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MAPPING OF NILPOTENT ORBITS UNDER EMBEDDINGS OF 
REAL FORMS OF EXCEPTIONAL COMPLEX LIE ALGEBRAS * 

DRAGOMIR Z. BOKOVIGt AND JIRO SEKIGUCHI* 

Abstract. We consider Lie algebra monomorphisms ip : ^ —> £2 between various noncompact 
real forms 01, 02 of complex simple Lie algebras gf, #2- I*1 a^ cases that we consider, 0f or £^ is 
of exceptional type, with one exception. For each adjoint nilpotent orbit O of 01 we determine the 
adjoint nilpotent orbit of 02 which contains the image ^(O). The adjoint nilpotent orbits of ^ and 
^2 are themselves parametrized by using the Kostant-Sekiguchi correspondence. 

1. Preliminaries. Let g be a semisimple real Lie algebra and gc its complexifi- 
cation. Let 0 be a Cartan involution of g and g = E+p the corresponding Z2-gradation 
(a Cartan decomposition). By complexifying, we obtain the Z2-gradation 0C = 6c-fpc 

and we extend 0 to a complex linear automorphism 6C of 0C. Denote by G (resp. Gc) 
the adjoint group of 0 (resp. gc). Thus G is the connected Lie subgroup of Gc with 
Lie algebra g. The group G (resp. Gc) acts on g (resp. gc) via the adjoint action: 
(a, x) —> a - x = Ad(a)(x) where a G Gc (resp. G) and x € gc (resp. g). A Gc (resp. 
G)-orbit is nilpotent if it consists of nilpotent elements of gc (resp g). There are only 
finitely many nilpotent Gc (resp. G)-orbits in gc (resp. g). 

Let Kc (resp. K) be the connected' Lie subgroup of Gc (resp. G) whose Lie 
algebra is tc (resp. t). By restricting the adjoint action of Gc, we obtain an action of 
Kc on pc. The number of nilpotent Kc-oibits in pc is also finite [4]. 

Let O be a nilpotent Gc-orbit in gc. The intersection O fl g consists of finitely 
many connected components Ai, i = l,...,k. Moreover, each of these connected 
components is a single nilpotent G-orbit, and dimj^(^) = dim.Q(0) for each i. The 
intersection Onpc also consists of k connected components, say 23$, i = 1,...,fc, each 
of them is a single nilpotent Kc-orbit and dimQ(Bz) = |dim(2)(0) for each i. The 
Kostant-Sekiguchi correspondence (see [10, 4]) establishes a bijection from {Ai} to 

{Bi}. 
If E,H,F € gc are nonzero elements satisfying [H,E] = 2E, [H,F] = —2F, and 

[F, E] = H, then we say that (E, H, F) is a standard triple. If moreover E, F G pc and 
H £ %c, then we say that (JE, iJ, F) is a normal triple. Let us fix a Cartan subalgebra 
\) of t and f} of g such that ^25- Let f)c and ^ be their respective complexifications. 
Let R be the root system of (£c,f)c), and R that of (gc, fj ). Finally, let W be the 
Weyl group of i?, 11 = {Pi^2,.. •} a base of R (a system of fundamental roots), and 
define W, R and ft = {ai,a2,...} similarly. If R (resp. R) is irreducible, we denote 
its highest root by a (resp. /?). 

We say that the Z2-graded Lie algebra gc is of inner type if Ec and gc have the 
same rank, i.e., l)c = ^ , and otherwise of cmter iy^e. In the former case we may view 
R as a root subsystem of R, and we say that the roots in R are compact and the other 
roots in R are noncompact. In the root diagrams, we shall represent compact (resp. 
noncompact) roots by black (resp. white) nodes. 
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If gc is simple and of inner type, then one can choose a base II of R such that 
there exists a unique base 11 of R contained in ft U {—a}. We assume that ft and 11 
are chosen in this fashion (see Tables 4 and 8). 

Let A be a nonzero nilpotent iiTc-orbit in pc. We can choose a normal triple 
(E,H,F) such that E G -4, H £ f)c, and the numbers f3(H) are nonnegative integers 
for each (3 G EL The orbit *4. uniquely determines the element H and vice versa. We 
shall refer to H as the characteristic of the orbit A. Among the algebras that we 
consider, there are two cases with tc non-semisimple. In these two cases F) = f)c, 
ft = 11 U {/?'}, and we identify H by means of the labels fij{H), fy G H, and the 
additional label l3'(H). 

The containment relation between the closures of nilpotent G-orbits in Q defines 
a partial order on the set of these orbits. One obtains similarly a partial order on the 
set of nilpotent Gc-orbits in Q

C
 and the set of nilpotent if c-orbits in pc. We refer to 

these partial orders as the closure orderings. 
It was shown by Barbasch and Sepanski [1] that the Kostant-Sekiguchi corre- 

spondence preserves the closure ordering of the two sets of orbits. Let Af(gc) denote 
the nilpotent variety of #c (an irreducible affine variety). We set A/*^) = $ f)J\f(Qc) 
and Af(pc) = pc fl Af(gc). If we equip the quotients M(g)/G and M{pc)/Kc with 
their respective quotient topologies, then the result of Barbasch and Sepanski can be 
expressed by saying that the Kostant-Sekiguchi correspondence is a homeomorphism 
between these two finite topological spaces. 

We shall use the Cartan notation for the isomorphism types of noncompact real 
forms of the exceptional complex Lie algebras. Alternatively, these real forms may be 
distinguished by their Cartan indices i = dim(p) — dim(6) which are usually written 
in parentheses. 

