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MAPPING OF NILPOTENT ORBITS UNDER EMBEDDINGS OF
REAL FORMS OF EXCEPTIONAL COMPLEX LIE ALGEBRAS *

DRAGOMIR Z. POKOVICT AND JIRO SEKIGUCHI?

Abstract. We consider Lie algebra monomorphisms ¢ : g, — g, between various noncompact
real forms @,, g, of complex simple Lie algebras gf, g5. In all cases that we consider, gf or g5 is
of exceptional type, with one exception. For each adjoint nilpotent orbit O of g, we determine the
adjoint nilpotent orbit of g, which contains the image ¢(O). The adjoint nilpotent orbits of g, and
¢, are themselves parametrized by using the Kostant-Sekiguchi correspondence.

1. Preliminaries. Let g be a semisimple real Lie algebra and g¢ its complexifi-
cation. Let 6 be a Cartan involution of g and g = +p the corresponding Z»-gradation
(a Cartan decomposition). By complexifying, we obtain the Zg-gradation g° = £+ p°
and we extend # to a complex linear automorphism ¢ of g°. Denote by G (resp. G¢)
the adjoint group of g (resp. g¢). Thus G is the connected Lie subgroup of G¢ with
Lie algebra g. The group G (resp. G°) acts on g (resp. g°) via the adjoint action:
(a,z) — a-z = Ad(a)(z) where a € G (resp. G) and z € g° (resp. g). A G° (resp.
G)-orbit is nilpotent if it consists of nilpotent elements of g¢ (resp g). There are only
finitely many nilpotent G¢ (resp. G)-orbits in g® (resp. g).

Let K¢ (resp. K) be the connected' Lie subgroup of G° (resp. G) whose Lie
algebra is € (resp. ). By restricting the adjoint action of G¢, we obtain an action of
K* on p°. The number of nilpotent K*°-orbits in p® is also finite [4].

Let O be a nilpotent G®orbit in g°. The intersection O N g consists of finitely
many connected components A;, ¢ = 1,...,k. Moreover, each of these connected
components is a single nilpotent G-orbit, and dimp (A;) = dim(O) for each i. The
intersection O N p¢ also consists of & connected components, say B;,¢ = 1,...,k, each
of them is a single nilpotent K°-orbit and dimg(B;) = 3 dim(0O) for each i. The
Kostant—-Sekiguchi correspondence (see [10, 4]) establishes a bijection from {4;} to
{B:}.

If E,H,F € g° are nonzero elements satisfying [H, F| = 2E, [H,F| = —2F, and
[F,E] = H, then we say that (E, H, F) is a standard triple. If moreover E, F' € p¢ and
H € t°, then we say that (E H,F)isa normal triple. Let us fix a Cartan subalgebra
h of € and § of g such that D . Let h and f] be their resPectlve complexifications.
Let R be the root system of (£°,5°), and R that of (g¢,§ ). Finally, let W be the
Weyl group of R, Il = {f, 02, ...} a base of R (a system of fundamental roots), and
define W, R and II = {a, as, ...} similarly. If R (resp. R) is irreducible, we denote
its highest root by & (resp. f).

We say that the Z2 graded Lie algebra g° is of inner type if €° and g¢ have the
same rank, i.e., h¢ = f] and otherwise of outer type. In the former case we may view
R as a root subsystem of R, and we say that the roots in R are compact and the other
roots in R are noncompact. In the root diagrams, we shall represent compact (resp.
noncompact) roots by black (resp. white) nodes.
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410 D.Z. POKOVIC AND J. SEKIGUCHI

If g° is simple and of inner type, then one can choose a base Mof R such that
there exists a unique base II of R contained in IIU {—&}. We assume that II and IT
are chosen in this fashion (see Tables 4 and 8).

Let A be a nonzero nilpotent K¢-orbit in p°. We can choose a normal triple
(E,H,F) such that E € A, H € h°, and the numbers B(H) are nonnegative integers
for each 8 € II. The orbit A uniquely determines the element H and vice versa. We
shall refer to H as the characteristic of the orbit .A. Among the algebras - that we
consider, there are two cases with £° non-semisimple. In these two cases f) = b°,
Il = DU {#'}, and we identify H by means of the labels 8;(H), 8; € II, and the
additional label §'(H).

The containment relation between the closures of nilpotent G-orbits in g defines
a partial order on the set of these orbits. One obtains similarly a partial order on the
set of nilpotent G°-orbits in g° and the set of nilpotent K°-orbits 1n p°. We refer to
these partial orders as the closure orderings.

It was shown by Barbasch and Sepanski [1] that the Kostant—Sekiguchi corre-
spondence preserves the closure ordering of the two sets of orbits. Let A (g°) denote
the nilpotent variety of g° (an irreducible affine variety). We set N(g) = g N N (g°)
and NM(p¢) = p° NN (g°). If we equip the quotients N(g)/G and N (p°)/K*° with
their respective quotient topologies, then the result of Barbasch and Sepanski can be
expressed by saying that the Kostant—Sekiguchi correspondence is a homeomorphism
between these two finite topological spaces.

We shall use the Cartan notation for the isomorphism types of noncompact real
forms of the exceptional complex Lie algebras. Alternatively, these real forms may be
distinguished by their Cartan indices ¢ = dim(p) — dim(#) which are usually written
in parentheses.

