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HIGH-DIMENSIONAL HELICITIES AND 
RIGIDITY OF LINKED FOLIATIONS * 

TRISTAN RIVIEREt 

Abstract. We give an ergodic interpretation of Hopf-Novikov helicities as conjectured by 
V.I Arnold in [1]. We then extend to higher dimension the topological lower bounds obtained by 
M.Preedman and Z.X. He in [8] for energies of invariant forms of linked foliations. 

1. Introduction. 

1.1. Arnold's ergodic interpretation of the generalized Hopf Invariant 
and rigidity of knotted magnetic tubes. In their paper [7] and [8] M.H. Freedman 
and Z.-X. He consider the following problem : Let K be a knot in M3 (a regular 
embedding of 51 in R3) and T be a regular tubular neighborhood of K in E3, one 
considers closed 2-forms UJ in T such that the restriction of u to the boundary of T 
is 0 (i.e. LQTUJ = 0, where ^T is the inclusion map). They proved that for any such 
2-form the following inequality holds 

where Flux(u;) is the integral of to over any surface in T whose boundary lies in dT 
and whose intersection number with K is +1. Moreover &c(K) is the following knot 
invariant : 

Let L be an embedded oriented closed curve in T, we denote by degL the inter- 
section number of L with any oriented section of T generating H2{T, dT; Z) (oriented 
such that the intersection number between E and K is +1). Then 

(ir\     - c /      cC^-k') r  rf closed emb. \ ,   0. ac(if) = inf < 73—' , ,.     -.,     ',    L,L . } (1.2) v   / l|degL| |degZ/| curves in T J v     / 

where c(Z/, L') is the over-crossing number of L and 1/ : the minimal number of over- 
crossing of L over Lf among all planar knot diagrams representing (L, L'). The result 
above is also extended to the case of a general link (see [8]). 

Since a; is a closed 2-form in dimension 3, in a neighborhood U of a point XQ such 
that UJ(XO) ytz 0, using Darboux theorem, u can be written as u = (j)*(dxi A cfa^), 
where <fi : U —> D2. 

In the very particular case where LJ can be written globally as to = (^{dxi A da^) 
where (j) : T —-> D2, the proof of (1.1) can be sketched as follows : Using Federer's 
coarea formula we have 
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where X^ is the divergence free field associated to u (ix^dxdydz = LO -1 is the interior 
product of vectors on forms - and this yields X^ G Ker(u;) and < ^UJ\X^ >= |a;|2), 
da is the volume form on JD2, t is the unit vector tangent to the preimages of regular 
points by cj) and the measure on 0'"1(O x 0^1(C) is the product measure obtained 
from the restriction of the ambiant metric of R3 to <^~1(£) and <^~1(C). Consider two 

regular points of (j) in D2, £ and C, for (ar, y) € 0"1(O x ^"^C),  **(») A %).^jj   is 

the norm of the pull-back of the volume form on S2 : dvolsi, by the map L 

t-Hv)**-1® 

fay) 
x-y, 
\x-y\ 

Thus we have 

/ 
0-1 (Ox 0-i(C) 

t(x)At(y), 
x-y 
x-y\3 

€52 
CardCL-1^)) dvol^ (1.4) 

For any regular value 5 of L, Card(.L-1(s)) is the number of over-crossing of 0-1(77) 
over </>-1(£) for the projection on an oriented plane orthogonal to 5. Thus (1.4) 
combined with the definition of a,c(K) implies: 

47r L-i tf-1 (Ox*-HO 
t(x)At(y). 

x-y 
\x-y\s > ac(i0 deg^"1^) deg^irj) (1.5) 

Using once again the coarea formula, we have, for any generator E of 
H2(T,dT,Z) whose intersection number with K is +1, 

Flwt(<f>*dff) = / t/fda = [ 
Jz JL D2 

dcj{i) deg^1^) (1.6) 

Combining (1.3), (1.5) and (1.6) we establish (1.1) for such globally integrable form 
u. 

One of the main achievement of [8] is to extend this proof to the case where LJ 

cannot be written globally as (j)*dxi A dx2. In such a situation one does not have 
anymore a nice indexation of the leaves, defined by a;, by the values of a map </>, the 
coarea formula cannot be applied and the decomposition of the Lebesgue measure 
on T as the measure ^r along each leaf times some transversal measure, does not 
necessarily exists (in particular because a.e. leaf, for the transverse measure a;, is 
not necessarily compact and one would have to find a measure on the space of leaves 
that can be already particularly complicated, see [5]). The idea used to overcome 
this difficulty, originally appeared in a paper by V.I. Arnold [1], where he gives an 
ergodic description of what he called the asymptotic Hopf invariant. He introduced 
the flow gt of the divergence free vector field X associated to UJ (i.e. for all vector Y 
< *u;, Y >= (X, Y) where < , > means the duality between forms and vector and 
( , ) is the scalar product in R3), this flow preserves the volume form and he replaced 
somehow the decomposition of the Lebesgue measure given by the coarea formula we 
had in the case u = <f)*d<7, by the integration over the line flows of X : 
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Vi>0    V/SL^T) 

r      fi    r (L7) 
f=      -dx      f(gs(x)) ds 

JT JT t       JO 

This elementary identity means that, in order to integrate a function over the space T, 
one can start to take the mean value of / on the leaf starting at x up to gt(x) for the 

measure dt ='wr and then, integrate these time averages over all of T relatively to 
the Lebesgue measure. Moreover, by the mean of Birkhoff Ergodic theorem, the time 
average in the integral of the right-hand-side of (1.7) converges almost everywhere. 
Precisely this idea was used in the following way. The Hopf invariant of a C1 map u 
from 53 into S2 is given by 

H(u) =  /    u*u A 77 

where UJ is any closed 2-form generating iJ2(52), normalized such that f 00 = 1 and rj 
is any 1-form such that drj = U*UJ. The use of the coarea formula as above yields 

H{u) = i /\ I'^(""'(O;"-1^)) d^c 
where Ik denotes the linking number between two curves of 53. In [1] V.I. Arnold 
considers any closed 2-form on 53 and the generalized the Hopf invariant also called 
the helicity of dA, introduced in hydrodynamics by H.K.Moffatt (see [15]), 

H(dA) = / 
Js* 

and he gave the following ergodic interpretation for W, 

H{dA)= I   [  \{x',y)dxdy (1.8) 
is3 Js* 

where A (a;; y) is the following average of linking numbers for a.e. (x, y) 
rp rp 

\{x;y)=   lim   i/     /    \KTt(x)>T8(y))dtds (1.9) 

and Tt denotes the union of two paths Tt(x) = Gt(x) U A(x,gt(x)). Gt(x) is the flow 
line of the divergence free vector associated to dA between x and gt (x) (gt denotes the 
flow itself) and A is an assignment of a smooth curve A(x, y) to every couple (x, y) 
that connects the points x and y such that it depends on x and y in a measurable 
way and such that the integral of the Gauss-form a over the product of any two such 
curves or over the product of any such a curve with a Gt(x) (t < 1) are uniformly 
bounded. Recall that the Gauss-form living in A2(R3 x R3) is given by 

dAAA 
Is3 

-E 1  Xi - yi 
—dXi+i A ayi. 

^ 47r \x — y|2 

where indices i are in Z3. Such assignment of curves A is called a "system of short 
paths" and it is proved that the limit A is independent of the choice of such a A. 

Combining this approach and the proof we gave above of (1.1) in the particular 
case where u;—a.e leaves are compact, one can extend the lower bound to general u 
(see [8]). 
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1.2. High dimensional helicities. At the end of [1], V.I. Arnold ask about the 
existence of a similar Ergodic interpretation like (1.8) but for the following higher di- 
mensional helicities whose "compact" version was introduced by S.P.Novikov (see [16], 
[17]) in it's "geometric realization" of the theory of rational homotopy of D.Sullivan . 

Consider 2 closed 2-forms on 54 dA and dB that are integrable 

dAAdA = 0 dBAdB = 0 (1.10) 

and that commute 

dAAdB = 0 (1.11) 

then we introduce 

Af(dA, dB)=( f  dA A A A B] f  dBABAAj (1.12) 

The "compact" version of these helicities arises as one computes the rational homotopy 
class of a map u from S4 into R3 \ {xi, X2} where xi and X2 are two separated points 
of R3. The infinite part of TT^R

3
 \ {^i,^}) is Z ® Z and the corresponding class to 

u is given by 

u*cui A 771 A 772; /    u*uj2 Arj2 Arji) (1.13) 
's4 Js4 J 

where e% = w*ti;i, dr)2 — u*uj2i and ui and U2 are two 2-forms generating H2(R3 \ 
{^1^2}) and normalized such that J   Ui = 1 {ai is any sphere around xi). 

