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CHAIN LEVEL FLOER THEORY AND HOFER'S GEOMETRY 
OF THE HAMILTONIAN DIFFEOMORPHISM GROUP* 

YONG-GEUN ORt 

Abstract. In this paper we first apply the chain level Floer theory to the study of Hofer's 
geometry of the Hamiltonian diffeomorphism group in the cases without quantum contribution: we 
prove that any quasi-autonomous Hamiltonian path on weakly exact symplectic manifolds or any 
autonomous Hamiltonian path on arbitrary symplectic manifolds is length minimizing in its homotopy 
class with fixed ends, as long as it has a fixed maximum and a fixed minimum which are not over- 
twisted and has no contractible periodic orbits of period less than one. Next we give a construction 
of new invariant norm of the Viterbo type on the Hamiltonian diffeomorphism group of arbitrary 
compact symplectic manifolds. 

1. Introduction. In [HI], Hofer introduced an invariant pseudo-norm on the 
group Ham(M,uj) of compactly supported Hamiltonian diffeomorphisms of the sym- 
plectic manifold (M,u;) by putting 

\m= mf \m (i.i) 

where H *—> <f) means that 0 = <^ is the time-one map of Hamilton's equation 

x = XH(x), 

and ||iJ|| is the function defined by 

\\H|| = / oscHtdt= j {m&xHt-minHt)dt. (1.2) 
Jo Jo 

He also proved that (1.1) is non-degenerate for the case Cn with respect to the stan- 
dard symplectic structure. Subsequently, Polterovich [Pol] and Lalonde-McDuff [LM1] 
proved the non-degeneracy for the case of rational symplectic manifolds and in com- 
plete generality, respectively. We also refer to [Ch] for the proof in the case of tame 
symplectic manifolds based on the Floer homology theory of Lagrangian intersections 
and its simplification to [Oh4]. 

The invariant norm (1.1) induces a bi-invariant distance on 1-iam(M,uj) by 

d^.VO-ll^r1!! 
which is the Finsler distance induced by the invariant Finsler norm 

\\h\\ — max ft — min/i (1.3) 

on the Lie algebra C00(M)/R ~ Tid?tam(M,u) of the group 7iam(M,u). A natural 
problem of current interest in the literature is the study of geodesies in this Finsler 
manifold. 

Hofer [H2] proved that the path of any autonomous Hamiltonian on Cn is length 
minimizing as long as the corresponding Hamilton's equation has no non-constant 
time-one periodic orbit.   This result was generalized in [MS] on general symplectic 
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manifolds for the case of slow autonomous Hamiltonians among the paths homotopic 
with fixed ends: According to [En], [MS] and [Mc], an autonomous Hamiltonian is 
called slow if it has no non-constant contractible periodic orbit of period less than 
1 and the linearized flow at each fixed point is not over-twisted i.e., has no closed 
trajectory of period less than one 

We call two Hamiltonians G and F are called equivalent if there exists a family 
{F5}o<5<i such that 

for all 5 € [0,1]. We denote G ~ F in that case and say that two Hamiltonian paths 
(^Q and (frp are homotopic to each other with fixed ends, or just homotopic to each 
other when there is no danger of confusion. 

In the present paper, we study the length minimizing property of quasi-autonomous 
Hamiltonian paths: Such a Hamiltonian path was proven to be a geodesic in the sense 
of the Finsler geometry [LM2] (up to the time reparameterization). We refer to [Po2] 
for the precise variational definition of geodesies from the first principle and an elegant 
proof of this latter fact. We will just borrow the theorems from [LM2] or [Po2] for a 
concrete description of geodesies in terms of the quasi-autonomous Hamiltonian. 

DEFINITION 1.1. A Hamiltonian H is called quasi-autonomous if there exists two 
points x~, x+ e M such that 

H{x~ ,t) = mmH(x)t))    H(x+,t) = maxiZ"(x,£) 
X X 

for all tG [0,1]- 

It has been proven in [BP], [LM2], [Po2] that a path {(f)*} is a geodesic in the 
variational sense iff the corresponding Hamiltonian H is locally quasi-autonomous. 
Based on this theorem, we just say that a geodesic is the Hamiltonian path generated 
by a locally quasi-autonomous Hamiltonian. 

We now recall Lalonde-McDuff's necessary condition on the stability of geodesies. 
In [Corollary 4.11, LM2]^Lalonde-McDuff proved that for a generic </> in the sense that 
all its fixed points are isolated, any stable geodesic <^, 0 < t < 1 from the identity to (j) 
must have at least two fixed points at which the linearized isotopy has no non-constant 
closed trajectory in time less than 1 in the sense of Definition 1.2 below. 

DEFINITION 1.2. Let H : Mx [0,1] —> R be a Hamiltonian which is not necessarily 
time-periodic and 0^ be its Hamiltonian flow. 

(1) We call a point p € M a time T periodic point if <£#(p) = p. We call 
t € [0,T] »-» (frtfip) a contractible time T-periodic orbit if it is contractible. 

(2) When H has a fixed critical point p over t £ [0, T], we call p over-twisted as 
a time T-periodic orbit if its linearized flow d(j)tH{p)\ t G [0,T] on TPM has a closed 
trajectory of period less than T. 

The following is the main result of the present paper. 

THEOREM I.  Suppose that G is a quasi-autonomous Hamiltonian such that 

(i) it has no nonconstant contractible periodic orbits of period less than one, 
(ii) it has a fixed minimum and a fixed maximum which are not over-twisted. 

Then its Hamiltonian path 0^ is length minimizing in its homotopy class with 
fixed ends for 0 < t < 1, in cases 

(1)  (M,u;) is weakly exact, i.e., ^^(M) = 0 or 
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(2) G is autonomous. 

The case (1) extends the result by Siburg [Si] on R2n, and (2) extends Entov's [En] 
and Lalonde-McDuff-Slimowitz's result [MS] for the slow autonomous case in that it 
removes the slowness assumption in the case of autonomous Hamiltonian, In fact the 
proof of Theorem I (more specifically, Step II in §7) shows that the length minimizing 
property is stable under the C,2-small perturbation of Hamiltonians of the type in the 
theorem and so the theorem still holds for C2-small perturbations of the autonomous 
Hamiltonian G. When there exists quantum contribution, whether Theorem I holds 
is still to be seen. 

Our proof of Theorem I will be based on the Floer homology theory which has 
been established on general symplectic manifolds by now [FOn], [LT], [Ru]. The idea 
of studying the length minimizing property using the Floer theory was introduced 
by Polterovich [Po2] for the case of small autonomous Hamiltonians when the action 
functional is single valued as in the case of exact symplectic manifolds. We general- 
ize his scheme to the case of quasi-autonomous Hamiltonian paths when the action 
functional is not single valued. 

We first summarize Polterovich's scheme of the proof for the case of small au- 
tonomous Hamiltonian when the symplectic form u is exact, say u = — dd. A crucial 
idea behind his scheme is to relate the norm \\h\\ = h(x+) — h(x~) with two homolog- 
ically essential critical values of the action functional 

A(7)= fe-f M7(t))<a 
J-v JO 

corresponding to the maximum and minimum points x+ and x~ of the function ft, 
which is precisely —h(x~) and — ft(x+) respectively. This is carried out first by proving 
some existence result for the Floer continuity equation 

u(—co) G Crit /c, u(oo) = x^ 
(1.4) 

where Ls is the linear homotopy 

Ls = {l-s)k + sF, se[0,l] (1.5) 

for the small autonomous Hamiltonian k and the arbitrary Hamiltonian F with F ~ ft, 
and then by making some calculations involving the action functional and the solution 
of (1.4). (Similar calculations of this sort were previously employed by Chekanov [Ch] 
and by the present author [Oh3,5].) For the existence result, Polterovich exploits 
the fact that when ft is sufficiently small, then the Floer complex is diffeomorphic to 
the Morse complex of ft and so the maximum point on the compact manifold M is 
homologically essential, which in turn is translated into the existence of a solution of 
(1.4), via the fact that the Floer complexes of ft and F are conjugate to each other 
(see Proposition 5.3), when F ~ ft. 

When we try to use the Floer homology theory in the study of quasi-autonomous 
Hamiltonian paths, the first obvious point we need to take care of is that the Hamilton- 
ian may not be one-periodic. This can be taken care of using a canonical modification 
of Hamiltonians into the time periodic ones without changing their time-one maps and 
the quasi-autonomous property (see Lemma 5.2 for the precise statements). 
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There are many difficulties to overcome for the non-autonomous Hamiltonians 
especially when the action functional is not single-valued. However using the full power 
of the Floer homology theory developed by now (in the level of chain, though) and an 
idea of the mini-max theory via the Floer homology developed by the author in [Oh3,5], 
we again reduce the proof of Theorem I to a similar existence result (Proposition 5.3) 
for (1.4) where h is replaced by a quasi-autonomous Hamiltonian. Unlike the small 
autonomous case, such an existence result is highly non-trivial (even in the autonomous 
case) for large Hamiltonians. In fact, the method we employ to prove the existence 
theorem heavily relies on the extensive chain level Floer theory. The latter turns out 
to carry applicability much wider than as we use in the present paper and leads us to 
the construction of the spectral invariants on arbitrary compact symplectic manifolds 
(See §8 and [Oh7]). 

The proof of Theorem I will then be carried out by a continuation argument over 
the homotopy 

ek ^ eoGeo »-> G ^ F 

combined with a delicate mini-max argument via the Floer homology over the adia- 
batic homotopy. One important point that we are exploiting in the first step is that 
when the Hamiltonian is C2-small as in the case of e Ge for e sufficiently small, the 
Floer boundary operator is decomposed into 

d = do + 9' 

where do is the classical contribution and d' is the quantum contribution (see §5, 
and [Oh2] in the context of Lagrangian intersections ). This enables us to define the 
concept of the local Floer homology which is invariant under the local continuation 
(see [Ohl] in the context of Lagrangian submanifolds). In general 9' is not zero, but 
is so either when (M,u) is weakly exact, or when the Hamiltonian is C2-small and 
autonomous which is due to the extra 51 symmetry (see [F12], [FHS], [FOn], [LT]). 
This is one place where we used the hypotheses in Theorem I. 

The second ingredient we use in this paper is several versions of the iVbn pushing 
down lemma culminating in Proposition 7.14. In fact this kind of non-pushing down 
lemma is the heart of the matter in the chain level Floer theory (see [Oh7] for more 
such arguments in general). The proofs of these Non-pushing down lemmas use the 
above hypothesis in a more serious way and also use the concept of adiabatic homo- 
topy and adiabadic chain map. The third ingredient is a Floer theoretic version of the 
Handle sliding lemma (Proposition 6.3). These tools enable us to develop a mini-max 
theory of the action functional in the non-exact case. In the much simpler setting of 
the (weakly-)exact case where the action functional is single valued, similar mini-max 
idea was previously developed by the author in [Oh3,5] for the Lagrangian submani- 
folds on the cotangent bundle, and subsequently by Schwarz [Sc] for the Hamiltonian 
diffeomorphisms on symplectically aspherical symplectic manifolds. As an application 
of this mini-max theory, we prove the following construction of the spectral invariants 

THEOREM II. For each cohomology class 0 ^ a € H*{M, Q) and Hamiltonian 
H, there exists an invariant p{H\ a) such that p{H\ a) G Spec H, and the assignment 
H H-* p(H;a) is C0-continuous. 

In a sequel [Oh7] to the present paper, we have further developed the techniques 
used here and applied them to extend the definition of these spectral invariants to 
the arbitrary quantum cohomology classes a E QH*(M). These are then applied to 
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construct an invariant norm and to obtain a new lower bound for the Hofer norm and 
to the study of the length minimizing property of Hofer's geodesies. 

We would like to thank L. Polterovich for introducing us to the idea of studying 
length minimizing property of geodesies in terms of the Floer theory during his visit 
of KIAS Seoul, Korea, in April 2000 and giving us a copy of his book [Po2] before 
its publication. We also thank D. McDuff for sending us the preprints [MS], [Mc] 
and informing us that the proof in [LM2] already proves the local length minimizing 
property of geodesies once construction of Gromov-Witten invariants on general sym- 
plectic manifolds is established. We would also like to thank her for several helpful 
e-mail communications. Finally we like to thank the referee for several suggestions to 
improve the presentation of the paper. 

2.    Normalization of the Hamiltonian and the action spectrum.  Let 
^(M) be the set of contractible loops and (lo(M) be its standard covering space in 
the Floer theory. We recall the definition of this covering space from [HS] here. Note 
that the universal covering space of Cl^M) can be described as the set of equivalence 
classes of the pair (7, w) where 7 G QQ(M) and w is a map from the unit disc D = D2 

to M such that w\dD — 7: the equivalence relation to be used is that \w#w'] is zero 
in 7T2{M). 