Et 

E7 

E$ 

C?2 

El = E6(6),  EII = £,6(2)5  EIII = £?6(-14)J  EIV = EQ(-26) 

E V = £7(7), EVI = Ify-s), EVII = E7(_25) 

E VIII = JE?8(8), EIX = -E?8(-24) 

FI = F4(4),  FII = F4(_20) 

G I = G2(2) 

Let us now consider two semisimple real Lie algebras, say, ^ and 02- The nota- 
tions 0, #c, G, Gc, W, 11, etc. will be used also for these algebras and the associated 
groups by adding subscripts 1 or 2, as appropriate. In particular, 61 and 62 are the 
Cartan involutions of g1 and 02, respectively. We say that a Lie algebra monomor- 
phism cp : g-^ —> 02 ls a ^-embedding of ^ in 02 if <£ 0 #1 = #2 0 <£• Prom now on 
we assume that ip is such an embedding. Then ^(^1) C ^2 and (p(pi) C p2. The 
complexification (pc : QI —* 02 of (p will also be called a Z2-embedding. Then we have 
the commutative diagram: 

01    —»    fli 
(1.1) v) 

c 
02      —*     02 

where the horizontal arrows are the inclusion maps. Prom this diagram we obtain the 
following commutative diagram for orbit spaces: 

JV(fli)/Gi    —   tfiPD/KS 

(1.2) /xj ^ 
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where the horizontal arrows are homeomorphisms given by the Kostant-Sekiguchi 
correspondence and the vertical arrows /i and v are the continuous maps induced by 
the Z2-embeddings </? and (/?c, respectively. 

Our main objective is to give explicit description of the maps [i and v for some 
interesting Z2-embeddings of real forms of complex simple Lie algebras. These em- 
beddings are taken from an extensive list compiled by Berger [2]. In view of the 
commutativity of the above diagram, it suffices to determine the map v. The main 
results are given in the tables of Sections 2 and 3. 

El 

FI EV 

EII EVIII 

EVI 

EIII EIX 

FII EVII 

EIV 

FIGURE 1. Embeddings of real forms 

First of all we shall consider the Z2-embeddings shown schematically on Figure 
1. We shall describe them in the next section. By analyzing the Z2-embedding EVI 
—» EIX and by inspecting the closure diagrams for EVI [7, Figure 2] and EIX [8, 
Figure 3], we detected an error in the former diagram: The line joining the nodes 22 
and 33 should be erased. 

In addition to the Z2-embeddings shown on Figure 1, we shall also consider the 
following chain of Z2-embeddings of the split real forms: 

(1.3) 51(3, R) —> G I —> 50(4,3) —► so(4,4) —■> so(5,4) —► F I 

For each of the arrows in Figure 1 and the diagram (1.3) we describe explicitly 
the map v in tabular form. For the arrows in Figure 1 see Table 2 in the next section, 
and for those in the diagram (1.3) see the tables in Section 3. In order to make these 
tables user-friendly, we have included the necessary details about the enumeration of 
orbits. For the exceptional cases, these details are given in the Appendix. 

The second author would like to thank the Department of Pure Mathematics of 
the University of Waterloo for its hospitality during his visit in September 2001. 

2. Embeddings from Figure 1. It is more convenient to work with complex 
Lie algebras than with the real ones. Hence in order to construct a commutative 
diagram (1.1) we shall start with the complex Z2-embedding (pc : gf —> ^ and then 
construct the Z2-embedding of real froms (p : Qi —» ^ to obtain the diagram (1.1). 
This is indeed possible by the following result. 

PROPOSITION 2.1. Let g^ be a semisimple complex Lie algebra and gf a semisim- 
ple subalgebra of g^-   Let 6% be an involutorial automorphism of Q^ 

SUC
^

1
 ^a^ 0i Z5 
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62-stable, and denote by 6^ the restriction of 6% to gj. Let g? = t? © p^ be the Z2- 
gradations induced by 9% (i — 1,2). T/zen ^/iere exisf real forms g^ 0/ g^ such that 
0i £ 02 and 9i is stable under #?. Moreover, the restriction 9i = 9%|g 25 a Cartan 
involution of g^. Ttes z/ ^ = 0^(1 ^ and p^ = g^ fl p^; ^/zen & = fy 0 p^ 25 a Cartan 
decomposition of gi. 

Proof Let E/i be a maximal compact subgroup of Aut(gf) containing 0£. The Lie 
algebra Ui of Ui is a compact real form of gf which is invariant under 0£. Clearly, it 
is also invariant under 9%. It follows that 9% normalizes the connected compact Lie 
subgroup Ui of Aut(g2) having ui as its Lie algebra. Consequently, there exists a 
maximal compact subgroup U2 of Aut^) containing both Ui and 9^- Its Lie algebra, 
U2, is a compact real form of g^ invariant under 9% and such that 112 fl gj = Ui. We 
can now take 

fli = (ui n tl) 0 <(ui n pf),   g2 = (U2 n t§) 0 z(u2 n p§). 

D 
We may (and we do) assume that our Z2-embeddings cpc are such that (pc(fyi) Q §2 

and ^c(f)i) C ^2- 
Assume that gj and g^ are of inner type. Then we say that an embedding of root 

systems Ri —> R2 is a Z2-embedding if the compact roots are mapped to compact and 
noncompact to noncompact. Such embedding is uniquely determined by its restriction 
to a base of Ri. It is easy to see that every Z2-embedding .Ri —> R2 can be lifted to 
a Z2-embedding gf —> g^. 

We describe our embeddings in Table 1. In order to be able to distinguish the 
roots in Ri or Ri from those in R2 or ^25 we shall use the superscript ^ for the former 
and (2) for the latter. We write /^ ^ —> /3 • if (pc maps the fy -root space of gf into 

the fij -root space of g^. Similarly, we write /?} ^ —> {/3J \Pk } if ^c embeds the 

Pi -root space of gj diagonally into the sum of the root spaces of g^ corresponding to 

the roots /jj ^ and /J^\ In some cases we give only the restriction of (pc which embeds 

ti into ^2- F01 our choice of the simple roots of R and R see Table 8 in the Appendix. 
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TABLE 1. Description of the 7*2-embeddings from Figure 1 

FI-+EI tf^/^i.*^1.2.3;^--^ 

F I -> E II 

F II -► E III ti^tf\k = W;f3P-,{tf\^} 
F II -> E IV i8i1)--«tf)-tfi,* = 2,3)4 
EI^EV ^-{tfUi}, fc = 1,2,3; tf)-^ 
E II -» E V 

aW^aW+a(2)+a(2)+a(2) 

E II -+ E VI 

41)-42)+«i2)+42)+42) 

E III -^ E VI tf) - «i. i < * < 5; ^ - 42) 

E III -» E VII ^-^.tf-id,* = 2,3,4;. 