In part I we give an interpretation of this integers in terms of the relative linking 
number of preimages by u of certain subparts of R3 \ {xi,X2} (see proposition 2.3). 
The relative linking number of a triplet (SQ, £1, £2) of three closed disjoint surfaces 
of R4 is the topological degree of the following map 

V     :    £0 x £1 x £2     —>     S3 x S3 

{x,y,z)     —► 
x — y    x — z 
\x — y\' \x — z\ 

(1.14) 

rlk(So|S1,S2):=deg(^) (1.15) 

See figure 1 for a non trivial relative linking number between 3 torii in R4. 
Going back to the non-compact version of the Novikov helicities (1.12) we observe 

first that since dA A dA = 0, Darboux theorem says that, in a neighborhood of a 
point where dA does not vanish, it may be written as dA = (j)*dx A dy where 0 is a 
submersion into D2 (i.e. the kernel of dA is an integrable distribution of 2-planes). 
Thus dA defines a foliation in S4 away from the set where dA vanishes. The leaf CA(x) 
of this almost foliation defined by dA passing through x € 54, where dA{x) ^ 0, is 
the set 

CA{x) = {y£S4     s.t. 37GC1([0,1];7;)   7(0) = x 7(1) = V 

Vie [0,1]    cL4T(()^0   ;    7(*)eKer(<M7(t))} 
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S and S split in two component each being linked with S ^ 2 

S| splits and one of the component of S ^ the left one here) makes one lap "•..-•' 
around the component of S -jit is linked with, passing inside the component of S  gnd comes back to its original position. 

the two components of S-jbring back together 

components 
ofSgandS, 

bring back 
together 

FIG. 1.1. relative linking numbers of 3 torii Si, Si and S3 in M4 ; picture 1 to 5 represents 5 
slicing increasing in time 0/R4, in that case we have rlk(S3\S2, Si) = 1 providing a right orientation 
of each torus - observe that rlk(S2\S3, Si) =0. 

Let X be the set of oriented 2-submanifolds of S4 which are everywhere transverse to 
the leaves, then dA defines a positive invariant measure over X (see [18]). We say that 
some property holds for GL4-a.e. leaves of dA if for any N in X the measure relative 
to dA of the x in N such that the property does not hold for £A(x) is 0. 

DEFINITION 1.1. The zero set of dA is said to be dA-negligible if for dA almost 
every leaf the zero set of dA has no intersection with the closure of the leaf The 
foliation defined by dA is then called a lamination. 

DEFINITION 1.2. A point x in S4 is said to be essential for the lamination defined 
by dA if the leaf through x does not intersect the closure of KerdA. 

We will assume from now on that both dA and dB define laminations. 
We will need some "closing at infinity" for dA-a.e. leaf of dA. A leaf CA(x) is said 

to be of Liouville type if there exists no non-constant harmonic function on CA(x) . 
For instance, a sufficient condition for beeing Liouville is, for the leaf >CA(x), to have 
subexponential growth (see [12]) i.e. 

Vi/ G CA(x) lim 
R 

0 

where BR(y) denotes the geodesic ball in CA(x) of center y and radius R.   The 
characterization that we will use of being of Liouville type for C is the cancellation of 
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the Kaimanovich Entropy on £ that was proved in [11] and [12] : 

lim i / p(x,y,t) \ogP(x,y,t) dH2(y) = 0 (1.16) 

for any x on C and where p is the Heat-Kernel for the laplacian on C. 

DEFINITION 1.3. An integrable 2-form dA defines a Liouville lamination if it 
defines a lamination and if dA-a.e. leaf of this lamination is of Liouville type. 

REMARK 1.1. Liouville laminations which are not necessarily compact are easy 
to produce. One takes a non degenerate closed two forms in a 2-torus contained R3 

minus the Ox-axis. Assume this two form is tangent to the boundary of the torus and 
defines a non compact foliation inside. Then the non-compact Liouville lamination is 
obtained by rotating this foliation in R4 about the Ox axis. 

Consider now two 2-forms dA and dB verifying (1.10) and (1.11) each of these 
two defining a Liouville Lamination ( (1.11) implies in particular that dA x dB—a,.e. 
pairs of dA— and dB—leaves do not intersect - see lemma 2.1). Let x be an essential 
point for dA we denote by PA the heat-kernel on the leaf passing through x, CA{x), 
for the metric induced on this leaf from gs*/\dA\. Let 5 be any positive number, we 
define 

CiiS(x,t)=CA(x)r\{(- ; <5fc+1 <pA{x,(-,t) < 8k} 

and 

v£>ST{x,t) = C£tST(x,t) U CftcA,^*,*) 

where C denotes an assignment of surfaces to any closed curve lying in a leaf of dA 
called a "system of small caps" (see proposition-definition 2.1) replacing somehow the 
"system of short paths" A of the 1-D case. Let 8T be a positive function tending to 
1 as T —> 4-oo. We define AT to be the following relative linking average 

For (x, y, z) being an essential triplet for rep. dA , dA  and dB 

V(M,m)eN3let 

Al^mfaytz) = i /        rlk(^T(x>t)|2^r(y,5);P^T(z,(7)) dtdsda 
1 */[0'T]3 (1.17) 

and define 

KT(x,y,z)=Y,5T+l+mlZ,l,m(.W) 
k,l,m 

AT(x,y, z)=0       otherwise 

We can state now our first main result 

THEOREM 1.1. Assume dA and dB are two integrable 2-forms of S4 that com- 
mute, dA A dB = 0, assume they both define Liouville laminations then the following 
ergodic interpretation of the Novikov helicity holds : there exists 5T —> 1 such that 

lim   AT(x, y, z) — A(#, y, z)     exists for a.e. (x, y, z) (1-18) 
T—►+oo 
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The limit is independent on the "system of small caps" chosen, moreover we have 

[  dAAAAB= I    f    f  A(x,y,z) (1.19) 
Js4 Js4 Js4 Js4 

An ergodic interpretation of the Hopf-Novikov helicities fs4 dAAAAB was already 
obtained by B. A. Khesin in [13] and involves the notion of assymptotic linking between 
divergence free fields and foliations (see more about this approach in [14]). This 
ergodic interpretation is based on the following observation : since dA A dB — 0 
generically as two leaves llA{x) and CP intersect the resulting intersection is a line. 
The 1-dim "almost foliation" obtained is given by the flow of the divergence-free field 
associated to the form dAAB. Then / dA A B A A is interpreted as a mean value of 
averages of linking numbers between the 1-dim lines of the foliation dA A B and the 
foliation given by dA. Again Arnolds approach via the flow along the divergence-free 
field associated to dA A B and the system of short path A is used but no ergodic 
interpretation of the linking number between a curve and the 2-dimensional "almost 
foliation" generated by dA is given. Using our approach, such an interpretation can 
be given in terms of averages of linking between curves and surfaces in the case where 
dA defines a Liouville lamination. 

In particular our approach works also for the simplest helicity / dA A A, the 
Liouville restriction is not needed in this case since the leaves are 1-dimensional. The 
lamination condition was also required for the existence of short paths (see remark 
4.14 page 145 of [2]) until the recent paper by T. Vogel [19]. 

Still for M = R3 \ {xi,X2} one can iterate the procedure of computing the con- 
tinuation algebras Cq(A) of the minimal model A of A*M (see [16] and [17]) in order 
to obtain all the geometric realizations of the rational homotopy class of M3 \ {a;i, £2}. 
For the 7r4(R3 \ {a;i, £2}) <8>Q — Q2 these geometric realizations are U*UJI Arji A772 and 
u*u>2ArjiAr}2 that we saw before. One step further, for a map u : S5—> M3\{a;i,a;2}, 
the geometric realization, induced by u, of the generators of the H5(C5(A)) gives 
the following 3 homotopic invariants corresponding to ^(R3 \ {xi,X2}) 0 Q ^ Q3 : 
u*ui ArjiAd"1 (U*LOI A772), u*uj2 A772 Ad-1 (u*u)i A772) and U*UJI A772 Ad-1 (U*UJI A772). 
The method we develop permits to give a geometric interpretation of these invariants 
in terms of higher order linkings with a corresponding Gauss integral formulas...etc. 
Moreover our method yields an ergodic interpretation of the following helicities in S5: 

[  dBABAC     [  dAAAAC     [  dAAB AC 
Js5 Js5 Js5 

where we assume that A G A155, B 6 A155 verify 

dA A dA = 0    dB A dB = 0    dA A dB = 0     and dC = dA A B 

These helicities are again just examples and we claim that the approach we develop 
for the helicity above (1.12) can be transposed to all the helicities one can construct 
from the Hopf-Novikov Invariants that give integral representation of the rational 
homotopy groups described in Sullivan Theory of the minimal models. 

