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KAHLER MANIFOLDS WITH ALMOST 
NON-NEGATIVE BISECTIONAL CURVATURE* 

FUQUAN FANGt 

Abstract. The main purpose of this paper is to study the topology of Kahler manifolds with 
almost non-negative bisectional curvature. Among others we prove that for simply connected n- 
dimensional Kahler manifolds M of sectional curvature K < A, there exists a universal positive 
constant e(n, A), depending only on the dimension n and A, such that if the bisectional curvature H 
and the diameter of M satisfy, H • diam2(M) > — e(n, A), then M is diffeomorphic to the product 
Mi x • • • X Mfc, where each Mi is a simply connected C1'a-Kahler manifold with second Betti number 
62(Mi) = 1 for any prescribed real number o; G (0,1). Furthermore, if M is Kahler-Einstein, then Mi 
are all biholomorphic to irreducible Kahler Hermitian symmetric spaces. In the non-simply connected 
case, we prove that M is a holomorphic fiber bundle over the Jacobian J(M). 

0. Introduction. Let M be a compact complex manifold. We say M has almost 
nonnegative bisectional curvature, if for any positive constant 5, there is a Hermitian 
metric g on M whose bisectional curvature H satisfies that H • diam(Mg)2 > —e. 
Besides Hermitian manifolds of non-negative bisectional curvature, there are many 
examples of complex manifolds of almost non-negative bisectional curvature but do 
not admit any Hermitian metric of non-negative bisectional curvature (c.f. Section 1.) 

When the Hermitian manifold is Kahlerian, the uniformization theorem of Mok 
[Mo] (generalized Prankel conjecture, compare Siu-Yau [SY]) asserts that a simply 
connected compact Kahler manifold M with non-negative bisectional curvature is 
biholomorphic to the product of 

P(C)mi x • • • x P(C)mfc xNx'-xNi 

where Ni, 1 < i < I, are irreducible Kahler Hermitian symmetric spaces of rank at least 
2. The Mok theorem depends on an earlier decomposition theorem of Howard-Smyth- 
Wu [HSW], Mori's celebrated work [Mo] and Hamilton's heat equation technique. 

A natural question is whether one can extend the Mok theorem and the Howard- 
Smyth-Wu theorem to Kahler manifold of almost non-negative bisectional curvature. 
In this paper we will prove, among others, for simply connected n-dimensional Kahler 
manifold M with sectional curvature K < A, there exists a universal positive con- 
stant £(n, A), depending only on the dimension n and A, such that if the bisectional 
curvature H and the diameter of M satisfy, H • diam2(M) > —e(n, A), then M is 
diffeomorphic to the product Mi x • • • x M&, where each Mi is a simply connected 
C1'a-Kahler manifold with second Betti number 62(Mi) = 1 for any prescribed real 
number a € (0,1). Furthermore, if M is Kahler-Einstein, then Mi are all biholomor- 
phic to irreducible Kahler Hermitian symmetric spaces. In the non-simply connected 
case, we prove that M is a holomorphic fiber bundle over the Jacobian J(M). 

Now we start to state our main results. 
For convenience, let M(n, A) denote the set of all n-dimensional Kahler manifolds 

so that K < A. 
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THEOREM A. Let M G M(ny A) be a simply connected compact Kdhler manifold. 
Then there exists a constant 6:(n, A), depending only on n and A, such that if H • 
diam(M)2 > —e(n, A), then M is diffeomorphic to the product Mi x • • • x Mk, where 
Mi, 1 < i < k, are simply connected C1^-Kdhler manifolds with second Betti number 
b2{Mi) = 1 for any prescribed real number a G (0,1). 

If M G M.(n, A) is Kahler-Einstein, we get an improved splitting theorem 

THEOREM B. Let M G A1(n, A) be a simply connected Kahler-Einstein manifold. 
Then there exists a constant e(n,A), depending only on n and A, such that if H • 
diam2(M) > —s(n,A), then M is diffeomorphic to the product 

P(C)mi x ... x P(C)mfc xNx-'-xNi 

where Ni, 1 < i < I, are irreducible Kahler-Einstein Hermitian symmetric spaces of 
rank at least 2. 

Observe that for M in Theorem A with e sufficiently small, the Ricci curvature 
of M is almost non-negative. By [FY] and [CC] we know that the fundamental group 
7ri(M) is virtually nilpotent. In other words, M has a finite cover whose fundamental 
group is nilpotent. Note that for a finitely generated infinite nilpotent group, its first 
Betti number is nonzero. The following is a complex analogue of [Ya], which proves 
M is a bundle over a torus Th. 

THEOREM C. Let M G M(n,A). Then there is a positive constant s{n,A) such 
that if H - diam2(M) > —e, then there is a holomorphic fibration TT : M —> J(M), 
where J(M) is the Jacobian of M, a complex torus of dimension ^&i. 

Our next result gives an estimate for the Hodge number ft1,1, which may be viewed 
as a complex analogue of the Bochner-Gallot-Gromov first Betti number estimate (cf. 
[Ga]). 