Eg : EI = Eg(6), EIL = Eg(2), EIIl = Eg(_14), EIV = Eg(_3¢)
E7 :EV = E7(7), EVI= E7(_5), EVII= E7(_25)

Eg :EVIIIL = Eg(g), EIX = Eg(__24)

F4 : FI = F4(4), FII = F4(_.20)

Gz . GI = Gg(z)

Let us now consider two semisimple real Lie algebras, say, g; and go. The nota-
tions 6, 8¢, G, G°, W, II, etc. will be used also for these algebras and the associated
groups by adding subscripts 1 or 2, as appropriate. In particular, #; and 6, are the
Cartan involutions of g; and g,, respectively. We say that a Lie algebra monomor-
phism ¢ : g; — g, is a Zg-embedding of g; in g, if p 083 = 63 0 ¢. From now on
we assume that ¢ is such an embedding. Then ¢(1) C £ and ¢(p;) C py. The

complexification € : g§ — g5 of ¢ will also be called a Zq-embedding. Then we have
the commutative diagram:

1 — 81
(L1) | l¢
— 93

where the horizontal arrows are the inclusion maps. From this diagram we obtain the
following commutative diagram for orbit spaces:

N(g1)/G1 — N(pf)/KS
(1.2) L l lu

N(g2)/G2 — N(8)/KS§
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where the horizontal arrows are homeomorphisms given by the Kostant—Sekiguchi
correspondence and the vertical arrows 4 and v are the continuous maps induced by
the Zy-embeddings ¢ and ¢°, respectively.

Our main objective is to give explicit description of the maps p and v for some
interesting Zo-embeddings of real forms of complex simple Lie algebras. These em-
beddings are taken from an extensive list compiled by Berger [2]. In view of the
commutativity of the above diagram, it suffices to determine the map v. The main
results are given in the tables of Sections 2 and 3.

EI
I -

\
EII

F EV

/

E VIII
EVI

EIII
/
\

EIX

NN

FII EVII

NN N

EIV

FIGURE 1. Embeddings of real forms

First of all we shall consider the Zj-embeddings shown schematically on Figure
1. We shall describe them in the next section. By analyzing the Zz-embedding E VI
— EIX and by inspecting the closure diagrams for EVI [7, Figure 2] and EIX 8,
Figure 3], we detected an error in the former diagram: The line joining the nodes 22
and 33 should be erased.

In addition to the Zs-embeddings shown on Figure 1, we shall also consider the
following chain of Zy-embeddings of the split real forms:

(1.3) 5l(3,R) — GI — s0(4,3) — s0(4,4) — s0(5,4) — F1I

For each of the arrows in Figure 1 and the diagram (1.3) we describe explicitly
the map v in tabular form. For the arrows in Figure 1 see Table 2 in the next section,
and for those in the diagram (1.3) see the tables in Section 3. In order to make these
tables user-friendly, we have included the necessary details about the enumeration of
orbits. For the exceptional cases, these details are given in the Appendix.

The second author would like to thank the Department of Pure Mathematics of
the University of Waterloo for its hospitality during his visit in September 2001.

2. Embeddings from Figure 1. It is more convenient to work with complex
Lie algebras than with the real ones. Hence in order to construct a commutative
diagram (1.1) we shall start with the complex Zy-embedding ¢° : g — g5 and then
construct the Zg-embedding of real froms ¢ : g; — g, to obtain the diagram (1.1).
This is indeed possible by the following result.

PROPOSITION 2.1. Let g§ be a semisimple complex Lie algebra and g§ a semisim-
ple subalgebra of g5. Let 65 be an involutorial automorphism of g5, such that g§ is
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05-stable, and denote by 65 the restriction of 05 to g§. Let g¢ = € @ pS be the Zo-
gradations induced by 05 (i = 1,2). Then there exist real forms g, of g¢ such that
91 C 9o and g, is stable under 67. Moreover, the restriction 0; = 65|g. is a Cartan
involution of g;. Thus if &; = g; N ¥ and p; = g; N p¢, then g; = &, D p; is a Cartan
decomposition of g;.

Proof. Let Uy be a maximal compact subgroup of Aut(g$) containing 6§. The Lie
algebra u; of Uy is a compact real form of g§ which is invariant under 6$. Clearly, it
is also invariant under 65. It follows that 65 normalizes the connected compact Lie
subgroup U, of Aut(g$§) having uy as its Lie algebra. Consequently, there exists a
maximal compact subgroup Us of Aut(g$) containing both U and 65. Its Lie algebra,
Ug, is a compact real form of g§ invariant under 6§ and such that up N g§ = u;. We
can now take

= (U NE) Si(ur NPT), gg = (U2 NEF) S i(uz Np35).

]
We may (and we do) assume that our Zy-embeddings ¢° are such that ¢¢(h7) C b5
~c ~c
and ¢°(h;) C by

Assume that g§ and g§ are of inner type. Then we say that an embedding of root
systems R; — Rp is a Zq-embedding if the compact roots are mapped to compact and
noncompact to noncompact. Such embedding is uniquely determined by its restriction
to a base of Ry. It is easy to see that every Zo-embedding Ry — Rs can be lifted to
a Zg-embedding g§ — g5.

We describe our embeddings in Table 1. In order to be able to distinguish the
roots in Ry or R; from those in Ry or R,, we shall use the superscript () for the former
and @ for the latter. We write ﬁi(l) — ﬂj(?) if ¢ maps the ﬁgl)-root space of gf into
the B](.Q)-root space of g§. Similarly, we write ,Bi(l) — {ﬂj(?), ,(62)} if ¢ embeds the
ﬁ( )_root space of g$ diagonally into the sum of the root spaces of g§ corresponding to
the roots ,8( ) and By ) In some cases we give only the restriction of ¢° which embeds

£ into 5. For our choice of the simple roots of R and R see Table 8 in the Appendix.
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TABLE 1. Description of the Za-embeddings from Figure 1

