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ON RELATIONS BETWEEN ENTROPY AND HAUSDORFF 
DIMENSION OF MEASURES * 

ATHANASIOS BATAKISt AND YANICK HEURTEAUX* 

Abstract. We characterize probability measures whose Hausdorff dimension or packing di- 
mension can be calculated by an entropy formula. In particular, we prove that such measures are 
unidimensional. We also construct examples of unidimensional measures for which entropy does not 
calculate the dimension. 

Let D be an integer greater than 1 and m be a probability measure in [0,1)"°. 
Fix £>1 and denote by Tn the family of ^-adic cubes of the nth generation, that is 

Tn = li = H^/r, (ki +1)m ; 0 < h < r 1 . 

For an arbitrary point x in [0, l)D, let In(x) be the unique cube I G J^ such that 
x E L 

We want to give estimates for the lower and the upper dimension of the measure 
m. These are respectively defined by 

{ 
dim*(ra) = inf(dim(£) ; m(E) > 0) 
dim*(m) - inf(dim(£) ; m{E) = 1)   * 

It is well known that there exist some relations between these quantities and the 
function r which appears in the multifractal formalism. More precisely, if we let : 

T"0O = -i—2 loS     J2 m(/)t        and    T(t) = limsuprn(t) , 

it is proved in [11] that 

-<(1) < dim*(m) < /i*(m) (1) 

where h*{m) is the lower entropy (also called lower Renyi dimension) of the measure 
m, defined as 

h*{m) = liminf hn(m)    where    hn(m) = —r^(l) = —:—- ]P m(I) log(m(J)) . 

In [11], we also give sufficient conditions for the equality — 7+(l) = dim*(ra) to hold. 
In this paper we are interested in describing the measures m satisfying dim* (m) = 

h*{m). Theorem 1.1 states that dim*(ra) = h*(m) holds if and only if there exists a 
subsequence n^ such that 

loS! TTliI     (X) 1 
lim    ^-—— = dim*(m)    dm-almost surely . (2) 

k -^+00    — njb log£ 
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In particular, such measures are unidimensional (i.e. satisfy dim*(ra) = dim*(m)). 
If we denote by dim(m) this common value, the measure m is supported by a 
set of dimension dim(m) but every set of dimension strictly less than dim(m) is 
negligible. Nevertheless, unidimensionality is not a sufficient condition to have 
dim*(ra) = /i*(m). An example of a measure of exact dimension (i.e. unidimen- 
sional) for which dim*(ra) < h*(m) is proposed in Proposition 3.1. 

The interest of such a result is that it is not written in a dynamical context. 
Nevertheless, the conclusion (2) can be interpreted as a weak form of a Shannon- 
McMillan type result. 

Similar results can be established, comparing the upper entropy 

h*(m) = limsup/in(m) 
n—»-+oo 

and the packing dimension of the measure m. Following [13], [11] or [8], we can 
introduce 

rDim*(ra) = inf(Dim(£) ; m(E) > 0) 
\Dim*(m) = inf(Dim(£) ; m(E) = 1)   ' 

where Dim(i£) is the packing dimension of the set E (for more details on packing 
dimension, see [7] or the original paper of Tricot [14]). As proved in [11], 

h*(m) < Dim*(m) < -TL(1) (3) 

and we characterize in Theorem 1.2 of the present paper the measures for which the 
equality h*(m) = Dim*(m) holds. 

Several examples of measures satisfying dim* (m) = /i* (m) and Dim* (m) = h* (m) 
are also proposed. In particular, this is the case in an ergodic situation (Example 1.3), 
for quasi-Bernoulli measures (Example 1.5) and in a context where the strong law of 
large numbers can be applied (Example 1.6). 

In the last section, we observe that the behaviour related to the Hausdorff dimen- 
sion and the packing dimension can be different. We construct a measure m of exact 
dimension for which 

dim(m) = h*(m)    but    Dim(m) > h*(m) . 

1. Main results and examples. The main result of this paper is the following. 

THEOREM 1.1. Let m be a probability measure in [0,1)D. Then 

dim*(ra) < h*(m) . 

Moreover, the following properties are equivalent : 
(i) dim*(ra) = ft#(m) 
(ii) dim* (m) = dim* (m) = /i* (m) 
(hi) There exists a subsequence (nk)k>i such that for dm-almost every x G [0,1)D, 

logm{Ink(x)) 
hm    —r^ir1 = dimjm) . 