Passing from 1 dimensional leaves to 2 or any higher dimensional leaves required 
the introduction of a new way of "moving around over the leaves" compare to the one 
given by the flow of the divergence free field associated to the form in 3 dimension. 
This way of moving has to "decompose" the Lebesgue measure in the ambient space 
(like the coarea in the case of compact leaves) into a measure along the leaf times a 
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measure over the set parameterizing the leaves. In the 1 dimensional case (1.7) the 
set of leaves was trivially over-parametrised by the all set of points of the ambient 
space. One of our main observation will be to interpret divergence free motion and the 
corresponding Birkhoff Ergodic Theorem as a motion on the leaf which is deterministic 
among motions of more general nature with more general ergodic theorem : we have 

f  f= [   ± [ dr [      f(y)p(x,y,r) (1.20) 
JS4 JSA t JO JLeaf 

where p(x,y,T) — 5<&T(xy Our idea is to replace this deterministic motion, which has 
no meaning for 2-dimensional leaves, by some Brownian motion on the leaves which 
is not deterministic anymore : we will look for a probability measure p(x,dy,t), see 
theorem 2.1, verifying the three following conditions 

i) p(x, dy, t) is supported on the leaf passing through x. 
ii) If the leaf passing through x, C(x) is compact, for every function / 

lim    /      f(y) p{x, dy, t) —> cc{x) /      f{y) t^+oo Jc{x) Jc{x, 
dH2 

c{x) Jc(x)        \dA\ 

iii)  {preservation of the Lebesgue measure) For every function / 

/   dx - /   dr /    f(y)p(x,dy,T) —>  /   f(x) dx 
Js4      t Jo      Js4 Js4 

where dx denotes the Lebesgue measure. Moreover we will require to have an Ergodic 
property saying that the average in time in the left-hand side of the previous equality 
converges almost everywhere. We will view the introduction of such a decomposition 
of the Lebesgue measure as a substitute of the coarea formula in the case where the 
leaves are not necessarily compact and not necessarily indexed as preimages of points 
by some map. 

1.3. Rigidity of linked Liouville Laminations. In this part we will apply 
the technics developed to solve theorem 1.1 and to give the Ergodic interpretation 
of Hopf-Novikov's Invariants to get topological lower-bounds for conformal invariant 
energies of differential forms (such as the L2 scalar product of 2-forms in 4 dimensions) 
defining Liouville Laminations in the spirit of estimate (1.1). To this aim we need to 
introduce few topological invariants. 

Let Ei, £2 and £3 three closed disjoint (not necessarily connected) surfaces in 
R4 (or 54), we define the relative over-crossing number, rc(Ei|E2jE3), of E2 and E3 
relative to Ei in the following way. For almost every vector u in 53 the projection of 
E2 and Ei on a plane perpendicular to u are transverse to each other and for such a 
u we define the "shadow" of E2 on Ei to be the following set 

5u(Ei,E2) = ixeEi     s.t.      ByGEs    u = ^-—^rl 
I \x-y\\ 

Take now another "generic" vector v of S3 such that the projection of Su and E3 on 
a plane perpendicular to v are transverse to each other. The over-crossing set of Su 

and E3 relative to v is 

Su>v(Ei|E2,E3) = |a;€Su     s.t.     BzGEg   ^ = -^^-1 
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The over-crossing number of £2 and £3 relative to £1 is the minimum among all 
smooth deformations of R4 and among almost every "generic" u and v of the cardinal 

rc(E1|E2,E3)= min Card(5„,l,(V'(S1)|V(S2)) ^(£3))) 
a. e. u,vGS3]ip£ diffeo. M

4 

In the same spirit of [8] we can define the asymptotic relative crossing number of 
£2 and £3 relative to £1, arc(£i|£2,£3) to be the following number . We assume 
in a first approach that each of the 3 surfaces £1, £2 and £3 are connected. Let Ti, 
T2 and Ts be 3 disjoint tubular neighborhoods of £1, £2 and £3 ( % ~ £; x D2 ) in 
M4. Inside 7^, T2 and Ts respectively take Hi, £3 and £3 to be 3 closed surfaces (not 
necessarily connected) such that 

where [£^] is the homology class in #2^) of ^5 A is the homology class in #2(^5 d) 
obtained from any section of % whose intersection number with [£i] is +1 ( • is the 
intersection numbers operation). Then we define 

arc(£i|£2,£3) = 

. ,. % disjoint tubu. neigh, of £• 
q 

nt=i ldeg(si; ^) E; clos. surfaces in % 

where the minimum is also taken among all smooth deformations of E4. 
In the case where £1, £2 and £3 are not connected anymore the definitions have 

to be changed. For instance, if £1 and £2 have 1 connected component each but £3 
has 2 connected components 53 and §3, arc(£i|£2, £3) is defined in the following way 
: for any choice of four surfaces E^, £2, £3 and £3 in 7i, 72, T3 and T3 we consider 
the minimum among any generic u and v of the sum 

 __pu1v\^l\^2^ ^3/                   ,   ^^(ZJIIZ^? £3)  
|deg(Ei,Ti) deg(E'2)T2) deg(E^)|     |deg(E'1>Tx) deg(E^T2) deg(E^T3)\ 

and the minimum of such quantity among all possible choices of Sj, £2, £3 and £3 
in Ti, 72, T3 and T3 and all possible smooth deformations gives arc(£i|£2,£3). 

Our second main result reads. 

THEOREM 1.2. Let Ti, I2 and Ts be three disjoint tubular neighborhoods of three 
disjoint closed surfaces £i; £2 and £3 in R4. Let dAi be three integrable 2-forms 
(dAi A dAi = 0) in % defining Liouville laminations and so that LQT. dAi = 0 (13% is 
the inclusion map of 3% in R4^ then the following identity holds 

STT4 L L J7 

IdA^ldMiylldAsKz)^ 
167r4 JTl JT2 JT3 \x - y|3 \x - z\3 

3 (1.21) 

JJ|FM^)I    arc(£i|£2,£3) 
2=1 

where Flux(dAi) is the integral over any oriented transverse section of % having in- 
tersection number +1 with £*. 
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It is clear that 

arc(E1|E2,E3)>|rlk(Ei|S2,S3)| 

Inequality (1.21) with rlk(Ei|E2,E3) instead of arc(Ei|E2,E3) does not require the 
dAi to be integrable and follows by standard cohomological arguments using Poincare 
duality (see for instance [3]) and the integral formula we give bellow for the relative 
linking number. In the last section we give an example of surfaces where 

rlk(Ei|E2,E3) = 0        and        arc(Ei|E2,E3) > 0 

The asymptotic crossing number may be compared with other topological invariants 
: Consider any smooth 3-manifold M2 bounding E2 (9M2 = E2) and intersecting 
Ei transversally. The intersection M2 fl Ei defines an homology class cri,2 in Hi(T\) 
which is independent on M2 verifying 9M2 = E2. This is nothing but the intersection 
pairing between the class defined by such an M2 in iJ3(R4,E2) and ^(Ei) (see [6] 
page 336). Taking now the restriction to R4 \ Ts of an immersed surface that bounds 
a smooth representant of cri}2, it defines a class <TI,2,3 in i?2(R4 \ ^Ei U Ts) which 
is independent of the representant of <Ti chosen (since Ei n T^ = 0). Observe that 
the boundary part of 0-1,2,3 in Hi(d%) intersected with M3, a manifold bounding E3, 
gives the relative linking number rlk(Ei|E2, E3). Then we prove 

THEOREM 1.3. Let 0-1,2,3 being the class in i^O^4 \ %', Si U d%) defined above, 
we have 

arc(Ei|E2,E3)>||<7i,2,3|| 

where || || denotes the singular pseudo-norm in i^O^4 \ ^3; Ei U d%) 

11^1,2,31| = inf {1/n x{S) \ f : S-> M    and 

MS] = na1X3 in H2(R
4 \ T3] Ei U dT3)} . 

and x(S) = J2iX-(Si) where Si are the connected components of S, x-(Si) — 
max{0, — x(Si)} an^ X is the Euler characteristic. 

2. Preliminaries. 

2.1. The 4-dimensional Gauss formula for relative linkings. Let EQ, EI 

and E2 be three closed surfaces in R4 such that EQ fl Ei =0 and EQ fl E2 = 0. 
rlk(Eo|Ei,E2) is the relative linking number of this triplet defined by (1.15). The 
following Gauss formula for the relative linking holds. 

