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REFLECTION OF SHEAVES ON A CALABI-YAU VARIETY*
TOHRU NAKASHIMA'

Abstract. In this paper we study the reflection of stable sheaves on Calabi-Yau varieties and
its effect on the moduli space. It is shown that the reflection defines isomorphisms between the
Brill-Noether loci of moduli spaces.

Introduction. Let F be a torsion-free sheaf on a smooth projective K3 surface
X and let ¢ : H°(X,E) ® Ox — E denote the natural evaluation map. If ¢ is either
injective or surjective, then its cokernel or kernel is called the reflection of E. The
reflection functor was first introduced by Mukai ([Mu]) and since then it has been ex-
ploited for the study of the moduli space of stable sheaves on K3 surfaces([Ma},[N],[Y]).

It seems significant to consider the reflection functor on higher dimensional Calabi-
Yau variety X, in view of Kontsevich’s homological mirror conjecture which predicts
the existence of equivalence of the derived category D°(X) of coherent sheaves on X
and the derived Fukaya category of its mirror. Inspired by the conjecture, Seidel and
Thomas recently introduced an autoequivalence T¢ : D?(X) — D?(X) called the twist
functor with respect to a spherical object £([ST]). For F € D®(X), T¢(F) is defined to

be the cone of the map Hom(€, F) élé & — F, which coincides with Mukai’s reflection
in case £ = Ox. However, the problem how this functor is related to the stability of
sheaves has not been addressed.

In this paper we study the effect of the reflection functor on the moduli space
of stable sheaves on higher dimensional Calabi-Yau varieties instead of the derived
category. We shall show that under suitable minimality assumption on the first
Chern classes, the reflection preserves the stability of sheaves on arbitrary smooth
projective varieties. Further we define the Brill-Noether locus of the moduli space of
sheaves on Calabi-Yau varieties and prove that the reflection induces isomorphisms
between the Brill-Noether loci for different Mukai vectors. This is a higher dimen-
sional generalization of the results in [Mal,[Y] obtained for K3 surfaces. We also
consider examples of reflections on a certain Calabi-Yau threefold which appears in
string theory([COFKM]).

Finally we would like to express our gratitude to the referee for giving valuable
suggestions and correcting mistakes in the original manuscript.

1. Reflection of sheaves. Let X be a smooth projective variety of dimension
d defined over the complex number field C and let H be an ample line bundle on X.
For a line bundle L € Pic X, let degL = L - H¢"! denote its degree. The minimal
H-degree dmin(H) is defined to be the following positive integer

dmin(H) = min{deg M | M € Pic(X), deg M > 0}.

A line bundle £ on X is said to be H-minimal if deg £ = dpy;n(H). For example, L is
H-minimal in one of the following cases:

(1) PicX 2 Z[H] and £ = H,

(2) degL =1.
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When d = 2, the pair (£, H) has been said to be of degree one in [N].
For a torsion-free sheaf F on X, let u(E) = deg(F)/rk E denote its slope. For
torsion-free sheaves F, F' on X, we set

(E,F)=rkFei(E) —rk Eci(F) € Pic X.
We have deg§(E, F') =rk Exk F'(u(E) — p(F)).

LEMMA 1.1. Let E; (1 < i < 3) be torsion-free sheaves of rank r; on X, such
that pu(Ey) > u(E2) > p(E3). Then we have

dmin (H)

T > d—m(ﬁ +r3).

Proof. By definition of dy;, (H), we have deg §(E1, E3) > dmin(H) and deg 6(Es, E3) >
dmin(H)' Hence /‘L(El) - /‘L(EZ) Z dmin(H)/rlr2 and /"'(E2) - /‘L(ES) Z dmin(H)/"'ZTB-
Adding these inequalities, the claim follows. 0

LEMMA 1.2. Let E; (1 <14 < 3) be torsion-free sheaves of rank r; and deg E; = d;
on X which fit in an ezact sequence

0—>E1—>E2—>E3—>0.