A similar result can also be established, comparing the upper entropy h*(m) of a 
measure m with its packing dimension Dim*(ra). 
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THEOREM 1.2.  We also have 

h*(m) <Dim*(m), 

and the following properties are equivalent : 
(i) Dim*(ra) = h*{m) 
(ii) Dim*(ra) = Dim*(m) = h*(m) 
{m) There exists a subsequence (nk)k>i such that for dm-almost every x G [0,1)D, 

_.       logm(Jnfc(a;))      _.   #,   N lun   ——v [   \     = Dim*(m) . 
/c->+oo       — Uk log I 

REMARK. AS was pointed out in the introduction, unidimensionality is not suffi- 
cient to establish the equalities dim*(ra) = h*(m) and Dim*(m) = h*(m) (see Propo- 
sitions 3.1 and 4.1). In fact, the statements of Theorems 1.1 and 1.2 stem from a deep 
homogeneity property. 

Let us now give some useful examples of measures m for which the equalities 
dim*(ra) = h*(m) and Dim*(m) = h*(m) hold. 

EXAMPLE 1.3. Suppose that the sequence 

logm(fn(a;)) 
—n log £ (4) 

converges almost surely to a constant d. Then, the equivalent properties of Theorems 
1.1 and 1.2 are satisfied and we have 

d = dim(m) = Dim(m) . (5) 

In particular, this is the case in an ergodic context. Let us denote the elements of Fn 
by /ei>...ien with £i e {0,... ,£D — 1} in such a way that /ei,...>en+1 C I£li...j£n. Define 
J(x) to be the unique element (ei)i>i of the Cantor set {0,...,£D — 1}N such that 
{x} = rin^eivMenJ aild consider the image m of m with respect to the application 
J. If we suppose that the mesure m is invariant and ergodic with respect to the 
shift operator, Shannon-McMillan's theorem ensures that (4) admits an almost sure 
constant limit d and that (5) is satisfied (see [11] for more details and [16] for basic 
facts on ergodic theory).   • 

EXAMPLE 1.4. The following situation was described by S.M. Ngai in [12]. Sup- 
pose that the function r of the multifractal formalism admits a derivative r^l). Then, 
using inequalities (1) and (3), we conclude that the measure m is unidimensional and 
satisfies 

dim(m) = Dim(m) = h(m) = -r^l) 

where h(m) = h*{m) = h*(m) is the genuine limit of the sequence hn(m).   • 

EXAMPLE 1.5. The case of quasi-Bernoulli measures is related to examples 1.3 
and 1.4. Suppose that there exists a constant C > 0 such that for every £i,... ,£n-fp 
we have : 

-m(J£l,...,£n)m(/£n+lv..,en+p) <m(Jeil...,en+p) < Cm(Iei,...j£Jm (Jen+ll...ien+p) . 
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It is well known (see [6]) that such a measure is equivalent to an invariant and ergodic 
measure. Moreover, it is proved in [11] that T'(1) exists in this case. Let us also 
remember that the multifractal formalism is available for such measures (see [5] and 
[11]).   • 

EXAMPLE 1.6. Let us write 

m{In(x)) 
Xn{x) =log 

,ra(In_i(a;)) 

and suppose that 

1   n 

hm   - ^(Xi - E(X0) = 0 dm a.s. 

where the expectation is related to the probability m. If we remark that 

n log £ - ^M'^EEW. 
2 = 1 

we can easily conclude that the equalities dim*(ra) = h*(m) and Dim*(m) = h*{m) 
are satisfied in this situation. In particular, this is the case when the random variables 
Xi are bounded in L2 and uncorrelated. 

A classical case (called Bernoulli product) of such measures is often described in 
the literature (see for example [4], [3] or [11]). Fix a sequence {pi)i>i of real numbers 
with 0 < pi < 1 and consider a sequence (^)i>i of independant 0,1-valued random 
variables such that 

P(y. = 0)=p<    and   P(Yf = 1) = 1-^ . 

Then, the law m of the random variable XliJa 2"2ii satisfies 

1   n 

dim(m) = hJm) = liminf — Y^sipi) 
n—^+oo n ^—^ 

2=1 

1  n 

Dim(m) = h*(m) = limsup — Y^ sfa) 
(6) 

n—*-foo Tl '. 

where the function s(t) is defined by 

s(t) = -[t log21 + (1 - t) log2(l - t)]    for  t e [0,1] 

and log2 is the logarithm in base 2.   • 

2. Proof of Theorems 1.1 and 1.2. We prove Theorem 1.1. Since the proof 
of Theorem 1.2 is similar, we will only sketch it at the end of the section. 

