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A GENERALIZATION OF THE YAMABE FLOW 
FOR MANIFOLDS WITH BOUNDARY * 

SIMON BRENDLEt 

1. Introduction. Let M be a compact manifold of dimension n > 3 with bound- 
ary dM, and let g be a Riemannian metric on M. We denote by R the scalar curvature 
of M, and by H the mean curvature of dM. Moreover, we denote by 

the mean value of the scalar curvature on M, and by 

-^lmHdA 

JdM
dA 

the mean value of the mean curvature on dM. 

For a closed manifold M, the Yamabe conjecture [22] asserts that in each con- 
formal class there is a metric of constant scalar curvature. In order to find such a 
metric, R. Hamilton introduced the Yamabe flow 

lg = -(R-Tl)g. (1) 

R. Ye [23] proved that the initial value problem (1) possesses a unique solution which 
exists for all t > 0. The Yamabe flow is also studied in a recent work of H. Schwetlick 
and M. Struwe [16]. To determine the asymptotic behavior of the solution, it is 
convenient to distinguish three cases: 

(a) The conformal class contains a metric of negative scalar curvature 
(b) The conformal class contains a metric of vanishing scalar curvature. 
(c) The conformal class contains a metric of positive scalar curvature. 

In cases (a) and (b), it follows from the maximum principle that every solution 
of (1) converges to a metric of constant curvature. The same holds in case (c) if M is 
locally conformally flat (see [23]). 

In this paper, we study two generalizations of the Yamabe problem for manifolds 
with boundary. In the first case, we try to find a conformal metric which has constant 
scalar curvature in the interior and vanishing mean curvature at the boundary. In 
the second case, we look for a conformal metric with vanishing scalar curvature in 
the interior and constant mean curvature at the boundary. These generalizations of 
the Yamabe problem were studied by J.F. Escobar [4, 5]. Related questions were 
addressed by M. Ahmedou [1], V. Felli and M. Ahmedou [6], and by Z.C. Han and 
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Y.Y. Li [9, 10]. 

To construct solutions to these elliptic problems, we study the corresponding 
parabolic problems. In the first case, we start with an initial metric go such that 
HQ = 0. Then we deform the metric by the Yamabe flow 

lg = -(R--R)g (2) 

in M with the boundary condition 

H = 0 

on dM. In the second case, we assume that the initial metric satisfies RQ = 0. In this 
case, we deform the metric by 

^tg = -2(H-H)g (3) 

on dM. Moreover, we require that 

# = 0 

in M. In order to analyze the long time behavior of the solutions of equation (2), we 
consider three cases: 

(la)  The conformal class contains a metric with negative scalar curvature and 
vanishing mean curvature. 
(lb) The conformal class contains a metric with vanishing scalar curvature and 
vanishing mean curvature. 
(Ic)  The conformal class contains a metric with positive scalar  curvature and 
vanishing mean curvature. 

THEOREM 1.1. In case (Ic), we assume in addition that M is locally conformally 
flat and dM is umbilic.   Then every solution to the initial boundary value problem 
(2) converges to a metric with constant scalar curvature in the interior and vanishing 
mean curvature at the boundary. 

To study the asymptotic behavior of the solutions of equation (3), we consider 
the following three cases: 

(Ha) The conformal class contains a metric with negative mean curvature and 
vanishing scalar curvature. 
(lib) The conformal class contains a metric with vanishing mean curvature and 
vanishing scalar curvature. 
(lie)  The conformal class contains a metric with positive mean curvature and 
vanishing scalar curvature. 

THEOREM 1.2. In case (He), we assume in addition thatM is locally conformally 
flat and dM is umbilic. In this case, we also assume that the boundary of the universal 
cover of M is connected.   Then every solution to the initial boundary value problem 
(3) converges to a metric with constant mean curvature at the boundary and vanishing 
scalar curvature in the interior. 
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The evolution equation (2) equals the gradient flow to the functional 

/ 
JM 

V-— /   RdV 
IM 

up to a constant factor. Similarly, the evolution equation (3) is the gradient flow to 
the functional 

A-%=x [    HdA. 
JdM 

The author would like to thank Gerhard Huisken for helpful discussions. 