Let Ey be a torsion-free sheaf of rank ro and degree dy.
(1) degé(Esq, Ey) = degd(E3, E1).
(2) If deg6(Eo, E2) > 0, then we have

(22) r2(deg 6(E3, Ey) — deg 6(Es3, Ep))
(2b) rg(deg (5(E3, E1) - deg (5(E1, Eo))

(7‘2 — 7‘0) deg 6(E3, El),

>
> (ro 4+ 70) deg 0(E3, Ey).

(3) Ifdegd(Fs, Eq) >0, then we have
r3(deg §(E2, E1) — deg d(Eo, En)) > (r3 —10) deg 6(Fs, En).

Proof. (1) is obvious. We shall prove (2a) only, since the other cases can be
treated similarly. It suffices to show —rydegd(Es, Eg) > —rgdegd(Es, Ep). By the
asusmption deg §(Eo, E) > 0, we have dg > -:%dg. Hence

—rodeg §(Es, Eg) = —rorads + marady
> —ro(rads — r3ds)
= —ro{(r1 +73)dz — r3(d1 +d3)}
= —ro(r1ds — r3dy) = —ro deg 6(Es, B1).

a
For a coherent sheaf E we denote by hd E' its homological dimension. We note
that if hd E < ¢, then £xt(E,Ox) = 0 for all i > q. We have hd E < d — 1 (resp.
d —2) if E is torsion-free (resp. reflexive). In particular, if d < 3, then every reflexive
sheaf F on X satisfies hd F < 1.



REFLECTION OF SHEAVES ON A CALABI-YAU VARIETY 569

LEMMA 1.3. Let F' be a vector bundle on X.
(1) IfE is a coherent sheaf with codim Supp E > 2, then we have Ext'(E, F) = 0.
(2) Let E, Q be torsion-free sheaves which fit in the eract sequence

0-FE—-F—-Q—-0.
Then E is locally free if and only if hdQ < 1.

Proof. To prove (1), it suffices to show that Ext*(E, F) = 0 for 7 < 1, since the
local-to-global spectral sequence

EP9 = HP(Exti(E, F)) = EPT9 = ExtP*4(E, F)

would then yield Ext'(E, F) = H'(£xt°(E,F)) = 0. Let Ox(q) = H®I. We shall
prove the claim by showing that HO(Ezt*(E, F)(g)) = 0 for i < 1 and sufficiently large
q. We choose ¢ >> 0 such that HO(Ext'(E, F)(q) = Ext'(E, F(q)). Since F is locally
free Serre duality yields Ext*(E, F(q)) = Ext® (F(q), EQux)" = H* {(X,EQux ®
FY(—q))Y where wx denotes the canonical bundle of X. Hence, by the assumption
codim Supp E > 2, we obtain Ext*(E, F(q)) = 0 for i < 1. Thus (1) is proved. (2)
follows from a general fact that for an exact sequence 0 - F — F — Q — 0 with F
locally free, we have hd F = max{0,hd Q@ — 1}. O
In this paper we shall consider the following two types of reflections. Let E; and
Q be torsion-free sheaves such that Ext'(Q, E1) # 0. For a non-zero subspace U C
Ext!(Q, E}), we have a natural isomorphism Ext}(Q, U® E;) = Hom(UV, Ext}(Q, E1)).
Let € € Ext!(Q,UY ® E;) denote the element corresponding to the inclusion U <
Ext}(Q, E1). The following extension defined by ¢ is called the universal extension.

0-U'QE, - E—Q—0.

Assume Hom(E1, F) # 0 and let U C Hom(FEs, E) be a non-zero subspace such that
the evaluation map
p:UQF, - FE

is injective (resp.surjective). Then Coker ¢ (resp.Ker ¢) is called the universal division
of E.

LEMMA 1.4. Let E; be a u-stable vector bundle and let Q be a torsion-free sheaf
on X such that 6(Q, E1) is H-minimal. Let U be a non-zero vector space and let E
be a torsion-free sheaf given by the following non-split extension

Then E is p-stable if Q is p-stable and the coboundary map § : UV — Ext'(Q, E,)
induced from (x) is injective. In particular, every universal extension is u-stable.