PROPOSITION 2.1. We have 

r^EolE^H / G (2.1) 

where Q is the following Gauss-form defined on 

e = i E Su-^k-dfo*dxi *{dyi dy^ * &*dzi)      (2-2) 
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Proof of proposition 2.1. Let SI = r^y X]t=i ^ (dXi..dX4)i where we will use the 
notation (dXi^dX^i := iei(dXidX2dXsdX4) and tei is the interior product with 
the i-th vector e^ of the canonical basis of R4. fi is the volume form on S3 normalized 
in such a way that Js3 LO = 1. The integral representation of the topological degree of 
V defined by (1.14) is 

deg(V) = f V*n(X) A n(Y) 
JEoxSixSa 

If yr^    Xi-Vi   Xj- Zj   ,   { .       ( ,, (2.3) 

47r   ^EoxEixS2i|i=sl F""?/!   F     zl 

(d(a;i — ^i)..d(x4 — ^4))^ 

Few terms vanish while developing the product forms and the above integral becomes 

i / E E u "^u "?4^ ^ (dyi»dv*)ik (dzL.dz^ji 47r    JSoxS1xE2 j^^i  \X~y\    F      ^1 

which gives the result. 

The following interpretation of the relative linking number illustrates perhaps 
better the link between rlk and arc. 

PROPOSITION 2.2. Let EQ, Si and £2 6e ^/iree c^ed surfaces in R4 swcfe t/za^ 
So fl Ei = 0 and EQ D E2 = 0. £e£ Mi and M2 6e two 3 submanifolds of E4 such 
that dMi = Si (for i — 1,2). Assuming M2 and EQ intersect each other transversally 
along a curve r2 and that this curve intersects Mi transversally then 

rJ*(Eo|£i,£2)=r2-Mi 

where r2 • Mi is the intersection number between l^ and Mi. 

REMARK 2.1. It is not difficult to see that any Novikov integral expression of 
the rational homotopy class of a map from a sphere into a manifold (extending 1.13 
for 7r4(R3 \ {p, q}) <g) Q to arbitrary Tr^iV) ® Q) admits such an interpretation via 
intersection numbers between preimages of points and manifolds whose boundary are 
preimages of points. Such an interpretation makes a "geometric" illustration via 
intersection of submanifolds of the minimal model construction of Sullivan. 

Proof of proposition 2.2. Let TQ, Ti and T2 be 3 disjoint tubular neighborhoods 
of the 3 disjoint surfaces So, £1, £2- Choose fa a smooth map from Ti into D2 (the 2- 
unit disk of R2 centered at 0) such that (j){dTi) C dD2 and the degree of fa on a given 
section Si of Ti generating ^(Ti, dTi) with intersection number +1 with £$ is -fl. We 
have then L*dT.<j)*w = 0, where idTi is the canonical embedding of dTi in T^, and w is 
the volume form on D2 normalised so that fD2 u = +1. We have moreover /5. </>*a; = 
1. From the homotopy invariance of degrees we get that for any arbitrary choice 
(Po,Pi,P2) of regular point of {fa, fa, fa) in (D2)3 rZfc(^o1(po)|^r1CPi)»^2"1(P2)) is 
independant of (po5Pi,P2) and equals W&;(£o|£i,£2)- We then obtain by the mean 
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of the Gauss formula above and the coarea formula that 

(2.4) 

■Zfc(Eo|Ei,E2)= /    /    /   rlk((t)u1(po)\<j)i1(pi),(t)21(P2))dpodp1dp2 
JD

2
JD

2
JD

2 

= /     /     /     dpodp1dp2   / G 
JD

2
 JD

2
 JD

2 ^4>o1(po)x^1(Pi)>«f>21(P2) 

= / <l)Zu{x)A<l>lu(x)A<l>2UJ{x)Ag 
JToXT1XT2 

Introducing 771 and 772 to be the following 1-forms 

„ := t A-VW = f [^ jppL^*) 

A simple computation yields that 

/ (t>lu(x) f\(j)\uj(xi) A(j)luj(x2) AG =  /   (frluj A rji A rj2 
JToxT1xT2 JM* 

It is a well known resit that the rji are the Poincare duals in iJ1(R4 \ T^) of any cyle 
bounding 2$ and the proposition follows. 

2.2. Geometric interpretation of the Hopf-Novikov Invariants. We give 
now the interpretation of the Hopf-Novikov Invariant in terms of relative linking. 

PROPOSITION 2.3. Let u be a regular map from S4 into M3\{pi,P2} where pi and 
P2 are two distinct points 0/R3. Let TT^ (i = 1,2) be the orthogonal projection 0/R3 

onto Sf the unit-sphere of center Pi. Then for every regular pair of distinct points x, y 
of ui = TTI o u and every regular point z of U2 = ^2 0 ^ verifying TT^

1
^) fl 7r^1(2;) = 0 

and ir^iy) fl 7r^1(^) = 0 in R3 \ {pi,P2}, we have 

/   u*w1Ari1Ar)2 = rlk(ui1(x)\ui1(y)iU21(z)) (2.5) 

where Ui is any 2-form generating H2(R3 \ {pi}) with the normalisation JdB ,  x ^ = 
Sij (for sufficiently small r) and rji is any form verifying drji = u*uji. 

Proof of proposition 2.3. We first replace S4 with R4. If cJj denotes the unit 
volume-form on Sf, we take u^ = ^TT*^ thus u*uJi = -^u*uji. We also take a 
particular choice for rji such that drji = u*uji : Having in mind that — X^TTTT is the 

"i^bp*^ 

green kernel of the Laplacian on R4, we take 

j*\     1     1 
r}i = d    - 

If we explicit the convolution * we get 

* = -^d* 

"47r2|sF 

= 7^2EE*^ *(dXkdxi^ /  u-^4 *(dyfedw)Au*ui(y) 

= 7~2 /]dxk  /    1 14 * (d2/* d2/0 A ^*^(2/) 

(2.6) 
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Substituting in the formula for N(u) we get 

U*UJI A 771 A 772 
/■ Js4 

=   1   y^y^ [     xi ~VJ 
x3 -Vj (2.7) 

u*u)i(x) A dxk dxi A u*LUi(y) A *(dyi dyu) A U*<J02(Z) A *(d^ d^) 

The coarea formula of Federer tells us that VF : R4 —» 52 and any 2-form a in M4 we 
have 

JlR4 ^£G52 JF-
1
^) ^G52 ^F-i(0 

Where ^52 is the volume form on S2.  Applying the coarea formula three times in 
(2.7), writing u*uJi = U^UJI/A-K we obtain, using proposition 2.1, 

/   u*u)i A 771 A 772 
is4 

(2.8) 

rlk^OI^CWV)) wi(0 A 0^(0 A 0^(1/) 
l(Sl)*xSl \S2? Jisl) 

Now observe that the integral JSA U*UJI A 771 A 772 is independent on the choices of 
the generators of H2(S2) and is also independent on the choice of the 77^ such that 
drji = u*uji. 

Take £0 and Co two regular points of ui and I/Q a regular point of i^- Re- 
place now in the arguments above aJi(£), CJI(C) 

and c^^) respectively by a)i0(£) = 
jB^\XBAZo)Ui{Qul0{Q = jj^J\XB„(to)"i(() and^0(i/) = IS-^jrXB<y(l/o)sj2(i/)> 

where Bo- denotes a geodesic ball in 52 of radius <J and XB^ is the character- 
istic function of this geodesic balls. We choose a sufficiently small such that 
rlk('wj"1(£)|'w^1(C),'U^1(i/)) is independent of the choice of the triplet in Bo-^o) x 

Ba-(Co) x B<r(vo) and then equal to rlk(^J"1(£o)|^r1(Co)?^1(^o)) • So arguing like 
above we obtain. 

/   u*u;i A 771 A 772 =rlk(^1(eo)|^r1(Co),^1M) (2.9) 
Js4 

this proves proposition 2.3. 

2.3. Systems of "small caps", we need the following elementary lemma. 

LEMMA 2.1. Let dA and dB be two 2-forms of S4 such that 

dAAdA = 0     and    dBAdB = 0 in S4 

assume they both define laminations CA and CB. If they commute : 

dA A dB = 0 

then for dA—a.e. x and for dB—a.e. y 

CA{x)nCB(y) = $ 
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Proof of lemma 2.1. Assume this is not the case, then we may find two saturated 
subsets SA and SB of CA and CB of non zero dA and dB measures such that Vx G SA 

and Vy G SB 

CA(x)r\CB(y)^$ 

Because of the lamination hypothesis, we may also take SA and SB to be subparts 
of S4 where respectively dA and dB do not degenerate with \dA\ > c > 0 on SA 

and |<iB| > c > 0 on <SB. Then, since dA A dB = 0, dB restricted to CA(x) defines 
a 1-foliation. Then there exists an at most countable union of 1-dimensional curves 
(rn)n£N in CA(x) transverse to this foliation such that every leaf of this 1-dimensional 
foliation crosses T = Unrn. Since every dB—leaf of SB is assumed to intersect £A(:r), 
every dB—leaf of SB intersects F = Unrn that has dB-measure 0. So SB has dB— 
measure 0 which is a contradiction. 