2. The case of vanishing mean curvature. Let go be a Riemannian metric 
on M such that iJo = 0 on dM. We study the initial boundary value problem 

^ = -(*-£)* 
in M with the boundary condition 

on dM and the initial condition 

for t = 0. 

LEMMA 2.1. For every metric go on M, there exists a metric g conformal to go 
which satisfies one of the conditions (la), (lb), (Ic). 

Proof. Suppose that u € W1,2(M) minimizes the functional 

JM 4(n - 1) JM 

with respect to the constraint 

u2dVQ = l. 
/■ 
JM 

By replacing u by |w|, it follows that u is of one sign.  Hence, we may assume that 
u > 0. The function u satisfies 

rc-2    „ 
-AQ^+TT — RoU = AU 

4(n — 1) 

in M and 

d 
—-u = 0 

4 

on dM. Therefore, the metric g = un-2 go satisfies 

4(n - 1) 
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in M and 

on dM. Prom this the assertion follows. 

4 
Since the equation preserves the conformal structure, we may write g = un-2 go 

for a positive function u on M. Then the scalar curvature of g is given by 

_n±2 /     4(n-l) A „    \ 

This implies 

9        ,       . x 4_ n — 2 .        4_     — 
—^ = (n — 1) u   "-2 AQ^ — (ito u   ^-2 — it) u 

in M. Moreover, the boundary condition H = 0 is equivalent to 

—u = 0 
Wo 

on dM. The standard regularity theory for quasilinear parabolic equations guarantees 
that this equation has a solution on a small time interval. 

PROPOSITION 2.2.  The conformal factor is uniformly bounded for all t>0. 

Proof There are three possibilities: 

(a) Suppose that there exists a metric go in the conformal class such that i?o < 0 
4 

and HQ = 0. If we write g = un-2gQ, then we obtain 

d        ,       .,. 4_ n — 2 .        £_     —x 
—u = (n - 1) u   n-2 AQU — (ito^   n-2 - R)u 

in M and 

OUQ 

on dM. Since i?o < 0, it follows from the maximum principle that the quotient 

maxu/ minu 
x€M       xEM 

is bounded. Since the volume of M is constant, it follows that u is bounded. 

(b) Suppose that there exists a metric go in the conformal class such that RQ = 0 
4 

and Ho = 0. As above, we write g = un-2go- This yields 

d        /       ^   --4- A n — 2 — 
—w = m — 1) ^  "-2 AQW H — Ru 
at 4 

in M and 

d 

wo 
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on DM. Again, the maximum principle implies that 

max u/ min u 

is bounded. Since the volume of M is constant, it follows that u is bounded. 

(c) We now assume that there exists a metric go in the conformal class such that 
i?o > 0 and HQ = 0. By assumption, M is locally conformally flat and dM is umbilic. 
Since dM has zero mean curvature, it follows that dM is totally geodesic. Hence, we 
may double M to obtain a compact manifold without boundary. The result follows 
now from a result of R. Ye [23]. 

As a consequence, we obtain the following result. 

COROLLARY 2.3.  The evolution equation (2) has a unique solution for allt>Q. 
We now want to determine the asymptotic behavior of the solution. 

THEOREM 2.4. The solution converges to a metric of constant scalar curvature 
as t —> oo. 

Proof We define a functional E[u] as 

E[u] = V-^ f 
JM 

4 

where g = un-2gQ. Then we obtain 

SE[u] = 2 V-^ [ {R - R) u'1 SudV. 
JM 

Hence, under the evolution equation (2) the functional E[u] changes according to 

We now define 

lim Elu] = a. 

Since the functional E[u] is real analytic, we can apply the Lojasiewicz-Simon in- 
equality (see [17], Theorem 3 or [12], Proposition 3.3). Therefore, there exists a real 
number 9 such that 0 < 6 < \ and 

{E[u} - a)2*1-'* < C [ (R - R)2 dV 
JM 

for all t>to. Letting 

RdV, 
IM 

= /{R-Rf 
JM 

z2= I  (R-R)2dV 
IM 

we obtain 

2(1-0) 
z(t)2dt) <Cz{Tf 
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for all T > to. By Lemma 4.1 in [12], we conclude that 

rOO 

/    z(t) dt < oo. 
Jo 

Therefore, the limit 

lim u(t) = v 
t—*oo 

exists in L2(M). This proves the assertion. 