THEOREM D. Let M G M{n, A). Then there is a positive constant s(n,A) such 
that ifH- diam2(M) > -e{n,A), then ft^^M) < n. 

Now let us start to indicate the idea for the proof of the Theorem A. 

Suppose not. Then there is a sequence of simply connected Kahler manifolds 
Mi G A4(n, A) such that the bisectional curvature Hi > — (0.1)2. By the Gromov 
precompactness theorem, {M^} has a Gromov-Hausdorff limit X. By [FR] we know 
that X is a manifold of the same dimension n, and moreover, for every sufficiently 
large i (say i > iV), there is a diffeomorphism fc : Mi —> X. Moreover, the almost 
complex structure Ji = {dfi)Ji(dfi)~1 converges to an almost complex structure Joo 
on TX which is integrable in C1'Q!-class, for any prescribed real number a G (0,1). 
By the Newslander-Nirenberg theorem for C^-class (cf. Theorem 1.5) (X, J^) is a 
complex manifold. The pullback metrics ((/z)-1)*^ converge to a Clia metric #00 
on X, by the well-known Cheeger-Gromov theorem. This metric is indeed a Kahler 
metric on X, compatible with the complex structure JOQ. 

If /i1,1(Mi) = k, we will prove there are k linearly independent harmonic (1,1)- 
forms in X of C1,a class which are all parallel. Using these parallel forms we obtain 
a parallel decomposition of the tangent bundle TX into k distributions. This implies 
that the holonomy group of X splits into the product of k factors. Now by the 
de Rham decomposition theorem in C1'Q:-class (cf. Theorem 1.4) we conclude that 
X = Xi x • • • x Xk, where each factor Xi is a simply connected C1'a-Kahler manifold. 
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On the other hand, we will prove a vanishing theorem for holomorphic p-forms (for 
any p > 0) in simply connected Kahler manifolds with almost non-negative bisectional 
curvature. Therefore by the Hodge duality theorem /i2,0(Mi) = h0,2(Mi) — 0 and 
b2(Mi) = h2>0(Mi) + h1'1^) 4- /i0'2(Mi)' = k. This implies that 62(X) = k and 
so 62(^1) = • • • = b2{Xk) = 1, since each factor is a compact Kahler manifold. A 
contradiction. This together implies Theorem A. 

The difficulty to prove Xi is a Kahler Hermitian symmetric space occurs since 
the limit metric on X is not necessarily smooth. However, if Mi is Einstein, by the 
Einstein equation one can improve the regularity of the convergence. In particular, we 
get a smooth Kahler metric on X with non-negative bisectional curvature. Therefore 
the Mok Theorem applies to show that each Xi is an irreducible Kahler Hermitian 
symmetric space. Therefore Theorem B follows. 

Theorem C follows along a similar strategy of [Ya], by using holomorphic forms 
instead of harmonic forms. 

For the proof of Theorem D we show that there are ft1,1 harmonic (l,l)-forms 
on M which are linearly independent at every point. In particular, this implies a 
decomposition of the tangent bundle TM into h1,1 complex sub-bundles. For the 
dimension reasoning we know that h1,1 <n. 

We should like to remark that our approach in this paper does not imply an 
estimate for the constant e(n, A). A search for the precise bound will be extremely 
worthwhile. 

In concluding this section we conjecture the following 

CONJECTURE E. There is a positive constant £(ri) depending only on the dimen- 
sion, such that if M is a simply connected compact Kahler manifold whose holomorphic 
bisectional curvature satisfies 

H - diam(M)2 > -e(n) 

and the second Betti number 62 (M) = 1, then M is either diffeomorphic to a complex 
projective space or an irreducible Kahler-Hermitian symmetric space of rank > 2. 

Acknowledgement: The author would like to thank Manfredo do Carmo for 
helpful discussions, Michael Anderson and H. Wu for their comments. Special thanks 
go to the referee for some very constructive suggestions. 

1. Preliminaries. In this section we give some necessary preliminary results 
needed in next sections. 

a). Example (manifolds of almost non-negative bisectional curvature) 

EXAMPLE 1.1. Let N be the complex Heisenberg group and T the Gaussian integer 
lattice 

(1    x    z\ /l    c    a\ 
0    1    y \;x,y,zeC},   r={[0    1    b     ; a,6,c € Z © ZV^l} 
0    0    1/ \0    0    1/ 

The quotient space M = N/F is a complex analytic variety, and /i1,0(M) = h0,1(M) = 
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2. For each £ > 0, we may define a right invariant Hermitian metric he on M by 

e//; II I o   o   v I || = £
2M2 + M2 + M2, 

0 w u 
0 0 V 

0 0 0 

where J\f is the Lie algebra of N. Note that the sectional curvature and diameter 
satisfy that \K(h£)\ < 24£2

; diam(M,g£) < 2. In particular, M has almost non- 
negative bisectional curvature (compare [Ya]). 