FIEI AN a2 k=1,2,3 g - -4
FI-EI | M - {62,960 — (62,62},

B @, g0, g
FI—Em |0 - ﬂ,‘f), =1,2,3; " — {6, 87}
FII-EIV | g - —5®; g g3 k=234
EI-EV [3;(01) - {ﬁz(cz) (2)k} k=1,2,3: 5(1) N ﬂf)
EN-EV |60 -82, 1<k<5 g0 — a9,

o) = of? + o + off + aff
EM-EVI | BY - 62, 1<k<5; P — p?,

agl) - agz) + aff) + a?) + agz)
EMI—EVI | 8P -2, 1<k<5 ) - af
EII—EVI | g - @ g0 & g3 k=234

o8) = 85, B0 = of? + o
EIV - EVI | Y g0, g0 - P, g - (50, g1,

B — (82, 5}
EVoEVII | gV -2 1<k<T;

agl) — ag2) + agz) + 2a§2) + 20@&2) + agz)
EVI—E VI | g0 - P, 1<k <4 O — 69,

aY — P, g — 2,

o® 5 0 4+ 0@ 1o + o + o + o + o
EVI-EIX |0 562, 1<k<4 g0 - p2,

B §2), B, g,

agl) — a§2) + a:(f) + aff) + a?) + ag) + a@"‘) + aéz)
EVII-EIX |8 -, 1<k<6 Y - af? +afd)

413

Let O} C p§ be the i-th nonzero nilpotent K{-orbit and let H € h$ be its

THEOREM 2.2. Consider the Za-embeddings ¢°
described by Table 1. Then the nonzero nonempty fibers of the map v (see the diagram
(1.2)) are as given in Table 2.

Define similarly O} C p§ and HJ € bS.

We shall write i — j if

1 9§ — g5 from Figure 1 and

In Table 2, for each value of j # 0, we have recorded the superscripts i (if any)
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such that ¢ — j. The ¢’s are listed first (on the left hand side) and then the j (on the
right hand side). For instance, we have 11,12 — 7 under the embedding FI — EL
The arrows are omitted. If i — j then, in general, ¢°(H?) is not equal to H3, but
they belong to the same orbit of the Weyl group Wa.

The above theorem is a simple consequence of the following proposition. Indeed
the labels of ¢°(H?) can be computed by using the transformation rules given in Table
3, and then, by using the action of W3, one can determine the superscript j such that
11— j.

ProprosITION 2.3. Consider the Zy-embeddings ¢° : gf — g5 from Figure 1 and
described by Table 1. Let O C p$ and O C p$ be nonzero nilpotent orbits such
that @°(O%) C O}. If Hi € b is the characteristic of the orbit O%, then the labels
B,(f)(cch{) of the element @°(H}) € h5 can be computed from the labels ﬂ,(cl) (H}) by
using the transformation rules given in Table 3.

Proof. The proofs are different in each case but they are of similar nature. We
shall give the details for four cases only.

We derive first the transformation rule for the Zs-embedding FI — EI. Thus g,
is of type FI. The labels of H? are given in column 2 of Table 3 as “abc d”. Using
the first row of Table 1, this means that

B (oo HE) = V() =0, AP (°HE) = BV (i) =,
3 (peH?) = BV (HY) = ¢, —BP(p°HI) = BV (HI) = d.

Since f® = 2ﬁ§2) + 2,3%2) + 2ﬁ§2) + ,822), we have —d = 2z + 2a + 2b + ¢ where
T = ﬁ{"’) (¢°H?). This gives the required formula for the label z.

Next, we consider the embedding FI — EII. Let o be the diagram automorphism
of g§ of order two which fixes the root spaces for a§2) and aff) and interchanges those

for a§2) and aéz) as well as those for a:(f) and ag) (see e.g. [3, Chapter 8, §5, Exercise
13]). The fixed point subalgebra of ¢ is a simple Lie algebra of type F; which we can
identify with our g§, and so we take ©§ to be the inclusion map. The automorphism 6§
of g§ defined by the Z,-gradation of g§ exhibited in Table 8 (with &5 of type As + A;)
leaves g¢ invariant. We denote by 6§ the restriction of 65 to g§. Then €] is of type
C3 + A;. By Proposition 2.1 this gives a Zj-embedding FI — EII. The Cartan

subalgebra b is the subspace of h5 defined by the equations a&z) (H) = aéz)(H ) and
al? (H) = of? (H). If i — j and the labels of Hi are “abcd”, i.e.,

s =0, AO(HED =b, BO(H) =c, 6 (H]) =4,
then the labels of Hj = Hj are given by “abcba d”. This follows from the fact that
2 2 1 2 1
B e = Bl = BV, B e = 857,
2 2
B )lb‘f =ﬁ4(12)|f]; =5, 6§ )lr); = p.

We shall now derive the transformation rules for the Z;-embeddings EIII — E VI
and EIIl — E VIL. Thus g, is of type EIIL. The labels of H} are given in the second



MAPPING OF NILPOTENT ORBITS

TABLE 2. Mapping of nilpotent orbits

FI-EI
1 1 2,3 2 4,5 3 8 4 6,7 b
9 6| 11,12 7 10 10 13 11 18 12
19,20 13 21 14| 14,15 15 23 19 26 20
24,25 21 22 22 )16,17 23
FI-EII
1 1 2 2 3 3 4 4 5 b
6 6 7 7 8 8 9 11 10 14
11 15 12 16 13 17 14 18 15 19
16 20 17 21 18 22 19 23 20 24
21 31 23 32 22 33 24 34 25 35
26 37
FIl - EIII
1 5 2 9]
FII-EIV
T 1] 7 7] |
EI-EV
1 1 2 2 3 5 5 6 4 7
8 12 10 15 7 20 6 21 11 24
15 25 12 26 23 27 13 30 9 43
16 50 17 53 14 59 19 62 22 63
21 66 18 81 20 &4
EII—-EV
1 1 2,3 2 4,5 5 6,7 6 8 7
9 10 10 11 12 13 13 14 14 15
15,16 20 11 21 17 24| 18,19 25 22 26
20,21 27| 23,24 30| 25,26 38 28 48 27 49
29 51 30 52 31 59 32 62 33 63
34,35 66 36 80 31 &4
EII - EVI
1 1 2 2 3 3 4 4 5 5
6 6 8 7 7 81 910 9 12,13 10
14 11 15 12 16 13 11 15 17 16
18 17 19 18 20 19 21 20 22 21
23 22 24 23 25 25 26 26 27,28 27
29,30 28 31 30 32 31 33 32 34 33
35 34 36 36 37 37
EIIl — E VI
1,2 1 3,4 2 5 3 6 8 78 9
10,11 13 9 14 12 26
EII - E VII
1 1 2 2 3 3 4 4 5 5
6 10 7T 11 8 12 10 13 11 14
9 15 12 20