PROPOSITION-DEFINITION 2.1. 
54 such that 

Let dAi, dAi and dA^ be 3 closed 2-forms on 

Vi,j = 1,2,3 dAi A dAj = 0 

Assume that the dAi define laminations. Denote by £Ai(x) the leaf of dAi that passes 
through x. Then for dAi x dA2 x dA^— a.e. leaves CAl(xi) x CA2(x2) x CA3(xs) 
the following property holds : for any triplet of subsets K\, K2 and Kz of CAl(x\), 
CA2(x2) and CA3(xz) such that the curvatures of OKi, 8X2 and dKs are uniformly 
bounded we may assign 3 union of embedded 2-disks Cj^, CK2 and CK3 verifying 

Vi = 1,2,3        ICKtl^CldKi 

- Vi = 1,2,3 

Vi = l,2,3 

/ / / JCKX JCK2 JCKS 

II I JKi JCKi+1 JCK^ 

II I JKi JKi+1 JCK^! 

< CfiKil \dK2\ \dK3\ 

<C|^| \dKi+1\ IdKi-il 

KCIKiWKwWdKi-i] 

where Q is the Gauss-form given by (2.2). where the constant C may depend on the 
Xi but not on the Ki in CAi(xi). A choice of such an assignment is called a system 
of "small caps". 

Proof of proposition 2.1. For convenience of the presentation we give the proof in 
the case where the dA^s are supported in a compact sub-domain of R4. Because of 
the previous lemma, for dAi x dA2 x dA^ a.e. triplet (xi,X2,xs) Vi ^ j, CAi(xi) fl 
CAj(xj) = 0.   Moreover since they define Laminations, for dAi x dA2 x dAs a.e. 
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triplets (xi,X2,xs) \dAi\ > c > 0 on CAi(xi) for i = 1,2,3 and then the three leaves 
CAi(xi) for i = 1,2,3 have bounded geometries. Take such a triplet. We then may 
find a Lipschitz diffeomorphism of R4 such that the restriction to the 3 skeleton of a 
given lattice Ls = SZ4 of R4 (for a sufficiently small size 5) of the 3 leaves are made 
of flat segments. Since all of the dKi have uniformly bounded curvature, we may 
modify Ki a bit, keeping it's area proportional to the original one and the length of 
dKi proportional to it's original one, in order to ensure that dKi lies in the 3-skeleton 
of Ls keeping Ki in it's leaf CAi(xi) and also to ensure that dKi is made of a union 
of straight segments such that each connected component of dKi restricted to any 
3-cell is made exactly of 1 segment. Take now one component of dKi denote it by k. 
li admits a projection li in the 1-skeleton of SZ4 such that the area of the annulus a^ 
bounding k U k is proportional to the length of /$, moreover \li\ ~ |^|. Solve now the 
plateau problem for li and denote by di a minimal disk that bounds k. Since k lies in 
a compact part of R4 we clearly have \di\ < C\li\. We project now di in the 2-skeleton 
of L$ in the following way : first we project di in the 3-skeleton using the following 
argument. Let 0$ be a given 4-cell of Ls, we claim that we can choose a point p in the 
interior of c<$ such that the radial projection 7CP from cs onto dcs relative to p keeps 
the area of the projection of di fl cs proportional to the area of di D cs itself. Indeed 
let v be the conformal map from the unit disk solving our Plateau problem for l^ we 
have 

area(c(5 fl di) = - / |V^(a;)|2 dx 
2 Jv-1(c5ndi) 1{c5ndi) 

Simple computations show that 

f IVd2 

area(7rp(c(5 fl di)) < C / ,    '      —^ dx 

integrating over p in the half 4-cube cs/2 we get 

/ area(7rp(c5 fl di)) dp < C / / ,      '—^ dx dp 
Jpecs/2 Jpecs/2 Jv-^csndi) \v\x) - P\ 

< C [ \Vv\2 

Jv-1(csndi) 

applying the mean-value formula we get such a p. Then using the same idea we can 
project 7Tp(csr\di) onto the 2-cell of Ls and we then obtain a disk di that bounds li and 
which is made of flat pieces of the 2-skeleton of Ls and such that the number of pieces 
is bounded by C\li\/5. We take Cj^ to be the union of these disks for the various 
components of dKi. The reason why ii), iii) and iv) hold comes from the fact that 
the integral of the Gauss-form over a triplet of 2-parralelograms of size 5 is bounded 
independently from their relative position in 4-space by a constant depending on 5. 

2.4. Leaf harmonic measures and ergodic theorem for leaf-heat diffu- 
sions on laminations. First of all we prove the following key observation. 

PROPOSITION 2.4. Let dA be a closed 2-form of S4 that is integrable : dA/\dA = 
0. Assume thatdA defines a lamination CA. Denote by fi£4 the standard volume-form 
on S4.  Take the metric on S4 to be gA = gs4/\dA\.  Then Qs4 is gA—leaf-harmonic 
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for the lamination defined by dA : 

\/(j) G C00(S'4)    V5     measurable non deg. saturated set of C/ 

I s 

where A/^ denotes the Laplace-Beltrami operator restricted to the leaves of £A. 

Proof of proposition 2.4- Let S be a non degenerated measurable saturated set : 
\dA\ > c > 0 on 5, for every x G S CA(x) C S. Take a 0 in C00^4), we may always 
assume that </> has a support contained in a sufficiently small ball Br(x) of center x 
such that we can apply Darboux Theorem in the whole ball and we have on Br(x) 
dA — H*dxi A dx2 where H is a map from Br(x) into D2 (indeed since dA defines 
a lamination, S is contained in a compact set where \dA\ > 0 and we can extract a 
finite covering from any covering of balls where Darboux theorem applies for dA and 
construct a partition of unity from this covering). Applying the Coarea Formula to 
H we have 

/    ACA(j) Q54        =    / / ACA(j)   — 

=  / / ACA(j) dvolcA 
Jz€D2nH(S) JH-

1
^) 

where dvoljrA is the volume form on the leaves induced by the metric gs^/\dA\. (Ob- 
serve that il-1(£) is a portion of leaf from our lamination). So clearly 

/ A^A^ dvo\£A = 0 
JH-HO 

and the proposition 2.4 is proved. 
Denote by pA(x,y,t) the heat-kernel for the Laplace Beltrami operator AJTA on 

the leaf CA(x). Since the leaf is contained on a compact set where \dA\ > 0 it has 
bounded geometry for the metric induced by gs^/\dA\. So the leaf is complete for the 
diffusion and from [4] we have 

pA(x,y,t) > 0     and   /        pA(x,y,t) dvolcA(x)(y) = 1 
JcA(x) 

pA(x, dy, t) = ^(x, y, t) dYol^A (y) defines a probability measure in 54 in the following 
way 

pA{x,E,t) = / pA{x,y,t) dvo\c(y) 
JEncA{x) 

This probability measure verifies the Chapman-Kolmogorov equation 

pA(t + s,x,E)= /   pA(x,dy,t)pA(y,E,s) 
JS

A 

We claim now that the standard volume form on 54 is invariant under this diffusion 
: for any measurable non degenerate saturated set S we have 

V£ measurable       / pA{x,E,t)Q,SA{x) =  /      ft54 (2.10) 
Js JsnE 
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or equivalently for any / measurable in S 

[ (Mz) f pA(x,y,t) f(y) dvol£x(y) = / f(x) Sl^(x) (2.11) 

This result can be deduced from the theorem of L. Gardnett in [9] which says that 
being leaf harmonic for a measure implies it's invariance under the diffusion of the 
corresponding heat kernel. Formally the proof can be sketched like this : for any 
/ € C00 we have, using the definition of the heat Kernel 

at 
+ A£ (j^A(x,y,t) f(y) dvofcfo)) =0 

Using the fact that Q,s4 is leaf harmonic, taking v to bev = fsp
A(x, y, t) f(y) dvo\c(y) 

and the characterization of leaf harmonicity of Qs4 applied to that v (proposition 2.4) 
yields 