The above manifold M = N/F is a complex nil-manifold, whose fundamental 
group is not virtually abelian. By the Cheeger-Gromoll theorem [CG] we know that 
M does not admit any metric of non-negative Ricci curvature. On the other hand, 
by a theorem of Benson-Gordon-Hasegawa [BG] [Ha] no nil-manifold other than tori 
admits a Kahler structure. More generally, it is proved that no fiber bundle over a 
non-torus nil-manifold with fiber P(C)m admits a Kahler structure. It seems natural 
to ask the following problem: 

PROBLEM 1.2. Let M be a Kahler manifold of almost non-negative bisectional 
curvature. Is its fundamental group virtually abelian? 

b). Gromov-Hausdorff convergence 

For subsets A and B of a metric space X, recall that the Hausdorff distance 
dH(A,B) is the infimum of radii e so that the e neighborhood of A (resp. B) include 
^(resp. A) For two abstract metric spaces A and B, a metric on the disjoint union 
A ]J B is called admissible if it restricts to the metrics on A and B respectively. The 
Gromov-Hausdorff distance dGH{A, B) is the infimum of Hausdorff distances of A and 
B as subsets of A [J S, with respect to all possible admissible metrics. 

The following compactness theorem is important for our applications (cf. [Ch] [GLP]). 

THEOREM 1.3 [CHEEGER-GROMOV]. Let Mi be a sequence of compact Riemann- 
ian manifolds whose sectional curvature, diameter, and injectivity radius satisfy 

A < K < A,   diam < d,   ZM > ZQ, 

where the constants are independent of i.   Then, replacing Mi by a subsequence if 
necessary, Mi converges to a metric space X, such that 
(i) X is a differentiable manifold; 
(ii) there is a diffeomorphsim fi'.X-^Mi for all sufficiently large i; 
(Hi) the pullback metrics f*(gi) converges in C1,a-class to a C1,a (resp.  L2*) Rie- 
mannian metric g^ in X, for any prescribed real number a G (0,1) (resp.  positive 
integer p > 1). 

For the sake of simplicity, in the rest of the paper we fix the real number a £ (0,1) 
(resp. the interger p > n). 

The classical de Rham decomposition theorem holds for Kahler manifolds in C1,a- 
class with identical proof. 

THEOREM 1.4 [Lie]. If M is a simply connected complete C1,a-Kahler manifold 
whose holonomy representation splits into a direct sum A\ x A^ x • • • x A^ C U(n\) x 
{7(712) x- • 'XU(nk) C U(ni-\ \-nk), then M is isometric to a product Mi x- • -xMk 
of C1'"-Kahler manifolds Mi, • • ■ , M^ of dimensions ni, • • • , n^. 
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If every Mi in Theorem 1.3. is a complex Hermitian manifold, then the complex 
structure Ji = (d/i)-1 Ji(dfi) on the tangent bundle TX converges to an almost com- 
plex structure JQQ in X, which is integrable in C1,a-class. The following version of the 
well-known Newlander-Nirenberg theorem implies that JQQ is a complex structure. 

THEOREM 1.5 [NW]. Let (X,J) be an almost complex manifold with an inte- 
grable almost complex structure J in C1,a-class. Then (X,J) is a complex manifold. 

Therefore, the limit X is also a complex manifold with a C1,a Hermitian metric 
goo. In general, the metric g^ is not C2. However, if Mi are all Einstein, then from 
the ellipticity regularity of the Einstein equation one can prove the limit metric g^ is 
smooth, by the work of M. Anderson [An]. 

THEOREM 1.6 [ANDERSON]. Let Mi be a sequence of compact Einstein manifolds 
whose sectional curvature, diameter, and injectivity radius satisfy 

X < K < A,   diam < d,   iu > in, 

where the constants are independent ofi. Then Mi has a subsequence converging to a 
C00 Riemannian manifold X, such that 
(i) there is a diffeomorphsim fi'.X^Mi for all sufficiently large i; 
(ii) the pullback metrics fi(gi) converges in C^-class to a Riemannian metric g^. 

Let us continue to use the same notations in the Introduction. Observe that for 
any flat manifold M we have H - diam2(M) = 0 > — e. Obviously the diameter can be 
made arbitrarily large or small by scaling and so is for the injectivity radius. This also 
happens for simply connected manifold. For example, the Berger spheres provide an 
example of simply connected positively curved manifold of bounded curvature whose 
injectivity radius can be arbitrarily small. However, for Kahler manifolds we have a 
uniform positive lower bound for the injectivity radii by the following theorem in [FR]. 

THEOREM 1.7. Let M G M(n, A). IfM has finite fundamental group, and H • 
diam2(M) > —e, then the injectivity radius IM has a positive lower bound, depending 
only on n, A and e. 

2. Convergence of harmonic forms. 

a). Harmonic coordinates 

A key step in this paper is to establish a convergence theorem for harmonic (1,1)- 
forms in Kahler manifolds. To start with, let us recall some necessary preliminary on 
harmonic coordinates. 