415
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TABLE 2. (continued)

EIV - E VII
1 5] 2 15] |
EV - E VIII
1 1 2 2[345 3 6 4 7T 5
89 61011 7 12 8[1314 9 15 10
20 11 16,17 121819 13 21 16 24 17
22,2325 18 26 19 27 20 30 21 28,29 23
31,32 243334 253536 27 37 28 38 29
43 30 | 39,40 31 |4142 324647 33 48,49 37
50 38 | 51,52 40 53 41 54 46 | 44,4559 47
55,56 48 | 57,58 49 62 54 63 55 66 56
60,61 58 | 64,65 61| 69,70 64 | 67,68 65 74,75 66
71 71| 72,73 73| 76,77 75| 7879 76 80 77
81 78 84 828283 838586 89 87,88 90
89,90 97 91,92 103 | 93,94 108
E VI - E VIII
1 1] 23 2] 45 3] 68 4 75
9 7 10 9 11 10 | 12,13 11 14 14
15 16 16 17 | 17,18 18 21 19 19,20 20
22,23 21 24 262526 29 27 37 28 40
29 45 30 47 31 54 32 55 33,34 56
35 170 36 77 37 102
EVI - EIX
1 1 2 2 3 3 4 4 5 5
6 6 7T 8 8 9 9 11 10
10 11 12 12 13 13| 14,15 14 16 15
18 16 17 17 20 18 19 19 21 20
22 21 23 22 24 23 25 24 26 25
27 26 28 27 29 28 30 29 31 30
32 31 33 32 34 33 35 34 36 35
37 36
E VIl - E IX
12 1] 34 2 5 3] 67 4 89 5
10 8|11,12 91314 13 15 14 16,19 16
17,18 17 20 25 [2122 29

column of Table 3 as “abede f”. This means that

(see the diagram for g = EIII in Table 8 for the definition of the g;’s). The funda-

BV ()

D (H}) =,
= d,

D (H = b,
BN (HY) =e,

BV (HY) = ¢,
BV (HE) = f

mental weights of (g5, h5) will be denoted by w,(cz) ,1<k<LT.
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TABLE 3. Transformation rules for Zs-embeddings in Figure 1

g1 — 92 Hi ch(Hi) z,Y,z
FI-EI abe d zabc z=—(a+b)— 3(c+d)
FI-EII abcba d

FII-EII | abed abeddz | z=—(b+2d) — (a+3c)
FII - EIV bedz

EI-EV abed abedcba
EII-EV abede f | abcdexf m=—%(a+26+3c+4d+56+3f)
EII-EVI abcdey f |y=e+ f+2z
EIIl - EVI | abede f | yabede z | £ =—2c—e— 3(2a+4b+ 5d + 4f)
EIIl — E VII aebedz —z | y = —2c — e — 3(4a + 5b+ 4d + 2f)
z=f+z
EIV - E VIL | abed dacbed x| z=—(a+2b+ 3c+ 2d)
EV — E VIII | abedefg | abedefrg x=—d
—3(a+2b+3c+5e+6f +3g)
E VI — E VIII | abedef g | gzabedfe | z=—(a+b+c+d)—i(e+ f+9)
EVI- EIX yefdcba g | y=—(b+2d+e)— 3(a+3c+3f)
E VII - EIX | abcdef g | abedefr z | € = —(a+ 2¢c+ 3d + 2f)
—3(3b+5e+g)
z=z—9g

Assume first that g, is of type E VI. Then the transformed labels, i.e., the labels of
©°(H?) are given in Table 3 as “yabcdez’. This means that

D) =y, BP(eHY) =a, B (0°HY) =b, BP (¢°HD) =c,
DeeH]) =d, B (p°HI) =e, B (¢°H}) ==

This is illustrated on Figure 2. These data are in agreement with Table 1 which
says that ¢° maps the root spaces of g§ corresponding to the roots ,8,(:) to those of g§
corresponding to the roots ﬁ,ﬁ)l for 1 < k < 5, and the root space of ﬂél) = a(().l) to
that of af?). We still need to compute the labels B3 (o Hi) =y and B (¢°HY) = 2.
Observe that ¢°(h7) is precisely the kernel of the fundamental weight w.(,z). As

2w =207 + 307 + 40 + 6af? + 50 + 40l + 322,
we obtain the equation
2a+3e+4b+6¢c+5d+4f +3z =0.
Since (2 is the highest root of Ry, we also have
z4+y+2a+e+ f)+3(b+d)+4c=0.

From these two equations we obtain the formulae for  and y given in Table 3.
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EIIl - E VI

y a b ¢ d f =z o ol (1<k<6)

’ 2

~ 2 2 2 2 2

-a(? ag) ag) - ! ag) a((;) ag) bede f
Qg ece yabede

E Il — E VII
foa?+a?
¢ o 5o (1<k<5)

) [ONNC)
ag’ —og ta

_a® o o [o7,@ L0 @ o e T

agZ) e abcde f

aebcdz —zx

FIGURE 2. Two Zs-embeddings of inner type

Next assume that g, is of type E VIL. Then the labels of ¢°(H?) are given in Table
3 as “aebcdz —z”. This means that

BO(ecHY) =a, BP(e°HY) =€, B (0°HY) =b, B9 (0°H) =c,
D (peH]) =d, 7@ H) =2, B (¢°H) = o

and that the root spaces of g§ corresponding to ﬁ:EQ) , ,852), ﬁgz), ﬂf), éz) are mapped

2 (2 @ @
1 5

to those of g§ corresponding to a;”’, a3 ,af), ag”,ay’, respectively. As indicated in

Table 1 (see also Figure 2), the root space of ﬁél) is mapped to that of aéz) + a§2)‘
Consequently, f =z —z.
In this case, ¢¢(h7) is the kernel of wéz) - wgz)' As

2 (wf? —wf?) = 200 + 30f? + 40 + 60 + 50 + 40 + o,
we obtain the equation

2a+3e+4b+6¢c+5d+4z —x =0.