The inequality dim*(m) < h*(m) is well known (see for example [11] or [15]). 
Nevertheless, let us give an elementary proof in order to make easier the study of the 
equality case. If x G [0,1)"°, put : 

logm(In{x)) . 
^n(^) = 1—-r^    and    aix) = hmmr an(x) . 

—nlogi TW+OO 
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It is well known ([9], [8] or [11]) that : 

dim*(ra) = sup({a > 0 ; a > a  dm a.s.}) = inf ess(a) . (7) 

We also observe that hn(m) — J an(x) dm(x). Using Fatou's lemma and the fact that 
m is a probability measure, we get 

dim*(m) <  / a(x)dm(x) < K(m) . (8) 

Proof of (iii) => (i). Suppose that there exists a subsequence (nk)k>i such that 
for dm-almost every x G [0, i)D, 

lim   ank(x) = dim*(m) . 
k—>4-oo 

Using the dominated convergence theorem (see the domination (j) below), we obtain 

dim*(m) = /    lim   ank(x)dm(x) =   lim   hnk(m) > h*(m) 
J   k—*+oo k—>-+oo 

and we are done. 

LEMMA 2.1. Let <j> = supn>1 an. Then (j) e ^(m) . 

Proof. It is sufficient to prove that the real variable function 

t i ► m({x ;  (j>(x) > t}) 

is integrable in a neighbourhood of +00 with respect to the Lebesgue's measure. But 
we know that an(x) > t if and only if m(In{x)) < £~nt. According to the fact that 
the partition ^ contains £nD elements, 

m({x ; an(x) > t}) < FDrnt . 

I£t>D,we obtain 

+00 aD-t 

i{{x ; <l)(x) >t})<YJ m({x ; an(x) > t}) < 1 _ £D_ 
n=l 

which proves the integrability of </>. 

Proof of (i)=> (ii). Suppose that dim*(ra) = h*(m). Using (7) and (8), we remark 
that for dra-almost every point a;, a(x) = dim5lc(m). Then, we also have 

dim*(m) = inf ({a > 0 ; a < a dm a.s.}) = supess(a) 

and hence dim*(ra) = dim*(m) (see [11] or [8]). The measure m is thus unidimen- 
sional. 

Proof of (ii)=> (iii). Let d = dim*(ra) = h*(m). We will make use of the following 
lemma. 

LEMMA 2.2. Let rj e (0,1) and no > 1.  We can choose an integer ni > no such 
that : 

m({x ; ani > d + 7]}) < (2 + d) 77 . 
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Proof. As was remarked before, the equality a = d holds dra-almost surely. We 
can then find UQ > no such that 

m p| {X ; an(x) >d-7j2}\ > 1 - r/2 

On the other hand, by hypothesis (ii), we can choose an integer ni > UQ such that 

hmim) =  / ani(x}dm(x) < d + r]2 . 

This integer ni will be the right one. Let us denote 

A = {x ; ani (x) > d — rj2}    and    B = {x ; ani (x) > d + 77} . 

We have 

d + rj2 >  / ani (x) dm(x) 

> /      ani (x) dm(x) + /  ani(3;)G!m(a:) 

> (d - ry2) (m(u4) - .m(S)) + (d + ry) m(B) . 

If we remember that m(A) > 1 — rj2, we get 

2772 + dr/2 

ry + ry1 m(g)<^77   <(2 + d)T? 

which is the conclusion of the lemma. 
By using Lemma 2.2 with rj = 2~fc, we can construct a subsequence (nk)k>i such 

that for all k > 1, 

m({x ; anfc (x) > d + 2"*}) < (2 + d) 2"* . 

By applying Borel Cantelli's lemma, we then obtain 

lim sup ank (x) < d dm a.s. . 
k—++00 

On the other hand, 

d = a(x) < lim inf ank (x)   dm a.s. 
k—»+oo 

Thus, we have proved that the subsequence (anfc)fc>i converges almost surely to d. □ 
To prove Theorem 1.2, we introduce the function 

6L{X) — limsupan(:r) . 

As proved in [8], [11] and [13], we have : 

Dim*(m) = inf ({a > 0 ; a < a dm a.s.}) = supess(a) . 