By definition, a local coordinate (ft1, ...,ftn) is harmonic if each component is a 
harmonic function, i.e., Ah1 = 0 for i = 1, ...,n, where A is the Laplacian opertator. 
In a harmonic coordinate, the Ricci curvature of the metric tensor g satisfies the 
equation 

(2.0) (Ric^- = -i A gy + Q(g, dg). 

here Q(.,.) is a quadratic form of its variables (c.f. [Pe]). 

THEOREM 2.1 [ANDERSON, JOST, KARCHER-JOST]. Given eo > 0 and a G 
(0,1). Assume the Riemannian manifold (M,g) satisfies the conditions that the in- 
jectivity radius ig > eo and the sectional curvature \Kg\ < 1.   Then there exist r > 0 
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depending only on eo,n and a constant C depending only on eo,n,a (resp.   eo^n^p) 
such that there is a harmonic coordinate system {h1^ = 1, • • • , n} on B(x^ r) satisfying 

WQijWc^ < C (resp. II^HL^.P < C ) 

where gij = gijjfiji ^j) and L2,p is the Sobolev norm. 
For a Kahler manifold, the holomorphic coordinate is the most natural harmonic 

coordinate. 

b). Convergence of harmonic real (l,l)-forms 

Let M be a Kahler manifold. Let {Vi} be a local frame field of type (1,0) and let 
{CJ

2
} be its dual coframe field. Let A = <9<9* + 8*8 be the complex Laplacian operator 

on (p, q)-ioims. On a Kahler manifold, A = dd* + 9*9. 
Let DXY = DXDY—DDXY denote the second order covariant differential, RXY = 

—DXDY+DYDX +D[X,Y} denote the curvature tensor acting on forms of all degrees 
as a derivation and i(X) denotes the interior product. 

The well-known Weitzenbock formula for Hodge-Laplacian operator on Kahler 
manifold (cf. [Wu2]) reads 

WEITZENBOCK FORMULA. 

A = -XX* - £V MiV^Ry^ 

LEMMA 2.2. Let Mi e M(n,A). Let ^ G if1,1 (Mj) be a sequence of harmonic 
(1,1)-forms with L2-norm ||^i||o,2 = 1- If the injectivity radii iMi > io, a uniform 
constant, then there exists a positive constant e(n, A) so that if Hi • diam2(Mi) > 
—e(n,A), then the pullback forms /*(&) contains a converging subsequence in C1,a- 
class (for any a < 1) whose limit is a non-trivial parallel (1, l)-form £ with respect to 
the limit metric g^, where fi are as in Theorem 1.3. 

Proof. Observe that the sectional curvature of Mi are uniformly bounded from 
below. By Theorem 2.1 we can assume B}(r),-— ,B™(r) be a cover of harmonic 
coordinates of Mi with radii r, independent of i. For alH > N large and all q, we get 
diffeomorphisms ff : Bq = Bq

N(r) —> B?(r). The pullback metric tensors (fi)*(gi) 
converges to a C1,a (resp. L2>p) metric g^ on Bq. The (1, l)-forms rji = (ff )*(6|JB

g(r)) 
on Bq, satisfy the equation 

(2.2.1) EX*'* + E^ A HVARvMri = 0 

since /S.(r]i) =0, by the above Weitzenbock formula. 
This is an elliptic system of order 2. It is easy to check that 
(i) the second order terms coefficients are uniformly C0-bounded (independent of 

the indices I)] 
(ii) the first order terms coefficients are uniformly C0'Q;-bounded; 
(iii) the zero order terms coefficients are uniformly I/p-bounded, by Theorem 2.1. 
By the standard elliptic estimate (c.f. [ADN]) we conclude that the Sobolev L2^- 

norms of rn are uniformly bounded, for any p < oo. Therefore, r)i has a subsequence 
converging in L2'p for any p' < p. Note that L2'p C C1,1". Therefore there is a 
C1'a-convergence subsequence rji —> rj. 
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To prove £ is parallel with respect to the metric #00, it suffices to show that rj is 
parallel with respect to the C1,a-limit metric of (ffYgi on Bq. 

Note that for a real (1, l)-form, the Weitzenbock formula implies that (c.f. [Wu2]) 

(2.2.2) -Ah]2 = Y,(\DvM2 + \Dvim?)- 2<5>< MiV^Ry^Vum) 
i 

Let 

^j 

We may write rji locally as 

i 

By [Wu2] one has the following formula 

(2-2.3) F(m)=1-Y,RljMr)i-r)?)2 

where —Rljjkk is the bisectional curvature of Mi at the complex plane spanned by 
Vj,Vk. Therefore we get 