Following Seidel [Se], we say that (7, tu) is T-equivalent to (7,1//) iff 

LJ([W'#W]) = 0    and ci([it;#in]) = 0 (2.1) 

where w is the map with opposite orientation on the domain and wf#w is the obvious 
glued sphere. And ci denotes the first Chern class of (M,u;). We denote by [7, w] the 
F-equivalence class of (7, w) and by TT : &o(M) —> f2o(M) the canonical projection. We 
also call f2o(M) the F-covering space of fio(M). The action functional AQ : f2o(M) —> 
E is defined by 

MhM) = - J *>*"• (2-2) 

Two F-equivalent pairs (7, w) and (7, w') have the same action and so the action is 
well-defined on Qo(M). When a periodic Hamiltonian H : M x (R/Z) —* R is given, 
we consider the functional AH ' fi(M) -» R by 

AH(h w]) = M% *>) - j #(7(*)> t)dt 

Here the sign convention is chosen to be consistent with that of [Oh3,5], 

AH{I) = J 6- J H(7(t),t)dt 

where u = —d6 for the canonical one form 9 = pdq on the cotangent bundle which in 
turn is precisely the classical mechanics Lagrangian on the cotangent bundle. 

We would like to note that under this convention the maximum and minimum 
are reversed when we compare the action functional AQ and the (quasi-autonomous) 
Hamiltonian G. 

We denote by Per(H) the set of periodic orbits of XH- 
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DEFINITION 2.1 [ACTION SPECTRUM]. We define the action spectrum of H, 
denoted as Spec(H) C R, by 

Spec(H) := {AH{Z,W) G R | [Z,W} G QO(M)^ € Per(ff)}, 

i.e., the set of critical values of AH '• fi(M) .—> R. For each given z E Per.(fZ"), we 
denote 

SpecCff;*) = MH(^W) ^^ I (z,w) E TT"
1
^)}. 

Note that Spec(iir; z) is a principal homogeneous space modeled by the period 
group of (M, u) 

Tu = r(M,u;) := {a;(A) | A E 7r2(M)} 

and 
Spec(iJ) = UzGper(//)Spec(i7; z). 

Recall that T^ is either a discrete or a countable dense subset of R. 

LEMMA 2.2. Spec(iJ) is a measure zero subset o/R. 

Proof. We first note that Spec(iJ; z) C R is a countable subset of R for each z. 
We consider the Poincare return map in a tubular neighborhood of each z E Per(JEJ). 
More precisely, we choose a small neighborhood V C M of z(0). We identify V with 
2n-ball B2n(5) with the point z(0) identified with the center of the ball. Choose 
another ball neighborhood V7 = B2n(5f) with V C V such that the (first) Poincare 
return map denoted by 

RziV^V'-tP^tM 

is well-defined. We now define a continuous map from V to the space of piecewise 
smooth maps from S1 = R/Z on M as follows: for each p E V, we first follow the flow 
of Xjy and then follow from Rz(p) to p by the straight line under the identification 
of Vf with B2n(5f). We reparameterize the domain of the loop by re-scaling it to be 

[0,1]- 
We denote by zp the loop corresponding to p E V constructed as above, and by 

Vz C QQ(M) the image of the assignment p »-> Zp. Obviously zp is homotopic to z and 
so any given disc w bounding z can be naturally continued to bound the loop Zp. We 
denote by Wp the disc continued from w and corresponding to p E V. It can be easily 
checked that the function 

h : TT"
1
^) -» R;    ft([^p,iyp]) := AH([ZP,WP]) 

defines a smooth function on 7r~1(Vz) and its critical values comprise those of AH near 
Spec(H]z). This can be proven by writing Andzp^Wp]) explicitly and by a simple 
local calculation. Noting that 7r_1(Vi) is a finite dimensional (in fact, 2n dimensional) 
manifold, Sard's theorem implies that the set of critical values is a measure zero 
subset in R. Since a finite number of such tubular neighborhoods together with their 
complement cover M, Spec(H) C R is a finite union of measure zero subset of R and 
so itself has measure zero. D 

For given </> E Ham(M,uj), we denote by H i-+ (/) if </># = 0, and denote 

W(0) = {H\H^(P}. 
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We say that two Hamiltonians H and K are equivalent if they are connected by one 
parameter family of Hamiltonians {^5}o<s<i such that Fs i—> 0 i.e., 

^ps = 0 (2.3) 

for all s G [0,1], We denote by [H] the equivalence class of H. Then the universal 

covering space Ham(M,Lu) of Ham(M,uj) is realized by the set of such equivalence 
classes. 

Let F, G i—> (f) and denote 

ft = <&> ^ = #?> and ht^ ft09T1' 

Note that /i = {ftt} defines a loop based at the identity. Suppose F ~ G so there 
exists a family {i?s}o<s<i C W(0) with Fi = F and i^0 = G and satisfying (2.3). In 
particular ft defines a contractible loop. If we denote // = <^,s, this family provides a 
natural contraction of the loop ft to the identity through 

h-.s^f'og-1;     fsog-\t):=ftog;\ 

which in turn provides a natural lifting of the action of the loop ft on f2o(M) to £IQ{M) 

which we define 
ft. [7?ly]  = [ft7,ft^] (2.4) 

where fttt; is the natural map from D2 obtained from identifying ft : [0,1] x [0,1] —> 
7iam{M,u) as a map from D2. 

Even when i? is not homotopic to G and so ft is not contractible, note that the 
(based) loop group ft(7iam(M,u),id) naturally acts on the loop space fl(M) by 

{h-Y)(t) = h{t)m) 

where ft G Q(Ham(M1u)) and 7 G f2(M). An interesting consequence of Arnold's 
conjecture is that this action maps the particular component £IQ(M) C fl(M) to itself 
(see e.g., [Lemma 2.2, Se]). Seidel [Lemma 2.4, Se] proves that this action (by a 
based loop) can be lifted to Qo(M). In this paper, we will consider only the action by 
contractible loops in ?iam(M,uj). 

We now study the behavior of the action spectrum Spec H when H varies. In 
particular, we would like to study the continuity property of certain critical values 
which are relevant to the uniform minimum point of the given quasi-autonomous 
Hamiltonian. For this purpose, we need to normalize the spectrum SpeciZ". We will 
achieve this by restricting ourselves to HQ{4>) the set of normalized Hamiltonians with 
H 1—> cj) by fMHtdn = 0 as in [Sc]. The following is proved in [Oh6] (see [Sc] for 
the symplectically aspherical case where the action fuctional is single-valued. In this 
case Schwarz [Sc] proved that the normalization works on Ham(M,io) not just on 

liam{M,u) as long as F, G »-» 0, without assuming F ~ G). 

PROPOSITION 2.3 [THEOREM I, OH6]. Let F, G G HO(0) and J7 = {Fs}se[oA] 

be a path in Wo(^) s^cft that F0 = G and F1 = F. Denote hf = // o g^1 and 
hs • [zy w] = [fts - z,hs • w] for a z G Per(G). Then the function x '- [0,1] —► R defined 
by 

x{s) = AFs(hs •{z,w)) 
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is constant. In particular, we have 

Spec(G) = Spec(F). 

From now on, we will always assume that the Hamiltonian functions are normal- 
ized so that 

/ Htdfi = 0. (2.5) 

3. Floer homology with real filtration. 

3.1. Behavior of the filtration under the chain map. For each given generic 
H : M x S1 —> R, we consider the free Q vector space over 

CritAH = {[z,w] e QQ(M) I z € Per(H)}. (3.1) 

To be able to define the Floer boundary operator correctly, we need to complete 
this vector space downward with respect to the real filtration provided by the action 
AH([Z,W]) of the element [z,w] of (3.1). More precisely, 

DEFINITION 3.1. We call the formal sum 

(3 =       J2       a[ztw][zM> alz,w] G Q (3.2) 
[z,w]eCntAH 

a Novikov chain if there are only finitely many non-zero terms in the expression (3.2) 
above any given level of the action. We denote by CF(H) the set of Novikov chains. 

Here, we put 'tilde' over CF to distinguish this Q vector space with more standard 
Floer complex module over the Novikov ring in the literature. Note that this is an 
infinite dimensional Q-vector space in general, unless ^(M) = 0. It appears that for 
the purpose of studying Hofer's geometry this set-up of the Floer homology with real 
filtration on the F-covering space QQ(M) suits better than the more standard Floer 
homology on f2o(M) with the Novikov ring as its coefficient, although they provide 
equivalent descriptions. 

Since we will frequently use the chain level property of various operators in the 
Floer theory for the study of changes of the action under the chain map, we briefly 
review the construction of the basic operators in the Floer homology theory [F12]. 
Let J = {Jt}o<t<i be a periodic family of compatible almost complex structures on 

For each given pair (J, i?), we define the boundary operator 

d : CF(H) -> CF(H) 

considering the perturbed Cauchy-Riemann equation 

ffc+^ff-^MH (33) 
[ limT_+_00 u(r) = z  , lim^oo u(r) = z+ 

This equation, when lifted to £IQ(M), defines nothing but the negative gradient flow 
of AH with respect to the L2-metric on Q,s(M) induced by the metrics gjt := u;(-, Jf) . 
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For each given [z~,w~] and [2:
+

,K;
+

], we define the moduli space Mj([z~,w~], [z+,w+]) 
of solutions u of (3.3) satisfying 

w~#u^w+ (3.4) 

d has degree —1 and satisfies d o d = 0. 
When we are given a family (j.H) with H = {H

S
}Q<S<I and j = {^lo^s^i? the 

chain homomorphism 

h{m:CF{J\H0)^CF(j\Hl) 

is defined by the non-autonomous equation 

f f + ^(T)(f -X^2(T,(U))=0 
[ limr^_00u(r) = 2:_,limT_(00u(T) = z+. 

where p*, i = 1,2 is functions of the type p : M —> [0,1], 

, .      f 0    for r < -R 
P{T) = \1    iorr>R 

p'(T) > 0 

for some R > 0. fyj,?-^ has degree 0 and satisfies 

9(ji,/ji) O /i(jVH) = hfa-H) od(J0,H0)- 

Finally when we are given a homotopy (i,H) of homotopies with j = {j^}, 
T-C = {TY/c}, consideration of the parameterized version of (3.5) for 0 < K < 1 defines 
the chain homotopy map 

H-.CFiJ^H^-^CFiJ^H1) 

which has degree +1 and satisfies 

tyii.Wi) - h(j0ino) = d{Jl,Hi) oH + Hod^^oy 

By now, construction of these maps using the relevant moduli spaces has been com- 
pleted with the rational coefficient (See [FOn], [LT] and [Ru]). We will freely use this 
advanced machinery throughout the paper. However the main stream of the proof 
can be read independently of these papers once it is understood that the bubbling- 
off-spheres is a codimension two phenomenon, which is exactly what the advanced 
machinery establishes. Therefore we do not explicitly mention these technicalities in 
this paper, unless it is absolutely necessary. 

The following upper estimate of the action change can be proven by the same 
argument as that of [Oh3]. Because this will be a crucial ingredient in our proof, we 
include its proof here for reader's convenience. 

PROPOSITION 3.2 [THEOREM 7.2, OH3]. Let H,K be any Hamiltonian not 
necessarily non-degenerate and j = {J

S
}S^Q^ be any given homotopy and Hl'Ln = 

{^s}o<s<i &e the linear homotopy Hs = (1 — s)H -f sK.  Suppose that (3.5) has a 
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solution satisfying (3.4)-  Then we have the identity 

AF{\Z+,W+))-AH{[Z-,W-)) 

= "/ lIXxM " /l P'iT){F^u{r,t)) - H(t,u(r,t))) dtdr 

5- + /   -mm(Ft-Ht)dt 
dr jpi(r)     J0      x£MK ' 

< /   - miniFt - Ht) dt 

In particular, when H and K are nondegenerate, the canonical chain map 

hlHK - CF(J>H) -> CPU K) 

restricts to 

(3.6) 

(3.7) 

(3.8) 

^(—oo,a] -(-oo,a-/ mm(K-H)dt] 
h%n

K : CF'  "'-(J, H) - CFX     '"     "'"'(J, K) (3.9) 

and so induces the homomorphism 

j.  -(—oo,a1 v ——-(—oo,a-- f mm(K—H)dt] t 
hl^K'.HFK       \j,H)-*HFK J      K (J,K) 

Proof. We fix J here. Let [z+,iy+] G CF(iif) and [z'^w] € CF(iT) be given. 
As argued in [Oh3], for any given solution u of (3.5) and (3.4), we compute 

f00   d 
AK({Z

+,w+]) - AH{[Z  ,W ])= j^{AHP2ir){u{T))dr. 

Here we have 

'ftfl^CT), 
^ [AHP^r)(M(r)) = dAHp2(r) Mr)) (-^) - /   (    gr    ) fa, *) *• 

However since u satisfies (3.5), we have 

dAHP2(r)(u(T))^J = j   w(jfi-XffP2(r)(u),^dt 

~-f Jo 

(3.10) 

du 
rPl(T) 

(3.11) 

and 
f1 /dHp2^\ f1 

j    (     dT    y%t)dt = -]   P'2(T)(K - H)(u,t)dt. (3.12) 

The identity (3.6) follows by integrating (3.10) over r after substituting (3.11), (3.12) 
into (3.10). (3.7) follows from (3.6) and the inequality /?2(r) ^ 0- (3-8) is obvious 
and (3.9) follows from (3.8) by the definition of the chain map. This finishes the 
proof. D 
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PROPOSITION 3.3 [LEMMA 4.3, OH3]. For a fixed H and for a given one param- 
eter family J = {Js}s€[o,i], the natural chain map 

h7:CF{J0,H)->CF{j\H) 

respects the filtration. 

Proof. A similar computation, this time using (3.2) and (3.3) with H fixed, leads 
to 

du 2 /oo       rl 

/ dr 
<0. 