Proof. We proceed by induction on s := dimU. Assume s = 1. If E were
not u-stable, then there would exist a p-stable subsheaf FF C E with u(F) > u(E).
Let  C Q denote its image by the composite map F — E — Q. Assume that
f is not trivial. Then we have u(F) < u(F) < u(Q) by stability of F and Q. If
either u(F) < u(F) or u(F) < wu(Q), then degd(Q,F) > 0. So the minimality
assumption yields §(Q,F) > degd(Q, E1). On the other hand, by Lemma 1.2 (2a)
we must have rk F(degd(Q,E1) — degd(Q,F)) > (tkE — rk F)degd(Q, Ey) >
a contradiction. Thus we obtain u(F) = u(F) = wu(Q), which implies that f is
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an isomorphism between F' and Q. This again contradicts the assumption that the
original sequence is not split. Therefore we obtain f = 0. It follows that there exists
a non-trivial map g : F — E;, whose image is denoted by F. By stability, we have
w(F) < u(F1) < u(Er). As before, if at least one of the inequalities is strict, then the
minimality yields deg d(Eq, F) > degd(Q, E1). This is impossible, since Lemma 1.2
(2b) yields rk E(deg 6(Q, E1) — deg 6(E1, F)) > (tk E + 1k F) deg 6(Q, E1) > 0. Hence
it follows that u(F) = u(F;) = u(E;), hence g is an isomorphism between F' and E;.
Then we obtain degd(E, E1) = degd(F, F) > 0, which contradicts the assumption
w(F) > p(E). Therefore we have shown that F is p-stable in case s = 1.

If s > 1, we choose a one dimensional subspace U; C U and let E = E/U; @ B,
and U = U/U;. In view of the following exact sequences

0-UQE - F—Q—0,

and
0—-U;E; - E—FE —0,

the assumption that Q is u-stable implies that § : UY — Ext!(Q, E}) is injective if
and only if the two maps &; : Uy — Ext'(E,E), d : [ Extl(Q, E) are injective.
So £ is u-stable by the inductive assumption and F is u-stable by the case s = 1.
Thus the proof is complete. 0

LeMMA 1.5. Let E; be a u-stable vector bundle of rank r1 and and F a p-stable
torsion-free sheaf of rank r. Assume Hom(Ey, E) # 0 and let U C Hom(E1, E) be a
subspace of dimension s # 0 with sr; <r. If §(E, Ey) is H-minimal, then the natural
evaluation map ¢ : U @ By — E is injective and its cokernel is a u-stable torsion-free

sheaf.

Proof. We shall prove the claim by induction on s. Assume s =1 and let E/ =
Ime. If tk E’ < r1, then we would have pu(E;) < u(E’) < u(E) by stability. Thus
Lemma 1.1 yields rk E/ > r + 7, which is a contradiction. Therefore we have rk B/ =
r1, hence ¢ is injective as desired.

Next we show that @ := Coker ¢ is a u-stable torsion-free sheaf. Assume that it
has a nontrivial torsion subsheaf T and let T denote the inverse image of T in E. If we
had codim Supp T > 2, then Extl(T, E;) =0 by Lemma 1.3. So the exact sequence

0-FE, —-T—-T—-0

splits. Then E must have a torsion subsheaf T', which is impossible. Thus we see that
codim SuppT = 1. Then, since ¢;(SuppT) = ¢;(T) — c1(E}) is strictly effective, we
have p(E) > u(T) > u(E1). Then Lemma 1.1 implies rk T > 7+ r; which is a contra-
diction. Hence @ is torsion-free. If Q were not u-stable, then there would exist a u-
stable quotient sheaf @ — G with u(F) < u(G) < u(Q). Hence we have deg§(G, E) >
deg §(E, E1) by minimality of §(E, E;). However, this is impossible since Lemma 1.2
(3) gives tk Q(deg 6(E, E1) —deg 6(G, E)) > (tk @ —rk G) deg 6(E, E;) > 0. Therefore
Q is p-stable.

Assume that the claim has been proved up to s — 1. Let U C Hom(E,, E) be a
subspace of dimU = s and let Q = Coker[p : U ® Ey — E|. If U; is one dimensional
subspace of U, then E = E/U; ® E; is p-stable. Since U = U/Uj is of dimension
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s — 1, from the exact sequence
0-UQ®E, -E—-Q—0
and the inductive assumption it follows that @ is p-stable. Hence we are done. 0

LEMMA 1.6. Let E, Ey, U be as in Lemma 1.5. If sty > r, then the evaluation
map ¢ : U Q® By — E is surjective in codimension 1 and Ker ¢ is p-stable.