4i)-/?r),^i)-42)+42) 

E IV -> E VII 

E V -> E VIII 

41>-aW+c4a)+2a«+2a«+a« 
E VI -> E VIII /3f)-tf,,l<*<4;^1>-^a>, 

E VI -» E IX 

a« - ««+af+42)+42)+42)+42)+42) 

E VII -> E IX tf)-.^ll<*<6;41UaT«+^ 

Let 0| C pj be the i-th nonzero nilpotent iff-orbit and let if| G \)l be its 
characteristic. Define similarly C^ C p^ and H% G f)^ We shall write i —> j if 

¥>c(0i) Q Oj. 

THEOREM 2.2. Consider the Z2-embeddings (pc : gf —> 02 /^^ Figure 1 and 
described by Table 1. Then the nonzero nonempty fibers of the map v (see the diagram 
(1.2)) are as given in Table 2. 

In Table 2, for each value of j ^ 0, we have recorded the superscripts i (if any) 
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such that i —> j. The i's are listed first (on the left hand side) and then the j (on the 
right hand side). For instance, we have 11,12 —> 7 under the embedding FI —> EL 
The arrows are omitted. If i —> j then, in general, (pc(H{) is not equal to iJ^, but 
they belong to the same orbit of the Weyl group W2- 

The above theorem is a simple consequence of the following proposition. Indeed 
the labels of ipc{H\) can be computed by using the transformation rules given in Table 
3, and then, by using the action of W2, one can determine the superscript j such that 
i -> j. 

PROPOSITION 2.3. Consider the ^-embeddings (pc : gj —> 02 /rom Figure 1 and 
described by Table 1. Let 0\ C pj and C^ C p§ 6e nonzero nilpotent orbits such 
that (pc{0\) C d)^. If HI G fyi zs tte characteristic of the orbit 0\, then the labels 

(3^ *((pcH{) of the element (pc(H\) G \)2 can ^e computed from the labels /?[ (H{) by 
using the transformation rules given in Table 3. 

Proof. The proofs are different in each case but they are of similar nature. We 
shall give the details for four cases only. 

We derive first the transformation rule for the Z2-embedding FI —> EL Thus ^ 
is of type FI. The labels of HI are given in column 2 of Table 3 as uabc d". Using 
the first row of Table 1, this means that 

42) {<p°Hi) = ^ (Hi) = a,    f3i2) {V
CH{) = /#> {H\) = b, 

jsfVsi)=pi'Hm) = c, -p^H^Hi) = $\Hi) = d. 

Since p™ = 2^2) + 2/3^ + 2pf) + ^2), we have -d = 2x + 2a + 2b + c where 

x = Pi '((pcH{). This gives the required formula for the label x. 
Next, we consider the embedding FI —> EIL Let a be the diagram automorphism 

of 02 of order two which fixes the root spaces for o^ and ^4 and interchanges those 
for a[ ' and CKQ ^ as well as those for a^ ' and a^ ' (see e.g. [3, Chapter 8, §5, Exercise 
13]). The fixed point subalgebra of a is a simple Lie algebra of type F4 which we can 
identify with our gj, and so we take <pf to be the inclusion map. The automorphism 9% 
of 02 defined by the Z2-gradation of 02 exhibited in Table 8 (with t% of type A5 -h Ai) 
leaves 0f invariant. We denote by Of the restriction of 9% to 0f. Then t^ is of type 
C3 + Ai. By Proposition 2.1 this gives a Z2-embedding FI —► EIL The Cartan 
subalgebra [)i is the subspace of f)2 defined by the equations o^ '(H) = c4 (H) and 

42) (H) = 42) (if). If i -> j and the labels of if j are "a6c d", i.e., 

i9J1)(flI) = aJ'   l&
1)(Hi

1) = b,    (3il)(H{) = c,    ^)(Hi) = d, 

then the labels of #2 = i^l are given by "abcbad". This follows from the fact that 

We shall now derive the transformation rules for the Z2-embeddings E III —> E VL 
and EIII —► EVIL Thus Q1 is of type EIII. The labels of iff are given in the second 
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TABLE 2. Mapping of nilpotent orbits 
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FI->EI                 _J 
1 1 2,3 2 4,5   3 8 4 6,7 5 
9 6 11,12 7 10  10 13 11 18 12 

19,20 13 21 14 14,15  15 23 19 26 20 
24,25 21 22 22 16,17  23 

F I -> E II                    | 
1 1 2 2 3   3 4 4 5 5 
6 6 7 7 8   8 9 11 10 14 

11 15 12 16 13  17 14 18 15 19 
16 20 17 21 18  22 19 23 20 24 
21 31 23 32 22  33 24 34 25 35 
26 37 

F II -> E III                  | 
|     1 5 2 9 
|                  Fn-»EIV                  | 
1   1 1 2 2 
|                   EI-^EV                   | 

1 1 2 2 3   5 5 6 4 7 
8 12 10 15 7  20 6 21 11 24 

15 25 12 26 23  27 13 30 9 43 
16 50 17 53 14  59 19 62 22 63 

1    21 
66 18 81 20  84 

|                   E II -» E V 
1 1 2,3 2 4,5   5 6,7 6 8 7 
9 10 10 11 12  13 13 14 14 15 

15,16 20 11 21 17  24 18,19 25 22 26 
20,21 27 23,24 30 25,26  38 28 48 27 49 

29 51 30 52 31  59 32 62 33 63 
1  34,35 66 36 80 37  84 
|                  E II -» E VI 
|     1 1 2 2 3   3 4 4 5 5 

6 6 8 7 7   8 9,10 9 12,13 10 
14 11 15 12 16  13 11 15 17 16 
18 17 19 18 20  19 21 20 22 21 
23 22 24 23 25  25 26 26 27,28 27 

29,30 28 31 30 32  31 33 32 34 33 
35 34 36 36 37  37 

E III ^ E VI 

1    1,2 1 3,4 2 5   3 6 8 7,8 9 
10,11 13 9 14 12  26 

|                  E III ^ E VII 
|     1 1 2 2 3   3 4 4 5 5 

6 10 7 11 8  12 10 13 11 14 
1     9 

15 12 20 



416 D.Z. BOKOVIC AND J. SEKIGUCHI 

TABLE 2. (continued) 