As z = f + x, we obtain the same formula for x as in the previous case. [0

REMARK 2.4. It follows from the transformation rules given in Table & that the
labels given in column 2 of this table satisfy the following arithmetic conditions:

(i) c=d (mod 2) if g is of type F1I,

(i) a=c (mod 2) if g is of type FII,
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(i1i) a+2b+3c=e+2d+3f (mod 6) ifg is of type EII

(v) a+d=b+ f (mod 3) ifg is of type EIII,

(v) a+2b+e=c+2f+g (mod 4) ifgisoftype EV, and

(vi) e+ f =g (mod 2) ifg is of type EVL

Of course they can be easily verified by inspecting the tables given in the Appendiz.

3. Embeddings from the diagram (1.3). We consider first the Z,-embedding
97 — g where g, is of type s0(5,4) and g, of type FI. The nilpotent G§-orbits in
g§ are parametrized by the partitions of 9 in which the even parts occur in pairs.
They are listed in the first column of Table 5. The second and third columns give the
ab-diagram and the right superscript (when needed) which parametrize the Kf-orbits
in p§. For more details about this notation we refer the reader to [9]. We warn the
reader that the group K in that paper is disconnected, but the orbits of its identity
component are the same as the orbits of the group K7 of this paper.

TABLE 4. The simple roots of R and R

g e Rand R
s0(4,3) 24; + 4y b B

s0(4,4) 44,

s0(5,4) By + 24,

In the fourth column of Table 5 we assign a number 7 to each of the nonzero nilpo-
tent K§-orbits in p¢, and in the fifth column we list the labels of the characteristics H*
of these orbits. These labels are written as “ab ¢ d” where a = ($1(H?), b = B2(H?),
c = B3(H?), d = B4(H?). See the last diagram in Table 4 for the definition of these
ﬂj’s.

The number in the last column indicates the nilpotent K§-orbit (see Table 10 for
the enumeration of these orbits) that contains the image of the given K¢{-orbit. These
numbers are computed by using the same technique as in the previous section. The
transformation rule in this case is “abcd” — “zbad” where £ = —b+ (c —a).
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TABLE 5. Nonzero nilpotent K°-orbits in p° for g = s0(5,4)

Partition | ab-diagram r.s. | No. | Labels | FI
1°2° ab,ba,a’, b* 1{1011 1
183 bab, a*, b* 210022 2
aba,a®, b 3/2000 | 3

1-24 (ab,ba)?,a I 410102 2
II 510120 3

14243 bab,ab,ba,a* 1 611013 4
II 711031 5

aba,ab, ba,a,b 811111 5

1332 (bab)?,a® I 910004 6
II 10 | 0040 7

aba, bab, a?,b 112022 8

(aba)?, a, b? 1210200 7

33 (aba)?, bab 130222 | 10
145 (ba)?b,a>,b 1412044 | 11
(ab)?a, a?, b 154022 | 12

1-42 (ab)?, (ba)?,a I 16 2124 | 11
II 1712142 | 12

225 (ab)?a,ab,ba I 183113 | 15
II 1913131 | 14

1-3-5 (ba)?b, aba, a 2010244 | 17
(ab)%a,bab,a 1 2114004 | 17

II 2214040 | 16

(ab)?a, aba,b 2312222 | 18

127 (ba)®b, a® I 24 | 4048 | 19
II 2514084 | 20

(ab)3a,a,b 26 | 4244 | 20

9 (ab)ia I 2714448 | 25
IT 28| 4484 | 24

Next we consider the Zo-embedding g; — g, where g; is of type s0(4,4) and g,
of type s0(5,4). The nilpotent G§-orbits in g§ are parametrized by the partitions of
8 in which the even parts occur in pairs, except that to each of the two very even
partitions (2 and 42) there correspond two orbits. These partitions are listed in the
first column of Table 6. The next three columns give the ab-diagrams and the left
and/or right superscripts (when needed) which parametrize the K§{-orbits in p§ (see
[9] for details).

In the fifth column of Table 6 we assign a number ¢ to each of the nonzero nilpotent
K¢-orbits in p$, and in the sixth column we list the labels 8;(H?*), 1 < j < 4, of the
characteristics H* (see Table 4 for the definition of the ;’s).
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TABLE 6. Nonzero nilpotent K°-orbits in p¢ for g = so(4,4)

Partition | l.s. ab-diagram r.s. | No. | Labels | 50(5,4)
1422 ab, ba, a?, b* 171111 1
1°3 aba,a?,b’ 212200 3
bab, a3, b2 310022 2

7 T (ab,ba)? i 40202 1
I I 510220 5

II I 612002 4

I II 712020 5

1-2%3 I aba, ab, ba, b 811311 8
II 913111 8

bab, ab,ba,a 1 1011113 6

I 1111131 7

1232 T (aba)?, b2 120400 12
II 1314000 12

aba, bab, a,b 142222 11

(bab)?, a? I 150004 9

II 1610040 10

1%5 (ab)?a, a, b? 1714422 15
(ba)2b, a2, b 182244 14

4? I  (ab)?, (ba)? 1 192424 16
I II 20| 2442 17

11 I 2114224 16

I I 2214242 17

3-5 (ab)%a,bab 1 2314404 21
II 2414440 22

I (ba)?b,aba 25| 0444 20

II 2614044 20

1.7 I (ab)3a, b 27 |1 4844 26
I 28 |1 8444 26

(ba)3b,a I 2914448 24

II 30| 4484 25
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The last column gives the number (from Table 5) of the nilpotent K§-orbit that
contains the given Kf{-orbit. They were computed by using the transformation rule
“abcd” — “azcd” where z = 1(b—a).