Proof. Let E = Im ¢. We have the inequalities u(E1) < u(E) < u(E) by stability
and at least one of them is not strict by Lemma 1.1. Since sr; > r, we cannot
have u(E;) = u(E), hence u(E) = u(E). It follows that ¢ is generically surjective.
Its cokernel must have support of codimension > 2 since otherwise we would have
w(E) > u(E), a contradiction.

Let E' = Ker . By a similar argument as in th proof of Lemma 1.4, if £ were not
p-stable, then there would exist a p-stable subsheaf F' C E’ with p(F) > u(E"). Then,
since U @ E is semistable, we have u(E1) > p(F) > p(E"). If we had p(Eq) > u(F),
then Lemma 1.1 would yield rk F' > (s 4+ 1)r; — r > rk E’, a contradiction. Hence we
have u(E7) = p(F). Then, since there exists a projection U ® Ey — E; such that the
composite map F < U ® E; — FE; is not zero, F' must be isomorphic to E;. However
this implies Hom(E, E') # 0, which is not possible. Hence E’ is u-stable. a

Let E; (1 <i < n) be n distinct u-stable vector bundles of rank ;. The resuts in
this section can be generalized in the following way. Since this will not be needed in
the rest of this paper, we leave its proof to the reader, which is an easy induction on
n.

ProrosiTION 1.7.
(1) If Q is a torsion-free sheaf such that 6(Q, E;) are H-minimal for all i. Let
U, be vector spaces and let E be a sheaf given by the extension

n
O—H@Ui®Ei—>E—>Q—>0.
i=1
Then E is u-stable if and only if Q 1is u-stable and the coboundary maps 6; : UY —
Ext!}(Q, E;) are injective for all i.

(2) Let E be a u-stable sheaf of rank r. Let U; C Hom(E;, E) be subspaces of
dimension s; and let ¢ : @), U; ® E; — E be the evaluation map. If Y 1 | s;my <,
then Coker ¢ is a p-stable torsion-free sheaf. If > .| s;t; > r, then ¢ is generically
surjective and Ker ¢ is p-stable.

So far we have been concerned with the construction of u-stable torsion-free
sheaves from the given ones. We may obtain locally free sheaves or reflexive sheaves
from codimension two subschemes by means of a generalization of the Serre corre-
spondence, as follows. Let Z be a Cohen Macaulay closed subscheme of codimension
two on a polarized smooth projective variety (X, H). Let wx denote the canonical
bundle of X and let wy = Ext?(Oz,wx) denote the dualizing sheaf.

ProprosITION 1.8. Let (X, H) and Z be as above. Let L be a line bundle and E; a
p-stable vector bundle on X. Assume that §(L, Ey) is H-minimal and H*(E1®LY) =0
fori=1,2. Let U C HYE, Qwz ® wy% ® L") be a non-zero subspace such that the
evaluation map

0:UQE) wwzQuwy ®LY
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is surjective(resp. surjective in codimension two). Then there exists an extension
0-UY®FE, - E—-I;80L—0.
which defines a u-stable vector bundle(resp. reflexive sheaf )E.
Proof. We have the local-to-global spectral sequence
EP9 = HP(ExtY (I, @ L, Ey)) = EPT = Ext?T (T, ® L, Ey).
Since H(Hom(Zz ® LV, E})) = HY(E; ® LV) = 0 for i = 1, 2 by assumption, we

obtain an isomorphism

Ext'(Zz; ® £L,E) =2 H(Ext (T2 ® L, E1)) 2 HY (B, Quwz Quwy @ LY).

Since we may consider U as a subspace of Ext? (Zz®L, Ey), by Lemma 1.4 the universal

extension
0-U'QE - E—-1I;0L —0.

defines a u-stable torsion-free sheaf F. Consider the induced exact sequence
0L -EY -UQE) »w;®wy®LY — Ext!(E,0x) — 0.