We refer to the proof of [Lemma 4.3, Oh3] for complete details. □ 
We would like to remark that there is also some upper estimate for the chain 

map over the general homotopy or for the chain homotopy maps. This general upper 
estimate is used in our construction of the spectral invariants in [Oh7]. 

3.2.    The adiabatic homotopy and the adiabatic chain map. For our 
purpose of using the Floer theory in the study of Hofer's geometry, we also need to 
consider a family version of the Floer homology to keep track of the behavior of the 
action spectrum over one parameter family of Hamiltonians as in §2. 

Let (j) e Ham(M,uj) and J7 = {i713}^^,!] be a path in W(0). We normalize Fs so 
that (2.5) (and so Proposition 2.3) holds. With this normalization, if Spec (G) C R 
were isomorphic to F^Z or {0} like the case where iT2(M) = 0 or more generally where 
(M, u) is integral, the "adiabatic" homotopy 

/i^6:aF(J,G)->aP(J,F) 

as defined in [MO 1,2] will induce an isomorphism 

hfb:HFK       \j,G)-^HF{       \j,F) 

for any a 6 E. Since we will use this adiabatic homotopy in an essential way later, we 
carefully explain how it is constructed following the exposition from [MOl,2]. 

Suppose that there is a 'gap' in the spectrum Spec (G) = Spec (Fs), i.e, that 
there is a positive number e > 0 such that 

|A-ju|>e 

for all A ^/i G Spec (G). 
Since s >—> Fs is a smooth path, there exists some <5 > 0 such that 

\\FU - F°\\Co < | (3.13) 

for all u, s € [0,1] with \u — s\ < S. We consider the partition 

1:0 = to <ti <-" <tN = 1 

so that 
\tj — tj+i\ < 5 for all j. 

By Proposition 3.2, the chain map 

hl™ : CF(FU) -> CF(FS) 
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over the linear path 
C:r^(l-r)Fu+rFs; re [0,1] 

restricts to 

for any u,s £ [0,1] with \u - s\ < S. Similarly, we have 

h1™: CF1~00,X'\F') -> CF^^'+V") 

for any A7 G E. Combining these two, we have the composition 

hl£ o /4» : CFl~00'X\r') - gF("00,A+¥l(i^). 

By the condition (3.5) and the gap condition, all of these three maps in fact restrict 
to the same levels and induces homomorphisms 

/^ ^("00'V«) - ^(-00'V) 
(3.14) 

/^ l^"00'V) - i^-00'Vu) 
and 

hl£ o hg : HF( "'^(F") -> JTF( ^ V"), 

provided A is chosen sufficiently close to Spec (G). However, if we choose 5 sufficiently 
small, we can also prove the identity 

C 0 >&" = huu(= id ) on 5F("0O,A)(Fu) 

which implies that (3.14) is an isomorphism for all u, s with |w — 5| < S. By repeating 
the above to (u, s) = (tj,tj+i) for j = 0,... , iV — 1, we conclude that the composition 

/»'&_, ° Citi-a 0 •' •' o/lMo = CF(.G) -» CF^) (3.15) 

restricts to 

^x o • • • ° C : 5F("00,A1(G) - CF("00'A1(^) 

for all 1 < j < N, and so induces the composition 

>$,_> ° • • • ° Mffa 
: HF^'^iG) -, ift^'V') (3.16) 

which becomes an isomorphism. In particular, we have the isomorphism 

/C-x 0 • • • 0 Mi7o = HF^'^iJ, G) - ^F^^'CJ, F) (3.17) 

DEFINITION 3.4. Let / : 0 < ei < €2 < • • • < eN = 1 be a partition. We define its 
raes/i, denoted as A/, by 

A/ := max|^+i — ^1. 
j 

We call the associated piecewise continuous linear path £i#£2# * • • #C>N-i and the 
chain map (3.15) the adiabatic homotopy, denoted as //, and the adiabatic chain map 
over the path T. We denote 

^ = >%_! 0 • • • ° ^""0 •• ^(G) ^ ^i(^)- (3-18) 
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We define the mesh A (^7) of the adiabatic homotopy J7/ along the path J7 to be 

A(.Fj):=      max      ( f  -mm(F^ - F^1)dt,  [ max(^ - F^1)dt )    (3.19) 
J=O,-.,N-I ly0 70 J 

We simply denote by J7*"*6, /i^6 when we do not specify the partition /. Note that the 
mesh of the adiabatic homotopy can be made arbitrarily small by making A/ small. 

This adiabatic construction of homotopy in the chain level will be used in a crucial 
way to study the global case of the length minimizing property of geodesies, where 
the action spectrum is not necessarily fixed and does not have a 'gap' in general. 

4. C2-small Hamiltonians and the local Floer complex. 

4.1. The local Floer complex. In this section, we consider C2-small Hamil- 
tonians F and the subset Q;vA(M) of loops 7 with (7(0), j(t)) € M x M contained in 
a fixed Darboux neighborhood JVA of the diagonal A C M x M for all t G [0,1]. In 
particular, any periodic orbit z of XH contained in QN& {M) has a canonical isotopy 
class of contraction wz. We will always use this convention wz whenever there is a 
canonical contraction of z like in this case of small loops. This provides a canonical 
embedding of Qj/vA(M) C Clo(M) defined by 

z-> [z,wz]. 

We denote by Tis the set 

rts = {F : [0,1] x M -> R I \\F\\C2 < 6 and   f  Ft = 0 for allt}. 
JM 

Imitating the construction from [F12] and [Ohl], we define 

DEFINITION 4.1. For any (J,F) € JUJ{M) x H5 and for the given Darboux neigh- 
borhood TVA of the diagonal A C M x M such that 

0^(A) C Int A^A, 

we define 

M(J,F: NA) = {ue M(J, F) j (U(T)(0), w(r)(t)) G Int A^A for all r}. (4.1) 

Consider the evaluation map 

ev : M(J,F : TVA) -> ^NA]    ev(u) = u(0). 

For each open subset U C M x M with A C U C M x M, we define the local Floer 
complex in Qu by 

S( J, F : W) := et;(^( J, F:U))C Qu- (4.2) 

We say S(J,F \U) is isolated in W if its closure is contained in the interior of fi^. 

The following can be proved by the same method as that of [F12] (See Proposition 
3.2 [Ohl]), to which we refer readers for its proof. 
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PROPOSITION 4.2. If S(J,F : U) is isolated inU, then for all {J'.F1) C00-close 
enough to (J,F) in the C00-topology, S^'^F' : U) is also isolated in U. 

Using this proposition, we can define the local Floer homology, denoted by HF(J, F 
U). Furthermore, the restriction of the action functional to the image of the embed- 
ding SIN&{M) C SIQ(M) provides a filtration on the local Floer complex. Proof of the 
following proposition is standard combining the existing methods in the Floer theory 
(see [§3, Ohl]). 

PROPOSITION 4.3. Let U be as above and F, F' e H5. Assume that S > 0 so 
small that (4-2) holds for F, F'. Then there exists a canonical isomorphism, we have 

h{j:U) : HF(J, F : U) -> HF(J, F' : U) (4.3) 

whose matrix elements are given by the number of solutions of (4-4) below whose 
images are contained in U: 

du 
dr + j(%£-XHpir)(uj)=0 

u(-oo) =xe CF(F : W),    u{oo) =ye CF(F' : U) (4-4) 
I    WX#U rsj  Wy. 

Following [Ohl], we call thin trajectories the solutions of the Cauchy-Riemann 
equations defining the boundary map or the chain map whose images are contained 
inZ^. 

4.2. Fix (f)Q versus A D graph (pQi comparison of the two Floer ho- 
mology. The main goal of this sub-section is to prove that when G is a C2-small 
quasi-autonomous Hamiltonian, the minimum point a;-, which corresponds to a (lo- 
cal) maximum point of AQ in the local Floer complex, is homologically essential in 
the local Floer complex. There does not seem to be a direct way of proving this in the 
context of the Floer theory of Hamiltonian diffeomorphisms. We will need to use the 
intersection theoretic version of the Floer theory of Lagrangian submanifolds between 
A and graph (J)Q in the product (M, —u) x (M,a;). This kind of comparison argument 
has been around among the experts in the Floer theory but never been rigorously 
carried out before. As we will see below, contrary to the conventional wisdom in 
the literature, this comparison does not work in the chain level but works only in the 
homology level. 

We now compare the local Floer homology HF(J, G : U) of C2-small Hamiltonian 
G and two versions of its intersection counterparts, one HF-J®J,O(A, graph (J)Q : U) 
and the other iLF.^^-^oec^A, A : U). We will be especially keen to keep track 
of filtration changes. 

First we note that the two Floer complexes M-J<$J,O(A, graph ^ : U) and 
A

/
(_J0(0G)*J)O©G(^)^ 

: W) are canonically isomorphic by the assignment 

(7WI7(<))-(7(i),(^)-1(7)(<)). 

and so the two Lagrangian intersection Floer homology are canonically isomorphic: 
Here the above two moduli spaces are the solutions sets of the following Cauchy- 
Riemann equations 

r^ + (-JeJ)i^o 
l[/(T,0)eA, [/(r, 1)6 graph 0^ 
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and 
(-</e(<^)*J)(f -XO©G(CO)=0 

C/(r,0)EA, C/(r,l)€A 

dU   , 

respectively, where U = (wi, 1x2) : M x [0,1] —> M x M. The relevant action functional 
for these cases are given by 

AQ{[T,W]) = - fw*{-uj®uj) (4.5) 

on n(A, graph (/>},: M x M) and 

AeG([r, w]) = A(r, w) - / (o © G)(r(t), t) dt (4.6) 

on fi(A, A : M x M) where we denote 

ft(A, graph ^ : M x M) = {F : [0,1] -> M x M | r(0) € A, r(l) G graph 0^} 

and similarly for fi(A, graph (I)Q:MX M). Again the 'tilde' means the covering space 
which can be represented by the set of pairs [F, W] in a similar way (see [§2, FOOO] for 
the complete discussion on this set-up for the Lagrangian intersection Floer homology 
theory). The relations between the action functionals (4.5), (4.6) and (2.1) are evident 
and respects the filtration. 

Next we will attempt to compare HF(J, G; U) and HF-. J0J)O©G( A, A : U), With- 
out loss of any generality, we will concern Hamiltonians G such that G = 0 near 
t — 0, 1, which one can always achieve by perturbing G without changing its time-one 
map (See Lemma 5.2). 

It turns out that there is no direct way of identifying the corresponding Floer 
complexes between the two. 

As an intermediate case, we consider the Hamiltonian G' : M x [0,1] defined by 

0 for 0 < t < \ 

2G(x,2t)    for i <*<1 '   ■ 

and the assignment 

f u ior u ^ z *< T; 

(uo, ui) € M-J©J,O©G(A, A : U) i-+ v G M{J, G' : U) (4.7) 

with U(T, t) := U^#UI(2T, 2t). Here the map uo#ui ■: [0,2] —> M is the map defined 
by 

—JL    (   +\     / wo(r,l-t)        for 0<t<l 
t ui(r,t - 1)        for 1 < t < 2 

is well-defined and continuous because 

uo (r, 1) = uo (r, 0) = ux (r, 0) 

ui(r, 1) = ifco(r, 1) = IZO(T, 0). 

Furthermore near t = 0,1, this is smooth (and so holomorphic) by the elliptic 
regularity since G' is smooth (Recall that we assume that G = 0 near t — 0, 1. 
Conversely, any element v G M(J,Gf : U) can be written as the form of uo#Ui 
which is uniquely determined by v. This proves that (4.7) is a diffeomorphism from 



594 Y.-G. OH 

.M_jej,oeG(A, A : U) to M(J,Gf : U) which induces a filtration-preserving isomor- 
phism between i7F_jej,oeG(A, A : U) and HF{ J, G' : U) 

Finally, we need to relate HF(J, G : U) and HF(J, G' :U). For this we note that 
G and G/ can be connected by a one-parameter family G = {G'5}o<s<i with 

JO for 0 < t < § 

And we have 
(JJQS   = 

1    -^    for all 5 G [0,1]. 

Noting that there are only finite number of periodic trajectories in CF(G : W), the 
"adiabatic argument" explained in §3 indeed proves that the adiabatic homomorphism 

/^f : CF(Gf : U) -+ CF(G : U) (4.8) 

respects the filtration and so the induced homomorphism in its homology 

hgb : HF(J, G' : U) -* HF(J, G : U) 

becomes a filtration-preserving isomorphism. 
We note that S{ J, 0 : U) is isolated in ZY. Therefore if follows from Proposition 

3.1 that if ||G||c2 and II^Hc^ are sufficiently small, both S(J,G : U) and S(J,K : U) 
are also isolated in U. 

We now apply the above discussion to the C2-small quasi-autonomous Hamilton- 
ian G to prove the following homological essentialness of the minimum points of G in 
the local Floer homology. Recall from the remark in the beginning of §2 that the min- 
imum of G corresponds to the maximum of the action functional and vice versa. We 
quote the following from [Definition 13.2.F, Po2] for a formulation of the homological 
essentialness of the critical point 

DEFINITION 4.4. Let (C,c?) be a complex with a given basis B — {ei,--- ,6^}. 
An element e G B is called homologically essential if for any sub-complex K of C such 
that 

iircSpan(5\{e}), 

the induced map H* (K, d) —> H* (C, d) is not surjective. 
For example, any (local) maximum point of a Morse function on compact M is 

homologically essential in its Morse homology complex (see e.g., [Corollary 13.2.H, 
Po2] for its proof). 