The inequality h*(m) < Dim*(m) is a consequence of Fatou's lemma applied to the 
sequence (j) — an. The study of the equality case uses the same ideas as before. 
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3. An example where dim(m) < /i*(m) and Dim(m) > h*(m). In this section, 
we take D = 1 and £ = 2. We begin with the construction of a family of auxiliary 
measures which are of the type described in Example 1.6. Let a and b be two real 
numbers with 0 < a, b < 1 and fix a sequence of integers (Tk)k>i such that 

Ti = 1,   Tk< Tk+1   and     lim   %tl = +00 . 
fe—»-+oo     ifc 

Then, we define the family of parameters Pab(i) '• 

Pab(i) = a  if T2n-i <i<T2n    and   Pa&W =6  if ?2n < i < TWi • 

If (li)i>i is a sequence of independant random variables such that 

--$)=Vab(i)    and   P(y; = l) = l-Pab(i)> 

we denote by ma5 the law of the random variable J^JT 2~lli. 
The choice of the integers T^ and the identities (6) ensure that for dma ^-almost 

every x G [0,1), we have : 

limPf OT iLo       = mf(5(a),5(6)) n-»-+oo       — n log 2 /qx 
logma6(/n(x)) 

hmsup 7—^-^ = sup(s(a),s(o)) 
^ n->+oo       -n log 2 

We can now construct our counterexamples. Let us fix a parameter /3 G (0,1/2] 
and two real numbers p and p such that 0 < p < p < 1/2. If F(t) is defined by 

F(t) = 2t when  t G [0,1/2)    and    F(t) = 2t-l  when t G [1/2,1), 

we are interested in the measure mp defined by 

mp(A) = /3mPp(F([0,1/2) n A)) + (1 - /?) mpP(F([l/2,1) n A)) . 

In other words, the measure ra/3 assigns the mass /3 (resp.   1 — f3) to the interval 
[0,1/2) (resp. [1/2,1)) and is a copy, in this set, of the measure rripp (resp. nipp) 

Measures m^ are examples of unidimensional measures whose dimension can not 
be calculated with an entropy formula. More precisely, we have the following. 

PROPOSITION 3.1.  The measure mp satisfies the following properties : 
(i) dim*(m/3) = dim*(mp) = s(p) 

(ii) Dim*(m/5) = Dim*(m/3) = s(p) 
(hi) M™/3) =0s(p) + (1 - /?) s(p)    and h*(mp) = (3 s(p) + (1 - /?) 5(p). 

/n particular, dim(mp) < h*(mp) and h*(mp) < Dim(m/3). 

REMARKS. 1. For such a measure m^, unidimensionality ensures that for almost 
every point x, there exists a subsequence n^ such that ctnk(x) converges to dim*(ra£). 
Nevertheless, according to Theorem 1.1, we can not find a subsequence nk such that 
ank converges almost surely to dimJ|{(m/g). A similar remark can be made concerning 
Dim*(myg). 

2. In the case where ft = 1/2, we obtain a unidimensional measure m (in the 
Hausdorff and in the packing sense), which posseses an entropy h(m) (i.e. h*(m) = 
h*(m) = h(m)), but verifies dim(m) < h(m) < Dim(m) . 
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3. If (Si ^ /?2j we obtain two measures /x = mp1 and 1/ = m/32 which are unidi- 
mensional, strongly equivalent (i.e. ^v < fi < cv), but satisfy h*(/i) ^ h*{v) and 
ft*(/i) ^ h*(iy). This result indicates that entropy is a bad concept of dimension (even 
for unidimensional measures) ; for a good concept of dimension, it is indeed reasonable 
to demand that two equivalent measures should have the same dimension. 

Proof of Proposition 3.1. Properties 1 and 2 are immediate consequences of (9). 
We only have to prove property 3. Let us put Pi = Ppp{i) and pi = Ppp(i). We have 

T„(t)=i iog2 (V n(Pi+a -p*)*)+(i - w YiiPi+(i -&)*)) • 

If we remember that hn(mp) = —r4(l), we obtain 

n—1 \ / n—1 
(/3(-los9/3 + 

n 
hn(m0) = ^ hi-\og2p + nj2s{pi)\ +(1-/3) f-log2(l-/3) + ^s(pi)jj  . 

(10) 
If no(n) is the number of integers i < n—1 such that p* = p and if ni(n) = n—1—no(n), 
we can then write 

M"*) = ^ Ws(p) + (1-/3)^)) + ^ Ws(p) + (1 -/3)s(p)) + 0(1) . 