EIV-+ EVH 
1 5 2 15 

E V -* E VIII 
1 1 2 2 3,4,5 3 6 4 7 5 

8,9 6 10,11 7 12 8 13,14 9 15 10 
20 11 16,17 12 18,19 13 21 16 24 17 

22,23,25 18 26 19 27 20 30 21 28,29 23 
31,32 24 33,34 25 35,36 27 37 28 38 29 

43 30 39,40 31 41,42 32 46,47 33 48,49 37 
50 38 51,52 40 53 41 54 46 44,45,59 47 

55,56 48 57,58 49 62 54 63 55 66 56 
60,61 58 64,65 61 69,70 64 67,68 65 74,75 66 

71 71 72,73 73 76,77 75 78,79 76 80 77 
81 78 84 82 82,83 83 85,86 89 87,88 90 

89,90 97 91,92 103 93,94 108 
EVI^: EVIII 

1 1 2,3 2 4,5 3 6,8 4 7 5 
9 7 10 9 11 10 12,13 11 14 14 

15 16 16 17 17,18 18 21 19 19,20 20 
22,23 21 24 26 25,26 29 27 37 28 40 

29 45 30 47 31 54 32 55 33,34 56 
35 70 36 77 37 102 

EVI^ EIX 
1 1 2 2 3 3 4 4 5 5 
6 6 7 7 8 8 9 9 11 10 

10 11 12 12 13 13 14,15 14 16 15 
18 16 17 17 20 18 19 19 21 20 
22 21 23 22 24 23 25 24 26 25 
27 26 28 27 29 28 30 29 31 30 
32 31 33 32 34 33 35 34 36 35 
37 36 

Evn-» EIX 
1,2 1 3,4 2 5 3 6,7 4 8,9 5 
10 8 11,12 9 13,14 13 15 14 16,19 16 

17,18 17 20 25 21,22 29 

column of Table 3 as "abodef". This means that 

0i1)(Hi)=a, 
pi1)(Hi)=d, 

p^m b, 

0i1\Hi) = e, 
c, 

&'(Hi) = f 

(see the diagram for g = EIII in Table 8 for the definition of the /3/s). The funda- 

mental weights of (02? ^2) will t>e denoted by u^   , 1 < k < 7. 
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TABLE 3.  Transformation rules for ^-embeddings in Figure 1 

01 ->02 Hi <PC(H{) x,y,z                           1 

FI->EI 

F I -» E II 

abc d xabc 

abeba d 

a; = -(a + 6)- \{c + d) 

F II -* E III 

F II -> E IV 

abed abedd x 

bedx 

x = -(b + 2d)- !(a + 3c) 

EI->EV abed abedeba 

E II -> E V 

E II -> E VI 

abede f abcdexf 

abcdey f 

x = -i(a + 26 + 3c + Ad + 5e + 3/) 

y = e + / + 2x 

E III -♦ E VI 

E III -► E VII 

abede f yabcde x 

aebcdz —x 

x = -2c-e- |(2a + 46 + 5d + 4/) 

?/ = -2c - e - |(4a + 56 + Ad + 2/) 

z = f + x 

E IV -► E VII abed dacbed x x = -(a + 26 + 3c + 2d) 

E V -» E VIII abedefg abedefxg x = —d 

- \{a + 26 + 3c + 5e + 6/ + 3fl) 

E VI -» E VIII 

E VI -^ E IX 

abedef g gxabcdfe 

yefdcba g 

a; = -(a + 6 + c + d) - |(e 4- / + p) 

y = ~(6 4- 2d + e) - l(a + 3c + 3/) 

E VII ^ E IX abedef g abedefx z x = -{a + 2c + 3d + 2/) 

-!(36 + 5e + <7) 

Assume first that 02 is of tyPe E VI. Then the transformed labels, i.e., the labels of 
(pc(H{) are given in Table 3 as "yabcde2?. This means that 

This is illustrated on Figure 2. These data are in agreement with Table 1 which 
says that (pc maps the root spaces of $1 corresponding to the roots /?£ ^ to those of $% 

corresponding to the roots Z?^^ for 1 < k < 5, and the root space of /3Q = ag to 

that of 42). We still need to compute the labels p[2)(ipcHi) = y and p!?\<pcHi) = x. 

Observe that ipc(hi) is precisely the kernel of the fundamental weight CJ^   . As 

242) = 2ai2> + 3af + Aa? + Saf + 5a® + 4a^ + 3a?\ 

we obtain the equation 

2a 4- 3e 4- 46 4- 6c + 5d 4- 4/ + 3a; = 0. 

Since a^2^ is the highest root of -R25 we also have 

x 4- y 4- 2{a 4- e 4- /) 4- 3(6 4- d) + Ac = 0. 

Prom these two equations we obtain the formulae for x and y given in Table 3. 
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y a bed / X 

aM (2) 42)     ^2)«i2) 
(2) ^2   • e 

«(2) 42) 

E III -> E VI 

*      (1 < * < 6) a (i) _ a(a) 

abede     f 
yabede   x 

rv(2)     rv^2)      rvi2) -av a 

/ (2)   ,       (2) 

a, (2) 

ai2)   (2) 

4 e 

—x 

a(2) 
C.(2) 

E III -> E VII 

a (i) 42)    (l<ife<5) 

a< (i) a, f+af 

abede     f 
aebcdz   —x 

FIGURE 2. Two Z2-embeddings of inner type 

Next assume that 02 is of tyPe E VII. Then the labels of (pc{H{) are given in Table 
3 as "aebcdz —x". This means that 

3(2)/ j(2) ^(¥)cfll) = a,    ^(V
cfll) = e>    /3^(^Hl) = b,    /3?>(<pcHl) = c (2), 0(2), 

?(2)/ 0(2) (2)/ fc>(V
cHi) = d,    fc>(cpcHl)=z,    W(V

cHl) = -x 

and that the root spaces of QJ corresponding to /?} , ^ , /?3 , /?4 , /?5 are mapped 

to those of #2 corresponding to a[ \a^ \a^\a^ , a^ ? respectively. As indicated in 

Table 1 (see also Figure 2), the root space of PQ ' is mapped to that of QJQ + 0^7 . 
Consequently, f = z — x. 

In this case, 9?c(i)i) is the kernel ofuQ—u?. As 

2 (c42> - 42>) = 2a(2) + 3a(2) + 4a|2) + 6ai2) + 5a^ + 4a™ + a?\ 

we obtain the equation 

2a + 3e + 4& + 6c + 5c? + 4z - x = 0. 