(2.2.4) -AM2 = £ \Dyim\2 + £ WvM2 - E *W - ^)2 

By integrating both sides and taking limit we get 

lim^l-D^ + ElA^zl2)^ 
i i 

since the integration of —F(r)i) has limit non-negative, by the assumption of almost 
non-negativity of the bisectional curvature. Therefore limj Dy^i = 0 and limj Dy.rji — 
0. This implies that Dy.rj = D^rj = 0, where D00 is the covariant derivative of the the 

limit metric goo. This proves that 77 is parallel in the metric poo, so £ is also parallel. 
Obviously, ||£||o,2 — hni||^||o,2 = 1. In particular, £ is nontrivial.  The desired 

result follows. □ 

As a direct corollary we have 

PROPOSITION 2.3. Let Mi e M(n,A). Suppose that /i1'1(Mi) = k for all i. 
Let {£*,•'• ,£$} be a sequence of orthonormal basis for (^^(Mi), || • ||o,2)- If the 
injectivity radii ZM* > ^0; a uniform constant, then there exists a positive constant 
£:(n, A) 50 that if Hi • diam2(Mi) > —s(n,A), then, passing to a subsequence if neces- 
sary, {/*(£*), • ■ • , fiiZi)} converges in C1,a-class to orthonormal parallel (1, l)-forms 
{t15' •' »s } with respect to the limit metric goo. 

Next we consider a sequence of manifolds whose injectivity radii tend to zero. 

Let Mi E M(n,A). Let & € A1'1(Mi) be real harmonic (1, l)-forms with nor- 
malized L2-norm ||$i||o,2/\/vol(Mi) = 1, where vol(Mi) is the volume of M^ If 
Hi - diam2(Mi) > —1, then the sectional curvature of Mi are uniformly bounded 
from both sides. Therefore the conjugate radii have a uniform lower bound, say 2r. 
Let B}{2r), • • • , JBfl(2r) be the radii 2r balls in the tangent spaces TPkMi,l<k<m, 
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so that the exponential maps exppfe : B^(2r) C TPkMi —* Mi are immersions and 
expp^^^r)),-• • ,exppm(5fI'(r)) is a cover of Mj. For every fixed fc, consider the 
pullback metrics exp*fc(^) in B* (2r). Note that the injectivity radius at every point 
of Bi(r) with the metric exp*fc(^) have a uniform lower bound, independent of the 
index i. By Theorem 1.3 there is an integer iV such that for all i > iV, there are 
diffeomorphisms fj* : Bk := B%(r) —> B^(r) so that the pullback metric tensors 
(/^)*(exp;fc(^)) converge in C1^ (resp. L2'p) class. Let rji = (/f )*(exp£fc(&)) be the 
pulled back (1, l)-forms in 5/c. 

LEMMA 2.4. Let Mi e ^(n, A) anrf let r}i be as above. There exists a positive 
constant e(n, A) so that if Hi • diam2 (Mi) > — e(n, A), thenrji contains a C1,Q! converg- 
ing subsequence whose limit is a parallel (1, l)-form with respect to the limit metric in 
Bk,l<k<m. 

Proof. Let & G A1,1 (Mi) be the real harmonic (1, l)-forms as above. By Peter Li 
[Li] Lemma 8 the pointwise C0-norms |^| satisfy the inequalities 

A|&| < CU 

where C is a constant depending only on the bound A,£(n, A) and n. This together 
with Lemma 20 in [Ga] implies that 

Therefore the C0-norms \r]i\<C ioi all i. 
By (2.2.1) and the standard elliptic estimate [ADN] it follows that 

Itoilkp < C2,p 

for any p < oo. As in the proof of Lemma 2.2, this implies that r)i contains a conver- 
gence subsequence in C1,0; class. 

By the technique of Yamaguchi (cf. [Ya] the proof of Prop. 2.2) and the formula 
(2.2.2) it follows that r)i converges to a parallel (1, l)-form in C1'Q:-class. The desired 
result follows. D 

c). A vanishing theorem for holomorphic p-forms 

It is well-known that a compact Kahler m-manifold with positive Ricci form has 
no non-trivial holomorphic p-forms, p = 1, • • • , m (cf. [Be] page 323). The same result 
holds for simply connected compact Kahler manifold with non-negative bisectional 
curvature. The following vanishing result is a generalization of this fact to simply 
connected compact Kahler manifold with almost non-negative bisectional curvature. 

THEOREM 2.5. Let M e M.(n,h) be a Kahler manifold. Suppose the funda- 
mental group of M is finite. Then there is a positive constant s(n, A) such that if 
H - diam2(M) > — e(n, A), then M does not have nonzero holomorphic p-forms for 
p>0, i.e. hP>0(M) = 0. 

In the above theorem the finiteness of the fundamental group of M is necessary, 
since flat Kahler manifold fits in the class of the manifolds but with /ip'0(M) nonzero. 
The idea in proving Theorem 2.5 is by argument by contradiction, to show otherwise 
the fundamental group can never be finite. 
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For a compact Kahler manifold M G .M(n,A) with metric g, a real harmonic 
(1, l)-form £ £ iJ'1'1(M) induces a linear self-adjoint transformation 

(2.6) S:TM^TM 

by setting £(i>, w) = g(S(Jv),w) for all v, w € TM, where J is the complex structure. 
Let ai(x), - - - , an{x) denote the eigenvalues of 5|x, the restriction of 5 on the tangent 
space TXM. Obviously, if the (l,l)-form £ is parallel, then ai(a;),--- ,an{x) are 
constants. Moreover, if £ is not a multiple of CJ, these constants can not be all the 
same. 