^nS4 ACA (jsP
A{x,y,t) f(y) dvol£(y)) = 0 

Combining the two previous identities we obtain 

d_ 
dt 

Ja^ ^pA(x,y,t) f(y) dvolc(y) = 0 

and since Jsp
A(x^y,0) f(y) dvolc(y) = f we get that Q54 is invariant under the 

diffusion. 
Thus pA(x,E,t) defines a Markov process with the ^54 measure as an invariant 

measure. Adapting the result by Yosida (see [21]) to our situation we deduce the 
following ergodic theorem 

THEOREM 2.1. Let dA be a closed integrable 2-form on S4 (i.e. dAAdA = 0). 
Assume that dA defines a lamination. Denote by S a measurable saturated set for dA 
and by pA(x,y,t) the heat-kernel for the metric induced by gs^/\dA\ on every leaf of 
dA (gs4 is the standard metric on S4). Then for any f in ^(S'^fls4) the following 
limit exists almost everywhere 

\im   - /   dt / f(y)pA(x,dy,t) = /* 

and is in L1. Moreover we have 

/.'• 
Qs4 JfVs4 

3. Proof of theorem 1.1. Let dA and dB be two integrable closed 2-forms of 
54 which commute (dAAdB = 0). and assume that they both define laminations : the 
zero sets of dA and dB are respectively dA and dB-negligeable. For the convenience 
of the presentation we assume that both dA and dB are defined on a compact subset 
of R4. From the lamination hypothesis it is not difficult to deduce the existence of 
saturated subsets Sf and Sf for respectively dA and dB such that 

- \dA\ >c£>0onSA and \dB\ > c£ > 0 on Sf. 
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/ gA>A>B(x,y,z)- [ gA'A'B(x,y,z) <e 

where 

gA'A'B(x,y,z) 

1   ^--\ ^-v Xi — yi Xj — yj 

"^i£f£\x-y\4\x-y\4 

dA(x) A dxk dxi A dA(y) A *(dyi dyk) A dB{z) A *(dzj dzi) 

(3.1) 

Using theorem 2.1 we know the existence of the limit 

lim   ^ /        / vA{x, df, t) pA(y, dC, s) pB(z, dv, a) gAAB& C,") 
(3.2) 

= A*(x,y,z) 

for a.e. (a;, 2/, z) £ Sf x Sf x Sf where 

^AB(^C^) = <^AB;^4)(eC^) 

and that 

L^'^'L ->A,A,B (3.3) 

where SA,A'B denotes SA x SA x Sf, and pA and p3 are respectively the heat 
kernels for the heat operator on the leaves of dA and dB for the metrics induced 
by 9R*/\dA\ and ^R4/|djB|. Moreover pA{x^d^t) denotes the distribution form 
pA(£,£,£)(ivol£A(£)(£) and dvo^A^) is the volume form of the cL4-leaf passing by 
x induced by ^M4/|dA| whose associated measure on the leaf is dTi2/\dA\\CA (dH2 

is the two-dimensional Hausdorff measure). We modify pA and pB in the following 
way. Let 5T > 0 to be fixed later on in the proof, we just assume now that ST —► 1 
as T —> +oo and we omit the subscript T. Using the mean value formula we get that 
for every integer k there exists 5k+1 < p < Sk such that 

dTi1 

\{pA(x^1t)=p}\= f 

- l-SSk J5k+i     J^ . pA(x^t)=q} \dA\i( 

1 - 5 5k JcA(x)n 

(0 
|V#>| dvo\CA{x){£) 

(3.4) 

^U ; 5fc+1<pA(cc,e,t)<5fc} 

where we used the coarea formula. Choose such a p, denote it by pA
6(x1t) and let 

£&(*,*) = {£e ^(^   s- *•   Pk+iAx>*) ^ ^C31.^*) ^ PM^'*)} 
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Denote by pA(x, £, t) the approximated kernel such that 

pA(x,£,t) = p£tS(x,t) on C£tS{x,t) 

By construction we have 

^€CA(x)    Vt>0 ^(a;,^*)-^^.^*) 
pA(x,Z,t) 

< 1- (3.5) 

keeping in mind that 5 tends to 1 as T —> -j-oo so that the relative difference between 
pA and p^ will be small. Precisely we have, omitting to explicitly write x, y, z and t, 
5, a-, 

pA(dO =PA(dO + 
pA _ pA 

(OpA(dO 

and 

PA(dQ=pA(dO + 

pB{du)=pB{dv) + 

rpA — pA 

pB _ pB 

(OPA(dO 

{v)pB{du) 

Clearly, from (3.5) we deduce 

Jst^B Js [gA,A,B 

PA — pA 

gAAB pA(dO pA(dO pB(dv) 

< ^-^  LAS   l'AABPA^)PA^OPB{dv) B(AdAm\dA\{Q\dB\{v) 
l^-CI3l^-H3 

Taking the time average of it and the limit as T —* +oo, we have 

i- /    ±[    [ ^pA — pA 

{OpAmpA{dQV
B{dv)g AAB 

<    lim   (1 - ±-) [ \dA\{x) \dA\{y) \dB\{z) 

,B        \x — y\3\x - z\3 

Thus for a.e. (x, t/, z) in SA,A,B we have 
(3.6) 

lim 
T-++00 TS 7[0,T]3 Jsf-- 

pA _ pA 
(0 PA(dO pA(dO pB(du) gAAB = 0       (3.7) 

This result can be extended in a similar way to all the other error terms when we 
replace p by p in (3.2), so that we obtain for a.e. (x, y, z) in SA'A'B 

lim    _ 
^3 i[0,T]3 Jst>A>E 

^A pA{x^t) pA{y^s) p"{z,dv,G) gAAB{^v) 
(3.8) 

= hk{x,y,z) 
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and 

[AAB
GA'A'Bz= [AABT

1
^   7^3 /        [AAB9AABpAmpA(dOpB(dv) (3.9) 

JSA,A,B Js^A'B ^-^+oo 1 * J[o,T]3 Js^A'B 

We decompose now the leaves along the sets C^s, £f5 and £^ s where the pA and 
pB are constant, and we obtain 

L gAA»PA(dZ)pA(dC)pa{dl,) = 

J2 8k+l+m f [ f gAAB dvolCAix) dvolcAiy) dvolCB{z) 

k,l,m J££s(x>t) J££sM JcZjM 
(3.10) 

Recall that the volumes are taken with respect to the metrics gA = gR4/\dA\, gA = 
g®*/\dA\ and gB = PR4/|dB|. We claim now that the restriction of gA>A>B to CA(x) x 
CA{y) x CB(z) coincide with gAAB dvol^A^ dvol^^ dvol^B^y Indeed it suffices 
to observe that for any i and j in {1...4}, we have 

\(dA A dxi dxj\ 0^4)1 = |<iA||z£Ad£i dxj\ (3.11) 

where I^A is the isometric embedding of CA into R4 and | | denotes the scalar product 
on 2-forms induced by the canonical scalar product in R4, g^*. Taking into account 
the orientation and the fact that gA = #R4/|GL4.| we have 

{dA A dxi dxj] Q,^) = (i*cAdxi dxj;dvoljrA) (3.12) 

So then 

(dA A dxi dxj; fi^) dvol^A.    = (Z£A dxi dxj; dvoljrA) dvol^A 

—= '^rA(^Xi CLXj 

Thus 

(3.13) 

III 9AAB dvolCA/x) dvolCA,y) dvolcBiz) 
JC*Ax,t) JC?Av,a) Jc*Az,<,) 

-I 9 (3.14) 

where Q is the Gauss-form introduced in proposition 2.1. We need now to close the 
CAs(x, t), the Cfs(y, s) and the C^ s(z, cr) by the mean of the system of "small caps" 
introduced in proposition 2.1. Let VA

6(x,t) = CA
5(x,t) U CdjrA ^^...etc, where 

CdcA (j,.^) is the union of small caps for the connected components of dCA
s(x,t) 
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given by proposition 2.1. Using the result in this proposition we deduce that 

/ g- f G < 

<C\dCAs(x,t)\ \£?5(y,s)\ \CgtS(z,<T)\ + \C^(x,t)\ \dtfd(y,s)\ \Cgt5(z,a)\ 

+C \C£tS(x,t)\ \Ch(y,s)\ \dC*4z,<T)\ + \dC£tS(x,t)\ \dtfs(y,s)\ \C^s(z,a)\ 

+C \d££5(x,t)\ \C£s{y,3)\ \d£g,s(z,o)\ + \£ls(x,t)\ \d£^(y,s)\ |5£^(Z,(T)| 

+C \d£l5(x,t)\ \d£ttS(y,s)\ \d£^5(z,a)\ 
(3.15) 