As 2 = / + x, we obtain the same formula for x as in the previous case. □ 

REMARK 2.4. It follows from the transformation rules given in Table 3 that the 
labels given in column 2 of this table satisfy the following arithmetic conditions: 

(i) c = d (mod 2)     if $ is of type FI, 
(ii) a = c (mod 2)     if g is of type FII, 
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(Hi) a + 2b 4- 3c = e + 2d+ 3/ (mod 6)     if % is of type EII, 
(iv) a + d = b + / (Wd 5J     if g is of type EIII, 
(v) a -h 26 + e = c -f 2/ + p (mod ^     i/ g 25 of type E V, and 

(vi) e + / = g (mod 2)     if Q is of type E VI. 
Of course they can be easily verified by inspecting the tables given in the Appendix. 

3. Embeddings from the diagram (1.3). We consider first the Z2-embedding 
01 —* 02 where ^ is of type so(5,4) and 02 0f tyPe FI. The nilpotent Gf-orbits in 
gf are parametrized by the partitions of 9 in which the even parts occur in pairs. 
They are listed in the first column of Table 5. The second and third columns give the 
a6-diagram and the right superscript (when needed) which parametrize the iff-orbits 
in pi. For more details about this notation we refer the reader to [9]. We warn the 
reader that the group K in that paper is disconnected, but the orbits of its identity 
component are the same as the orbits of the group iff of this paper. 

TABLE 4.  The simple roots of R and R 

g r R and R 

so (4,3) 2Ai 4- Ai PI 

Oil 
=J.3 
OLi as 

/?2 *—a 

50(4,4) 4Ai 

& 1 >a4 

A ft 

<*1 aa as 

/?2 '—a 

so(5,4) ^2 + 2Ai 

In the fourth column of Table 5 we assign a number i to each of the nonzero nilpo- 
tent iff-orbits in pf, and in the fifth column we list the labels of the characteristics H% 

of these orbits. These labels are written as "a& c d" where a = /^(iiP), 6 = foiH1), 
c = /^(iP), d = f3^{H%). See the last diagram in Table 4 for the definition of these 
/Vs. 

The number in the last column indicates the nilpotent if^-orbit (see Table 10 for 
the enumeration of these orbits) that contains the image of the given Kf-orbit. These 
numbers are computed by using the same technique as in the previous section. The 
transformation rule in this case is "aft c d" —> "xba d" where x = — b + i(c — a). 
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TABLE 5. Nonzero nilpotent Kc-orbits in pc for g = 5o(5,4) 

Partition a6-diagrani         r.s. No. Labels FI 
152^ ab,ba,a3,b2 1 1011 1 
1H3 bab,a4,b2 

aba,a3,b3 
2 
3 

00 2 2 
20 0 0 

2 
3 

1-24 (ab,ba)'2,a          I 
II 

4 
5 

010 2 
012 0 

2 
3 

1^223 bab, ab, ba, a2      I 
II 

aba, ab, ba, a, b 

6 
7 
8 

10 13 
10 3 1 
1111 

4 
5 
5 

133^ {babf^*            I 
II 

aba, bab, a2, b 
(aba)2,a,b2 

9 
10 
11 
12 

00 0 4 
00 4 0 
20 2 2 
02 0 0 

6 
7 
8 
7 

S3 (aba)2, bab 13 02 2 2 10 
145 (ba)2b,a3,b 

(ab)2a,a2,b2 
14 
15 

20 4 4 
40 2 2 

11 
12 

1-4* (ab)2,{ba)2,a     I 
II 

16 
17 

212 4 
214 2 

11 
12 

2^5 (ab)2a, ab, ba      I 
II 

18 
19 

3113 
3131 

15 
14 

1-3-5 (ba)2b, aba, a 
(ab)2a,bab,a      I 

II 
(ab)2a, aba, b 

20 
21 
22 
23 

02 4 4 
40 0 4 
40 4 0 
22 2 2 

17 
17 
16 
18 

la7 (6o)36,oa            I 
II 

(a6)3a, a, b 

24 
25 
26 

40 4 8 
40 8 4 
42 4 4 

19 
20 
20 

9 (abfa                 I 
II 

27 
28 

44 4 8 
44 8 4 

25 
24 

Next we consider the Z2-embedding Q1 —> 02 where g1 is of type so(4,4) and 02 
of type 50(5,4). The nilpotent Gf-orbits in gf are parametrized by the partitions of 
8 in which the even parts occur in pairs, except that to each of the two very even 
partitions (24 and 42) there correspond two orbits. These partitions are listed in the 
first column of Table 6. The next three columns give the afe-diagrams and the left 
and/or right superscripts (when needed) which parametrize the Kf-orbits in pf (see 
[9] for details). 

In the fifth column of Table 6 we assign a number i to each of the nonzero nilpotent 
Ki-orbits in pf, and in the sixth column we list the labels Pj^H1), 1 < j < 4, of the 
characteristics Hl (see Table 4 for the definition of the /3/s). 
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TABLE 6. Nonzero nilpotent Kc-orbits in pc for g — so(4,4) 

Partition Is. a6-diagram r.s. No. Labels so(5,4) | 
142^ a6,6a,a2,62 1 1111 1 
153 aha^d1,})6 2 2200 3 

bab,a3,b2 3 0022 2 
24 I (ab, ba)'2 I 4 0202 4 

I II 5 0220 5 
II I 6 2002 4 
II II 7 2020 5 

1 • 223 I aba, ab, ba, b 8 1311 8 
II 9 3111 8 

bab, ab, ba, a I 10 1113 6 
II 11 1131 7 

ly3y I {abafy 12 0400 12 
II 13 4000 12 

aba, bab, a, b 14 2222 11 
{bab)2,a2 I 15 0004 9 

II 16 0040 10 
135 (ab)'2a,a,b2 17 4422 15 

{ba)2b,a2,b 18 2244 14 
& I (abr,(ba)2 

I 19 2424 16 
I II 20 2442 17 
II I 21 4224 16 
II II 22 4242 17 

3-5 (ab)2a, bab I 23 4404 21 
II 24 4440 22 1 

I (ba)2b, aba 25 0444 20 
II 26 4044 20 

1-7 I (ab)6a, b 27 4844 26 
II 28 8444 26 

(ba)3b,a I 29 4448 24 
II 30 4484 25 

The last column gives the number (from Table 5) of the nilpotent K^-oxbit that 
contains the given Xf-orbit. They were computed by using the transformation rule 
"abed" —> "axed" where x = |(6 — a). 

