any three of 4>(Bp(6i1r)) do not intersect is used to bound 

Zlm^tfiBtfur))) by ml($(Ur(K)))' 
Therefore the result follows from the last inequality. D 

The balls Bp{6)r), 6 € S2\u(-oo), r > 0 form a Vitali relation for the Lebesgue 
measure 371^. The following derivative 

aWg, (#£„((?, r))) 

exists and finite for OT^-almost every 6 G S2\u(—oo). 

PROPOSITION 4.4.   Let Lip^, 6e defined by Lip^ : 6 —> limsupr_>o
r0(^?r)/r- 

T/zen Lip^ G jL1
2
oc(5

2\u(~-oo),9[)flpu). In-fact there exists a constant k > 0 s^cft #M£ 

y/J{0)/k < lim inf r0((9,r)/r < Iimsupr0(l97r)/r < ky/j(9J. 

Proof. Let e > 0. There is r€ > 0 such that for any r < re we have 

u;/(0)r2/2 < Sn^(0(Bp(fl,r))) < (2u;/(0) + e)r2 

where the fact that 9Jl2u is Lebesgue measure, i.e. Tl2
u(BPu(91r)) = a;r2 for some 

constant LJ > 0 has been used. Since F is hausdorff-conservative and by Proposition 
3.2, Corollary 4.2, there exists some constant a > 0 such that 

(r*(9,r)//3)2/a < m^(Bp(0,r))) < a(r0(0,r))2. 

Hence we have 

y/{u)/2af{0))T < r^O, r) < y/a(2f(0)u> + e))Pr 

and the result follows by letting e —> 0. D 

LEMMA 4.5. The image under <t> of almost every semi-circle has locally finite 
9Jl^ -measure. 

Proof. Let / : fin —> Bu x [0,1] be a diffeomorphism which maps 7r~1(P) over 
P onto P x [0,1]. For every compact subset C C f]u we can find a positive number a 
such that 

• For all x G /(C) the Jacobian of /~1 at x are < a, 
• For all P G BM and y € 7r~1(P) fl C the local dilations at y of f^-isp, are 
_ < a. 

Since (j) is a embedding, 0(Sln) is relative compact subset of S'00\v(—oo) and we have 
by Proposition 4.4, /fi Lip^d9Jt2w < A:29Jl2u(^(Ou)) < oo, and Holder inequality 
gives /Q  Lip^d97l2u < oo. Hence 

/   (/ Lip,d2KMdC<a/     UV<t>or
ldZdt 

JMU yj-K-^p^c ) Jf{c) 

So-/I*, dOT2^ < oo 
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where dt is Lebesgue measure on [0,1].   Now by Proposition 4.3, ^ is absolutely 
continuous on 7r~1(P) therefore 

y7r-1(P)nC 
Pu   <  00- 

Next we adapt the idea in [25] to prove the inequality part of Theorems 1.1. 

Proof. [Proof. Part I of Theorems 1.1 and 1.2] For Theorem 1.2, the inequality 
follows from Theorem 1.5 and Proposition 3.3. Let T and V be as in Theorem 1.1 
and satisfies those conditions. Note that by Proposition 3.3, A-' ^2. Let g be the 
Riemannian metric of M. Set h = (Dr/2)g as the new metric of M. The boundary 

space of (M,g) and (M,h) can be trivially identified, and 77(2/Dr)v = Vvr • The 
critical exponent of F with respect to h is 2, hence by Lemma 4.5 there is a non-trivial 
curve in S^v (—oo) with finite .Dr/2-dimensional hausdorff measure with respect to 
r]v. However as noted before the curvature assumption —b2<K<—lofg implies 
the ry^-metric is a distance on 50o\^(—oo), but the distance-hausdorff dimension is 
> 1 for any non-trivial curves. Therefore we have Dr/2 > 1. D 

LEMMA 4.6. Let V be a divergent, torsion-free discrete subgroup o/PSL(2,C) 
with Ap' = S2 and Dr' = 2. Then the maps (j) and ip are absolutely continuous with 
respect to ay and fix. 