PROPOSITION 4.5.. Suppose that ||G||c2 < £ wi£/z 5 so small that graph cpQ c U 
lies in the given Darboux neighborhood of A C M x M. Suppose that G is quasi- 
autonomous with the unique maximum point x+ and minimum point x~. Then the 
critical point x~ is homologically essential in S(J, G \U). 

Proof. In the above discussion, we have shown that M{ J, G* : U) is diffeomorphic 
to A

/
1-J©J,O©G(A, A : U) = A/((_j0j)?o(A,graph (fy : U). We will first show that 

the intersection point {x~ ,x~) is homologically essential in the latter Floer complex, 
which in turn will imply the homological essentialness of x~ in S{ J, G' :U). 

Identifying U with a neighborhood of the zero section of the cotangent bundle 
T*A, we denote by JA the canonical almost complex structure on T*A associated to 
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the Levi-Civita connection of a given Riemannian metric on A. Since the image of 
A/((_j0j)o)(A,graph (J)Q : U) is isolated in U, we may perturb — J ® J to Jf in U so 
that J' = JA near the boundary of U and also that 

M{-jej)(A,graph (j)1G:U)= .Mj/(A,graph </>}, : U). 

We connect J7 and JA by a path Jt on U so that Jt = JA near the boundary for 
all t £ [0,1]. Noting that T*A is pseudo-convex with respect to JA, the two local 
Floer complexes Sj* (A, graph </)Q : U) and S^ (A, graph (f)^ : W) can be connected 
by an isolated continuation in U. Recall from Proposition 3.2 that this continuation 
preserves the filtration of the Floer homology. 

On the other hand graph (J)Q is diffeomorphic to graph dS C U C T*A for a 
generating function of the Lagrangian submanifold graph (J)Q C T*A, if G is C2- 
small. Moreover x~ corresponds to (a;~,a:~) which is the minimum point of the 
generating function 5 : A —> R. Since M (and so A) is assumed to be compact, 
(x~,x~) is homologically essential in the Morse homology of —5. On the other hand, 
.MjA(A,graph(-dS') : U) is diffeomorphic to MMorse(-S,g) (see [FOh] for its proof), 
where JA is the almost complex structure on T* A that is associated to the Levi-Civita 
connection of a chosen metric g on A. Therefore (x~,x") is homologically essential 
in MjA (A, graph (J)Q : U). Combining all these, we derive that the constant solution 
x~ is homologically essential in the local Floer complex M(J,G' : U). 

By the uniqueness of the minimum points, under the chain isomorphism (4.8), 
the image h^'b(x~) must involve x~ in its expression and so x~ is also homologically 
essential in <SjA(J, G : U). We refer readers to the proof of this kind of result in a 
more difficult context in §7. D 

5. Calculation. In this section, we start with the proof of Theorem I in the 
introduction. 

We consider the rescaled Hamiltonians 

eGe = 6G(-,et)    0 < e < 1. 

and choose CQ > 0 so small that it has no non-constant contractible periodic orbit for 
all 0 < e < CQ. 

We first prove the following simple lemma. 

LEMMA 5.1. Let {G*} be a sequence of smooth Hamiltonians such that Gi —* GQ 

in C0-topology and (pQ —* ^Go in C®-topology. If all Gi are length minimizing over 
[a, b], then so is GQ. 

Proof. Suppose the contrary that there exists F such that F ~ GQ, but ||F|| < 
||Go || • We choose S > 0 with 

M<l|Go||-*. 

Therefore 

WH < \\Gi\\ - ±6 (5.1) 

for sufficiently large i. We consider the Hamiltonian Fj defined by 

Fi := {GijfG^ttF 

= Gi- GotthJ + Fi^Go 0 ^GT
1
) (5-2) 
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This generates the flow </>£. o (0^ ) 1 o ^ and so Fi ~ G^. This implies, by the 
hypothesis that G* are length minimizing over [a, 6], we have 

l|Gi|| < ll^ll 

and so 

II^11 < llflll - \S (5-3) 

for all sufficiently large i. However since Gi —> GQ, ^d -* 4>GQ by the hypotheses 
(and also so (J)G0 ° (^GJ^

1
 —» id) in G0-topology, we have Fi -* F in G0-topology. 

Therefore we have 

.lim ||fi|| = ||F|| 

which gives rise to a contradiction to (5.3). D 
Now, using the Floer homology theory, we would like to show 

\\G\\<\\F\\ 

for any F ~ G when the quasi-autonomous Hamiltonian G satisfies the hypothesis 
that there is no non-constant contractible periodic orbits. However we need to take 
care of a problem before applying the Floer theory, that is, G not being time-periodic. 
The following lemma will be important in this respect. 

LEMMA 5.2. Let H be a given Hamiltonian H : M x [0,1] —> R and cj) = </># be 
its time-one map. Then we can perturb H so that the perturbed Hamiltonian H' has 
the properties 

(1) ^ = #r 
(2) Hf = 0 near t = 0 and 1 and in particular H' is time periodic 

(3) Both | /0 maxa;(f/"/ - H) dt\ and \ J0 mmx(H
f - H) dt\ can be made as small 

as we want 
(4) If H is quasi-autonomous, so is Hl. 
(5) There is a canonical one-one correspondence between Per(iJ) and Per(ii/"/) 

with their actions fixed. 
Furthermore, this modification is canonical with the "smallness" in (3) can be chosen 
uniformly over H depending only on the C0-norm of H. 

Proof. We first reparameterize 0^ in the following way: We choose a smooth 
function £ : [0,1] —> [0,1] such that 

!<*<! 

and 

and consider the isotopy 

C'(*)>0    for all    *€[0,1], 

It is easy to check that the Hamiltonian generating the isotopy {V^jcK^i is H' — 
{■^t}o<t<i with H't = ^(t)H^ty By definition, it follows that H' satisfies (1) and (2). 
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For (3), we compute 

/ mBx(H'-■ H)dt = [ max(C'(t)H<{t)-Ht)dt 
Jo     x Jo     x 

< j max (c'(t)(HcW - H^dt + f max ((C'(t) - l)Ht)dt 

For the first term, 

f max(cmHat)-Ht))dt= f C'(*) mBx(Hat) - Ht)dt 
Jo     x   v /        Jo x 

< [ ^(t)insx\H<{t)-Ht\dt = max\H<(t)(x)-Ht{x)\ 

which can be made arbitrarily small by choosing £ so that ||£—t||co become sufficiently 
small. For the second term, 

j   max((C(t)-l)Ht)dt<  f  \C{t) - l\dt • maxfl"(a;,t) 

<\\H\\Co f  \('(t)-l\dt. 
Jo 

Again by appropriately choosing C, we can make 

J 
Jo 

\C(t) - i\dt 

as small as we want. Combining these two, we have verified | /0 iriaxx(H
/ — H) dt\ can 

be made as small as we want. Similar consideration applies to | fQ m.mx(H
/ — H)dt\ 

and hence we have finished the proof of (3). (4) and naturality of this modification are 
evident from the construction. (5) follows from simple comparison of corresponding 
actions of periodic orbits. □ 

We will always perform this canonical modification in the rest of the paper when- 
ever we would like to consider the Cauchy-Riemann equation associated to the Hamil- 
tonian H, when H is not a one-periodic Hamiltonian. 

Let F be an arbitrary Hamiltonian with F ~ G. We want to prove ||G|| < ||-F||. 
Applying Lemma 5.2 to G and F) we may assume that G and F are time one periodic, 
allowing small errors and then getting rid of them by taking the limit. We will postpone 
the proof of the following crucial existence result to the next sections. 

From now on, we will always denote by Wy the constant disc y for each given 
constant periodic orbit y. 

PROPOSITION 5.3. Let G be quasi-autonomous and x~ be a fixed minimum point 
of it. Suppose F ~ G. Let k be a Morse function on M and consider the linear 
homotopy 

L3 = (1 - s)ek + sF. (5.4) 
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Then there exists ei such that for any 0 < e < ei, the continuation equation 

'   % + ^l(T)(f -X^rM)=Q 
<   u(—oo) = y,    u(oo) = z (5.5) 

has a solution for some [y, Wy] € Crit {Aek) and for some [z, w] G Crit ^li? with 

AF([Z,W])>AF([Z~,WZ-])(= I   -minGdt) (5.6) 
Jo 

where [z~,wz-] = h • [x~, wx-] with h defined as in (2.4)> 
Assuming this proposition for the moment, we proceed with the proof of Theorem 

I. The following calculation is a slight modification used by Polterovich [Po2] in our 
context which will lead to the proof of Theorem I once we prove Proposition 5.3. 

We compute 

f00   d r } 
<AF([z,w])-Aek([y  ,Wy-])= — {ALP2(T)(U(T),w  #M(r))jdr. 

We have 

^.{ALP2M(U(T),W
+
#U(T))} =dALP2(r)(^)-p'2(T)J (F-ek)(u(T))dt 

= j\(^-XLP2iT)(u)^)-p'2(T)j\F-ek)(u(T))dt 

f1   dv I2 Cl 

= -J    ^-X^iu^-p'^T)^ (F-ek)(u(T))dt 

<-P2(T) /   mm(F - ek) < —p2(r)( /   minF— /   maxefcj 

Therefore by integrating this over r from — oo to oo, we have 

AF([z,w))-Aek([y~,wy-})< /   -minF+||e/c||. 
Jo 

On the other hand, we derive 

AF([Z,W])>AF([Z~,WZ-])=AG([X'~,WX-])= /   -minGcft 
Jo 

from the normalization condition (2.5), (5.6) and from the fact that x~ is the fixed 
minimum point over t. Therefore we have 

/   -minGdt <  f  ~minF + \\ek\\-{-Aek([y~,wy-]) < [  -minF + 2e \\k\\ 
Jo Jo Jo 

By letting e —» 0, we have proven 

/   min(G)> /   minF (5.7) 
Jo Jo 
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By considering F := -F((l)tF(x),t) and G which generate (j)]?1 and C^Q
1
 respectively 

and noting that G is also quasi-autonomous, we also prove 

which is equivalent to 

/   min(-G) > /   min(-F) 
Jo Jo 

I   max(G) < /   maxF (5.8) 
Jo Jo 

+ j(^-XH{u)(u))=0 (6.1) 

Combining (5.7) and (5.8), we have proved 

l|G|| < \\F\\. 

This will finish the proof of Theorem I up to the proof of Proposition 5.3. D 

6. Handle sliding lemma. In this section, we study an important ingredient 
in our proof, the Floer theoretic version of the 'handle sliding' lemma. 

Let H be any time periodic Hamiltonian and consider the Cauchy- Riemann 
equation 

for generic J. We call a solution u trivial if it is r-independent, i.e., stationary. We 
define 

—     | u satisfies (6.1) for some e G [0,1] 

and is not trivial }. (6.2) 

The positivity of A( j?#) is an easy consequence of Gromov compactness type theorem, 
whose proof we omit. 

We will need a family version of ^(j^). When there does not occur bifurcation 
of periodic orbits, one can define this to be 

A(*w)=o&A(J',H*)' (6'3) 

However when there does occur bifurcation of periodic orbits, A^j^) could be zero, 
which forces us to look at another positive constant the definition of which should be 
given more subtly to make it suitable for our purpose. In introducing this constant, 
we exploit the fact that only the index zero solutions of Floer's continuity equation 
(3.5) or (6.9) below are used in the definition of Floer's chain homotopy map. 

We first recall that for a generic one parameter family {iJ(s)}o<5<i, there are 
only finite number of points Sing = {si, $2, • • • > 5A;i} C [0,1] where there occurs either 
birth-death or death-birth type of bifurcation of periodic orbits (see [Lee] for a detailed 
proof of this). Furthermore at each such Sj, there is exactly one bifurcation orbit Zj 
of x = XH(3 )(x) for which there is a continuous family of the pair z+(s), z~(s) of 
periodic orbits of x = XH(s)(x) for \s — Sj\ < 5, 8 sufficiently small such that 

(1) z±(s) —+ Zj as 5 —> Sj, 
(2) the Conley-Zehnder indices satisfy 

/x([z+,«;+]) = Mk~,^~]) + l (6.4) 
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where w* ~ Wjfcu for u a canonical 'short' cylinder between z+ and z~. This latter 
condition makes sense because z+ and z~ are close when 5 is sufficiently small. 

We now prove the following important lemma 

LEMMA 6.1.    Let {H(s)} be a generic one parameter family as above. For each 
s G [0, i\\Sing, we define 

f du 2 

A(jsH3\ — inf{ /   —       | u satisfies (6.1), not trivial and Index u = 0} 

A^^       inf       A0
{jsHsy (6.5) 

and 
Areg,0 __ 

se[0,l]\Sing 

Then A^9^ is strictly positive. 