3. The case of vanishing scalar curvature. We now consider a Riemannian 
metric go such that RQ = 0 in M. We study the initial boundary value problem 

§-t9 = -(R-R)9 

in M with the boundary condition 

H = 0 

on dM and the initial condition 

9 = 9o 

for t = 0. 

LEMMA 3.1. For every metric go on M, there exists a metric g conformal to go 
which satisfies one of the conditions (Ha), (lib), (He). 

Proof. Suppose that u £ Wl'2(M) minimizes the functional 

/  iVoMpriVb+J1""2^  /    Hou2dVo 
JM 2(™ - 1) JdM 

with respect to the constraint 

/ »2 
JdM 

•2dAo = l. 
JdM 

By replacing u by |ix|, it follows that u is of one sign.  Hence, we may assume that 
u > 0. The function u satisfies 

d n-2    TT —u + — -T- Hou = Xu 
ovo        2(n - 1) 

on dM and 

Aou = 0 

4 

in M. Therefore, the metric g = un-2 go satisfies 

TT       n-2         2_ 

2(n-l) 
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on dM and 

# = 0 

in M. From this the assertion follows. 

4 

As in the previous section, we may write g — un-2 go for a positive function u on 
M. Then the mean curvature of g is given by 

__^_ ,'2(71-1)   d TT    . 

n - 2    9i/o 

This implies 

9 /      ■       IN 2-       ^ n-2/_r 2_ _ 

on 9M. Moreover, the condition i? = 0 is equivalent to 

in M. In the first step, we show that this equation has a solution on a small time 
interval. To this end, we need some estimates for the linearized equation. We begin 
with an estimate for the elliptic problem. 

LEMMA 3.2. Let <j> be an harmonic function M with respect to the a metric go. 
Then we have the estimates 

||V0||I,P(0M) < CII^Hwi.P^Af) 

and 

||V0||LP(aM) < C\\—<l)\\Lp(dM)' 

Proof. The first estimate is a consequence of [20], equation (4.71) on p. 168 and 
equation (4.82) on p. 170. The second estimate follows from [20], equation (4.103) 
on p. 172. 

Since this estimate plays a key role in our subsequent arguments, we give a proof 
for the model problem on the half-space {xn > 0}. For abbreviation, we denote by 
/ the restriction of (j) to the boundary, and by g the normal derivative of / at the 
boundary. Since (/) is harmonic, we have 

z=l        z 

Taking the Fourier transform in the first n — 1 variables, we obtain 

(^-itfOto*")5*0- 
Moreover, we have 

<Kz,o) = m) 
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and 

This implies 

^,xn) - e-K'"- m = ±e-M*» m- 

Prom this it follows that 

W&o) = -(»$, lei) /(O = ||i («, |^|) 5(0- 

Therefore, the assertion follows from Mikhlin's theorem (see [18], p. 109). 

Given a function (f) on dM, we can extend (f) to M such that 

Aocf) = 0. 

We now define 

and 

on dM. Note that 

hence 

BQ<t> = -{n-l)—q 

 2_   d 
Bcj) = —(n — l)u  Ti-2 -—(f) 

B = u  »-2 J50, 

at n — 2       at 

LEMMA 3.3. Let (/> be a solution of the linear initial boundary value problem 

on dM, 

Ao^ = 0 

on dM, and 

0 = 0 

for t = 0.   We assume that u is uniformly bounded above and below.   Then we have 
the estimate 

Mlw^HdMxlO.T]) < C||/||L2(aMx[0,T])' 
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Proof. Integration by parts gives 

4 f \Vo4>\2dV0 = 2 f Vo-^-Vo^Vb 

= 2 [    —t—tdAo 
JdM 9t   du0 

= -2(71-1)/    u-^-2(JL(f))
2dAo + 2 [    f^-$dAQ. 