LEMMA 2.7. Let Mi £ M(n, A) and let {£j, • • • , £$} be as in Proposition 2.3. Let 
(X, JOOJ^OO) be the Gromov-Hausdorff limit of the sequence (Mi,Ji,gi). Then there 
exist Ji'invariant distributions E], • • • , E1^ on Mi such that 
(2.7.1) the tangent bundle TM* = E} © • • • 0 E* for sufficiently large i. 
(2.7.2) the limits of Ef, 1 < j < k, are parallel Ji'invariant distributions of the 
C1,a-Kahler manifold (X, Joo? <7oo)- 

Proof. Following Proposition 2.3 let I1,- • • ,£fc G iir1'1(X) denote the limits of 
ih'" i€i ^ iy1'1(Mi). For the sake of simplicity we assume £} = Ui be the Kahler 
form of il^, and Z1 = u the Kahler form of X. 

Let Si^r" iSi,k be the endomorphisms in (2.6) associated to £?,••• ^f with 
respect to the Kahler form LOi. Since a),£2, • • • ,£fc are all parallel, all the eigenvalue 
functions of S^j, j = 2, • • • ,fc, converge to constants. Indeed, they converge to the 
eigenvalue functions of 5?, j = 2, • • • , fc, the endomorphisms associated to £2, • • • , £fc 

with respect to a;. 
Note that every Sj, j = 2, • • • , fc, must have at least two different eigenvalues. 

Otherwise, tf must be a multiple of u. This is impossible by Proposition 2.3. There- 
fore Sj gives a decomposition of TX into at least two parallel eigen distributions. 
Therefore, if k > 2 the eigen distributions of 52 gives a parallel Joo-invariant decom- 
position TX = E1 © • • • © Er with r > 2. If r < fc, the restrictions of |2, |3, • • • , £k on 
some factor, Es, must have rank > 1. By the above Es can be further splitted into 
parallel eigen distributions. This implies r > k. Correspondingly, Sij gives an eigen 
decomposition TMi = Ej © • • • © E? for i sufficiently large so that E? converges to 
&. Note that all the distributions are J^-invariant. 

It suffices to prove r — k. 
Note that the parallel distributions J51, • • • , Er are integrable. By Theorem 1.4 

X = Xi x - • • x Xr accordingly so that E^ j = 1 • • • , r, are the distributions given by 
the product foliations. Observe that /i1'1(XJ) > 1 since Xj is a compact C1'a-Kahler 
manifold. 

Let ujitj denote the Kahler forms of the distributions Ej C TMi, j = 1 • • • ,r. 
Note that Uij is not necessarily a closed form. Clearly, Uij converges to Uj, the closed 
Kahler form of Xj, for each j = 1, • • • , k. Let u;^ denote the harmonic component of 
Uij in i71'1(Mi). Obviously, CJij also converges to tij. If r > fc, then /i1'1(X) > k and 
so the vectors CDij, j = 1, • • • ,r, has rank greater than fc for z large by Proposition 
2.3. This is impossible since ft1,1(Mi) = k for all i. D 

Let M G .M(n, A) be a Kahler manifold. Assume /i1'1(M) = k. By the above 
there is a constant £(n, A) such that, if i?-diam2(M) > e(n, A), then Lemma 2.7 implies 
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k distributions E1, — - ,Ek. Let u;i, • • • ^uJk be the Kahler forms of the distributions 
and let cDi, • ■ • jfDfc E iJ1'1(M) be their (1, l)-harmonic components. From the proof of 
Lemma 2.7 we know that cDi, • • • ,cDfc are linear independent. Therefore a)i, • • • ,0;^ £ 
iJ1'1^) is a basis. 

Let 0 be the Ricci form of M. We may write (/> = aitDi H h a^cDfe + d0, where 
d8 is an exact form. 

LEMMA 2.8. Let M E .M(n,A) &e a Kahler manifold with finite fundamental 
group. Suppose /i1'1(M) = k. Then there is a positive constant e(n,A) such that 
if H • diam2{M) > —e(n,A); then a^ > c(n, A) for i = 1, • • • ,&, w/zere c(n, A) i5 a 
positive constant depending only on n, A. 

Proa/. We first prove that 

(2.8.0) /  0 A CJ?
1
 A • •• A u;^-1 A ■ • • A w£fc > c(n, A) 

for some positive constant as above. 
Suppose not. For simplicity we assume a sequence of Kahler manifolds Mi with 

Ricci forms (/){ converging to a C1 '"-Kahler manifold X such that: 
(2.8.1) Hi > —1/i, the sectional curvature KM* < A, and diameter diam(Mj) < D; 
(2.8.2) h^iMi) = k and 7ri(Mi) are all finite; 
(2.8.3) A sequence of Ji-invaraint distributions E},-- , Ej? in TMi with limit E1,-- ,Ek 

parallel Joo-distributions of dimensions rai, • • • , n^ respectively. 
(2.8.4) The lower limit lim^ fM fa A wfi"1 A • • • A Q;"£ < 0, where u^i, • • • , w^jt are the 
Kahler forms of the distributions E},-- ,Ek. 