Proof. Suppose the contrary that Ar^9A == 0, i.e., that there exists a sequence 
rk € [0, l]\Sing with r^ —> Too G (0,1) and T/J solutions of (6.1) for (Jrk,Hrk) such 
that 

0,    Index Wfc = 0. (6.6) 
/ jn* 9T 

Then we must have, by choosing a subsequence if necessary, 

Too G Sing 

and a bifurcation orbit z^ of x = XH^OO {X) such that Uk —> ^oo uniformly and so 

Wife(00), ^(-oo) -> ^ ^oo- 

Since Wfc(±oo) are solutions of x = X/f^ (re), they must be the pair described in (1) 
right above (6.4) and hence 

Index {uk) = fi([z+{rk),w^{rk)}) - fi{[z~{rk),w~(rk)} = 1. 

But this contradicts to the index condition in (6.6) which finishes the proof. D 
Again for a generic choice of {if5}, we may assume that there are only finitely 

many points ti G [0, l]\Sing with i = 1, • • • , fe at which (6.1) has exactly one non- 
trivial solution ut- that has the Fredholm index 0. (See [Fll] for this kind of the 
generic argument.) We denote 

<Aft = {ti}i=i,...,jfea C[O,l]\Sm0. 

Next we define 

Ag^j = min{i4(i7.fc|iy-fc) | sk G Sing} (6.7) 

which is again positive by Gromov type compactness theorem. Now we have the 
following crucial definition of a family version of the constant A^H) suitable for our 
purpose. 

DEFINITION 6.2. We define 

Aln)=unn{A^},A^)}>0. 

The following proposition is an important ingredient of our proof. 
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PROPOSITION 6.3. (HANDLE SLIDING LEMMA). Let j = {J^} be a (two pa- 
rameter) family of almost complex structures and {if(^)}o<ry<i be a generic family 
of Hamiltonians. Let A9.^ > 0 be the constant defined in Definition 6.2 and let 

771,772 £ [05 !]• Then there exists 5Q > 0 such that if (771 - 7721 < 6, any finite energy 
solution u with 

Index u■ = 0 (6.8) 

of 

must either satisfy 

or 

du 'du + J^)(g-^M(U))=0 

/ 

du 
97 JP(-r) 

<e(6) 

i — I2       >A0 
■£(«) 

(6.9) 

(6.10) 

(6.11) 

where for e(5) —> 0 as 0 < 5 —► 0, provided 5 < 5Q.   Here Hs is the linear path 
Hs = (1 — s)H(rji) + sH(rj2) and p is the standard function defined as before. 

We call a solution u of (6.9) very short if it satisfies (6.10), and long if it satisfies 
(6.11). We can phrase the content of this proposition as "Any short path is indeed 
very short". 

Proof of Proposition 6.3. We prove this by contradiction. Suppose the contrary 
that there exists some e > 0, 771 and 77^- with 77^ —> 771 as j —► 00, and solutions Uj that 
satisfy (6.8) and 

dr \ dt 
X Hp(T)K-)) = 0 

but 

e < I dui 
dr JP(T) < Km 

(6.12) 

(6.13) 

In particular, the right half of (6.13) implies the uniform bound on the energy of Uj. 
As j —> 00, the equation (6.12) converges to (6.1) with H = H(r]i). By Gromov type 
compactness theorem, we have a cusp curve 

Uryrt      

k 

^co,/c 

in the limit of a subsequence where each 'Uoo,fc is a solution of (6.1) with H — H(r)i). 
We also have 

lim [ \^±\2       = V / 
TV I dr ljp(r)      4^i 

du{ 'OO.fc 

dr JPi-r) 

On the other hand the left half of (6.13) implies that at least one of Woo,fc is not trivial. 
Now we consider three cases separately:  the first is the one where 771 G Sing 

and the second where 771 £ Aft and the rest where 771 £ [0,l]\(Sing U Aft).   When 
771 £ Sing, we must have 

*?! 
duj 

dr 
>  4sinp >   A0 
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which gives rise to a contradiction to (6.13) if j is sufficiently large. On the other 
hand, if r/i G Aft, the cusp curve must contain one component Uoo that has Index 0 
and is non-constant. Again the right hand side of (6.13) prevents this from happening. 
Finally when 771 G [0, l]\(Sing U Aft), the index condition Index Uj = 0 and the 
transversality condition imply that all the components UQQ^ must be constant which 
again contradicts to LHS of (6.13) if j is sufficiently large. This finishes the proof of 
the proposition. D 

An immediate corollary of this is the following estimate on the action. 

COROLLARY 6.4. Let j, H and 8$ as in Proposition 6.3. Suppose 0 < 5 < 8Q. If 
u is very short, then we have the lower estimate 

-e{8)+ f -m^H^-Hirj^dtKAH^iui+oc^-AH^M-00))   (6-14) 
Jo        x 

and so combined with the upper estimate (3.6), we have 

-e{8)+ /   -max(iJ(772)-iJ(77i))^<^/f(772)(^(+oo))-^/f(r?l)(^(-oo)) 
JO        

x 

< [  -wm(H(ri2)-H(rii))dt. 
Jo        x (6.15) 

Ifu is not very short and so must be long, then we have the improved upper estimate 

^//(r?2)(w(+oo)) - AH{ril)(u(-oo)) < -A^n) +e+       -mm(H(r]2) - H(m)) dt. 
Jo        x 

(6.16) 

Proof. A straightforward computation as in the proof of Proposition 3.2 leads to 
the following general identity 

=-1 iizL™ - /~ p'{T) J!{H{e2) - ^^wdtdT- 
Corollary 6.4 immediately follows from this and Proposition 6.3. D 

We will apply the above handle sliding lemma and its corollary to the adiabatic 
paths in the next section. 

7. Non-pushing down lemma and the existence. In this section, we will 
assume the main hypothesis. This is the only section where we use the hypothesis. All 
the materials in the other sections are valid in arbitrary compact symplectic manifolds. 

Hypothesis. Assume one of the following two cases: 
(1) either (M,UJ) is weakly exact, i.e., uj\n2(M) = 0 or 
(2) H is autonomous on arbitrary (M, CJ) 

In the beginning, we will approach both cases in the general setting of quasi- 
autonomous cases on arbitrary (M, a;) and then explain how non-existence of quantum 
contributions enter our proof of the Non-pushing down lemma. 
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DEFINITION 7.1. Let if : M x [0,1] -> R be a Hamiltonian which is not necessarily 
time-periodic and </># be its Hamiltonian flow. 

(1) We call a point p € M a time T periodic point if </>#(p) = p. We call 
t G [0,T] i-> </>#(p) a contractible time T-periodic orbit if it is contractible. 

(2) When H has a fixed critical point p over t G [0,T], we call p over-twisted as 
a time T-periodic orbit if its linearized flow d(f)tH(p); t G [0,T] on TpM has a closed 
trajectory of period less than T. 

The remaining section will be occupied by the proof of the following result (The- 
orem I in the introduction). 

THEOREM 7.2. We assume one of the two cases in the Hypothesis. Suppose that 
the quasi-autonomous Hamiltonian G satisfies 

(i) (^Q has no non-constant contractible periodic orbit of period less than one, 
(ii) it has at least one fixed minimum and one fixed maximum which are not over- 
twisted. 

Then the Hamiltonian path (f)^, 0 < t < 1 is length minimizing in its homotopy 
class with fixed ends. 

REMARK 7.3. (1) Prom our proof, it will be clear that the proof of Theorem 7.2 is 
stable under the C2-small perturbation of the Hamiltonian and so allows sufficiently 
C1 -small non-constant contractible periodic orbits. It is rather awkward to state how 
small the perturbation can be, though. 

(2) Considering eGe with e < 1 but arbitrarily close to 1 and applying Lemma 
5.2, we may assume the stronger assumption " period less than equal to 1" instead of 
"period less than 1" in both (1) and (2) in the hypotheses of the theorem. We will 
assume this stronger assumption in the proof. 

We consider the reparameterized Hamiltonians e G [eo, 1] ^ eGe. The assumption 
(i) implies that there is no appearance of non-constant contractible periodic orbit as e 
moves from eo to 1. The only possible bifurcation is by that of critical points of eGe. 
This proves 

LEMMA 7.4. Suppose G satisfies the above. Then for each 0 < e < 1, there is 
one-one correspondence between the set of contractible solutions and the set of points 
x G M such that 

dGt(x) = 0    forall0<t< e. (7.1) 

DEFINITION 7.5. We call a point x [0, e}-critical point of G if x satisfies (7.1). We 
denote by 

Crit§(G) 

the set of [0, e]-critical points of G. 
It follows from Lemma 7.4 that for any e' > e > eo there is a canonical injection 

Ve : Crit{Ae,G£>) -» Crit^cO ^ Crit{Ae0G'o) (7.2) 

and that there is a canonical one-one correspondence between the set of [0, e]-critical 
points of G and that of critical points of AeG* which are of the type [x, wx]. From this 
description of Grit AeG*» it follows that there does not emerge any new critical points 
of AeG* as e moves from eo to 1. 
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For any [0, e]-critical point x of G, we have 

AeG<([x,wx]) = - /   eG(x,es)ds = -      G(x,t)dt. (7.3) 
Jo Jo 

7«(c):=- / G(x,t)l 
Jo 

We denote 
re 

)dt 

and 

7±(6) = - / G(x*,t)dt. 
Jo 

Using Lemma 5.1 and 5.2 and the conditions (i) and (ii) in the statement of 
Theorem 7.2, by adding a small bump function around x~, we may assume, without 
loss of any generality, that x~ is the unique minimum point of Gt for each t G [0,1] 
and that there is a 'gap' between —G(x~,t) and —G(x,i) 

-G(x-,t) + G(x,t)>51 (7.4) 

for all t G [0,1] for any x ^ x~ G Crit ^(G). Similar statement holds for the maximum 
point #+'. We will fix £i > 0 later in (7.15). This implies that for any rj > CQ we have 

AnG^([x',wx-]) - ArjGidxtWx]) =7+(^) ~lx(v) > ¥i > eoh (7.5) 

for any [0, r/J-critical point x ^ x~ of G . 
For the proof of Theorem 7.2, it will be enough to prove Proposition 5.3. The 

rest of this section will be occupied by its proof. We recall that we considered the 
linear homotopy C =. {Ls}, 

Ls = (1 - s)ek + sF. 

and then studied the continuation equation 

% + J(%i-XLPM{u))=0 

u(-oo) = y- G Crit (if),    u(oo) = z (7.6) 

y~4tzU ~ 'w' 

Using Lemma 5.2, after the preliminary perturbation of G, we may assume that there 
are only finitely many constant periodic solutions of x = XG{X). 

We will construct a solution of the equation (7.6) in four steps: First by consid- 
ering the linear homotopy 

K, : ek h-> eQG
eo, 

we construct a cycle a G (GF(eoGeo), dj^0 G
£
O) with its Floer homology class [a] being 

the fundamental class [M] G H2n(M) C FH*{M). This can be realized by a linear 
combination of the form 

a = [x~, wx-) + ]P a^ [x?, ^],    a^ G Q (7.7) 
3 

where Xj's are the uniform critical points of Gt over t G [0, eo]. This is an immediate 
consequence of the homological essentialness (Proposition 4.4) of x~ in the local Floer 
complex CF(eG€ : W), and of the Hypothesis above, which implies that there is no 
quantum contribution for the Floer boundary operator for the G2-small Hamiltonians 
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in either case.   (See the proof of Proposition 7.11 below for the explanation for the 
case (2) of autonomous Hamiltonians). 

Secondly we consider the homotopy 

g-.V^ivG"},    ve[eoA} 

from 6oGeo to G. This step proves that the Novikov cycle ac of G transferred from a 
via the adiabatic homotopy along Q satisfies the Non-pushing down lemma, i.e, cannot 
be pushed down by the Cauchy-Riemann flow of G. The proof heavily relies on the 
Hypothesis. 

Thirdly we consider the homotopy 

F:s^{Fs},    5G[0,1] 

from G to F which is provided by the definition G ~ F. Again this step proves 
that the Novikov cycle of F transferred from ac via the adiabatic homotopy along F 
cannot be pushed down by the Cauchy-Riemann flow of F. However its proof does 
not use the Hypothesis but uses only the fact G ~ F and so the arguments used in 
this step can be applied in general. 

Finally, we glue the homotopies /C, Q and T and deform the glued homotopy 
'C#fii5#i?2^r to the linear homotopy 

£ : 5 h-* (1 - 5)eoGeo + sG. 

The arguments in this step are independent of the Hypothesis. In the rest of this 
section, we will carry out these steps. 

Step I; from ek-^ eoGeo 

To carry out the first step, it is essential to further analyze the general struc- 
ture of the boundary operator for the C,2-small Hamiltonians (not necessarily quasi- 
autonomous) like e Ge of e sufficiently small. This will be carried out following the 
argument used in [§3, Ohl]. 

For each time independent JQ, we consider the quantity 

A = A(JO,UJ : M) := inf j / v*u | v : S2 -> M,dj0v = 0,v non-constant j. 

We choose e > 0 so small and in particular so that ||eGe|| < ^J4(JO,CJ : M). 
We now state the following proposition, which is the analog of [Proposition 4.1, 

Ohl] to which we refer readers for its proof (see also [Appendix l,Oh7] for its complete 
proof). 