JdM K9uo  ) JdM    dvQ 

This implies 

(n-1)/    /    u-^(-^<i))2dAodt< f    f    f^-cPdAodt 
Jo   JdM ^duo   ) Jo   JdM    UVQ 

Since u is uniformly bounded above and below, it follows that 

/    /    (^-<t>)2dAodt<C f    [    fdAodt 
Jo    JdM Kau0    J JO    JdM 

Using the estimate 

from the previous lemma, we obtain 

IMIwL^aMxlCT]) < C||/||L2(aMx[0,T])- 

This proves the assertion. 

LEMMA 3.4.   Let m be sufficiently large, and let </> be the solution of the linear 
initial boundary value problem 

9 ,        ,      ^     _2_   9   , 
-^-(n-Vu-^—t + f 

on dM, 

Ao(j) = 0 

in M and 

for t = 0.    We assume that the function u is uniformly bounded above and below. 
Moreover, we assume that ^u^wm>2(dMx[o,T]) < C  Then we obtain the estimate 

||0||wm+l,2(3Jtfx[O/r])  < C\\f\\w™^(dMY.[0,T))' 

Proof. We claim that 

\\4>\\wk+i^{dMx[0,T)) < C||/||vKfc'2(aMx[0,T]) 
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for k < m. To prove this, we proceed by induction on k. For k = 0, the assertion 
follows from the previous lemma. We now assume that the assertion holds for k — 1. 
The function </> satisfies the evolution equation 

with the initial condition 0 = 0 for t = 0. Prom this it follows that 

J^ = SB* - ^ u-1 juBcji + Bf 

and £?</> = 0 for t = 0. The induction hypothesis implies that 

\\<t>\\wk+1'2{dMx[0,Tl) 

< C ||i?o</>||iyfc.2(dMx[0,T]) 

= C Wu^ B(t)\\Wk,2(dMx[0,T]) 

< C \\B(j)\\Wk,2^dMx[QiT^ 

~ ^ ^^    'fifUB(t)\\wk-x>'2{dMx[0,T}) + C ||^/||v^fc-i,2(aMx[o,T]) 

= CWvT"^ gTwSo0||vvfc-i.2(SMx[O,r]) +C\\u~"^ BQf\\Wk-i,2(dMx[Q,T\) 

< C \\Bo<l>\\Wk-i,2(dMx[0iTfi +C||Bo/||w'fc-i.2(0Mx[OlT]) 

< C \\(l)\\wk>2(dMx{o,T]) + Cll/lliyfc.2(aMx[o,T]) 

^C||/ll^fc'2(aMx[0,T])- 

This completes the proof. 

PROPOSITION 3.5.  The initial boundary value problem 

^-g = -2Hg or u 

on dM and 

R = 0 

in M has a unique solution on a small time interval. 
4 

Proof. Letting g = un-2 go, we obtain the initial boundary value problem 

d /..x 2_   d n-2    n=4 
—u = -(n-l)u   —2^—u —U"-2Ho 
dt OVQ 2 

on DM, 

in M and 

Aou = 0 



THE YAMABE FLOW ON MANIFOLDS WITH BOUNDARY 635 

for t = 0. We define a map 7 : Wm>2(dM x [0,T]) -> Wm^2(dM x [0,7]) C 
Wm>2(dM x [0,r]) in the following way: Given a function u G PFm'2(9M x [0,T]) 
satisfying u = 1 for t = 0, let 0 = S^u) be the unique solution of the linear initial 
boundary value problem 

d . ,       lN 2_   d   .     n-2   nui 

on aM, 

AQ^ = 0 

in M and 

for t = 0. We claim that the map JF has a fixed point. To prove this, we consider a 
function 0 such that 

ondM, 

in M and 

d~ .        .. 2_   d   7     n-2^n-4 
-0 = -(n-l)u   .-.—^--^-u.-.^ 

Ao0 = O 

0 = 1 

for t = 0. Then the difference (f) — cj) satisfies 

«(*-*) = -(„-!) „-A^-0) 

- {n - 1) (0-5*3 - <r^) — 0 

-.—2—(«»-a -«—2)ffo- 

on dM, 

Ao(0-0) = O 

in M and 

0-0 = 0 

for * = 0. Since 0 is bounded in WmJrl'2{dM x [0,T]), we conclude that 

- 2 2 3     ~ 
110 " ^Hw^+L^aAf xlO.T]) < C IK^"^ - W"1^^^) ^-^Hw^.a^Mx^T]) 