In particular, we have 

)8S(p) + (1 -13) s(p) + 0(1) < /^(m/,) < /3S(p) + (1 - /3) a(p) + 0(1) . 

To conclude, it suffices to remark that 

r             no(n)       !          J     r             ^iW       , lim sup = 1    and    hm sup = 1 . 
n—>-\-oo       Tl n—t+oo       fi 

4. An example where dim(m) = h*(m) but Dim(m) > h*(m). As observed 
in Example 1.6, the equalities dim*(ra) = h*{rn) and Dim*(m) = h*(m) hold as soon 
as the sequence of random variables 

*„(*) = log'   ^^^ 
vm(Jn_i(aO) 

satisfies the strong law of large numbers 

1   n 

lim   -y(Xi-E(Xi)) = 0  dma.s. . (11) 
n—>-+oo n z—' 

2 = 1 

We are going to construct a unidimensional measure m for which dim* (m) = h* (m) 
but Dim*(m) > h*(m). Of course, such a measure does not satisfy (11). 

PROPOSITION 4.1.    There exists a unidimensional probability measure m such 
that 

dim*(ra) = dim*(m) = h*(m)    but   h*(m) < Dim*(m) = Dim^ra) . 
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The notations are the same as in the previous section. Let /3 = 1/2. The measure 
Hi = rripp is the same as before but we modify slightly the measure rripp. In section 
3, the measure rripp was constructed in such a way that 

Vn > 1, Vi G {T2n-1, ... ,T2n - 1} ,     Pi=Ppp(i) =P ■ 

We modify the value of pi according to the parity of n and define 

Pi=p if i G {T2n_i,... ,T2n - 1}   and  n = 2k + 1 
Pi=p if i G {T2n_i,...,T2n - 1}   and  n = 2k 

We do not modify the value of pi when i G {T2n,... ,T2n+i — I}- Let fi2 be the so 
constructed measure and put : 

m(A) = I ^{F([0,1/2) n A)) + 1 M2(^([1/2, 1) n A)) . 

Similar computations as those made before ensure that : 

dim*(ra) = dim*(m) = s(p)    and    Dim*(m) = Dim*(m) = s(p) . 

Let us see the evolutions of entropy. Since p < p, the new measure has smaller entropy 
than the measure rai/2 (corresponding to the parameter /3 = 1/2) of Proposition 3.1. 
Hence, 

h*{m) < i (s(p) + s(p)) < Dim*(m) . 

In fact, it is easy to prove that h*(m) = (s(p) + s(p))/2. 
Moreover, using formula (10) for the new measure m, we have : 

■^    T4k-i ^ 

^T4fc(m)-—-  ^ (sfa) + sfa)) +Q(—) 

= —Tp -SCP) +0(--=—) + 0(—). 
^4A: ^4/c ^4A; 

It follows that 

/i*(ra) <    lim   hT4k(m) = s(p) = dim^(m), 
k—>+oo 

which gives the non trivial inequality between these two numbers. Let us finaly remark 
that it is easy to prove that for almost every x G [0,1), 

lim   ^"^y* = s(p) . 

5. An extension of Theorems 1.1 and 1.2. The £-adic partition Fn of the 
cube [0,1)D is not the only situation where Theorems 1.1 and 1.2 make sense. Fix a 
sequence (4i)n>i of strictly positive real numbers and construct a family (£/n)n>o in 
such a way. 

1. Qo = {£o} where £o is a Borel set in MD with 5(0,1/0) c A) C B(0,c) (we 
denote by 5(0, r) the ball with center 0 and radius r). 
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2. For every n > 0, Qn is a finite family of disjoint Borel sets which are similar to 
JE?O in the ratio £n. 

3. For every B G Sn+i? there exists a unique B e Qn such that B C B. 
Let m be a measure supported by a Borel set E and suppose that for every n > 0, 

E is a subset of {Jseg B. If we suppose that the sequence log(^n)/n is bounded, then, 
coverings using elements of (Jn Qn are sufficient to calculate the Hausdorff dimension 
of subsets of E. Conclusions of Theorem 1.1 and Theorem 1.2 are also true in this 
situation if we define h*(m) (resp. h*(m)) as the liminf (resp. limsup) of the sequence 

hn(rn) = -—— ^2 m(jB) logm(£) 

In particular, our results can be applied for measures supported by Cantor sets con- 
structed in the same way as those described in [1] or [2]. 
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