PROPOSITION 7.6.. Let U be the Darboux neighborhood of A in M x M chosen 
as before. Then, for any given a > 0 and for any fixed time-independent JQ, there 
exists a constant 8 > 0 such that \\eGe\\c^ < 5 and \J — JO|MX[O,I] < $> we have 

OIL ^ 
—     < A(Jo,a;: M)-a. (7.8) 

In particular, such a path has trivial homotopy class and so 

du 2 

/ 

/ OT 
J < ||eGl. (7.9) 
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Moreover, all the other u e M(J, G) which are not contained in M(J,G : U) satisfy 

\du\2 

I dr 
>A(Jo,a;:M)-6i (7.10) 

for sufficiently small ei = ei(S) which is independent of a. 
By the argument similar to [§8, Ohl], we deduce that for (J, eGe) chosen as above, 

the boundary map 

d = dj,eG* : CF(tG€) -> CF{eGc) 

is decomposed into 

0 = 3)feG«+^G« (7.11) 

such that d'^ Ge maps CF      '   (G) —> CF      ' . Here the part do is derived 
from the 'thin' trajectories u and d'eQe from 'thick' trajectories (or from the quantum 
contributions). In this C2-small case where the only time-one periodic orbits are the 
constant ones, this 'thin' and 'thick' decomposition coincides with that of homotopi- 
cally trivial and nontrivial trajectories. The essential point of imposing the Hypothesis 
is that under the Hypothesis, df = 0 and so 

d = do. 

This is easy to prove for the weakly exact case (see e.g., [§3, Ohl] for the proof in the 
context of Lagrangian submanifolds). For the proof of this fact for the autonomous 
Hamiltonians on arbitrary (M, a;), we refer to the proof of Proposition 7.11 below (or 
see [FOn], [LT]). 

Now for each given e € (0, ei], we define the chain map 

hl
e
oc : (CF(6k),do}ek) - (CF(e0G*°),do,€oG<o) 

along the linear path 
/C : 5 ■-♦ (1 - s)k + SCQG

60
 := Ks 

by considering the equation 

£ + J(&-X*,<T)(U)) = 0 

u(—oo) =p~, u(oo) =_p+ 

w~#u ~ w+ 

for given [p~,w~] G Grit Aek and [p+,if;+] G Grit Ae0G
€o. The induced homomor- 

phisms 

hK : CPU £ k) -> CF(J, 6o Geo) 

and its local version 

hl£c : CF(J,ek;U) -> CF(J,eoGeo;U) 

induces an isomorphism in the homology with its inverse induced by ft^-i and /ij^i 
respectively. 

Now we consider the Novikov cycles 

0 = ^2a[pM^w^    alPM € Q- (7-12) 
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The following definition which will be crucial for the minimax argument we carry 
out later. 

DEFINITION 7.7. Let /? be a Novikov cycle in CF{H). We define the level of the 
cycle /? and denote by 

\H{(3) = max{AH(\pM) I alpM ^ Oin (7.12)} 
[PM 

if /? T^ 0, and just put Ajy(0) = +00 as usual. 

As in (7.7), we can choose a cycle a for f CF(eoGeo),9(j)eoG
eo)) 

a = [x-,wx-] +^rfaj[xj,wXj] 
3 

with 
^eoG^{[Xj,Wx,j\) < AiQG*o([x~,WX-]) 

for all j, its Floer homology class satisfying [a] ^ 0. By considering the local Floer 
complexes CF{J,ek;U) and CF(J,€oGeo]U) and their continuation and using the 
homological essentialness of the maximum point x~~ of — 6oGeo, we can write 

a-h)c(aek) = de0G-o{^) 

for some 7 € CF(eogeo]U) for each given 0 < e < ei so that aeA; is a finite union 

£ 

®ek = ]Pa[p.?lUp.][pi,wPi] (7.13) 

where p^s are critical points of k. 

LEMMA 7.8. Assume the conditions in Theorem 7.2. Let a be as above. Then for 
any Novikov cycle ft homologous to a, i.e., satisfying 

a = (3 + deoG*oj (7.14) 

for some Novikov chain 7 G CF(eoGeo), we have 

ACoG«o(/3)>AeoG«o(a). (7.15) 

Proof. Note that under the main Hypothesis, we have 

de0G€o = 9o,eoGeo 

for sufficiently small CQ. In other words, all the contributions to the boundary deoG
eo 

come from 'thin' trajectories. Since x~ is the maximum point of — G(-, t), there cannot 
be any such thin trajectory landing at [x~,wx-]. 

Therefore (3 must have contribution from [x~,wx-] by (7.14) since a does have 
contribution from [x~, wx-]. Hence we must have (7.15) by the definition of the level 
function AeoG

co. This finishes the proof of the lemma. D 

Step II: from CQC
60
 to G 

In this step we consider the homotopy 

G-.rj^riG^    -77 €[€o,l]. 
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We perturb this to a generic path 

W 177^^(7/), 7, €[€o,l],     H(1) = G 

so that it satisfies the genericity condition as in the Handle sliding lemma (See the 
paragraph above (6.4)). By the gap condition and the non over-twisting condition in 
(ii) in Theorem 7.2, we can continue the fixed extremum points x± to isolated fixed 
extremum points of the perturbed path H : rj i—► H{rj) without having small periodic 
points bifurcated from them. In particular the perturbed path H itself becomes quasi- 
autonomous. Without loss of generality, we may assume that these fixed extrema are 
the same points x^. 

Other contractible periodic orbits of H(rj) will be bifurcated from the constant 
periodic orbits of 77G77. More precisely, we have the following lemma. 

LEMMA 7.9. For any given e > 0, there exists a generic path 7i : 771-> H(r}), rj G 
[eo, 1] in the above sense such that for each rj £ [770,1]; for any contractible periodic 
orbit z of H(rj) of period one there exists x € Crii^G such that 

(1) 
||z-x||C2 <e (7.16) 

(2) there exists a canonical small cylinder v (up to homotopy) connecting z and 
x such that 

\<AH(rl)([z,Wz])-'AflG'i([x,Wx])\ < 6 (7.17) 

and 

AH(rj)([x~,Wx-)) - AH(r,)([z,U)z)) > -CQiJl (7.18) 

where wz ~ wx#v. 
The point of Remark 7.3 (1) is that the length minimizing property holds for the 

Hamiltonian path rj \-> H(r]) which is perturbed from G and this Hamiltonian satisfies 
the property assumed in Theorem I (i). Indeed the proof below proves that this path is 
length minimizing. Using Lemma 5.1, we then derive the length minimizing property 
of G itself. 

As in §3, we consider the partition 

I - Vo = ^o < 771 < V2 < ' ' ' < VN = 1 

and denote its mesh of / by 

A/ =max|7fr+i -rjjl. 
3 

We also consider the associated piecewise linear homotopy 

W/ := £i#£2# • * • #£;v 

where Cj is the linear homotopy 

s ^ {I - s)H{r]j.l) + sH^j). 

We call the above piecewise linear homotopy Tii the adiabatic homotopy associated to 
H and the partition J. We also denote the associated chain map 
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the adiabatic chain map associated to Ti and /. We will just denote Hadb and h^b 

respectively for the adiabatic homotopy and the adiabatic chain map associated to 7i 
when we do not need to specify the partition /. 

Now we choose J with A/ so small that 

A(W/), AO^1), A/ • \\H\\co < ieo^i (7.19) 

j  \H(TiJ+1){x-,t) - Jr(!fe)(ar,t)|dt < ico*i. (7.20) 

We recall the Handle sliding lemma, Proposition 6.3, applied to our perturbed 
family H. It is easy to see from the definition that we have 

4>w) > |Ayi{0 (7.21) 

if H is sufficiently C^-close to Q, where the constants A^^y ^(j,a) are defined as 
in (6.3) and (6.5). Because there does not occur bifurcation of contractible periodic 
orbits along the family £?, a Gromov compactness type argument proves -Ay^j > 0. 
We now state a version of the Handle sliding lemma that we need in our proof. 

PROPOSITION 7.10. Let Q and H be as above and j = {J77} be a smooth periodic 
(two parameter) family of compatible almost complex structures. Let r] < rf £ [0,1], 
Then for any fixed j and for any £ > 0, there exists a constant S > 0 such that if 
0 < rf — rj < 5, any finite energy solution of 

I du\2 

dr \dt 

must be either satisfies 
r l rtii I 2 

< e (7.23) 
/ dr 

or 
\du^2 

I dr > 2%0)- (7-24) 

Here Hs is the linear path Hs = (1 — s)H(rji) -f sH{r}2) and p is the standard function 
as before. 

By choosing <Ji and then A/ sufficiently small, we will also make the constant 
A(j£)i satisfy 

AU,Q) > 35i (7-25) 

which is possible because A^g) depends only on eo and Q but independent of 5\. 
Next we consider the cycle 

ac = aH(1) := htfb(a) (7.26) 

and prove the following proposition, where the condition of no quantum contribution 
enters. 

PROPOSITION 7.11.  (NON-PUSHING DOWN LEMMA II) Let G and (M,UJ) as in 
Theorem 7.2.  Then the cycle aH(i) has the properties 

(1) Afl(i)(aH{1)) = -^H{l){x-,t)dt 
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(2) Non pushing-down lemma for a #(i) holds, i.e., for any Novikov cycle (3 G CF(H(1)) 
homologous to a#(i), we have 

^H(1)(0) > ^H(l)(^H(l))' 

Proof. We consider the family of cycles 

ai = hl'v% 0 • • • 0 <'iin(a) e CF(H(ej+1)) 

for j = 0, • • • , N — 1. We will prove the following properties of the cycle otj inductively 
over j: 

(Pl.j) otj gets non-trivial contribution from [x~,wx-] G Crit ^l/j^), 
(P2.j) its level satisfies 

Jo 

(P3.j) Non pushing down lemma for oij holds, i.e., for any Novikov cycle fy homologous 

^(^(Pj) > ^Hin^aj) (7.27) 

to ctj, we have 

Once we prove this, Proposition 7.11 will follow by putting j = N — 1. 
For j = 0, (PI), (P2) follow from the definition of a and (P3) follows from Lemma 

7.8. Now suppose (P1-3.J) hold for j and we will prove (P1-3.J+1). We first prove 
(Pl.j+1) and (P2.J+1). We note that 

h'"~1Fnoh'">"n (a7) 
Vj +1 Vj Vj Vj+1 v   3 ' 

is homologous to OLJ and so by (P3.j), we have 

A"te)(C!£" 0 ^^KO) > A/z^oK) = - /"' HfaKx-rf dt. 
Jo 

Therefore (7.19) and (P2.j) together with the upper estimate imply 

AHto)(^;^Bo/i«^1(ai))-Air(fto+l)(^^I(ai))<|M1 

and so 

Atf(%+o(<£">;)) * - £ H{jij){x-,t) dt - ico*!. (7.28) 

This together with Proposition 7.10 and by (7.4), also implies that any trajectory 
starting from the cycle OLJ that lands at the critical point and realizes the level 
^H{riJ+i){aHr)3+1) must be very short: for not very short path u staring from [z,w\ ^ 
[oT, wx-] a generator of o^, it follows from (7.24) 

1 3 
^H(i,i+1)(M(00)) - AH(nd){u{-<X>)) < --A(j,g) < --£i 
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and so 

3 
AHi71j+l)(u(oo)) < AH{r]j)(u(-oo)) - -61 

1 3 
< ^ff(^)([^~,^x-]) + -eo^i - -5i 

< - p H{rij){x-,t) dt + ~eo51 - ^ (7.29) 

Here the last inequality follows from (7.19), (7.20) and (P2.j). Therefore it follows 
from (7.28) that such trajectory u cannot land at a critical point that realizes the level 
of o^+i since 

3*       1    r       1    x 

Because of (7.18) and the upper estimate, it follows that any generator [z, w] with 
[z,w] ■=/=■ \x~\wx-\ cannot land at the critical point of ^4/f(7?j+1) that realizes the level 
of a?-}-!. This proves that the only possible path realizing the level of OLJ is a very 
short path u such that 

w(-oo) = \x~,wx-\, u(oo) = [x~,wx-]. 

This prove (Pl.j+1) and (P2.J+1). 
Now it remains to prove (P3.j-f 1). We prove this by contradiction. Suppose that 

there is a Novikov cycle fij+i G CF(H(rjj+i)) homologous to aj+i, i.e., 

aj+i = Pj+i + 57j+i (7.30) 

but 

\J-+iG^+i(/57+l) < ^rjj+iG^+iiaj+l)' (7.31) 

We study the two cases separately: 
(1) where (M,u;) is weakly exact 
(2) where G is autonomous. 

