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MOMENT MAPS AND SYMMETRIC MULTILINEAR FORMS 
ASSOCIATED WITH SYMPLECTIC CLASSES* 

AKITO FUTAKlt AND TOSHIKI MABUCHI* 

1. Introduction. For a compact connected symplectic 2n-dimensional manifold 
(M,UJ) with a Hamiltonian action of a compact connected Lie group G, we have a 
moment map /i : M —> g* such that the Hamiltonian functions nx '•= < faX >, 
X £ g, satisfy the condition 

f fixu
n  = 0, 

JM 

where $ denotes the Lie algebra of G. This /J, is uniquely determined by the G-action 
on M as above, and is called the reduced moment map. 

Let us first consider the case where G is a fc-dimensional torus T = (S1)1* with 
the associated Lie algebra t. Then the image /x(M) of the moment map is a compact 
convex polytope (cf. Atiyah [1], Guillemin and Sternberg [14]). The kernel, denoted 
by tz, of the exponential map exp : t —> T is called the lattice in t, and points in the 
lattice are called integral points. They in turn define the dual lattice t| and integral 
points in t*. By setting iq := tz ^z Q and tq := tj ®z Q? we have rational points in 
t and t*. A convex polytope in t* is said to be integral or rational, according as all 
vertices are integral points or rational points, respectively. The fixed point set MT of 
the T-action on M sits in the critical point set for fi, and the image /i(MT) is a finite 
subset of t*. The following proposition, which was originally conjectured by Atiyah 
[1] in the special case of projective algebraic manifolds, plays a key role in our work: 

PROPOSITION A. Assume that to represents an integral cohomology class of M 
modulo torsion. For G = T = (S'1)/c

; let fi : M —> t* be the reduced moment map. 
Then /x(MT) C tq, and in particular, the convex polytope /i(M) is rational. 

In this paper, by giving a proof of this proposition, we generalize the results in 
[10] to symplectic cases. Take a general compact Lie group G, and let fj,: M —» $* be 
the reduced moment map as above. We here observe that the underlying differentiable 
structure of a compact symplectic manifold does not necessarily admit a compatible 
complex structure (see [13]). For the symplectic class [w], just like the £-th moment 
for a probability distribution, we define a symmetric multilinear form $£ : <S>eg —> M 
by 

<W 
JM 

Let gq be the set of all X e Q such that mX is in the kernel of exp : g —> G for some 
positive integer m. In view of Proposition A, we obtain 
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THEOREM B. (a) For a fixed symplectic class, the multilinear form $£ is inde- 
pendent of the choice of u in the class. 

(b) Assume that X G 0Q. If UJ represents an integral cohomology class of M modulo 
torsion, then $^(X, X,..., X) is a rational number. 

Now, by changing notations, we consider the case where M is a compact complex 
connected manifold on which a complex Lie group H specified later will act in place 
of G. We further assume that M admits a symplectic form CJQ of type (1,1), namely 
a pseudo-Kahler form. Let S denote the set of all symplectic forms on M expressible 
as 

cocp := wo + (v-l/27r) dd(p 

for some real-valued smooth functions (p G C00
(M)E on M. By T1,0M, we denote the 

holomorphic tangent bundle of M, and let Aut(M) be the group of all holomorphic 
automorphisms of M. Then the linear map 

<A : H0(M, OiT^M)) - H\M, O),        £ ~ 0(0 := [i(0w], 

is independent of the choice of UJ in S. The kernel f) := Ker0 is called the space 
of the Hamiltonian holomorphic vector fields on M, and will be studied in Theorem 
6.1 which generalizes a theorem of Fujiki (cf. Remark 6.2). Here, fj is not necessar- 
ily a complexification of a compactly embedded Lie subalgebra. As in the case of 
<&£ : ®^0 —> R above, using the same notation ^ by abuse of terminology, we can 
similarly define a symmetric multilinear form ^ : ®^I) —> C which depends only on 
the class S (cf. Theorem 6.3). Let H be the complex connected Lie subgroup of 
Aut(M) associated to the complex Lie subalgebra f) of H0(M, ©(T^M)). Then, as 
an analogue of the Bando-Calabi-Futaki character in Kahler cases, we obtain a Lie 
algebra character (cf. (20) in Section 6) 