Next we consider g; — g, where g, is of type s0(4,3) and g, of type s0(4,4). The
nilpotent G§-orbits in g§ are parametrized by the partitions of 7 in which the even
parts occur in pairs. These partitions are listed in the first column of Table 7. The
next two columns give the ab-diagrams and the left superscripts (when needed) which
parametrize the K{-orbits in p§.

In the fourth column we assign a number i to each of the nonzero nilpotent K§-
orbits in p§, and in the fifth column we list the labels 8;(H*), 1 < j < 3, of the
characteristics H* (see Table 4).
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TABLE 7. Nonzero nilpotent K¢-orbits in p° for g = so(4, 3)

Partition | l.s. ab-diagram | No. | Labels | s0(4,4)
1322 ab, ba,a?,b 1111 1
143 aba, a2, b° 21220 2
bab,a>,b 31002 3

223 I aba, ab, ba 41131 8
I 51311 9

1-3% I  (aba)?b 6040 12
I 71400 13

aba, bab, a 81222 14

1%5 (ab)a,a,b 9[442 17
(ba)b,a®> | 10| 224 18

7 I (ab)a 11| 484 27
II 12 |1 844 28

The last column gives the number (from Table 6) of the nilpotent K$-orbit that
contains the given K¢-orbit. The transformation rule in this caseis “abc¢” — “abec”.

There is a Zs-embedding g; — g, with g, of type GI and g, = s0(4, 3), with
the transformation rule “ab” — “aba”. Under this embedding the nonzero nilpotent
Kf-orbits in p§ are mapped to those of K§ in p§ as follows:

1-1, 2—4, 3-8 4—-6, 5—11.

Finally for the Zj-embedding of si(3,R) into the algebra g, of type GI, the
minimal nonzero nilpotent K¢-orbit in p§ is mapped into the orbit 1 and the principal
orbit is mapped into the orbit 3.

4. Appendix: Enumeration of the K¢-orbits in p°. For the reader’s conve-
nience, we give here the parametrization of the nonzero nilpotent K¢-orbits in p¢ for g
of exceptional type, which is taken from [5, 6] but is presented here in a different form
(using Bala—Carter symbols). For the sake of consistency, we use the same numbering
of orbits as in these two papers. They are also listed in [4].

For each of the real forms g we give in Table 8 the Dynkin diagram of the root
system R of (2°,5°). The nodes of this Dynkin diagram are the black nodes. They
are labeled by the simple roots 31, B2, - .

If g is of inner type, then this diagram is embedded in the extended Dynkin
diagram of the root system R of (g%,h°). The simple roots of R are denoted by
a1,qs,. .., and its highest root by &. If to the simple roots of R we assign the weights:
0 for black nodes and 1 for the single white node, then we obtain a Z-gradation of g€
whose associated Zg-gradation is g¢ = £ & p°.

If g is of type EIII or E VII, then £° is not semisimple and we need another root
from R to specify the characteristics H € h°. For that purpose we use the root 3g for
EIII and B; for E VII. Note that both of these nodes are white.
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TABLE 8. The simple roots of R and R

g t° Rand R
GI Al + Al [2150-—62__
a1 Qg —Q
FI 03+A1 ﬁf BS:ﬂZ 131
-0 a1 Qg Q3 Oy
FII B4 I(ff 162 163:’/64 s
—Q a1 (67 [0 7%} Oy
Bl 4 [fl ﬂfz [fs Ba
BNl As+ A L
a1 o3 o4 Qa5 O
(6%)
Be ¢ —a
EIII  Ds+Th 'ff)l B B @i‘ éﬁ
a1 QO G4 a5 O
Bs ¢ a2
o —&
EIV Py B ﬂ2=,’ Bz Ba
EV Ay ﬁf Bo Bz PBs Bs Bs Pr
- Q7

711 ?13 1 Q4 Q5 Qg

a2
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TABLE 8. (continued)

g 124 Rand R
EVI De+d; D B B B B Br
-& a1 o3 la4 as  ag o
Be ¢ az

EVI Es+T) b B B Ps Bs P

o= —e- o
- o o3 1014 a5 ag o7
B2 ¢ az
EVII  Dg P B Bs B Bz B B

@ Qg ICM as ag qr ag —@&
B8

Q2

EIX EBo+A, D B B Bs B B Bs
(¢5] 0%} laz} 071 Qg Q7 ag —Q
P2

a2

If H' is the characteristic of the i-th orbit, then the labels 3;(H*) determine H*
uniquely. All these labels are nonnegative integers except the one corresponding to
the white 8 node which may be a negative integer.

There is only one misprint in the list of characteristics in [5, 6], namely the one
for the orbit 31 of [5, Table XII]. These labels should be 020220 2 instead of 020220 0.
This misprint was also copied into [4, p. 158]. We warn the reader that the Dynkin
diagram of Fy in [4, p. 152] should have its direction arrow reversed.

The B-C columns in Tables 9-20 of this appendix give the Bala—Carter symbols
for nonzero nilpotent G¢-orbits O in g°. As in the introduction, let By, ..., Bx be the
connected components of O Np°. Each of these components is given a number, say 1,
which is followed by the labels 3;(H?) of the characteristic H* of that component.