Let V{Mi) = /M. CJ^J; A • • • A o;^. By Theorem 1.7 the injectivity radius of M 
has a uniform positive lower bound. Clearly, V{Mi) converges to V(-X"), the volume 
of X, since CJ^J A • • • A CJ^ converges in C1'" (resp. L2'p) class to the volume form of 

X. Moreover, fM fa A o;^-1 A LU^I A • • • A u;"£ converges to lim^ a^iV^). Therefore 
the desired result follows from (2.8.0). 

Consider the restriction of the Ricci transformation Ric : TMi —> TMi on the 
distribution E}. Let A], 1 < j < m, denote the eigenvalues of this restriction. Let 
<M'~ — X^i where x is the character function of the set {x E Mi : A:-(re) < 0} (i.e. x 
has value 1 for x in the set and zero otherwise). Since E? converges in Z/2'p-class to a 
totally geodesic foliation in X for any integer p > 0, by (2.8.1) it follows that 

(2.8.5) /   |Anp<&i(p,n,A) 

where {bi(p, n, A)} is a sequence of positive constants depending only on p, n and A 
which converges to zero when i goes to infinity. 

Let Ai = fMi fa A c^"1 A • • • A UJ^. Note that 

(2.8.6) ^=(^l)l/^1 + - + ^KiA...Aa,-i, 

By (2.8.5) it is clear that linijA: > 0.   If liuijAi = 0, passing to a subsequence if 
necessary we may assume that lim^ Ai = 0. 

Let \i(x) = max{Aj(x), • • • , A™1^)} for x E M^. Using Holder inequality, (2.8.5) 
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and (2.8.6) imply that 

(2.8.7) /    |Ai|p < ci(p,n, AJAi +C2(p,n,A)6<(p,n, A) 

for all large i, where Ci(p, n, A) (resp. C2(p, n,A)) is a positive constant depending 
only on p, n and A. Therefore A^ converges in Lp-class to zero for any integer p > 0. 
This implies that the limit metric g = g^ on Xi (the limit of the distribution Ej) 
gives an L2'p-weak solution to the Ricci flat equation (2.0) 

1 ii   d29rs Qf^L) = o 
2 dxidxj dxm 

By the elliptic regularity we know that the restriction of gij on Xi is a smooth metric 
with flat Ricci curvature (cf. [An] and Theorem 1.6). Note that the bisectional 
curvature of (-X*!,^) is non-negative. Therefore {Xi,g) has zero bisectional curvature 
and so (Xi,g) is flat. By the well-known Bieberbach theorem a finite covering space 
of Xi is a torus. In particular, TT^XL) is infinite. Thus TTICX") = vri(Xi) x • • • x 7ri(-Xfc) 
is also infinite. By Theorems 1.3 and 1.7 it follows that 7ri(Mi) = n^X) is infinite for 
i large. A contradiction. The desired result follows. □ 

LEMMA 2.9. Let M e M(n, A) be as in Lemma 2.8. Let IJL(X) = min{Xi(x), • • • ,AL(a:)] 
for x G M, where Ai, • • • , An are the eigenvalue functions of the Ricci transformation 
RicTM -*TM. Then 

/   /i>co(n,A) 
JM 

a positive constant depending only on n and A. 

Proof. Suppose not, there is a sequence of manifolds Mi € M{n, A) satisfying 
(2.8.1) and (2.8.2). Write the Ricci form fc = aiQ^i H f- akQi,k + d9i, where d6i is 
an exact form. By Lemma 2.8 aj > c > 0, j = 1, • • • , k. Therefore 

lim [<!>?> cna{n)V(X) > 0 

where a(n) is a positive function depending only on n. 
Let A^i, • • • , Xiin be the eigenvalue functions of Ric : TMi —> TMi. Note that 

(2.9.1) lim /   A^i • • • \i,n > cn(3(n)V(X) > 0 
i    JMi 

where /3(n) is a positive function depending only on n. 
Let M^0 = {x e'Mi'. iii(x) > 0} and M^0 be the complement of M^0 in M*. 

Since the sectional curvature K < A, it holds that 

(2.9.2) | /     ^,1 • • • \n\ < (^—^-{nhY^ViMi) 

(2-9.3) (     Ai,1...Ai,n<(fiA)n-1 /     ^ 
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Together with (2.9.1) we get that 

(2.9.4) lim /      Ai,! • • • Xin = lim /    A* i • • • X+n - lim /      A^i • • • Aijn 
*    JM*0 i    JMi i    JM<

0 

> cnP(n)V(X) - lim^nT1\nA)n-1V(Mi) 
i I 

Now (2.9.3) and (2.9.4) together implies that 

/    M* = /      Mi+ /      M» >  /      fii-^-T—V(Mi)>co(n)A)>0 
JMi JM^

0 JM<
0 JMf0 I 

for i sufficiently large. A contradiction. This proves the desired result. □ 

Now we are ready to prove the Theorem 2.5. 