Ts : I) -> C 

which is an obstruction to the existence of a symplectic form in S with constant scalar 
curvature. Choose a maximal compact subgroup K of i?, and let 6 be the associated 
Lie subalgebra of I), and £c '•— t + V~T^ the complexification of 6 in f). Again as 
in Kahler cases, the symmetric bilinear form $2 : <S)2f) —> C allows us to obtain an 
analogue of an extremal Kahler vector field (cf. [10]) as follows: 

THEOREM C. // the identity component of the center of K fixes some element 
of S, then there exists £5 in the center of t, uniquely determined by the choice of K, 
such that 

FsiO = $2(C,&), for all C etc. 

Since K is unique up to conjugacy in H, so is ^s in I). If the symplectic class of S is 
integral modulo torsion, then exp(^£s) = 1 for some positive integer v. 

To each symplectic form UJ G «S, we associate a vector filed r^ := grad^cr^) (see 
Section 6), where (T{UJ) is the scalar curvature of u; (cf. Appendix). Then UJ is said to 
be extremal or strictly extremal, according as r^ is holomorphic (i.e., r^ G f)) or the 
one-parameter group {exp(trCt;); t G R} sits in a compact subgroup of H, respectively. 
Now, let UJ be an element of S fixed by the identity component of the center of K 
above. Then 
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COROLLARY D. (a) Ifu is strictly extremal, then r^ coincides with £$ above up 
to conjugacy in \), and in particular, both maxM CT(LO) and minMcr(u;) are rational 
numbers. 

(b) Assume that u is extremal. Then u) is strictly extremal if, for instance, H is a 
reductive algebraic group or u is a Kdhler form. 

2. Preliminaries. In this paper, with the only exception in Appendix, all sym- 
plecic forms are assumed to be real. Furthermore, M is always a compact connected 
symplectic manifold of dimension 2n with symplectic class [a;]. (In this section, the 
cohomology class [CJQ] is assumed to be integral modulo torsion, where the terminology 
"modulo torsion" is often omitted for simplicity.) Take a complex line bundle L with 
ci(L) = [UJ] and denote by P the principal 51-bundle associated with L. Assume that 
we have a Hamiltonian action of the fc-dimensional torus T = (51)/c on M, where T 
is regarded as the only maximal compact subgroup of (C*)^. In particular, the action 
of T on M is symplectic, i.e., it preserves the symplectic form u. Identify t with R^ 
and the lattice in t with Zk sitting in Rk. Then the the exponential map exp : t —» T 
is written as 

(x1,x2,...,xk) .- (e
2"^^e2'r^IV..)e

2'^rT**). 

Each X G t induces a symplectic vector field, denoted also by X, on M. We further 
have a moment map /i : M —» t* which is, in general, unique only up to translation. 
Then 

d < /i, X > = i(X)Lj, 

and fj, is equivariant. The function fix '=< HiX > is T-invariant, and is called the 
Hamiltonian function for X £ t. Given a Hamiltonian T-action on M, if fi: M —> t is 
a reduced moment map, it is uniquely determined by the action. 

Suppose for a moment that the symplectic action is given by a general compact 
Lie group G with Lie algebra g instead of the torus T (this is just to make clear 
the motivation of the construction (2.2) below). Let L be a complex line bundle 
with ci(L) = [LO]. Take a connection V of L such that its curvature iJ(V) is equal 
to — 27r\/—Tu;. Now we will see that a moment map gives rise to a Lie algebra 
homomorphism g —> 3c(L) where X(L) denotes the Lie algebra of all vector fields on 
L. It is also possible to replace L by the associated principal bundle P. Namely a 
moment map gives rise to a Lie algebra homomorphism g —> X(P). We will explain 
this in the case of P; the case of L is quite similar. For any X G g considered as a 
vector field on M, there is a horizontal lift Xh on P with respect to the connecion 
induced from V. Locally this is expressed as follows. Let U be an open set, and let 
P\u = U x S1 and L\u = U x C be local trivializations. Let 6u be the connection 
form on M with respect to this trivialization. Then the associated connection form 
in P is expressible as 