-^ ii    n~'4       ~ n~4 || 
-f G ||W—2 - M»-2 ||w™>2(dMx[0,T]) 

< C ||u - u\\Wma(dMx[ti,T])- 
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Hence, if T is sufficiently small, then we obtain 

110 - 0||w™.2(dMx[O,T]) < o \\u ~ ^llv^^.2(aMx[0,T])- 

By the contraction mapping principle, the map JF has a fixed point.  Prom this the 
assertion follows. 

To derive uniform estimates for w, we employ the following variant of a result of 
R. Schoen and S.T. Yau [15]. 

PROPOSITION 3.6. Let M be a compact Riemannian manifold with positive mean 
curvature on the boundary and vanishing scalar curvature in the interior. We assume 
that M is locally conformally flat and dM is umbilic. Moreover, we assume that the 
boundary of the universal cover of M is connected. Then the universal cover of M is 
conformally equivalent to a dense open subset Q of Bn. 

Proof. After a conformal change of the metric, we may assume that M has positive 
scalar curvature in the interior and vanishing mean curvature on the boundary. To 
see this, we consider the first eigenfunction of the Laplace operator with the Neumann 
boundary condition 

A n-2       rr -z— ^+^7 —Huu = § 
OVQ        2(n — 1) 

on DM. Then the function u is positive, and satisfies 

—AQU = XU 

in M. This implies 

^ — /    HoudAo = -        —udAo = -      AoudVo^X      udVo. 
[n - 1) JdM JdM wo JM JM 

n • 

2{r 

Since HQ is positive, it follows that A > 0.  Hence, the conformally modified metric 
4 

g = un~2 go has positive scalar curvature in the interior and vanishing mean curvature 
at the boundary. Since dM is umbilic, we conclude that dM is totally geodesic. 
Passing to the universal cover, we obtain a new manifold M such that M is simply 
connected and dM is connected. Since the boundary of M is totally geodesic, we can 
double M. The resulting manifold M will be complete and simply connected. Since 
M has positive scalar curvature, it follows from a theorem of R. Schoen and S.T. Yau 
[15] that M is conformally equivalent to an open subset of Sn whose complement has 
Hausdorff dimension at most ^^. Consequently, M must be conformally equivalent 
to a dense open subset of 5™. 

PROPOSITION 3.7.  The conformal factor is uniformly bounded for all t > 0. 

Proof. There are three possibilities: 

(a) Suppose that there exists a metric go in the conformal class such that Ho < 0 
4 

and RQ = 0. If we write g = un-2gQ, then we obtain 

d t       1N 2_   d n — 2 ,TT 2_     _ 
_-.u=-(n-l)w   n-2 —u (HQU  n-2-H)u 
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on dM and 

AQU = 0 

in M. Since ifo < 0? it follows from the maximum principle that the quotient 

max uj min u 
xedM       xedM 

is bounded on dM. Since the area of dM is constant, it follows that u is bounded on 
dM. 

(b) Suppose that there exists a metric go in the conformal class such that HQ = 0 
4 

and RQ = 0. As above, we write g = un-2go. This yields 

d  2__   d n-2--- -u=-(n-l)u   .-»_«+_*„ 

on 9M and 

Ao^ = 0 

in M. Again, the maximum principle implies that 

max u/ min u 
xedM       xedM 

is bounded on dM. Since the area of M is constant, it follows that u is bounded on 
dM. 

(c) We now assume that there exists a metric go in the conformal class such 
that HQ > 0 and RQ = 0. By assumption, M is locally conformally flat and dM is 
umbilic. By Proposition 3.6, the universal cover of M is conformally equivalent to a 
dense open subset fi of Bn. 