Proof of Theorem 2.5. Let £(n,A) be the constant in Lemma 2.9. Let M € 
A4(n, A) be a Kahler manifold such that if •diam2(M) > — e{n, A). Let {ei, Jei, • • • ,en, Jen} 
be an orthonormal basis of the tangent space M^ with the following property: if 
Vi = ^(ei - yf-lJei), then (£* iiv^vjV^ = A^Vi for all i with A* G R. Let {(9^} be 
dual of {Vi} and of type (1,0). Let f be a harmonic form of type (p, 0). We may write 
£ = ]>^j ^j^7, where I runs through all strictly increasing multi-indices (zi, • • • , ip) and 
O1 = P1 A • • • A 0**. By the Weitzenbock formula we get (c.f. [Wu2] page 313) 

(2.10) -A|£|2 = J] l^^l2 + £ |I^|2 + E(E ffic^' eO)!*'I2 

z i /     zG/ 

Normalize ^ so that its L2-norm is 1. Integrating (2.10) on M we get that 

JM 

where /JL is as in Lemma 2.9.   A contradiction to Lemma 2.9.   The desired result 
follows. □ 

3. Proofs of Theorems A, B, C, D. 

Proof of Theorem A. Let k = hljl(M) > 1. Assume not, then we get a sequence 
of simply connected Kahler manifolds Mj, such that 

(3.1) Hi • diam2(Mi) > -(0.1)* and Ki < A; 
{3.2)h1>1{Mi) = k- 
(3.3) Mi does not diffeomorphic to the product of k simply connected C1,a-Kahler 

manifolds with second Betti number 1 for any i. 
By Theorems 1.3, 1.5 and 1.7 the limit X of the sequence Mi is a C1,0! Kahler 

manifold of dimension n. It suffices to prove that X is diffeomorphic to a product 
Xi x • • • x AT/c, where each factor Xi is a C1,a-Kahler manifold with 62(^2) = 1- 

By Lemma 2.7 we get k parallel distributions of X, which implies that the C1,a 

Kahler manifold X is isometric to the product Xi x • • • x Xk by Theorem 1.4. We 
now verify that 62(^1) = • • • = 62(Xk) = !> which clearly implies the desired result. 

By Theorem 2.5 we know that 62(M.) = ft2»0(Afi) + /^(Afi) + h^2(Mi) = 
ft1,1 (Mi) = k using Hodge duality. Clearly 62(-Xj-) > ^1'1(-X'i) ^ 1 since X, is a 
C,1'a-Kahler manifold. Therefore b2(X) = 62(^1) + h ^(-^fc) > * and the equality 
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holds only if 62(Xj) = 1 for j = 1, • • • , k. Since 62(Mj) = 62(X) for i sufficiently large, 
the desired result follows. D 

Proof of Theorem B. By the Anderson's regularity theorem we know that g^ is 
a smooth Kahler metric on X. Applying Mok [Mo] the desired result follows. D 

Proof of Theorem C. We claim that there is a constant e(n, A) such that if M G 
Ai(n,A) with H • diam2(M) > — e(n, A), then there are k = h1,0 pointwisely linearly 
independent holomorphic 1-forms 0i, • • ■ , Ok- The proof of this fact is exactly the same 
as [Ya] for harmonic 1-forms. For such holomorphic 1-forms 0i, • • • ,#&, the Albanese 
map TT : M —> J(M) is a holomorphic submersion. Therefore it is a holomorphic 
bundle since M is compact. This completes the proof. □ 

Proof of Theorem D. Suppose not. For simplicity we may assume a sequence of 
compact Kahler manifolds Mi such that Hi > — i and diam(Mi) < 1, Ki < A but 
/i1'1(Mi) > n. Let ^?i • • • ,&,/ be I (where I > n) linearly independent real harmonic 
(l,l)-forms such that the normalized L2-norms) ||C21i||o,2/\/^oZ(Mi), are all equal to 
1. 

Consider harmonic coordinate covers of Mi with radii r and uniform number fc, 
B}(r), - - , Bi(r). The injectivity radii of points in the radii r balls with respect to the 
lifted metrics on B}(2r), • • • ,B^(2r) have a uniform positive lower bound. Therefore 
the lifting of the harmonic (1, l)-forms ^j on B}{r), • • • , B^(r) converge to / linearly 
independent parallel (1, l)-forms by Lemma 2.4. By Lemma 2.7 if i is sufficiently 
large TMi may be decomposed into the direct sum of I J^-invariant distributions. For 
dimension reasoning this clearly implies I < n. A contradiction. D 
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