(2.1) 0 = ^+60, 
z 

and the horizontal lift of X is giver L by 

xh = : -euix) d + x, 
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where z denotes the fiber coordinate of L\u = U x C and dz/z is the Maurer-Cartan 
form of S'1 C C. This lift gives a map g —> X(P) which is however not a Lie algebra 
homomorphism. We add 27rfjJxV—lzd/dz to define Q —> X(P) by 

(2.2) X H-> X* := 27r//xx/11! ^TT + ^ 

which is easily seen to be a Lie algebra homomorphism. Now we again return to the 
case of symplectic torus action. To fix our notation, we give a geometric proof to the 
following fact (see Ono [21; Lemma (4.8)]): 

PROPOSITION 2.1.  The action ofT = (S1)* lifts to bundle actions on P and L. 

Proof. Clearly we have only to show this for P. Let X be a generator of the lattice 
in t, and {^t}t£m. be the one-parameter group generated by X^. Since ipt covers the S1- 
action on M generated by X, we see that ^i defines a gauge transformation (denoted 
also by ^i by abuse of terminology) of P, i.e., a smooth map from M to S1. 

We claim that this gauge transformation is homotopic to a constant map. To 
see this, note that the set of homotopy classes of maps from M to S'1 is isomorphic 
to jEf1(Af;Z) by assigning (j) : M -> S1 to (f)*a G JET^MjZ), where a denotes the 
generator of iiZ"1(51; Z). Thus it suffices to see ip{a = 0. Since /xx is a perfect Morse 
function, 

H1(M'1Z)^H2n^i(M'1Z)^®iH2n^1^2Xi{Fi]Z) 

where Fi are connected componets of the set of critical points of fix» and 2A^ is the 
index of i^. Let 2di be the dimension of Fi. Since 2n — 2Xi > 2^, the only non-zero 
contribution of the last term is 

Qifydi-iiFnZ) ^ eiH^FnZ). 

Thus it suffices to see ^IIF* 
: Fi (c-> M) —> S1 is homotopic to a constant map. But 

this is the case, since X vanishes and fix is constant along F^. 
It followsjjhat ^i lifts to a map ip : M -» R. Put X := X* -ipyf^l zd/dz. Noting 

that ipi and I/J are 51-invariant under the S1-action on M, we see that X generates 
an S'1-action on L covering that on M. □ 

REMARK 2.2. As^the proof shows, the lifting in Proposition 2.1 is not unique. 
In fact, the choice of ^ is determined up to modulo 27rZ. We will see in Theorem 2.4 
that a choice of lifting reflects on a translation of the image of moment maps (see also 
the example given at the end of this section). We may also interpret this as the exact 
sequence over Z given in Fujiki [7; Lemma 3.1]. 

REMARK 2.3. Let M be a compact complex manifold with a pseudo-Kahler form 
u (cf. Section 6) in an integral class, and take a holomorphic line bundle L such 
that ci(L) = [LJ]. Choose a Hermitian connection 6 on L such that d6 = — 27r\/—To;. 
Then for a holomorphic vector field £ on M which generates a Hamiltonian 51-action 
on M, the associated lifting ^ on L induced by (2.2) is holomorphic on L, since 
dfix = i((i)u> and d{0(X)) = -27Ty/-[i(C)LU, where X := £ + £and X* = & +|». In 
this case, Proposition 2.1 is written as follows (see also [15]): 

Let M be a compact complex manifold with a pseudo-Kahler form LJ in an integral 
cohomology class, and let P and L be as above. Then a holomorphic (C*)k-action on 
M extending a Hamiltonian torus action lifts to a holomorphic bundle action on L. 
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Next, coming back to general symplectic situations, we recall a result of Berline- 
Vergne [3]. Let G and G' be compact Lie groups with Lie algebras g and g7, and let 
P —> M be a principal G-bundle endowed with a left G'-action on P which covers a 
G'-action on M and commutes with the G-action on P. Assume dim^ M = 2n. For 
integers j > 0, put 