4 

We write g = un-2go, where go denotes the standard metric on Bn. Then the 
function u satisfies u —> oo for x —> Bn \ £1. We will use the Alexandrov reflection 
principle (see [7]) to show that u is bounded. To this end, we consider an arbitrary 
point on the boundary of Bn. We choose a conformal mapping from Bn to the half- 
space Hn — {xn > 0} which maps this point to infinity. The function u admits an 
asymptotic expansion of the form 

for |x| —> oo and some a > 0. We now write gij = w^^Sij. The function w satisfies 

n —2 n — 2 
_ 2 2   a     Y^ ^ 2   biXi 

w=:= |~|n-2 4'Z^      ui^      4'--- 

for |x| —> oo. We reflect the function w at the hyperplane {xi = A}, and denote the 
resulting function by w\. The function w satisfies the evolution equation 

d .       ^ 2_    d n-2 — 
—w = (n — 1) w   n-2 -—w H — Hw 
dt dxn 2 
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on dHn and 

I L 

in Hn. Similarly, for the function w\ we have 

!«* = (n -1)«,; ^ ^ + ^ ^«,A 

on dHn and 

in i7n. If we choose A large enough, then 

w > W\ 

for xi < A and t = 0. In view of the asymptotic expansion for tu, it is clear that this 
is possible. By virtue of the maximum principle, this inequality remains valid for all 
t > 0. Therefore, we obtain 

w > W\ 

for all xi < A and t > 0. In particular, we deduce 

OXi 

for xi = A and t > 0. Using the asymptotic expansion for w, we obtain 

d      _     (n — 2)2Zi2- axi      2IL2~ 6i     ^ n2IL2_ biXiXi 
dxi    ~ \x\n \x\n        ^       |dn+2 

ii ii % ii 

for |a;| —> oo. Hence, for a^i = A we have 

9 (n-2)2ziT1aA     2^61     ^712^ 6^A 
9a:i |x|n Ixl71        *-^      \x 

for |x| —* 00. Thus, we conclude 

-(n-2)aA + 6i < 0, 

hence 

- < (n - 2)A. 
a 

Therefore, the gradient of u at infinity can be estimated as 

^)^<(n-2)A. 
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Similarly, we find 

l(Vo)i"l < c 

u        ~ 

for i = 1,... ,n — 1. Hence, the tangential part of the gradient of logu is bounded 
on every compact subset of DM. Therefore, the function log u is bounded on every 
compact subset of dM. 

LEMMA 3.8.  The mean curvature satisfies the evolution equation 

|ff = -(„-i)|.^ + ^-S) 

on dM. Here, the function H is extended such that 

AH = 0 

in M. 
4 

Proof.  Let go be a fixed metric with #0 = 0.  We write g = un-2gQ.  We then 
have 

—a- /2(n-l)      ,   d 

on dM and 

AQU = 0 

in M. Differentiating both equations with respect to t, we obtain 

in M and 

AoH + 2u-1{Vou,VoH) = 0 

on dM. If we set go = g, we get 

l-tH = -(n-l)lH + H(H-H) 

on DM and 

AiJ = 0 

in M. 

LEMMA 3.9.  The mean curvature is uniformly bounded in Ln~1(dM). 

Proof. Using the evolution equation for the mean curvature we obtain 

If/    liJI"-1 dA) = -(n - I)2 f    sign(ff) |iJ|"-2 ^-HdA 
at \ JdM / JdM OV 

= -(n - l)2(n - 2) f  \H\n-3\VH\2dV 

= -4(n-2) f  \V\H\^\2dV. 
JM 
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Therefore, the expression 

/    \H\n-ldA 
JdM 

is decreasing. 

(n-l)2 

LEMMA 3.10.  The mean curvature is uniformly bounded in L n-2  (dM). 

Proof. For abbreviation, let || • ||p = || • ||LP(aM) and || • ||r,p = || * ||v^r'P(aM)- From 
the proof of Lemma 3.9 we know that 

Jo  JM 

This implies 

rwm^wltdt^ FwiH^wldt+a 
Jo 2' Jo 

Since H is bounded in Ln~1{dM), we obtain 

/ llitfi^ll'^a 
7o 2' 