The map U® EY — wz QuwY ® LY is identified with ¢, so we obtain £zt (E,Ox) =0
in case ¢ is surjective. Since Z is Cohen-Macaulay, we have hd E' < 1(|O,Proposition
1.4]), hence Exti(E,Ox) = 0 for all ¢ > 1. We note that the singularity set S(E)
of E is equal to Ug;“ix Supp £zt?(FE, Ox), hence E is locally free if ¢ is surjective.
Similarly, if ¢ is surjective in codimension two, then we have codim S(E) > 3. This
implies that E is reflexive by [O, Proposition 1.2]. Hence we are done. a

2. Brill-Noether loci on Calabi-Yau varieties. Let (X, H) be a polarized
Calabi-Yau variety of dimension d. In this section we shall introduce the Brill-Noether
locus of the moduli space of u-stable sheaves on X. For this purpose, we define the
notion of the Mukai vector of coherent sheaves, following [Ty]. Let

H(X) = oL H*(X,2)
There exists an involution * : H(X) — H(X) which is defined by
*|H4’L(X,Z) = id, *lH‘l""'z(XYZ) =—id.

Foru € H (X)), let [u]i denote the i-th component of u. We can define a symmetric
bilinear form (, ) on H(X) as follows.

(u,v) = —[u* - v]oq = (=1)*v* - u)oq.
We define the Mukai vector v(E) € H(X) of E by

v(E) = ch(E) - VTd(X)

where Td(X) denotes the Todd class of X. Then, for coherent sheaves E, F on X,
Riemann-Roch yields

3
X(E,F): =Y (-1)'dimExt'(E, F)
=0

= (v(E),v(F)).
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For example, if d = 3, we have
250 o), VTR = (1,0, 2% 0).

Hence for a coherent sheaf E on Calabi-Yau threefold X of rank r, Chern classes
ci(E) = ¢, v(E) is given by

Td(X) = (1,0,

v(E) = (r,chi(E),chao(E) + -é%cz(X),chg(E) + ichl(E) - (X)),

For u = (ug,uy,uq,uz), v = (vo,v1,v9,v3) € I:j(X), we define an element (u,v) €
H?(X,Z) by

8(u,v) = voug — ugvs.
For fixed v € H(X), let M(v) denote the moduli space of torsion-free sheaves E with
v(E) = v on X, which are p-stable with respect to H. For a fixed vector bundle E;

and positive integers 1, j, we define the Brill-Noether locus of type (i,7) as the locally
closed subset of M(v) defined by

M()i; = {E € M(v)|dimHom(Ey, E) = i, dimExt!(E, E;) = j}.

We equip M(v); ; with the reduced induced scheme structure. For a positive integer
s, let
No(v)® : Sch/C — Sets

denote the functor which associates to a scheme Y over C the set NVp(v)*(Y) consisting
of equivalence classes of the pairs (7, &) such that £ is a flat family of u-stable sheaves
with Mukai vector v and 7 is a locally free sheaf of Oy-modules of rank s with an
injection

T q.(E ®p*EY).
were p: X XY — X, q: X xY — Y denote the natural projections. We note that
such 7 corresponds to an injection on X x Y:

FTRp*E — £.

Then two pairs (1,£), (7/,€’) are said to be equivalent if there exist a line bundle L on
Y and an isomorphism ¢ : £ = £’ ®¢* L such that p(¢*r @ p*Fy) = ¢*7' @ p*E; @ ¢* L.

When F; = Oy, the above functor coincides with the functor of coherent systems
defined in [He]. By the same argument as given there, this functor has a coarse moduli
scheme Nj(v)® whose C-valued points is the following set

No(v)* = {(E,U)| E € M(v), U C Hom(Ex, E), dimU = s}.
Let p be the natural projection
P No(v)® — M(v)
which sends (E,U) to E. Let
No()i; = p H M (V)i ).
Then p: N(v);; = M(v); ; is a Gr(s,7)-bundle over M(v); ;.
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Similarly for w € H (X) and a4positive integer t, we define the functor
Ni(w)t : Sch/C — Sets

by defining N;(w)*(Y') to be the set of isomorphism classes of pairs (17, @) such that
Q is a flat family of u-stable sheaves on X with Mukai vector w and 7 is a locally free
sheaf of Oy-modules of rank ¢ with an injection

N Emt;(Q,p*El ® wy)

where Ext}(Q, p* E1) denotes the relative extension sheaf with respect to g and wq is
the relative dulaizing sheaf. There exists a moduli space ¢ : N7 (w)* — M(w) whose
set of C-valued points is given by

M)t ={(Q,V)|Q € M(w), V Cc Ext}(Q,E;), dimV =t}.