Next we consider Q-^ —> 02 where Q-^ is of type 50(4,3) and 02 of type so(4,4). The 
nilpotent Gf-orbits in 0^ are parametrized by the partitions of 7 in which the even 
parts occur in pairs. These partitions are listed in the first column of Table 7. The 
next two columns give the afe-diagrams and the left superscripts (when needed) which 
parametrize the iff-orbits in pf. 

In the fourth column we assign a number i to each of the nonzero nilpotent Kf- 
orbits in pf, and in the fifth column we list the labels (3j(Hl), 1 < j < 3, of the 
characteristics Hl (see Table 4). 
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TABLE 7. Nonzero nilpotent Kc-orbits in pc for Q = so(4,3) 

Partition l.s.    ab-diagram No. Labels 30(4,4) 
1*2* ab,ba,a2,b 1 111 1 
143 aba,a2,b'2 

bab,a3,b 
2 
3 

220 
002 

2 
3 

223 I       aba, ab, ba 
II 

4 
5 

131 
311 

8 
9 

l-P I       (abay2,b 
II 

aba, bob, a 

6 
7 
8 

040 
400 
222 

12 
13 
14 

1'25 (ab)'2a, a, b 
(ba)2b,a2 

9 
10 

442 
224 

17 
18 

7 I       (abfa 
II 

11 
12 

484 
844 

27 
28 

The last column gives the number (from Table 6) of the nilpotent i^-orbit that 
contains the given K^-orbit. The transformation rule in this case is "abc" —> uabcc". 

There is a Z2-embedding Q1 —> 02 with Q-^ of type GI and Q2 = so (4,3), with 
the transformation rule "a6" —> "aba". Under this embedding the nonzero nilpotent 
Kf-orbits in pf are mapped to those of K!} in p2 as follows: 

1->1,     2 6,    5 -> 11. 

Finally for the Z2-embedding of sl(3,R) into the algebra ^ 0^ tyPe GI, the 
minimal nonzero nilpotent iff-orbit in pj is mapped into the orbit 1 and the principal 
orbit is mapped into the orbit 3. 

4. Appendix: Enumeration of the Kc-orbits in pc. For the reader's conve- 
nience, we give here the parametrization of the nonzero nilpotent Kc-orbits in pc for $ 
of exceptional type, which is taken from [5, 6] but is presented here in a different form 
(using Bala-Carter symbols). For the sake of consistency, we use the same numbering 
of orbits as in these two papers. They are also listed in [4]. 

For each of the real forms g we give in Table 8 the Dynkin diagram of the root 
system R of (£c, f)c). The nodes of this Dynkin diagram are the black nodes. They 
are labeled by the simple roots /3i, /?2> • • • • 

If g is of inner type, then this diagram is embedded in the extended Dynkin 
diagram of the root system R of (0C,J)C). The simple roots of R are denoted by 
ai, #2,... , and its highest root by a. If to the simple roots of R we assign the weights: 
0 for black nodes and 1 for the single white node, then we obtain a Z-gradation of gc 

whose associated Z2-gradation is Q
C
 = tc © pc. 

If g is of type EIII or E VII, then ic is not semisimple and we need another root 
from R to specify the characteristics H G f}c. For that purpose we use the root PQ for 
E III and P? for E VII. Note that both of these nodes are white. 
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TABLE 8. The simple roots of R and R 

R and R 

GI A1 + A1 
/3i 02 
» <        0 •_ 
ai     a2    —a. 

FI Cs + Ai 
—d     ai     a2     0:3     04 

FII £?4 
A        /32        ft        ft 

—a     ai     0:2     ^3     Q!4 

El C4 
ft     ft     ft     ft 

E II A5 + Ai A A     ft     ft ft 

ai 0:3 ^4   as 

>a2 

ae 

ft- -a 

EIII        A + Tj ft ft      y6 ̂3        ft ft 

ai as a4   as ae 

ft' »a2 

C i -a 

EIV FA 
ft   ft   ft   ft 

EV A7 
ft     ft     ft     ft     ft     ft     ft 
-a     ai     as a4 as     ae     ay 

6 a2 



TABLE 8. (continued) 

R and R 

E VI        De + Ax 
61 02 Ps      fa      fc Pr 
-a Oil as ^4   ^5 

a2 

a6 a7 

E VII       E6 + Ti A ft      /?4      ft ft ft 
a ai as 0:4 as 

02 

a6 ar 

E VIII £>« ft     ft     ft /?4 ft ft ft 
ai as 

ft' 

a4 as 

» a2 

ae ar as —a 

E IX        ^7 + A1 
ft     ft     ft     ft     ft    ft 
ai     as 

ft 

a4 as 

0^2 

ae   ar as 

ft 
-a 

If iJz is the characteristic of the z'-th orbit, then the labels ft(jEP) determine Hl 

uniquely. All these labels are nonnegative integers except the one corresponding to 
the white /? node which may be a negative integer. 

There is only one misprint in the list of characteristics in [5, 6], namely the one 
for the orbit 31 of [5, Table XII]. These labels should be 020220 2 instead of 020220 0. 
This misprint was also copied into [4, p. 158]. We warn the reader that the Dynkin 
diagram of F4 in [4, p. 152] should have its direction arrow reversed. 

The B-C columns in Tables 9-20 of this appendix give the Bala-Carter symbols 
for nonzero nilpotent Gc-orbits O in Q

C
. AS in the introduction, let Si,..., $& be the 

connected components of O D pc. Each of these components is given a number, say z, 
which is followed by the labels f3j(Hl) of the characteristic H1 of that component. 