For instance if g is of type EII and O has the Bala-Carter symbol Fg(a3), then
k = 2 and the two connected components are given the numbers 32 and 33 (see Table
13). Since ¥° is of type A5 + A;, we have separated the first five labels (corresponding
to As) from the last one (corresponding to A;) by a blank space. For the orbit 32,
all labels 3;(H32), 1 < j < 6, are equal to 2. (See the diagram EII in Table 8 for the
definition of the roots 3;.) For the orbit 33, the labels 3;(H33) are 0 for j odd and 4
for j even.
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TABLE 9. Nonzero nilpotent K°-orbits in p¢ for g of type GI

B-C symbol No. Labels | B-C symbol No. Labels
A1 1 11 Gg(al) 4 04
A 2 13 G 5 48
Gz(al) 3 22
TABLE 10. Nonzero nilpotent K°-orbits in p° for g of type F I
B-C symbol No. Labels | B-C symbol No. Labels
A1 1 0011 Cg(al) 14 1031
A, 2 1002 15 1113
3 0100 | Fy(as) 16 0040
A+ Ay 4 0013 17 0204
5 1011 18 2022
As 6 0004 | Bjs 19 0048
7 2000 20 2044
8 0022 | Cs 21 1313
Ay 9 0200 | Fy(ap) 22 040 4
Ay + Ay 10 1102 23 2222
By 11 1024 | Fy(a1) 24 2244
12 0122 25 4048
Ax + Aq 13 1111 Fy 26 4448

TABLE 11. Nonzero nilpotent K°-orbits in p° for g of type FII

B-C symbol No. Labels
A 1 0001
Ay 2 4000

TABLE 12. Nonzero nilpotent K¢-orbits in p° for g of type EI

B-C symbol No. Labels | B-C symbol No. Labels
A, 1 0001 | Da(a1) 23 0020
24, 2 0100 Ay 9 0202
3A; 3 1001 D, 13 2004
Ao 4 0002 Ag+ Ay 16 1111

5 2000 Ds(aq) 17 1112
As + Ay 8 0101 As 14 1211
24, 6 0200 Es(as3) 19 2202
As +24; 10 1010 22 0220
As 7 0102 Dy 21 2204
245 + A 11 1101 Es(a1) 18 2222
As+ A; 15 1011 Eg 20 4224
Dy(a1) 12 2002
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TABLE 13. Nonzero nilpotent K¢-orbits in p¢ for g of type EII

B-C symbol No. Labels | B-Csymbol No. Labels
A 1 001001 | Dy(aq) 20 004000
24, 2 10001 2 21 02020 4
3 010100 22 202022
34, 4 001003 | Ay 25 40004 4
5 101011 26 220220
Ag 6 000004 [ Dy 23 00400 8
7 200020 24 204024
8 002002 | Ay + Ay 27 121131
A+ 4 9 210011 28 311211
10 100121 | Ds(a1) 29 313104
242 11 020200 30 013134
A + 24, 12 301000 | As 31 131313
13 001030 | Es(a3) 32 222222
14 110112 33 04040 4
As 15 102014 | Ds 34 224224
16 01210 2 35 40404 8
245 + A4 17 111111 | Eg(a1) 36 44044 4
As+ A 18 103011 | Es 37 444448
19 111113

TABLE 14. Nonzero nilpotent K°-orbits in p© for g of type EIIT

B-C symbol No. Labels B-C symbol No. Labels

A 1 00001 0| A+ A, 7 11010 —2
2 00010 -2 8 11001 -3

24, 3 10000 1| 24, 9 40000 -2
4 10000 -2 | Aj 10 00013 —2
5 00011 -2 11 00031 -6

Ay 6 02000 -2 | A4 12 02022 —6

TABLE 15. Nonzero nilpotent K¢-orbits in p¢ for g of type EIV

B-C symbol No. Labels
Ay 1 0001
2A; 2 0002
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TABLE 16. Nonzero nilpotent K¢-orbits in p° for g of type EV

B-C symbol No. Labels B-C symbol No. Labels
A 1 0001000 | As+ A; 48 3101021
24, 2 0100010 49 1201013
(34,)" 3 0200000 50 1111111
4 0000020 | Ds(a1) 51 3013010
(34;) 5 1001001 52 0103103
Ay 6 2000002 53 1112111
7 0002000 | Ag+ As 54 2020202
44, 8 1100100 | Ds(a1) +A; 55 4004000
9 0010011 56 0004004
As + A 10 2010001 57 2022020
11 1000102 58 0202202
12 0101010 | (As)’ 59 1211121
As + 24, 13 3000100 | A5 + A; 60 1311111
14 0010003 61 1111131
15 1010101 | Eg(a3) 62 2202022
As + 34, 16 4000000 63 0220220
17 0000004 | Dg(a2) 64 1310301
18 2000200 65 1030131
19 0020002 | Ds 66 2204022
Az 20 0102010 | Ex(as) 67 2220202
24, 21 0200020 68 2020222
(Asz + Ay)” 22 0202000 69 0400400
23 0002020 70 0040040
245 + A 24 1101011 | Ag 71 2220222
(As + 41) 25 1011101 | Dg(a1) 72 3013131
Dy(ay) 26 2002002 73 1313103
27 0020200 | D5 + Az 74 3113121
Az +24; 28 1111010 75 1213113
29 0101111 | E7(aq) 76 2222202
Dy 30 2004002 77T 2022222
Dy(a1) + Ax 31 2101101 78 4004040
32 1011012 79 0404004
33 0120101 | Eg(aq) 80 4220224
34 1010210 81 2222222
Az + Ay 35 1030010 | Ds 82 3413131
36 0100301 83 1313143
37 1110111 | FEs 84 4224224
Ay 38 2200022 | E7(as3) 85 2422222
43 0202020 86 2222242
As+ A2+ A 39 0040000 87 4404040
40 0000400 88 0404044
41 2020020 | E;(aq) 89 4404404
42 0200202 90 4044044
(As)” 44 0402020 | E7(a1) 91 4444044
45 0202040 92 4404444
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B-C symbol No. Labels | B-C symbol No. Labels
Dy+ Ay 46 2103101 | Ey 93 8444444
47 1013012 94 4444448