Multiplying the quantities in the right-hand side of (3.15) by 5k+l+m and summing 
over fc, I and m, using (3.4), we get for the first term for instance 

£ 5k+l+m\d££s(x,t)\ \£ts(y,s)\ \£lsM\ 
k,l,m 

(1 - d)d6  JCA(x) 

(3.16) 
where C£s(x,t) = £A{x) n {^ ;   5k+1 < pA(^) < 8k} we have used the fact that 

ScHv)pA = 1 and fcB(z)pB = L 

This is now the step where the Liouville hypothesis on the lamination plays a 
crucial role : 

We have 

L '^ dv^A -c (L /(i'£' 'O' (L ^5   (3'17) 
moreover a short computation shows that for t > 0 

^log^)+A(p,log^) = _l^f (318) 

Thus 

Combining (3.17) and (3.19) we obtain 

Integrating on time and on S^ we get •'s 

LAI rbt'v^ 
(3.21) 
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and using the Liouville property expressed in term of the cancellation of the 
Kaimanovich Entropy we have 

lim   ^ff   pA(x,d^T)\ogpA(x,^T)=0 

Choosing now 5T SO that we have 

lim   —l—lj    I   pA(x,d^T)logpA(x,^T) = 0 (3.22) 

and 

lim 1       1/    /   pB{x,d^T)\ogpB{x^T) = V (3.23) 

combining (3.16) and (3.21) we obtain 

^+COJSA,A,BT
3
J[0IT]3^ k,l,m 

= 0 

(3.24) 

So extending easily this result to each term of the right-hand side of (3.15) we deduce, 
using (3.8) and (3.14), that, for a.e. (x,y,z) in SA}A,B, we have 

A    ^3   / E *TH+m rlk (^6T^mtsAy^)^,6T(^)) 
T^+ooT   Jio^jfj^ (3.25) 

= A*(x,y,z) 

Integrating this identity on SA'A'B and making e tend to 0 we get the desired result 
and theorem 1.1 is proved. 

4.  Proofs of theorems 1.2 and 1.3. 

4.1. Proof of theorem 1.2. We use the same notations as in the previous 
section and the outline of the proof will look very much the same. 

Take SAi to be a saturated subset of the lamination defined by dAi in % such 
that 

dAiltoOonSf* 
JD_ dAi — FluxdAi  < e    where Di is a given section of %. 

The existence of such a set is a simple consequence of the lamination hypothesis. We 
use the following notation Se = SAl x SA2 x SA3. We clearly have 

r  \dA1\(x1) \dA2\(x2) \dA3\(x3)    l67r4 r    AiA2A 

Js£ ki-^2|3 |a:i-^3|3 Js£ 

Introduce pAi and pAi like in section II. We have 

f    I^AxA^i =   I       H 1     I f   p^ p^ p^  I^X^ASI (4.2) 
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Like for (3.10) we have 

PA1PA2PAs  \9AlA2A3\ 

r (4.3) 
=   £   5k^+k* / \gMA2A3\ /\dvolcAi{xi) 

Recall at this step that | | still denotes the norm for the canonical metric g^ on 
R4 but that dvoljrAi^A is the volume form for the metric induced on the leaf by 
gAl — gR^/\dAi\. Arguing like for establishing (3.12) we get 

\9A^^\ = \icAlxCA2xCA3g\o (4.4) 

where G is the Gauss form introduced in proposition 2.1 and | |0 is the scalar product 
for the metric on the leaves induced by gAi. Applying the definition of the Gauss-form 
we have 

^ix^2xcA30 = V" (fi(X) An(Y)) 

where V : CAl x CA2 x CA3 —> S3 x S3 given by (1.14) and ft is the renormalized 
volume form on 53 so that Js3 Q = 1. We then have 

f \gA^A^\ f\dvolCAi{xi) 

= f \v*(nAn)\0/\dvoiCAiiXi) 

Arguing exactly like in the previous section we can, here also, replace the Ck!5 by 

the T>Ai
6. Indeed this require the adding of small caps that we can choose to be 

contained respectively in 71, T2 and Ts. Since the supports of the three laminations 
are disjoint we can ensure that |V*(Q Afi)|o is uniformly bounded for a triple of points 
in 71 x 72 x Ts where we choosed gAi to be the standard metric g^* on each additional 
cap CfirAi ,    -v (it has no importance as long as the chosen metric is bounded from 

above and bellow relative to the standard one). Then we need to choose a good §T 

depending on T exactly like in the previous section in order to ensure 

7*00 ^hrf^L l^^^ ^(^.D =<> (4.6) 

Like above the following choice of ^ ensures 

(4.7) 
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Using the Coarea formula of Federer, Since |53|2 ^(X) AQ(y) is the standard volume 
form on 53 x 53 we have 

/ \V*(^(X)AQ(Y))\0 NdvolvAi 

\r~  I da Caxd \ {xfo £ T]vAi ^ v((xi)i) = CT 
3\    JSixS* < 

(4.8) 

\S3\' Js>xS> { 

For almost every choice of a = (u,v) G 53 x 53 the shadow of V^d(x2,t2) on 

V^1
5(xi^ti), relative to u, is a smooth curve and the projections of both this shadow 

and T>^6(xs,ts) on a plane perpendicular to v are transverse and intersect each 

other along the set {(#1,0:2,£3) G Yli^Ai s^- ^(^i^^^s) = cr}- To simplify the 
presentation we assume that Si, S2 and S3 are connected. The definition of the 
asymptotic relative crossing number of Si, S2 and S3 gives 

Card < (xi,X2)#3) G J]l VAi s.t. V(xi)X2,X3) = a > > 

nde8(^(^.*i);Si) arc(Si|S2,S3) 

(4.9) 

Combining (4.3), (4.5), (4.7) and (4.9) we then obtain 

/     lim   ^3 /       pAl PA2 PA3 \gAlA2A3\ > arc(Si|S2,S3)) 

/   Adxi   lim   ^ f V   41 +k2+ka Il^^a^'**);^) ^dti 

(4.10) 
The degree of a VAi in % is, by definition, the intersection number of this surface 
with a section Di of %. So if u)i is a 2-form in % Poincare dual of Di we have 

deg(X^'i5T(a;<,*<);^)= fA <* 

Let decompose Sv^^u)w* = /<«,T(*«,*,)Wi + /c^    (_.,., Wi' since 

IC-AJ    ,    . J < c|£fc*. (aji.ti)! we get, using (3.16), (3.21), (3.22) combined with 

(4.10) 

/     lim   ^3 /       pAl pA2 p^ |/^^| > arc(E1|S2,S3)x 

/ K^j1^ ™   n /   p^ixu^tipi 
(4.11) 

It is not difficult to transpose the arguments of section II in order to replace pAi by 
pAi in the previous inequality.  We have pAi{xi^i^ti) dvoljrAi = pAi(xi,d£i,ti) and 
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^Ai^.^i = * (vi A T^T) dvolgR4 where * denotes the Hodge operator in R4. Using 

now the fact that on CAi \dAi\ dvolgAi = dvolgR4 we finally obtain 

/     lim   ^ /       pAl pA2 pA3 \gA^^\ > arc(E1|E2,E3) 

/   Y\dxirnlim   -3 /       TT ; /     pA* * (wi A dAi) 

X 

(4.12) 

Using again the ergodic theorem 2.1 for the right-hand-side of (4.12) and combining 
this inequality with (4.1) we have proved theorem 1.2. 