In the case where (M,UJ) is weakly exact, (7.31) indeed implies 

*iJ(Tfc+i)(&+i) < Atffai+i)(aj+i) - 2€oSl ^7,32^ 

by (7.18) because the action depends only on z not on the choice of w.   Then the 
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upper estimate, (7.19) and (7.20) imply 

^to)(^!^n(i%+i)) < Atf(l|i+l)(/?i+1) + ieocJi 

eoSx = - /        H(rij+1)(x-,t)dt 
Jo 

JO Jm 
^jt dt 

Vj 

j 3 {H[rij+1)(x-,t) - #(7fe)(ar, t)) dt - Jeo^ 
3 

< - /     Hfa^x  ,t)dt+ ~6o(Ji - -eo(Ji 

= -        H^^x'^dt = A//(r7.)(ai) 
Jo 

and hence 

M%)«I^f(^+i))<M%)(«i)- (7-33) 

However (7.33) is a contradiction to (P3.j) since the cycle h^. ^n(Pj+i) is homologous 
to 

which is in turn homologous to aj. This finishes the proof of (P3.J+1) for this case 

When G is autonomous, we use a generic family of H = {H(rj)} of autonomous 
Hamiltonians H(r]) which are Morse except at a finite set of 77's, and of j = {J71} 
where each J77 is ^-independent. Since x~ is the minimum point of H(rj), there is no t- 
independent trajectory of Aff^) landing at [rc-,^-]. Therefore any Floer trajectory 
landing at [x~,wx-] must be ^-dependent. Let the trajectory start at [x,w], x £ 
CritH(ri) with 

li{[x,w})-Li{[x-,wx-}) = l, (7.34) 

and denote by A1(j»i}/f(^))([a;,iy], [x~,wx-}) the corresponding Floer moduli space of 
connecting trajectories. The general index formula shows 

IJL([X,W]) = Mfow*]) " 2ci(H). (7-35) 

We consider two cases separately: the cases of ci([w}) = 0 or ciQiu]) ^ 0. If ci([w]) ^ 
0, we derive from (7.34), (7.35) that x ^ x~. This implies that any such trajectory 
must come with (locally) free 51-action, i.e., the moduli space 

^(jrJ,i/(7?))([x,^],[a;~,^-]) = X(jr,j//(77))([a;,w;],[x",'w;x-])/R 

and its stable map compactification have a locally free 51-action without fixed points. 
Therefore after a 51-invariant perturbation E via considering the quotient Kuran- 
ishi structure [FOn] on the quotient space M,^jr]ijj^([x,w],[x^<)wx-])/S1, the cor- 

responding perturbed moduli space M^jv^Hirj^dx,™], [x~•> ^-]; 2) becomes empty. 
This is because the quotient Kuranishi structure has the virtual dimension -1 by the 
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assumption (7.34). We refer to [FOn] or [LT] for more explanation on this 51-invariant 
regularization process. Now consider the case Ci([iu]) = 0. First note that (7.34) and 
(7.35) imply that x ^ x~. On the other hand, if x ^ x~, the same argument as above 
shows that the perturbed moduli space becomes empty. 

It now follows that there is no trajectory of index 1 that land at [x~,wx-] after 
the 51-invariant regularization. This together with (7.31) gives rise to a contradiction 
to (7.30) as in Lemma 7.8 and finishes the proof of (P3.j-f 1) for the second case (2). 
Hence the proof of Proposition 7.11. □ 

REMARK 7.12. (1) We would like to note that a (Morse) gradient trajectory of 
the Morse function #(77) is not necessarily regular as a Floer gradient trajectory i.e., 
as a solution of the perturbed Cauchy-Riemann equation, unless the C2-norm of H{r}) 
is sufficiently small. The "slowness" condition introduced in [En], [MS] is related to 
this problem. 

(2) A careful look of the above proofs shows that the only obstacle to extending 
them to arbitrary quasi-autonomous Hamiltonians on general symplectic manifolds is 
that Non pushing-down lemma will not be available for the cycle 

*G = a/f (i) = htfb(a) 

defined in (7.26) in case quantum contribution exists for the Floer boundary operator. 
This will prevent us from using the deformation argument used in the end of §7 
to produce a solution for the continuity equation along the linear path C. Some 
simpleness condition as in [BP] enables us to prove Non-pushing down lemma, which 
we will investigate further elsewhere. 

Step III; from G to F 

Now we consider the homotopy J7 = {i?s}o<s<i 

G^F. 

We take a partition 

/ : 0 = so < si < - • - < SN-I < SN = 1 

and its associated adiabatic homotopy J:adb. 
We first recall from Proposition 2.3 that 

Spec(F5) = Spec(G) 

which is a measure zero subset E. We consider the family of cycles 

h<!fi{aG),    a £[0,1] 

and its level function 

/i(5):=AFs(^f(aG)),     a €[0,1]- 

Here J73 is the path t >-> Fts, t € [0,1]. We will provide the proof of the following 
proposition in the appendix. 

PROPOSITION 7.13. The function n is continuous and so constant. In particular, 
the cycle 

aF := hfb(aG) 
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has the level 

XF(aF) = \G{®G) = - /   G{x-,t)dt. 
Jo 

(7.36) 

With this proposition at our disposal, we prove 

PROPOSITION 7.14 (NON PUSHING-DOWN LEMMA III). Letap be as above. If a 
Novikov cycle ft' is homologous to ap in CF{F), i.e., satisfies 

aF=p + dFtf) (7.37) 

then we must have 
XF(P') > XF(aF). (7.38) 

Proof. Suppose the contrary that there exists ft' and 7' with (7.37) and 

AF(/?') < AF(aF) (7.39) 

satisfied. We apply the homotopy ft^j to (7.37). Composing this with h^, we get 
the identity 

id - hfh ohfb = dFoH + HodG (7.40) 

for the obvious Floer chain homotopy H : CF(G) —> CF(G) in a standard way. We 
apply (7.40) to the cycle ac to get 

aG - hf^ (aF) = dGH{aG) (7.41) 

from the definition of aF in (7.41). Inserting (7.41) into (7.40) and using the chain 
property of h^x, we get 

aa - h^ (/?') = dG(H(aG) + h^ (7'))- (7-42) 

Lemma 7.8 implies that 

AG(^I (/?')) > ^GM = c+ (7.43) 

On the other hand, using (7.39), (7.43) and the Handle sliding lemma, and applying 
the proof of Proposition 7.13 in Appendix to /?' backwards, F >—> G, we prove that the 

function s H-* XFFs,a   (P') is continuous and so constant. In particular, we have 

AGIOS')) = AH/?). 
Therefore we have proven 

\G(hf^ (/?')) = AH/?') < AHaF) = AG^G) (7.44) 

Now (7.43) and (7.44) give rise to a contradiction. This finishes the proof. D 

Step IV: from the JC#Rig
adb#R2T

adb to £ 

Finally we consider the linear homotopy C = {£5}o<s<i from ek to F 

Ls = (1 - s)ek + sF 

and the associated chain map 

hc:CF(J0,ek)->CF(j\F) 

(by connecting J0 and J1 by a generic path {Js})- 
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We connect the glued homotopy £0 = K>#Rig
adb#R2#Jradb and £1 = C by any 

generic homotopy (of homotopies) C = {£K}O<K<I and consider the parameterized 
equation 

for K; £ [0,1]. Again this parameterized equation induces the identity 

for the corresponding chain homotopy H^ : CF(J0,ek) -> CF(Jl,F). Applying this 
identity to aek above, we have 

Since the standard gluing theorem in the Floer theory implies 

hK:^RlQ
adb^n2T

adb = tip    o hgdb o hjc 

for sufficiently large Ri > 0, we have 

hK#RiQadh#R2j:adh(aek) = Wf* o ha
Q
db o h)c(aek) = ha/b(aH(1)) = a/r. 

Obviously hc(a€k) is a Novikov cycle in CF(Jl,F). Therefore Proposition 7.14 implies 
that 

AHM^e/c)) > AF(aF). 

By the definition of the chain map he and the cycle aek in (7.13), this then implies 
existence of [y,Wy] £ CF(J0,ek) and [2,iu] € Cir(J1,F) for which there exists a 
solution of the following Cauchy-Riemann equation: 

f + ^l{T)(f -XiM(T,(tt))=0 
u(—00) = y,    u(oo) = 2; 

I Wy^u ~ ty 

with 
AF([Z,W\) > XF(aF) = AF({Z~,WZ-]). 

This is exactly what we wanted to prove in Proposition 5.3. This finally finishes the 
proof of Proposition 5.3 and hence the proof of Theorem I. 

8. Construction of spectral invariants. In this section, we outline our con- 
struction of the spectral invariants of the Viterbo type [V] (more precisely, the type 
the author constructed in [Oh3,5]) on arbitrary compact symplectic manifolds. As a 
consequence, we also define a new invariant norm on the Hamiltonian diffeomorphism 
group of arbitrary compact symplectic manifolds. We just illustrate the main idea 
of the construction in the present paper with minimal possible sophistication in the 
presentation and refer readers to [Oh7] for precise details of the construction. 

The starting point of our construction of the invariants will then be the fact that 
for any fixed generic autonomous Hamiltonian g on M we have the isomorphism 

(CT.te; Ao,)^) ^ (CM,(-e5;Q),c^°rse) ® Aw (8.1) 
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as a chain complex when e > 0 is sufficiently small and the canonical isomorphism 

hegH : HF^K) - HF+{H',K) (8.2) 

for any Hamiltonian H over the Novikov ring A^. The natural isomorphism (8.2) is 
induced by the chain map 

h€gH : CFieg) - CF{H) (8.3) 

over the linear path Hs = (1 — s)eg + sH. Here we also note that (8.1) also induces a 
canonical isomorphism 

HF*{eg', Ac) ~ HM*(-eg]Q) 0 A^ 

Here CM^{—eg\Q) and HM*(—eg;Q) denote the Morse chain complex and its asso- 
ciated homology of — eg with the Q-coefficients. 

By letting e —» 0, we will have the corresponding limit isomorphism 

hH : H*{M- Q) ® Ac -> ^F*(if; A^) (8.4) 

by identifying the singular cohomology H*(M,Q) with HM*(eg',Q) by realizing its 
Poincare dual by a Morse cycle of —eg and then composing with the map (8.1). 

DEFINITION 8.1. Let H be a given generic Hamiltonian. For each a ^ 0 G 
H*(M;Q), we denote by PD(a) its Poincare dual to a. We consider the Floer ho- 
mology class hegH(PD(a)) G HF*(H', A^). We define the level of the Floer homology 
class hegH(PD(a)) by 

p(H; a) = lim inf{AH(a) | [a] = hegH(PD(a)), a G CF(iJ) }. (8.5) 

Of course, a crucial task in this definition is to show that this is well-defined, i.e, 
the numbers are finite, independent of the choice of the Morse function g and behave 
continuously over H (in C0-norm). The following theorem is the analog to [Theorem 
II, Oh5] which can be proved in a similar way. However we exploit the isomorphism 
(8.1) in a crucial way here. 

THEOREM 8.2. Let H be a given Hamiltonian. For each a ^ 0 G iJ*(M;Q); 

the number p{H\ a) is finite and the assignment H >-» p(H\ a) can be extended to 
C0(M x [0,1]) as a continuous function with respect to C0-topology of H. 

Proof. The proof will be the same as [Oh5] once we prove the finiteness of the 
value p(H;a). 

To be more precise, we choose a Morse function g on M and use the chain map 
(8.3). The homology class PD(a) considered as a Morse homology class of — eg defines 
a Floer homology class of eg which is non-zero by the fact that the Floer boundary 
operator deg ~ QMorse ^ ^   Therefore we have 

inf \H(OL) < oo (8.6) 
[cL\=h*aH{PD{a)) 

since hegH(PD{a)) ^ 0. In fact, by the same calculation as in Proposition 3.2, we can 
prove 

p{H\a) < [ -minHdt. (8.7) 
Jo 



HAMILTONIAN DIFFEOMORPHISM GROUP 617 

To prove p(H] a) > — oo, we first prove the following lemma. 

LEMMA 8.3. We have 
p{^9 '• o) > — max eg. (8.8) 

Proof. Let 7 € CF(eg) be a Novikov cycle with [7] = PD(a). We write 

7 = 70 +7' 

where 70 is the sum of the terms with trivial homotopy class i.e., those of the type 
with [x, wx], x € Crit g and 7' are the ones [#, w] with non-trivial homotopy class with 
[w] 7^ 0 € IV Since 9e^ preserves this decomposition (no quantum contribution!) and 
since any 6 € H*(M', Q) can be represented by 70, both 70 and 7' are closed and satisfy 

[70] = 6    and[7']=0. 