Proof. By ergodicity of F, F' and equivariance of $, -0 and also Proposition 
4.2, its suffices to show there exists a A C S2\u(~oo) with 9Jl2u(A) > 0 such that 
the Radon-Nikodym derivative of </> at every x G A with respect to Wl2u and 9Jt^ 
is non-zero. Using the fact that r}v is a distance function, it follows from Propo- 
sition 4.3, for £-almost all P e Mu the length of 0(7r~1(P)) > 0 is bounded by 
f^-irp) Lip^dSJl^. Hence if we set A := {x G QulLip^x) > 0}, then for £-almost 

alf P G Bu, ^(TT-^P) n A) > 0 which implies $fl2Pu(A) > 0. Therefore the result 
follows from Proposition 4.4. D 

5. Part II of Theorems 1.1 and 1.2. Let ^1)^25^3) £4 £ Soo- The cross-ratio 
|£I>£2J£3»£4| of these four points is defined as 

l&'&'&'&l := e-/3x«1^3)e-/3x«2,W 

This definition is consistent with the hygerbolic space cross-ratio. 
If ri,r2 are discrete subgroups of M such that both Fi^ are divergent, and 

there exists a equivariant (under some group morphism x)> nonsingular (with respect 
to /ii,/i2 Patterson-Sullivan measures on Ai^ and Ar2 respectively), measurable map 
f-.Ar, —>Ar2. Then 

d(/ x /rn2(£,C) = c-^^^^fl(0s(C)dMi(0dw(C) 
where g := dQ^) , and Hi is the measure defined in §3 through /i^. From the proper- 

ties of /, (/ x /)*n2 is a constant a > 0 multiple of Hi. Hence eDr*M}ut)g{g)g(Q = 
dePr-iPnteiC)m Therefore for /ii-almost everywhere we have 
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This was the idea of Sullivan for the following lemma: 

LEMMA 5.1. Let Fi,^ be discrete subgroups oflSO(M) with Dpi = Dr2 and 
r^Fs are divergent Suppose there exists a equivariant nonsingular measurable map 
f : Ar1 —> Ar2 with respect to Patterson-Sullivan measures space (Ap^/ii) and 
(Ar2^2)-  Then f preserves cross-ratio ^-almost everywhere. 

For a finitely generated discrete subgroup F of PSL(2,C). The conservative set 
of F on S2 coincides with Ar up-to Lebesgue measure zero. The group F is called 
conservative if and only if Ar has full Lebesgue measure. Since for a topologically 
tame F, the hausdorff dimension of Ap is equal to Dp, therefore we have the following: 

PROPOSITION 5.2. Let F be a topologically tame, torsion-free discrete subgroup 
o/PSL(2,C) with conservative T, then F is hausdorff-conservative. 

REMARK 5.3. It is a conjecture that all finitely generated discrete subgroup F of 
PSL(2,C) are topologically tame. 

Next we recall the statement of Sullivan's quasi-conformal stability for discrete 
subgroups of PSL(2,C). 

THEOREM 5.4 (Sullivan [43]). Let F be a discrete subgroup o/PSL(2,C). Then 
F is quasi-conformally stable (i.e. if f is a quasi-conformal automorphism of S2 

with /F/-1 C PSL(2,C), then f is a Mobius transformation) if and only if F is 
conservative. 

COROLLARY 5.5. Let N — H3/F be a complete hyperbolic 3-manifold for a con- 
servative F. Then N is quasi-isometrically stable, i.e. If there is a quasi-isometric 
homeomorphism h : N —► M to a hyperbolic manifold M, then N is isometric to M. 

Proof [Proof. Theorem 1.2 part II] By Theorem 1.5, F is divergent for Dr = 2. 
From Proposition 3.3, F7 is also divergent and D?' = 2. Lemma 4.6 then implies / is 
absolutely continuous with respect to ay and IJ,X. Hence by Lemma 5.1, / preserves 
cross ratio cr^-everywhere. By Proposition 3.2, Ap' = S2 and since ay is non-zero 
constant multiple of Lebesgue measure, we can modify / on the Lebesgue measure 
null subset of S2 to a map which is cross ration preserving on S2. We denote the new 
map also by /. By Bourdon's theorem [9], / extends into the space as a isometry, i.e. 
H3 and M are isometric. Hence the result follows from Theorem 5.4. □ 

Proof. [Proof. Theorems 1.1 part II] Here / embeds 52 into SOQ. If we suppose 
Dr = D^ = 2, then by using same argument as the proof of Theorem 1.2, / extends 
to a isometric embedding of H3 into M by [9]. Since f(S2) is a Ap-invariant closed 
subset of 5oo, by Proposition 3.2, /(52) = Ap. Hence the boundary space of the 
isometric embedded image of M3 coincides with Ap, therefore the result follows. D 

Proof [Proof. Corollary 1.3] This follows from Propositions 3.1, 3.3, and Theorem 
1.2. D 
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