J>'(G) = S>"(fl*)G,     and     JJ
*(G

,
) = 5

J
'(B

,
TI 

i.e., the former (resp. the latter) is the set of all G-invariant (resp. G'-invariant) 
symmetric polynomials of degree j with coefficients in C and with variables in g* 
(resp. $'*). Choose a G'-invariant connection 0 of P —» M. For any 0 G ^(G), we 
define 

(2.3) /,(*) - / mX) + 0) 

where X € g' is regarded as a vector field on P, and 0 denotes the curvature form 
of 0. Then /^ turns out to be independent of the choice of 0, and defines an element 
of P(Gr). We apply this result to our symplectic situation. By setting G = S1 and 
Gf = T = (S1)1*, let (M^LJ) be a compact symplectic manifold with a Hamiltonian 
T-action. Let L over (M,t<;) be a complex line bundle with ci(L) = [to]. Then by 
Proposition 2.1, the T-action on M lifts to a bundle action on L. Choose such a lifting. 
For the associated 51-bundle P, we consider the invariant polynomial c^1 € /n+1(51) 
defined by 

r^r  \ n+1 

V—lx 

71+1 

c™^    27r 

Then /^+1 G /n+1(r) is written as 
ci 

(2.4) ^W-^^/M^^^ 

(2.5) ={n + l)j^^E±e{X)un, 

where 0 is a T-invariant connection with 0 = d0 = —2n\^r-[uj and 0 is the connection 
form in P which of course is locally equal to tfie Maurer-Cartan form plus 0. Moreover, 
X denotes the vector field (denoted by X in the proof of Proposition 2.1) on P 
corresponding to X £ t. Let Xi, • • • , Xk be the generators of the lattice of t. We set 

(2.6) di = -(n + l)-1fL+1(Xi). ci 

It should be noted that di, • • • , dk depend on the lifting to L of the T-action on M. 

LEMMA 2.4.   Let /ixi be such that fixi = {2'n\/—[}~10(Xi).   This amounts to 
normalizing fiXi by 

(2.7) / fiXiujn = di. 
JM 

Proof. Since 0 is T-invariant, Lx0 = 0. But Lx0 = d{0{X)) + i(X)e and hence 

i(X)u) = d (teirV^i}-1^)) . 
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Now (2.7) follows from (2.5) and (2.6). □ 
We now consider the integrality of the image of the moment map. This is well- 

known for toric varieties and Delzant spaces [4]. More generally, Guillemin and Stern- 
berg show in [14] that the integrality holds for prequantizable Hamiltonian torus 
actions. The following theorem is proved essentially by showing that such a prequan- 
tization is realized by the normalization (2.7) of the Hamiltonian functions: 

THEOREM 2.5. (a) Let M be a compact connected symplectic manifold with 
integral symplectic class [u]. Suppose that M admits a Hamiltonian action of T = 
(S1)^. Let L be a complex line bundle with ci(L) = [LU], and choose a lifting of 
the T-action on M to a bundle action on L. Normalize the Hamiltonian functions 
HXi, I < i < k, such that (2.7) is satisfied with respect to the lifting. Then each 
critical value of fiXi is the integer obtained as the common weight of the isotropy 
action of S1 generated by Xi on the fibers of L over the associated critical points, and 
the image of the moment map fi = (/xxi»• • •»^xk) is an integral convex polytope. 

(b) Moreover, for any translation of the image of the moment map to an integral 
convex polytope, there exists a lifting of the T-action to a bundle action on L such 
that the translated Hamiltonian functions satisfies (2.7) with respect to the lifting. 