For instance if g is of type EII and O has the Bala-Carter symbol ^(as), then 
k = 2 and the two connected components are given the numbers 32 and 33 (see Table 
13). Since tc is of type A5 + A1, we have separated the first five labels (corresponding 
to ^5) from the last one (corresponding to ^1) by a blank space. For the orbit 32, 
all labels /3j(H32), 1 < j < 6, are equal to 2. (See the diagram EII in Table 8 for the 
definition of the roots ft.) For the orbit 33, the labels l3j(HS3) are 0 for j odd and 4 
for j even. 
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TABLE 9. Nonzero nilpotent Kc-orbits in pc for g of type GI 

B-C symbol    No.    Labels B-C symbol    No.    Labels 

M 
G2(ai) 

1 1 1 
2 13 
3 22 

G2(ai) 
G2 

4 04 
5 48 

TABLE 10. Nonzero nilpotent Kc-orbits inpc for g of type FI 

B-C symbol No. Labels B-C symbol No. Labels 
Al 1 0011 CMai) 14 103 1 
Ai 2 100 2 15 1113 

3 010 0 i^M 16 004 0 
Ai + Ai 4 0013 17 020 4 

5 1011 18 202 2 
A2 6 000 4 B3 19 004 8 

7 200 0 20 204 4 
8 002 2 c3 21 1313 

A2 9 020 0 F4(a2) 22 040 4 
A2 + A1 10 110 2 23 222 2 
Bi 11 102 4 ^(ai) 24 224 4 

12 012 2 25 404 8 
A2 + A! 13 1111 F4 26 444 8 

TABLE 11. Nonzero nilpotent Kc-orbits in pc for g of type FII 

B-C symbol    No.    Labels 
Ai 0001 

4000 

TABLE 12. Nonzero nilpotent Kc-orbits in pc for g of type El 

B-C symbol No. Labels B-C symbol No. Labels 
Ai 1 0001 D4(ai) 23 0020 
2Ai 2 0100 A4 9 0202 
3Ai 3 1001 At 13 2004 
A2 4 0002 A4 + A1 16 1111 

5 2000 As(ai) 17 1112 
A2 + A1 8 0101 A5 14 1211 
2A2 6 0200 Ee{a3) 19 2202 
A2 + 2 Ax 10 1010 22 0220 
A3 7 0102 D5 21 2204 
2A2 + Ax 11 1101 E6(oi) 18 2222 
Az + Ax 15 1011 E6 20 4224 
D4(ax) 12 2002 
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TABLE 13. Nonzero nilpotent Kc-orbits in pc for 9 of type EII 

B-C symbol No. Labels B-C symbol No. Labels 
Ax 1 00100 1 .D4(ai) 20 00400 0 
2A1 2 10001 2 21 02020 4 

3 01010 0 22 20202 2 
3i4i 4 00100 3 A4 25 40004 4 

5 10101 1 26 22022 0 
A2 6 00000 4 D4 23 00400 8 

7 20002 0 24 20402 4 
8 00200 2 A^ + Ax 27 12113 1 

A2 + A1 9 21001 1 28 31121 1 
10 10012 1 A>(ai) 29 31310 4 

2A2 11 02020 0 30 01313 4 
A2 + 2A1 12 30100 0 A5 31 13131 3 

13 00103 0 Eeias) 32 22222 2 
14 11011 2 33 04040 4 

A3 15 102014 D5 34 22422 4 
16 01210 2 35 40404 8 

2A2 + At 17 11111 1 E6(ai) 36 44044 4 
A3+A1 18 

19 
10301 1 
111113 

EQ 37 44444 8 

TABLE 14. Nonzero nilpot ent Kc-orbits in pc forg < yf type EIII 

B-C symbol No. Labels B-C symbol No. Labels 
A! 1 00001 0 A2 + AX 7 11010      -2 

2 00010 -2 8 11001      -3 
2Ai 3 10000 1 2A2 9 40000     -2 

4 10000 -2 Az 10 00013     -2 
5 00011 -2 11 00031      -6 

A2 6 02000 -2 A4 12 02022     -6 

TABLE 15. Nonzero nilpotent Kc-orbits in pc for g of type EIV 

B-C symbol    No.    Labels 
Ax 
2A1 

0001 
0002 
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TABLE 16. Nonzero nilpotent Kc-orbzts in pc for g of type E V 

B-C symbol No. Labels B-C symbol No. Labels \ 

Ai 1 0001000 A4 + A1 48 31010211 

2A1 2 0100010 49 1201013 

(SAx)" 3 0200000 50 1111111 

4 0000020 Dsiax) 51 3013010 

(3Ai)' 5 1001001 52 0103103 

A2 6 2000002 53 1112111 

7 0002000 A4 + A2 54 2020202 

4Ai 8 1100100 A>(ai)+Ai 55 4004000 

9 0010011 56 0004004 

Aa + Ai 10 2010001 57 2022020 

11 1000102 58 0202202 

12 0101010 (As)' 59 1211121 

As + 2Ai 13 3000100 A5 + A1 60 1311111 

14 0010003 61 1111131 

15 1010101 ^eM 62 2202022 

A2 + 3Ai 16 4000000 63 0220220 

17 0000004 AsM 64 1310301 

18 2000200 65 1030131 

19 0020002 £>5 66 2204022 

A3 20 0102010 £7(05) 67 2220202 

2^2 21 0200020 68 2020222 

(A3 + A!)" 22 0202000 69 0400400 

23 0002020 70 0040040 

2A2 + Ax 24 1101011 Ae 71 2220222 

(Aa + Ai)' 25 1011101 Aj(ai) 72 3013131 

£>4(ai) 26 2002002 73 1313103 ! 

27 0020200 £5 + Ax 74 3113121 

A3+2A! 28 1111010 75 1213113 

29 0101111 E7(a4) 76 2222202 

£>4 30 2004002 77 2022222 

I>4(ai) + Ai 31 2101101 78 4004040 
32 1011012 79 0404004 

33 0120101 Eeiax) 80 4220224 

34 1010210 81 2222222 

A3 + A2 35 1030010 De 82 3413131 

36 0100301 83 1313143 
37 1110111 E6 84 4224224 

A4 38 2200022 E7{a3) 85 2422222 

43 0202020 86 2222242 

A3 + A2 + Ai 39 0040000 87 4404040 

40 0000400 88 0404044 
41 2020020 E7{a2) 89 4404404 
42 0200202 90 4044044 

(As)" 44 0402020 E7(a1) 91 4444044 
45 0202040 92 4404444 
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TABLE 16. (continued) 

B-C symbol No.    Labels B-C symbol No.    Labels 
Di + Ai 46 2103101 

47 1013012 
E7 93 8444444 

94 4444448 

TABLE 17. Nonzero nilpotent Kc-orbits in pc forg c >/ type E VI 

B-C symbol No. Labels B-C symbol No. Labels 
Ai 1 000010 1 DM 19 000040 0 
2A1 2 010000 2 20 000200 4 