The Sobolev inequality yields 

J   Illgl^llln-ndt^C, 

hence 

Jo 

Moreover, we have 

/ \\Hr-_\)2dt<c. 
JO n-2 

+ (p-n + l)/    ^"(if-SJdA 

= -(n-l)p(p-l) /  |F|p-2 |ViJ|2 rfF 

+ (p-n + l) [    \H\p(H-H)dA 
JdM 

+ (p-n + l) /    |#n#-;?)cL4 
7aM 

for all p > 2. At this point we use the estimate 

|||ff|i||2i2<c/  |V|tf|i|2<L4+|||tf| 
25 VM 

|H||2 

12 
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(see [19], p. 27). Using the Sobolev inequality, we obtain 

ftm
p

P<-^\\m%2+c\\HrPii+c 

<-^l|l^lfHk-i+c||F||^ + c 

-2 

1 
< 

O n-2 n-2 

hence 

g(p+i)p 

dt1 

for ^ > 2. Here, we have to guarantee that 9(p + 1) > 1. The number 9 is given by 

'p     n — 2\ p n — 2 

^q     n — lj      p+1      n — 1 

Using this relation, we obtain 

0(p+l) > 1 ^=> g > n- 1. 

We now take p = q = \_}^ ■ In this case, we obtain 

H (ri-l)2 (n-l)(2n-3) ""m^^cm^   +c. 
n—2 n—2 d* 

y = \m 
(»-i)a 

d 
dty <Cy 

Jn-3 
»-» +C. 

If we put 

then we obtain 

Prom this it follows that 

- log(y + 1) < Cy^ + C. 

On the other hand, we have shown above that 

[T       n-2 
/    y—^ dt < C. 

Jo 

Thus, we conclude 

y<C 

at time T. Since T is arbitrary, this proves the assertion. 
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LEMMA 3.11.  The mean curvature is uniformly bounded in Lp(dM) for allp > 2. 

Proof. Prom the proof of the previous lemma we know that 

d 
mp

P < - j;i|g|ip,,n-n +ciigiig^1)i|giiSiyi)+C 
dt"   up-    C" 

for all p, q > 2. For q = ^n~_ j   we have by Lemma 3.10 

Iff II* < c. 

Prom this it follows that 

:IW < -TTll^llrtn-D+^'ll^ir  
n-2 dtl\H\\pP < -^11^11^-.) + cmfc^ + a 

Since g > n — 1, we have 9(p 4-1) > 1, hence (1 — 6)(p + 1) < p. Thus, we conclude 
that ||.ff ||p is bounded. 

PROPOSITION 3.12.   The function u is uniformly bounded in W1,p(dM) for all 
t>0. 

Proof Using Lemma 3.2, we obtain 

d _JL- 
\\u\\w1^(dM) < C\\-—U\\LP(SM) < C\\un-2 H - Ho\\LP(dM) < C 

for all p > 2. 

As a consequence, the function u is uniformly bounded in Ca.   Therefore, we 
obtain the following result. 

COROLLARY 3.13.  The evolution equation (2) has a unique solution for allt > 0. 
We now determine the asymptotic behavior of the solution. 

THEOREM 3.14.   The solution converges to a metric of constant mean curvature 
as t —■> oo. 

Proof We define a functional E[u] on the space of harmonic functions on M by 

E[u] = A-^ [    HdA, 
JdM 

4 
where g = un-2gQ. Then we obtain 

5E[u} = 2A-^ [   (H-^u^SudA. 
JdM 

Hence, under the evolution equation (3) the functional E[u] changes according to 

-E[u} = -{n-2)A-^ [   (H-H)2dA. 
y JdM 

d_ 

dt' 

We now define 

lim E\u] = a. 
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Since the functional E[u] is real analytic, we can apply the Lojasiewicz-Simon in- 
equality (see [17], Theorem 3 or [12], Proposition 3.3). Therefore, there exists a real 
number 9 such that 0 < 8 < ^ and 

(E{u} - a)2*1"') < C [   (H-H)2 dA 
JdM 

for all t > to. Letting 

z2= [   {H-HfdA 
JdM 

we obtain 

/    ,oc \2(l-^) 
[   I    z(t)2dt) <Cz{T)2 

for all T > IQ. By Lemma 4.1 in [12], we conclude that 

/     z(t) dt < oo. 
Jo 

Therefore, the limit 

lim u(t) = v 
t—*oo 

exists in L2(dM). This proves the assertion. 
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