Proof, (a) For a generator Xi G t, the associated vector field on P induced from 
the lifting of the X^-action will be denoted by the same letter JQ. By the previous 
lemma, under the normalization (2.7), we have f^Xi = (<27r\/—l)~19(Xi). For a critical 
point p e M of /jiXi i 

dz l 
fjLXi(p) = —= 0(Xi)p = ir-7=T — (*i)p 

is the weight of the isotropy action of S1 generated by Xi on the fiber Lp over p. Thus 
the critical values of /^ are integers. Now for a vertex v = (i>i, • • • , Vk) G t* of 
the image of the moment map, Vi is a critical value of fj^Xi, and hence v is an integral 
point. 

(b) To prove the last statement, recall the proof of Proposition 2.1. By Remark 2.2 
I/J is unique up to modulo 2nZ. Let p be a critical point of fiXi • Then for the 51- 
action on M generated by X^ any integer can be taken as the weight of the isotropy 
S^-action on Lp for some lifting to L of the 51-action. Hence any translation to an 
integral polytope is obtained by choosing a some another lifting of the T-action to L. 
D 

REMARK 2.6. Theorem 2.5 implies, for each nxi, that if one critical value is an 
integer then all other critical values are integers. 

Let us look at an example. Take M to be the 1-dimensional complex projective 
space P = P^C), and S1 to be in the center of PGL(2,C). Let (2:0,^1) be the 
homogeneous coordinates and u = ZI/ZQ be the inhomogeneous coordinate on the 
open set { ZQ ^ 0}. Then the 51-action is given by u *-> e27Tltu. The Kahler form 

_      -1   duAdu 
TT   (1 4- \u\zy 

represents the first Chern class of M, i.e. ci(T1'0P) = [ups]- For the generator 

X = 27rV^lu— - 27rV-lu— 
ou cm 
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of the 51-action we have i(X) ujps = d{ (1 — |'ix|2)/(l + \u\2) }, and thus 

, x      ko|2-ki|2 

^ ■ ^ = ko|2 + kl|2 

is the moment map, whose image is clearly an interval with integral end points. How- 
ever, LO := LUFS/2 is still an integral class which is the Chern class of the hyperplane 
bundle i, i.e. the square root of T1,0P. The moment map for u is /^/2 whose image is 
the interval [—1/2,1/2]. We now see what was done in the proof of Proposition 2.1. 
The connections 6, 6 and X* are respectively given as follows: 

—1 /   udu udu 
u = 

2 Vi + M2    i + M2 

where 6 is the Hermitian^onnection of the standard metric of L, and on the associated 
51-bundle P, we have 8 = \f—id\ + 6 for the fiber coordinate z = ey/^x of P. 
Moreover, 

X* = (2Trn/2 + ^e(X))—+X = TT— + X. 

Prom this, it follows that i/j1 = n. Choose T/J = (—2m 4- l)7r for an integer m. Then 
X = 2m7rd/d\ + X. The resulting lifting gives the moment map 

27r. 

whose image is the interval [m — 1, m]. 

3. The localization formula. In this section, let k = 1, i.e., we consider a 
compact symplectic manifold (M,UJ) with a Hamiltonian action of T = 51, where 
li: M —> t* is the associated reduced moment map. For 0 ^ X £ t, the zero set N of 
Y is written as a finite disjoint union 

N =  U N, 

of the connected components N7. Then A7" is a symplectic submanifold of M, and 
its normal bundle E is a symplectic vector bundle which naturally becomes a com- 
plex vector bundle. The restriction to E of minus Lie derivative — Lx is a complex 
endomorphism, which we denote by LX. In fact, when we write LO as the standard 
symplectic form on Cn using the Darboux-Weinstein theorem, the type (1,0) part of 
X can be written locally as a holomorphic vector field 

dz*' 

on an open set of Cn. Thus for a normal vector d/dzx, 

(LX^ = -'1'K^:i fc+£ didz^ = ^^ E IS 7^ mod T^ 
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where zT runs over coordinates in the normal direction to N. Let I be a positive 
integer and C an arbitrary real constant. By the well-known residue formula (see for 
exponential case [5; Addendum]), we obtain 

(3.i)       jte + c + .)     _ ^ J^ det{(i:x + e£)/(27rv/ZT)r 

where G^ denotes the curvature of the connection for the normal bundle E of N. 
Since X generates an 51-action, all eigenvalues of LX/27ry/^l are real constants, 
while the function ^x := < n^X > are constant on each Nj. It then follows that 

.w.vr^-     n!£!    f (nx + C + w)"+e 
71   '   ' j  ■"   (n + £)\JN^det{(LX + QE)/(27rV=l)y    7       ' 

are real constants. Then by (3.1), we obtain the following localization formula: 

PROPOSITION 3.1.     JM(fix + C)eujn = £7€r ^(X,C,£). 