As before, if we define

M(w)i; =g H (M(w)iy),
then ¢ : Vi (w)t ; —» M(w), ; is a Gr(¢, j)-bundle over M(w); ;.

43
Assume that E; is u-stable and rigid, that is, Extl(El, E;) =0. We assume fur-
ther that its Mukai vector v(E1) satisfies the condition that §(v,v(F1)) is H-minimal.

For a positive integer s satisfying sv(E1)o < vg, we let
w=v—sv(F).

We notice that for every E' € M(v); j, we have Hom(E, E;) = 0, since otherwise £
must be isomorphic to F; and hence j = 0, which is a contradiction. For an element
(E,U) € No(v)§ ., let Q denote the universal division defined by the sequence

1,50
0-UQFE - E—-Q—0.
Since F; is p-stable and rigid, this induces the exact sequences
0— U — Ext}(Q, E,) — Ext!(E, E)) — 0

and
0 — U — Hom(F4, F) —» Hom(E;,Q) — 0.

Hence dimHom(E;, Q) =i — s and dimExt*(Q, E1) = j + s.
THEOREM 2.1. There exists an isomorphism between Brill-Noether loci
[ NO(U)f,j - Nl(w)f—s,j+s'
Proof. We shall show that for every C-scheme Y, there exists a natural bijection

between the two sets No(v);;(Y) and My(w)i_; ;15(Y). A pair (£,7) € No(v)§;(Y)
with 7 — ¢.(£ @ p*EY) yields an exact sequence on X x Y

0—=qg'Tp"'E; —-&—-Q—0

By Lemma 1.5, Q is a family of sheaves in Nl(w)f‘s,j“, whcih is flat over Y. Since we
have g, Hom(&,p* E1) = 0 by stability, taking Hom4( ,p*E;1) we obtain the injection

0— 7Y ®@p*E) — Exty(Q,p*E1 ® wy).



REFLECTION OF SHEAVES ON A CALABI-YAU VARIETY 575

So we can define the map f by f((£,7)) = (Q,7) € M(w)i_ ;+s(Y). Now we will
give the inverse map g of f. For (Q,n) € M} (w)i_s j+s(Y), we have ¢. Hom(&,¢"T ®
p*E1 @ wg) = 0 since u(&;) > p(E,) for all t € Y by assumption. Hence the Leray
spectral sequence yields the isomorphism

Eth(Q7 q*nv ®P*E1) =2 HO(Y,gilité(Q, Q*"’IV ®p*El R wq))'
We may identify the injection 1 — Ext'(Q,p*E; ® V) with an element of H°(X x
Y,Ext}(Q,q™nY ® p*E1 ® wy)), so this gives the following extension on X x Y
0—-n'®@pE—-&— Q—0.

Let g«(nY) < q.(E®p*EY) be the push-down of this map by q. If we define g((Q,7)) =
(€,49.n"), then clearly this is the inverse of f. Thus the theorem is proved. 0

Assume that 6(v,v(E1)) is H-minimal. For a positive integer s with sv(E;)o > vo,
let

w* = sv(Ey) —v.

For positive integers 4, j, we define another Brill-Noether loci whose C-valued points
are given by

M(v);; = {E € M(v)| E is locally free, dim Hom(E, E,) = i,
dim Ext'(Ey, E) = j},
and

No(w)35 = {(E,U)| E € M()?,, U C Hom(E, Ey), dimU = s},

(VRS

No(v){5" = {(E,U)| E € M(v)i;, hdE <1, U C Hom(Ey, E), dimU = s,
U @ E; — E is surjective}.