TABLE 17. Nonzero nilpotent K¢-orbits in p¢ for g of type E VI

B-C symbol No. Labels B-C symbol No. Labels
A 1 000010 I | D4(a1) 19 000040 0
2A; 2 010000 2 20 000200 4
3 0001000 21 020020 2
(34:1) 4 0000103 | Dy 22 000040 8
5 0100101 23 020040 4
A, 6 0000004 | A3+ A, 24 201011 2
7 0000202 | Ay 25 040000 4
8 0200000 26 0202000
A+ Ay 9 1100011 | Ag+ A; 27 1111101
As+ 24, 10 2001000 | Ds(a1) 28 2010314
11 0101002 | Ay + As 29 0040000
Az 12 0100204 | (As) 30 0103103
13 000120 2 | Es(as) 31 020220 2
24, 14 400000 0 32 000400 4
15 0002000 | Ds 33 020240 4
242 + Ay 16 0101101 34 040040 8
(A3 + Ay) 17 0100301 | Ag 35 400400 0
18 0101103 | Eg(a1) 36 040400 4
Eg 37 040440 8

TABLE 18. Nonzero nilpotent K°-orbits in p° for g of type E VII

B-C symbol No. Labels B-C symbol No. Labels

Aq 1 100000 0| A2+ As 12 011000 -3
2 000001 -2 | Aj 13 300001 -2

24; 3 000001 0 14 100003 —6
4 100000 -2 | 24, 15 200002 —4
5 100001 -2 | (As+ A;)” 16 200002 -2

(341)" 6 000000 2 17 400000 -2
7 000000 -2 18 000004 —6
8 000002 —2 19 200002 -6
9 200000 -2 | A4 20 220002 -6

Az 10 020000 -2 | (A4s5)” 21 400004 —6

Ay + Ay 11 010010 -2 22 400004 -10
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TABLE 19. Nonzero nilpotent K€-orbits in p¢ for g of type E VIII

B-C symbol No. Labels B-C symbol No. Labels
Aq 1 00000010 | Ds(a1) +A2 59 11010111
24, 2 00010000 | Dg(asg) 60 21011011
3A; 3 01000010 61 10102100
Ay 4 02000000 | Eg (a3) + A 62 11110110
5 00000020 63 01011101
44 6 10001000 | Er(as) 64 01003001
Ay + A 7 11000001 65 11101101
8 00010010 | Ds + A; 66 11110130
As +24; 9 20010000 | Es(a7) 67 20200200
10 01000100 68 00004000
As 11 00010020 69 02002002
Az + 34 12 30000001 | As 70 40040000
13 10010001 71 40040000
24, 14 40000000 | Dg(aq) 72 21011031
15 20000002 73 01201031
16 00020000 | Ag + Az 74 11111101
245 + A, 17 01010010 | Er(as) 75 11101121
As + Ag 18 01000110 76 10300130
Da(a1) 19 02000020 | Eg(as) 77 04020200
20 00000200 78 02020220
Dy 21 02000040 | Ds + Az 79 02002022
245 + 24, 22 10100100 80 00400040
As + 24 23 10010011 81 20200220
Dy(ay) + A 24 11001010 | Eg 82 04020240
25 00100101 | Dg 83 21031031
Az + Ay 26 20100011 | D;(as) 84 31010211
27 10001002 8 11111111
28 01010100 | Ay 8 12111111
Ay 29 02020000 Ee(al) + A 87 13111101
30 00020020 88 11111121
As+As+ Ay 31 00100003 | E-(as3) 89 11121121
32 10101001 90 30130130
Dy + Ay 33 11001030 | Es(b2) 91 20202022
Dy(aq) + Az 34 00000004 92 04004000
35 20002000 | D7(a1) 93 02022022
36 00200002 94 40040040
As+ 4 37 11110010 95 20220220
38 01010110 | Ee + A1 96 13111141
243 39 10110100 | E;(a9) 97 13103041
Ds(aq) 40 20100031 | Es(as) 98 00400400
41 01010120 99 22202022
Ay + 24 42 21010100 | Dy 100 31131211
43 01200100 | Eg(bs) 101 22202042
44 10101011 102 04004040
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TABLE 19. (continued)

B-C symbol No. Labels B-C symbol No. Labels
Ay + Ay 45 00400000 | E;(a1) 103 13131043
46 02000200 | Es(as) 104 22222022
As 47 01020110 105 40040400
Ds(aq) + Az 48 30001030 | Eg(bs) 106 22222042
49 10101021 107 04040044
Ag+ As + A 50 11010101 | Er 108 34131341
Dy + Ay 51 40000040 | Eg(a4) 109 22222222
52 00200022 110 44040400
53 20002020 | Eg(as) 111 24222242
Es(as3) 54 02020020 112 44040440
55 00020200 | Es(as) 113 44040440
Dy 56 02020040 | Eg(a) 114 44440444
Ayg+ As 57 11101011 | Ejg 115 84444444
As+ A 58 10111011

TABLE 20. Nonzero nilpotent K¢-orbits in p¢ for g of type EIX

B-C symbol No. Labels B-C symbol No. Labels
A 1 0000001 0 | D4(a1) 19 0000004 0
24, 2 1000000 2 20 2000002 2
3 00000100 | D4 21 0000004 8
34; 4 0000001 3 22 2000004 4
5 10000011 | As+ Ao 23 01100012
Az 6 00000004 | A4 24 4000000 4
7 0000002 2 25 2000020 0
8 20000002 | As+ Aq 26 10100111
Ay + A 9 1100000 1 | Ds(aq) 27 0110003 4
Az + 24, 10 1000010 2 | A4+ A 28 00020000
11 00010000 | As 29 1000031 3
As 12 1000002 4 | Eg(as) 30 2000022 2
13 0000012 2 31 0000040 4
24, 14 0000020 0 | Ds 32 2000024 4
242 + A 15 10000111 33 4000004 8
As + Ay 16 1000011 3 | As 34 0002020 0
17 1000003 1 | Egs(a1) 35 4000040 4
Dy(aq) 18 00000204 | Eg 36 4000044 8
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