4. Proof of Proposition A. In this section, we give some consequeces of The- 
orem 2.5. We shall first prove Proposition A. Let M, CJ, G and /z be as in Proposition 
A in the introduction. 

Proof of Proposition A. For L as in (a) of Theorem 2.5, we choose a lifting 
of the action of T = (S1)1* to L. This determines a normalization of the moment 
map v : M —» t* whose image is an integral convex polytope. Apply Proposition 3.1 
to £ = 1 and C := vx — Hx with X = Xi, where Xi) ..., Xk are as in Theorem 
2.5. By Xi G tz, all eigenvalues of LXi/27ry/—i are integers, and corresponding to 
the eigenspace decomposition, E splits into a direct sum of complex vector bundles. 
Moreover, by Theorem 2.5, the function ux := < v^X > = fix + C takes integer 
values on JV. Therefore 

S^XitCl) G Q,       7er, 

because [u;] is an integral class. Then by Proposition 3.1, fM^Xi^n = JM^X + 
C)^;71 G Q, and hence by Theorem 2.5, we conclude that fiXi = ^Xi — 
{/M^

71
}"

1
 /M 

Vxi ^ takes values in Q on MT, as required. □ 

REMARK 4.1. This proof shows that d^ i — 1,2,..., k, in (2.6) are rational num- 
bers. Later, we see that this rationality follows also from the viewpoints of equivariant 
cohomologies. 

We now study Fano cases. A compact complex manifold is called a Fano man- 
ifold if the first Chern class CI(M)R is represented by a positive closed (l,l)-form 
a;, so that we may regard CI(M)R as a Kahler class. The Ricci form Ric(u;) = 
(A/^T/^TT) ddlogujn also represents CI(M)R by the Chern-Weil theory. Thus there 
exists a unique smooth function F on M, satisfying fM eFujn = fM cu71, such that 

Ric(Lu) - UJ = (V-1/27T) ddF. 

Suppose that T = (S1)1* acts on M as isometrics. Since M is a Fano manifold, it is 
well-known that such an action is holomorphic and Hamitonian (see [18]). The action 
naturally lifts to the anti-canonical bundle K]^1. For each X G t, we consider the 
invariant f^+i (X) with respect to the natural lifting to K^1 of the T-action on M. 
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PROPOSITION 4.2. For a Hamiltonian function /JLX for X € t with respect to w, 
which is unique up to a constant, the normalization 

(4.1) / ^a;w = -(n + l)-1/cr+im 
JM 1 

is equivalent to 

(4-2) /   y 
JM 

lixeF UJ
71
 = 0. 

Proof. By the Calabi-Yau theorem there exists a Kahler form h in the Kahler 
class ci(M) such that Ric(/i) = u. Then hn defines a Hermitian metric on ifj^-1, and 
let 6 be the associated Hermitian connection and 0 its curvature form. Obviously 
(\/—1/27r)0 = Ric(/i) = CJ. As usual, we denote by X the vector field on KJ^ induced 
by X € i Then 0(-X") is the divergence div/l(X) with respect to /i. By Lemma 2.4, 
the equality (4.1) holds if and only if 

fix = (27ry/^l)-1e(X) = (27rv/=l)-1 dwh(X), 

which in turn is equivalent to 

(4.3) / fixhn= I &iYh(X)hn = 0. 
JM JM 

But, since Ric(/i) = CJ, we have Ric(/i) = Ric(a;) — (\/—T/27r) ^F, i.e., /in = eF OJ
71
. 