Then we have

THEOREM 2.2. There exists an isomorphism between Brill-Noether loci

f* ZNO(U);,?:;' — NO(w*);:*s,i—s'

Proof. We consider only C-valued points. Since the argument works for famillies,
the claim follows as in Theorem 2.1. For (E,U) € No(v){%(C), under the isomorphism
Hom(E, E;) = Hom(EY, EV), the natural map

p:E—-U'Q®E
is identified with the dual of the evaluation map

UV®EY — EY.
Hence @ = Coker ¢ is a u-stable torsion-free sheaf with hd @ < 1 by Lemma 1.3 and
Lemma 1.5. So f*((E,U)) = (Q,U") belongs to No(v)$** For (Q,V) € No(v);%.

J+s,1—s*
let E denote the kernel of the evaluation map V ® F; — Q. E is a u-stable vector
bundle by Lemma 1.3 and Lemma 1.6. If we let ¢* ((Q,V)) = (E,VV), ¢g* is the inverse

of f*. O
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3. Examples of reflection on a certain Calabi-Yau threefold. In this
section we shall consider the reflection of stable sheaves on the “stringy” Calabi-Yau
threefold P(1:1:222)[8] which has been extensively studied in the context of mirror
symmetry([COFKM]). Let X denote a hypersurface of degree 8 in the weighted pro-
jective space P(11:222) A typical example is given by the equation

8
T +x§+x§+x3+x§=0.

Let
p: P— P(l,l,?..?.,?)

be the blowup of the singular locus C' of P(1:1:2:2:2) which is a smooth curve of genus
three. This induces a resolution p: X — X where X is a smooth Calabi-Yau threefold
contained in P as an anti-canonical divisor. P is isomorphic to the P3-bundle P(O$? @
Op1(2)) over PL. Let M = Op(1) be the tautological line bundle and L the fiber of the
projection 7 : P — P!. Then X is linearly equivalent to —Kp = 4M and the induced
morphism 7 : X — P! is a K3 fibration whose general fiber is a quartic surface in
P3. Let H = M|x and F = L|x. Pic(X) is generated by H, F and the intersection
numbers are given by
H®=8, H?.F=4, F?’=0.

Let E denote the exceptional divisor over C and let | € A%(X) denote the class of a
fiber of the ruling £ — C. Then we have H = 2F + E and

d=H -F=H-(H-2F).
We define h € A%(X) as the class defined by
4h=H - -F

which is represented by a smooth rational curve. We can calculate the intersection
numbers of them as follows.

F.l=1 F-h=0, H-l=0, H-h=1.

The second Chern class of X is c2(X) = 56h + 241.
We will consider an ample divisor H, = H+¢F on X for fixed ¢ > 0. For integers
a, B, we let
Lop=aH+ pF.

Then we have
Lop-H:=4(2(g+1)a+) =0 (mod 4).
For every integer o, the line bundle
Ea = Ea,—?(q+l)a+1

satisfies L - H(f = 4, hence dmin(Hy) = 4 and L, is H;-minimal. By Lemma 1.3,
every subspace U C Ext'(L,,Ox) yields an H,-stable bundle E' which fits in the

exact sequence
0-U®0x - FE — L, —0.

Next we will give an example of F; which is not isomorphic to Ox. For given Mukai
vector v, the ample line bundle Hy is suitable for sufficiently large q. This means that
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a sheaf E' of Mukai vector v is Hg-stable if and only if its restriction to general fiber
X; of mis Hi-stable. Let T, denote the relative tangent bundle of the ambient P3-
bundle 7 : P — P! and let E; denote its restriction to X. Since E, is H;-stable and
rigid on general K3-fiber, F is rigid and H,-stable for sufficiently large ¢ by [Th|. It
has Mukai vector v(E,) = (3,4H — 2F,24(h + 1), 8) and sits in the exact sequence

0— Ox —>OX(H)@3€BO)((H—2F) — FE; — 0.

Let o be an integer and let 8 = —(2¢+2)a+24¢g+17. Then we have 6(Ly g, B1) = Lq.
So a subspace U C Ext!(E1, E) yields an Hg-stable bundle E by the extension

0-U®FE, —-FE— Lyp—0.

By Theorem 2.1, from the two examples considered above we obtain Brill-Noether loci

N (v);; which are isomorphic to the Grassmann varieties.
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