By setting 0 7^ b = PD(a) = [70] in the Morse homology of eg, we have 70 7^ 0. An 
easy fact from the (finite dimensional) Morse homology theory implies 

Ae5(7o) > mm(-eg) = - m3x(eg). (8.9) 

Obviously since we have Ae5(7) > Ae9(7o), (8.9) finishes the proof. D 

Now we go back to the proof of Theorem 8.2. Let a £ CF(H) with its Floer 
homology class [a] = hegH(PD(a)). Note that by the same calculation as that in 
Proposition 3.2 along the linear path from H to eg, we have 

Kg(h
h

H
n

eg{a)) < An (a) + /  - mm(eg - H) dt (8.10) 
Jo 

where we know h^^a) ^ 0 because [h1^ (a)] ^ 0 since [a] ^ 0 and h1^ induces an 
isomorphism in homology. On the other hand, let 70 be a representative as in Lemma 
8.3 with [70] = b. Since [a] = ^^(70)? we have 

[4ya)] = [7o]. 
It follows from Lemma 8.3 that 

K9(h%(a))>-m^eg. (8.11) 

From (8.10), we derive 

W(a) :>  /   min(eg — H) dt — max eg 
Jo 

=  /   — max(i7 — eg) dt — max eg. 
Jo 

Letting e —» 0, we have proved 

Atf(a) >  /   -maxiJcft (8.13) 
Jo 

and then taking the infimum over a £ CF(H) with hegH{PD(a)) = [a], we derive 

p{H\a)> /   -m&xHdt (8.14) 
Jo 
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which in particular proves p{H] a) > —oo. 
To prove the continuity of H t-> p(i7; a) in the C0-topology, we imitate the above 

argument by replacing eg by another generic Hamiltonian K. As in (8.10), we have 

*K(hHn
K(a)) < XH(a) + [ - mm{K - H) dt (8.15) 

Jo 

We have [hljpK(a)] = [hegK(PD(a))) in HF^Ac) because [a] = hegH{PD(a)) in 
HF^H^hu). Prom (8.15) and the definition of p(H\a), we have 

p{K\a)<\H{0L)+ [  -mm(K-H)( 
Jo 

)dt. 
Jo 

This proves 

p(K; a) < p(H; a) + /   - mm(K - H) dt 
Jo 

by taking the infimum of AH (a) over a with [a] — heH(PD(a)). Equivalently we have 

p(K]a)-p(H]a)< [  -mm{K-H)dt (8.16) 
Jo 

Next we want to prove 

I 
i 
- max{K -H)dt< p{K\ a) - p(H] a). (8.17) 

/o 

We apply (8.15) with H and K switched and a' with [af] = hegK{PD{a)) and 
get 

ri 
)dt 

or 

*H{tiicn
H(a')) < \K{<*') + f  - min(iJ - K), 

Jo 

\K(a') - >w(h%{a')) >  f mm(H-K)dt= f -max(K-H). 
Jo Jo 

Since [a'] = hegK(PD(a)) and h1^ o hegK is chain homotopic to hl™H, we also have 

fett'] = ^//(Pi3(a)). 

Therefore we derive (8.17) from this by the same argument as that of (8.16). Com- 
bining (8.16) and (8.17), we have proved 

/  -max(K-H)dt<p(K',a)-p{H;a)< f -mm(K - H)dt. (8.18) 
Jo Jo 

Now it follows from (8.18) that the function H \—► p(H; a) can be extended to C0(M x 
[0,1]) as a continuous function in C0-topology. This finishes the proof. □ 

These numbers p(H; a) will satisfy the properties of the same kind as the in- 
variants constructed by the author in [Oh5]. We refer to [Oh3,5] for the statements 
and proofs of the properties of p in the context of Lagrangian submanifolds on the 
cotangent bundle leaving complete details to [Oh7] for the present case. 

We now focus on the special cases where the corresponding class a is the class 1 
infr*(M;Q). 
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DEFINITION & THEOREM 8.4 [OH7]. Let 1 be the identity class of H*(M,Q). 
For each given Hamiltonian if, we define 

7(fO = P(ff;l) + P{^l). (8.19) 

Then we have ^(H) > 0, and 

7(F) = 7W 

as long as H ~ K. This makes ^(H). depends only on the equivalence class [H], i.e, 

defines a well-defined function on the covering space TT : ?{am(M,Lo) —> Ham(M,uj). 
Now for a given Hamiltonian diffeomorphism 0, we define 

7(0) =  inf 7(F) =     inf   Mm (^) 
H\-*4> 7r([iJ])=0 

for any Hamiltonian diffeomorphism H v-> (j). 

The following theorem has been proven in [Oh7] to which we refer the readers. 

THEOREM 8.5 [OH7]. The above function 7 : TCam(M)uj) -» R+ satisfies the 
following properties: 

(1) 7(0) =0^ = id 
(2) 7(0i02) <7(0i)+ 7(02) 
(3) 7(1/' o 0 o ^_1) = 7(0) for any symplectic diffeomorphism if). 

(4) 7(0) < 11011 
This norm reduces to the norm Schwarz constructed in [Sc] for the symplectically 

aspherical case where the norm 7 is defined by 

1(H) = p(H;l)-p(H;») (8.21) 

where (i is the volume class in H*(M), following [V] and [Oh5]. The reason why the 
two (8.19) and (8.21) coincide is that in the aspherical case, we have the additional 
identity 

p(H:l) = -p(H;iM). (8.22) 

But Polterovich observed [Po3] that this latter identity fails in the non-exact case due 
to the quantum contribution. In fact in the non-exact case, even positivity of (8.21) 
seems to fail. It turns out that our definition (8.19) in Definition 8.4 is the right one 
to take, which satisfies all the expected properties. We refer readers to [Oh7] for the 
proof of Theorem 8.5 and for further consequences of the spectral invariants in the 
study of length minimizing property of Hofer's geodesies and new lower bounds for 
the Hofer norm of Hamiltonian diffeomorphisms. 

Appendix. In this appendix, we prove Proposition 7.13. Since this proposition 
is a general fact for arbitrary pairs (G, F) of Hamiltonians with G ~ F, we gather 
the facts from the main part of the paper that are needed and make this appendix 
self-contained. 

We first recall the Handle sliding lemma. Let H be any Hamiltonian and consider 
the Cauchy-Riemann equation 

d£ + j(^-XH{u)(u))=0. (A.1) 
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We call a solution u trivial if it is r-independent, i.e., stationary. We define 

f  f du ^ 
^-(j,#) := mf \  /   ^-    I u satisfies (A.l) and is not trivial }. (A.2) 

Let j = {J
S
}Q<3<I and the family H = {#(77)^[o,!] be given. We define 

A(m = Jn^ A^Mv))- (A-3) 

In general, this number could be zero. When it becomes positive, we have the following 
result. This is an easy version of Proposition 6.3 

PROPOSITION A.l. Let {i?(^)}o<77<i be a smooth family of Hamiltonians and 
j = {Js} be a smooth periodic (two parameter) family of compatible almost complex 
structures. Suppose that Aj^n is positive. Let 771,772 € [0,1]. Then for any fixed j and 
for any € > 0, there exists a constant S > 0 such that if \rji —772! < <5; any finite energy 
solution of 

must be either satisfies 
C    Fin   2 

< £ (A.5) 

+ J'M(|£-XJf,(T,(ti))=0 (A.4) 

du 2 

/ dr 
or 

du 2 

/ dr 
> AUin) - e (A.6) 

Here Hs is the linear path Hs = (1 — s)H(r)i) + sHfa) and p is the standard function 
as before. 

As in Proposition 6.3, we call a solution u of (A.4) very short if it satisfies (A.4) 
and long if it satisfies (A.6). 

COROLLARY A.2 [COROLLARY 6.4, §6]. Let e > 0 be any given number. Then 
there exists S > 0 such that for any 771, 772 with \rj2 — TJI\ < &> the following holds: ifu 
is very short, then 

-e+       -max(iJ(772)-i^(77i))^<^(772)(u(+oo))-^if(r7l)('a(-oo)) 
Jo        x 

< [ - min(tf (%) - Hfa)) dt. (A.7) 
Jo       x 

Ifuis not very short, then we have 

AH(n2)(u(+oo))-AH(ni)(u(-oo)) < -A(m+e+ /   -nan{H(ri2)-H(rii))dt. (A.8) 
Jo        x 

We would like to apply these results to the path J7 = {Fs}o<s<i. We first prove 

LEMMA A.3. Let j = {Js} be the family of almost complex structures defined by 

Jst={hiyjt. 

Then we have 
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In particular, we have 
Au^>0. (A.9) 

Proof. We first note that the map 

x t-> zxi    zx(t) := hs
t(x) (A. 10) 

and (2.4) give one-one correspondence between Per(G) and Fer(Fs) and between 
Crit AG and Crit AF

S
 respectively. Furthermore (A. 10) also provides one-one corre- 

spondence between the solution sets of the corresponding Cauchy-Riemann equations 
by 

u *-* us;    U
S
{T,t) = hs

t(u(T,t)). 

And a straightforward calculation shows the identity 

\dus^ 

J Idrlj-J dr 

which finishes the proof. D 
We are now ready to provide the proof of Proposition 7.13. We choose the parti- 

tion 
1: 0 = so < si < • • ■ < SJV = 1 

so that its mesh 

A/(.F)<i& (A.11) 

where A/(^r) is defined by 

A/OF) :=inf { /  -min(Fs^1 -Fs*)dt, f max(F^+1 -F8t)dt\. 

We will prove the proposition in 3 steps: the finiteness, the upper estimates and the 
lower estimates. 

Step 1: the finiteness 

The finiteness of this function follows from the assumption [a] ^ 0 and from 
construction of the chain map. More specifically, the chain map 

Hg? : CF{G) -* CF(F) 

maps Novikov cycles to Novikov cycles and induces an isomorphism in the homology 
over the Novikov rings. Since [ao] i1 0, we have [^^(ac)] ^ 0 and in particular 
bfj^^pLG) 7^ 0 for all 5. Hence comes the finiteness of the level of h^^ao), i.e, the 
value of /x(s). 

Step 2: the upper estimates 

In this step, we will prove 

s') <  /   - mi 
Jo        x 

/z(s) - /i(5,) < /   - min(Fs - Fs ) dt (A.12) 
Jo       x 

for 5, s' with \s — sf\ < S for sufficiently small 5. This upper estimates can be proved 
without help of the Handle sliding lemma. 
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We recall that the chain map h^ is defined as the composition of the chain maps 
hls^1sj 

: CFiF3^1) -> CF(F
S
J) over the linear homotopy for the partition /. We 

first consider the first segment [0, si]. In this segment, we have 

uadb   i.lin 

over the linear path w i—> (1 — u)G-{- uFs. 
We consider the chain map /i^',m which is induced by the assignment 

/#'"([*-,«;-]) = Y, #{Mgf{[z-,w-\,[z+,w+)j)[z+,W+] 
lz+,w+]€CYitAF3, 

for each [z~,11)"] G CiitAF*- Here M^^z"^w~]^ [z+^w^]) denotes the moduli space 
of trajectories of the Cauchy-Riemann equation 

to+jM^-XFHrM) (A.13) 

and #f Mj1 ([z", w~], [z+, W+)) j denotes its (rational) Euler number (see [FOn], [LT], 

[Ru] for the precise meaning). In the case relevant to the chain map the moduli space is 
zero-dimensional. In particular, if this number is not zero, then (A.13) has a solution. 

Assuming the existence of such pair [z~, w~] £ Crit^tir* and [^+, w+] £ CntAFs' 
for the moment, we proceed with the proof. Then to every pair [z~ ,w~} and [z+, W+] 

for which #(.A//j1([z~,iu~], [^+,'w;+])j is non-zero, we have 

AFs> Moo)) - AFs M-oo)) <  /  - min (Fs' - Fs) dt. (A.14) 
7o        x 

Taking the maximum over [z~,iy~] among the generators of /i0s' m(a:G), we get 

^77/p(u(oo))-/ii(77) < /   -mm(F3' -Fs)dt. (A.15) 
JQ        

x 

Since this holds for any generator [z"1",^] = u(oo) of hQy
n(aG), (A.15)) proves 

(A. 12) by the definition of //. 
Now it remains to prove the existence of a pair, [z~, w~} £ Crit^ps and [z+, w+] £ 

Crit^Ap*/, such that 

#(Mf({z-,w-},[z+,w+))) ^0 (A.16) 

and [z~,w~] contributes /i0s' m(aG) and [z^it;4"] contributes h0Jzn(aG)> We recall 
that _     _ 

hofn - h^in o h^lin = <V oH + Hodr* 

where H is defined by considering parameterized equation induced by the homotopy 
(of homotopies) £ = {£K}K connecting the linear homotopy between F0 = G and Fs 

and the glued homotopy via 0 f-> s H-> S'. However if 5 is close to sf and the Cauchy- 
Riemann equation for £Q is regular, then those corresponding to £k are all regular for 
0 < K < 1. Since H is defined by counting generic non-regular solutions on K £ (0,1), 
this proves that H = 0 if s is very close to sf. Therefore we have 

^/>G) = h™n o A£Kn(aG) (A.17) 
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if 15 — s'l < 5 for sufficiently small 5. By the definition of the chain map hs^
in\ there 

must be such a pair of [z~,it;~] and [z4",^] for which (A.15) holds. This finishes the 
proof of (A.12). 

Step 3: the lower estimate 

This is the place where the Handle sliding lemma plays a crucial role. We apply 

ftf;lj"nto(A.17)toget 

hs'o       ohos'   {aG) = hs,Q'     ohj,    o/i0;    (QG). 

Therefore h^Mnoh^inoh%;lin(aG) is homologous to aG in CF{G) because h^^o 

^Os'in(aG) is so- By the Non pushing-down lemma, Proposition 7.14, we have 

AeoG<o (ftf o 1,'<n 0 h%in o h^Hn(aG)) > XG(aG) = c+. 

This gives rise to 

AF.<(/#in o h^(aG)) > XG(aG) - i*2 

> XF^{hQJ in(aG)) -62. 

Now we choose 82 so small in (7.4) that we have 

S2<mm{-A{j^))-A{j-i^-i)y 

Then the trajectory constructed in Step 2 that satisfies (A.15) must be very short. 
On the other hand for the very short trajectories, the lower estimate (A.7) holds. 

Combining Step 1-3, we have proved that the function /i is continuous and so 
must be constant on [0, si]. Then this also implies Non pushing-down lemma for FSl 

from which we can repeat the above argument to the segment [sj, 52]. We repeat this 
to all j = 3, • • • , N — 1 which finishes the proof of Proposition 7.13. 

[B: 

[BP; 

[Ch; 

[En 

[Fll 

[F12; 

[FHS; 

[FOh 

[FOOO 
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