Hence, (4.3) is equivalent to (4.2). This completes the proof. □ 

COROLLARY 4.3. Let M be a Fano manifold with a Kahler form to in the class 
CI(M)R. Suppose that T = (S1)1* acts on (M, LU) in a Hamiltonian way with generators 
Xi, • • • , Xk for the lattice in t. If we normalize the Hamiltonian functions jiXi by 

fiXie
FLJn = 0 

M 

for the function F as above, then the image of the moment map is an integral convex 
poly tope. In particular, if M admits a Kahler-Einstein form to, then the image of the 
reduced moment map is an integral convex polytope. 

Proof. The first assertion follows from Theorem 2.5 and Proposition 4.2. For 
Kahler-Einstein forms CJ, we have Ric(cj) = CJ and hence F is a constant function, 
and therefore the second assertion follows. □ 

REMARK 4.4. (a) In view of a theorem of Futaki and Morita [11], /cn+i (X) is an 
obstruction to the existence of Kahler-Einstein metrics (cf. [8]). In particular 

di = -(n + l)-1/c?+i(^) = 0 

for Kahler-Einstein forms LU. Thus, without using Proposition 4.2, we have the second 
assertion of Corollary 4.3 immediately from Theorem 2.5. 

(b) Even without Theorem 2.5 and Proposition 4.2, we obtain the first assertion of 
Corollary 4.3 as follows: For a Kahler form LU in the class ci(M)^ on a Fano manifold 
M, using the same notation as in Section 5, we can write every holomorphic vector 
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field £ on M as £   =  grad^ u for some complex-valued smooth function u on M 
satisfying the equation 

A^ + £^J^||+« = 0)        (cf. [9; 2.4]) 

where A^ denotes the complex Laplacian Tla^gOL(3(d2/dz^&z^).  Such a function u 
obviously satisfies 

/ 
Jh 

ueFun = Q. 
M 

For the generators Xi, X2, ..., Xk of the lattice in t in Corollary 4.3, let & be the 
associated holomorphic vector field such that Xi = & + £$> ^ = 1,2,..., fc. Denote by 
M$ the function in V corresponding to £i, so that we have & = grad^ i^. Then 

PXi = Ui,        i = 1,2,...,*;. 

ritical poi 
above, we obtain 
Let p € M be a critical point of /iX; • Since grad^ w^ = 0 at p, by using the equation 

-HXiiv) = -Ui(p) = (A^Wi)^). 

But the right-hand side is an integer because it is the sum of the weigts of the 51- 
action on the normal bundle of the component containing p of the fixed point set, or 
equivalently the weight of the action on (K'j^)p. Thus i^Xi takes values in Z on the 
critical point set. Therefore, the image of the moment map is a convex polytope with 
integral vertices. 

5. Proof of Theorem B. Let M be a compact symplectic manifold with a 
Hamiltonian action of a compact Lie group G. In this section, we fix a (possibly 
non-integral) symplectic class [UQ] , and consider the set of all G-invariant symplectic 
forms in the class [LUQ]. TWO G-invariant symplectic forms UJQ, WI in the class are 
joined by a path 

Wt = wo + tda,        0 < t < 1, 

where a is a G-invariant 1-form on M, and ut is a 2-form on M which is not necessarily 
symplectic in general. Let ^x,o be a Hamiltonian function for X £ g with respect to 
UJQ defined by d/xx,o = i(X)uo. Put 

(5.1) wr,* = fix,o - tapO,        0<t<l. 

PROPOSITION 5.1. For each X G g, the function nxj is a Hamiltonian function 
for X with respect to ut, i-e., for all 0 < t < 1, 

(5.2) dfjbx.t = i(X)uJu 

and it satisfies 

(5.3) /   nxju? = /   fix^o^E' 
JM JM 
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Moreover, for any point p G M in the zeroes of X, the value Hx,t(p) depends only on 
p and is independent oft. 