3 000100 0 21 020020 2 
(3A1y 4 000010 3 Di 22 000040 8 

5 010010 1 23 020040 4 
A2 6 000000 4 A3 + A2 24 201011 2 

7 000020 2 A4 25 040000 4 
8 020000 0 26 020200 0 

A2 + A1 9 110001 1 A4 + A1 27 111110 1 
A2 + 2A1 10 200100 0 Astei) 28 2010314 

11 010100 2 A4 + A2 29 004000 0 
A3 12 010020 4 (A5y 30 010310 3 

13 000120 2 Ee(a3) 31 020220 2 
2A2 14 400000 0 32 000400 4 

15 000200 0 D5 33 020240 4 
2A2 + At 16 010110 1 34 040040 8 
(Aa + AJ' 17 010030 1 A6 35 400400 0 

18 010110 3 £*(ai) 36 040400 4 
Ee 37 040440 8 

TABLE 18. Nonzero nilpotent Kc-orbits in pc forg of type E VII 

B-C symbol No. Labels B-C symbol No. Labels 
Ai 1 100000 0 A2 + A1 12 011000 -3 

2 000001 -2 A3 13 300001 -2 
2Ai 3 000001 0 14 100003 -6 

4 100000 -2 2A2 15 200002 -4 
5 100001 -2 (As + Ax)" 16 200002 -2 w 6 000000 2 17 400000 -2 
7 000000 -2 18 000004 -6 
8 000002 -2 19 200002 -6 
9 200000 -2 A4 20 220002 -6 

A2 10 020000 -2 (A5)" 21 400004 -6 
A2-M! 11 010010 -2 22 400004 -10 
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TABLE 19. Nonzero nilpotent Kc-orbits in pc for g of type E VIII 

B-C symbol No. Labels B-C symbol No. Labels  ] 

Ax 1 00000010 D5(a1) + A2 59 HOlOllf] 
2AX 2 00010000 Defa) 60 21011011 

lAx 3 01000010 61 10102100 
At 4 02000000 E6(a3) + Ax 62 11110110 

5 00000020 63 01011101 
4Ai 6 10001000 E7(a5) 64 01003001 
A2 + A1 7 11000001 65 11101101 

8 00010010 D5+Ax 66 11110130 
A2 + 2Ai 9 20010000 Es(a7) 67 20200200 

10 01000100 68 00004000 
As 11 00010020 69 02002002 
A2 + 3Ai 12 30000001 A6 70 40040000 

13 10010001 71 40040000 
2A2 14 40000000 De(ax) 72 21011031 

15 20000002 73 01201031 
16 00020000 Ae + Ax 74 11111101 

2A2 + A1 17 01010010 Ehfa) 75 11101121 
^3 + ^1 18 01000110 76 10300130 

£>4(ai) 19 02000020 E6(ax) 77 04020200 
20 00000200 78 02020220 

I>4 21 02000040 D5+A2 79 02002022 
2A2 + 2Ai 22 10100100 80 00400040 
A3 + 2A1 23 10010011 81 20200220 
DA{a1)+A1 24 11001010 E6 82 04020240 

25 00100101 De 83 21031031 
Az + A2 26 20100011 D7(a2) 84 31010211 

27 10001002 85 11111111 
28 01010100 A7 86 12111111 

A4 29 02020000 E6(ax) + A1 87 13111101 
30 00020020 88 11111121 

AZ + A2 + A1 31 00100003 E7(a3) 89 11121121 
32 10101001 90 30130130 

\DA + Ax 33 11001030 EM 91 20202022 
Diiax) + A2 34 00000004 92 04004000 ! 

35 20002000 D7(ax) 93 02022022 
36 00200002 94 40040040 

Ai + Ax 37 11110010 95 20220220 
38 01010110 Ee + Ax 96 13111141 

2A3 39 10110100 E7(a2) 97 13103041 
D5(ax) 40 20100031 Esiae) 98 00400400 

41 01010120 99 22202022 
A4 + 2 Ax 42 21010100 D7 100 31131211 

43 01200100 Esih) 101 22202042 
44 10101011 102 04004040 
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TABLE 19. (continued) 

B-C symbol No. Labels B-C symbol No. Labels 
A4 + A2 45 00400000 M^i) 103 13131043 

46 02000200 E8 (as) 104 22222022 
A5 47 01020110 105 40040400 
I>5(ai) + i4i 48 30001030 Esibi) 106 22222042 

49 10101021 107 04040044 
A4 + A2 + A1 50 11010101 Er 108 34131341 
D4 + A2 51 40000040 Es(a4) 109 22222222 

52 00200022 110 44040400 
53 20002020 E8(a3) 111 24222242 

Eeias) 54 02020020 112 44040440 
55 00020200 E&{a2) 113 44040440 

D5 56 02020040 £8(ai) 114 44440444 

^4 + ^3 57 11101011 £8 115 84444444 
As + Ai 58 10111011 

TABLE 20. Nonzero nilpotent Kc-orbits in pc for & of type EIX 

B-C symbol No. Labels B-C symbol No. Labels 
Ai 1 00000010 £>4(oi) 19 0000004 0 
2,4! 2 1000000 2 20 2000002 2 

3 0000010 0 D4 21 0000004 8 
3Ai 4 0000001 3 22 2000004 4 

5 1000001 1 A3 + A2 23 01100012 
A2 6 0000000 4 A4 24 4000000 4 

7 0000002 2 25 2000020 0 
8 2000000 2 A4 + A! 26 1010011 1 

A2 + A1 9 1100000 1 £5(01) 27 0110003 4 
A2 + 2Al 10 1000010 2 A4 + A2 28 0002000 0 

11 0001000 0 A5 29 10000313 
A3 12 1000002 4 ■EeM 30 2000022 2 

13 0000012 2 31 0000040 4 
2A2 14 0000020 0 D5 32 2000024 4 
2A2 + A! 15 1000011 1 33 4000004 8 
As + At 16 10000113 A6 34 0002020 0 

17 1000003 1 E6(ai) 35 4000040 4 
D4(a1) 18 0000020 4 #6 36 4000044 8 
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