4.2. Proof of theorem 1.3.. The proof of this theorem is strongly related to 
the proof of theorem 4.1 in [8]. Let Si, S2 S3 be 3 surfaces respectively in 71, T2 and 
% such that deg(S^; %) ^ 0. Let u be a generic vector in S3 such that the projections 
of Si and S2 on a 3-plane perpendicular to u are transverse to each other. Let 

Su = \ x e Si     such that 3y G So    u = -^—^ \ 
I k-2/IJ 

Prom the definition of deg(S^7^) we have, since % retracts on S^, 

deg(S^) [Ei] = R]        in H2(7l) ~ ^(E,) 

So that 

[Su] = deg(Ei;ri) deg(S,
2;r2) a1)2 in ^(Tl) ~ ff^Ei) 

Consider now v, a generic vector in 53, chosen so that the half cylinder C = 
{Su + tv t E R+} is transverse to dTs. For t sufficiently large (t > to), Su + tv 
does not cross T3 anymore and we can immerse 2-disks in R4 \ T3 to close C and to 
make it as a union of immersed disks transverse to 973. We denote by V = {Vi)^ this 
family of disks (Vi = pi(D2)). Let rrii be the number of component of p^iTs) that 
represent a non trivial element in ^{T&dTz). Since deg(S^;7^) is the intersection 
with an oriented section of % generating .#2(^3, d%) we have 

rc(Ei|E^) > £>,|deg(E'3;T3)| (4.13) 

We claim that 

m = ^m, > 11(71,2,311 |deg(Si;ri)| |deg(S,
2;r2)| (4.14) 

This inequality is proved exactly following the proof of lemma 4.2 in [8]. Since 
^i{%\d%) = 0, we can, following lemma 4.3 in [8], homotope the pi relative to 
the 9JD

2
'S to make it as a m^ clean extension of the components of Su. It is performed 

without increasing the number of essential components of the inverse image of % by 
Pi. So that, if ft is the mi-clean extension, p"1^) is made of mi disjoint disks in 
D2 that represent non trivial elements of #2(^3; 9%)- Let Ei be this union of disks 
in D2 and F* = D2 \ E^ Then 

Y, Wi)] = deg(Si; 71) deg(S'2; T2) ^,2,3 in ^(M4 \ T3; d% U 371) 
iei 

We have rr^ - 1 = |x(^)l then ^G/ ^i > Eiei W^OI Thus we get (4-14) and 

theorem 1.3 is proved. 
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5. An example where rlk(Ei|E2, S3) = 0 and arc(Ei|E2, E3) > 0. We give 
an example bellow (see figure 2) where 

rlk(Ei|E2,E3) = 0        and        arc(Ei|E2,E3) > 0 

A short description of the link : (We mainly rely on figure 2) We take Ei, E2 and E3 
so that Ei ~ T2, E2 ^ T2 and E3 = E3 U E3 where E3 and E3 are two disjoint torii. 
We slice R4 by hyperplanes Ht perpendicular to a fixed direction e for — 1 < t < 1. 
Let E = UEj, Ht fl E is singular at exactly 8 dates —£4 = — 1 < —£3 < —£2 < ~ti < 
0 < ti < £2 < £3 < U = +1 : Slicing increasingly in time we have 

- foi t < -U = -1 HtD S = Q 
- for — 1 < t < —ts Ht fl S is made of 4 unlinked circles. 
- at t — —ts E3 splits into two components as shown in figure 2. 
_ at t = —t2 both Ei and E2 split into two components as shown in figure 2. 
- at t = — ti E3 split into 2 components as shown in figure 2. 
- E is exactly symmetric relative to HQ except that between t = 0 and t = ti 

the left component of E2 on figure 2 rotates exactly one time around the 
left component of E3 so that a rigid disk bounding this component of E2 
will intersect Ei and Ss along respectively the generator of iJi(Ei) and the 
generator of H1(J2s) given by the left components of Ei and E3 on figure 2 
(for HtHE -t1<t< ti). 

The class 0*1,2 in iJi(Ei) defined in the last part of section I and obtained from 
the intersection of Ei with any manifold bounding E2 has for representative the left 
component on figure 2 of Ei fl Ht for — ti < t < ti- It is clear from the figure that 
there exists a disk bounding this component and intersecting E3 (either S3 or S3) at 
exactly two points with opposite intersection numbers so that 

rlk(Ei|E2,E3) = 0 

We prove now that arc(Ei|E2,E3) = 2. Prom the previous remark we have 
arc(EiJE2,E3) < 2. So we have to prove that arc(Ei|E2,E3) > 2. If Si, E'2 and 
E3 = E3UE3 are three surfaces in Ti, T2 and T3 = %\J% with degrees di =deg(Ei; Ti), 
d2 =deg(E2;T^) and (^3,^3) = (deg(E3;T3),deg(E3;T3)), then for obvious homologi- 
cal reasons (see the previous section) any generic 3-manifold bounding E2 intersects 
Ei along a 1-manifold homologous to di c^ 0x2 in Hi(Ti) ~ Hi(Ei). Let T be one of 
the connected components of this manifold. Observe from figure 2 that there exists a 
class [r] in iJi(Ei) which admits a representative r whose intersection number with 
0"i,2 is +1, and which is bounded by a disk S in M4 that does not intersect T3. Both 
ai}2 and r generate Hi(Ti). If F = dai^ + ^[T] and if A is any disk bounding F and 
intersecting E3 transversally it suffices then to prove that 

Card(An^)  | Card(An^)^2 

dds dds ~ 

Without changing A fl % we can modify it in the following way : we make a small 
surgery by adding is times the disk S to A so that the boundary of the new disk 
obtained F = 9A is homologous to dai^ we can then add to it a 2-dimensional annulus 
contained in Ti so that the final disk bounds da where a is any curve generating a^2• 
Thus we replace F by d times the curve <TO given in figure 2 by the left component 
of Ht fl Ei and A is now an immersed disk f*D2 (f : (D2; d) —> (R4; CTQ)) bounding 
d <Jo and we can always assume that it intersects T3 transversally and that / : dD2 —» 
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--,- £3 splits into 
two components. 

£2 splits 
into two components 

£1 splits into 
>'-/   two components. 

£2 makes one lap 
around the left componeiit 
of £3,the left ^ 
components./of 
£2 and £3 / 
pass "inside" 
during thife lapk 

£3 splits into 
two components. 

FIG. 5.1. An example, where WA;(Ei|£2,£3) — 0 an^ orc(Si|E2,S3) > 0 

CTQ — 51 is monotonic. Let m be the number of essential components of f~1(Ts) : the 
components whose image by / are non 0 in ^2(^3; OTs) (has a non zero intersection 
number with 83). Arguing like in [8] (lemma 4.2 and 4.3) we can deform A without 
increasing it's number of intersection with £3 such that every components of /_1(73) 
is a disk whose image by / is essential. Let N be a 3-manifold in R4 \73 bounding £3 
such that NnHtis made of embedded disks bounding the components of £3 n Ht. It 
can be chosen so that CTQ and JV intersect transversally at two points pi and P2 we can 
also choose N so that A and N \ T3 intersects along smooth oriented curves which are 
closed or starting from pi arriving at d% or P2 or starting from df^ arriving at P2. 
Observe that iV" is chosen such that iV and T3 are separable (There exists an isotopy 
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of R4 sending N and % into opposite sides of an hyperplane in M4). Observe also 
that since dN = S3, the intersection number of N n dTs with an oriented section of 
the tubular neighborhood T3 c^ D2 x T2 is +1 and then the difference between the 
number of curves of f~1(N \ %) coming from f~1(pi) to a component of Z-1^) 
and the number of curves of /~1(A^ \ Ts) leaving this component to f~1(p2) is equal 
to the intersection number of the image by / of this component with E3. Since % 
deforms smoothly to E3 in R4 \ T3 U 7i we may always choose N so that 8% \ N is 
diffeomorphic to [0,1] x S3 ~ [0,1] x T2. Then any connected curve on 8% \ N whose 
two ends intersect N fl 973 with total intersection number being equal to zero can 
be smoothly deform in dls, keeping it's ends fixed, to a curve in N fl 973. Then we 
deduce that we can homotope / in R4 \T3, keeping f(dD2) fixed, keeping the number 
of essential components of /_1(^) and their intersection number with 53 fixed, such 
that the number of curves of f~1(N \ Ts) intersecting a component of /_1(73) is 
equal to the intersection number between this component with S3 (at this stage we 
take into account the sign of the intersection number, so that if it is positive we only 
have curves arriving from f~1(pi) and if it is negative curves leaving for f~1(p2))' 
Since / : dD2 —> a is monotonic f~1{pi) is made of exactly d points alternated 
with f~1(p2) which is also made of exactly d points. Let (j^izi to be the union of 
the connected curves among the one realizing f~1(N \ %) that connect f~1(pi) and 
f~1(P2)' Let C be a connected component of D2 \ U^. f{dC) defines a class in 
#i(R4 \ f3'yf3 U N) ~ ifi(R4 \fs)=Z since f3 U N is contractible to a point in 
R4 \ %. The intersection number of C with Ss gives the class in Z. Let n be this 
number. Let q be the algebraic number of oriented arcs in dD2 n dC joining a point 
of f~1(pi) and a point of f~1{p2) • the arc oriented by dD2 is counted positively if 
it goes from a point of f~1(pi) to a point of f~1(p2) and negatively in the opposite 
case; in the first case it counts as +1 as a contribution to iJi(R4 \ Ts; Ts U N) in the 
other case it counts as —1. The difference between q and the absolute number of arcs 
in dD2 fl dC joining points of /_1(pi) and f~1(p2) is given by the number of arc 
of f~1(N \ Ts) in C joining points of /~1({pi} U {^2}) and components of /~1(73). 
Collecting all the informations above we easily get (5.1). 

Acknowledgments. The author is very gratefuhl to Robert Azencott and Lau- 
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