Proof  For p in the zeroes of X, the value nx,t(p) is independent of t by (5.1). 
Furthermore, from Lxa = 0, we obtain (5.2) as follows: 

d^xj = dfix,o — td{a(X)} = i(X)ujQ +ti(X)da = i(X)u)t. 

Hence, the proof is reduced to showing (5.3). It then suffices to show that the deriva- 
tive with respect to t of the left-hand side of (5.3) vanishes identically. In fact, by 
(5.2), 

dt 
[ iixA^o+tda)n= [ {-a{X)uj^+iix,tndaAu^-1}, 

JM JM 

where the right-hand side is fM{—a(X)uj1 — d/xx,t hnaAu™ 1} = fM{—a(X)u;™ + 
a A i(X)v?} = - fM i(X){a A CJJ

1
} = 0, as required. □ 

THEOREM 5.2. Let /i : M —> g* be the reduced moment map for a symplectic 
form LJ in the class [LUQ]. For each real-valued smooth function <j) = <t>{x\^ • • • ,xi) on 
W-, the function $f : Qe —> R defined by $£(li, - - ,Ye) := fM (^(^YH- • • YHY^W

71
 is 

independent of the choice of UJ in the class [UQ] . 

Proof Let ut = wo + tda, 0 < t < 1, be the path between UQ and a;, where 
ui = to. For each Y 6 0, the Hamiltonian function HYJ for Y with respect to ut with 
normaliztion 

/ 
JN 

fl<Y,tUt     =   U 
M 

is written in the form (5.1) by Proposition 5.1. Put (j)j := d(f)/dxj and //j5t := f^Yj.t 
for simplicity. Then, for all 0 < t < 1, 

,n-l 

JM 

= ~      Yl fa&htr- , Vet) aiYj) u? + /   ^(/ii,*,--- , fie,t) da A nu? 
JM j=1 JM 

= ~       Y^ faiVhtr- , vej) otiYj) u? - /   d{(j){fihu • • • ,^|t) } A a Ana;^"1 

JMj=1 JM 

f      e 

= " /   Yl Mvittr-iHtdKYrfiaAu;?) = 0, 
■/A*i=1 

i.e., /M ^(/xy!,..., IJLY^)^
71
 is independent of the choice of UJ in the.class [a;o]. □ 

Proof of Theorem B.  (a) immediately follows from Theorem 5.2 applied to 0 = 
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(b) Assume that [a;] is an integral class. For the 51-action on M generated by 0 7^ 
X G 0Q, we apply Proposition 3.1 to C = 0. In view of Proposition A, we have 

6y(X,0J) G Q,       T^r, 

because by 0 ^ X £ QQ, all eigenvalues of LXi/27ry^-i are rational numbers. Then 
by Proposition 3.1, $i(X, X, • • • , X) = JM{^xY^n € Q, as required. D 

REMARK 5.3. (a) Let 0 ^ Y € g. Then the closure of {exp(tY); t e M} in the 
compact Lie group G is a compact torus whose dimension is denoted by k(Y). Then 
it is easily seen that k(Y) = 1 if and only if Y £ QQ. 

(b) By the G-equivariance of the moment map /i, the symmetric polynomial <&£ in (a) 
of Theorem B is an invariant polynomial in g* for the coadjoint action of G on g*. 

(c) In the situation of (b) of Theorem B, suppose that G is the torus T = (S1)1*. Then 
obviously, <&£ is defined over Q, i.e., ^ takes values in Q on 0€tQ. 

REMARK 5.4. Replacing the localization principle by the method of equivariant 
cohomologies, we have an alternative proof for both Proposition A and (b) of Theorem 
B. We also have another proof for (a) of Theorem B if [u] is integral. To see these, 
we first assume the situation in Proposition A, so that [cu] is integral and the action 
of T = (S1)* on M lifts to a bundle action on P. As in [11], let ET -> BT be the 
universal T-bundle. Put MT := ET xT M. Then PT := ET xT P is the associated 
principal bundle over MT. Then via the identification of Ie(T) with H2e(BT; C), we 
have the linear map pr* o W : Jn+^(51) —► I£(T) such that the diagram 

w 

jff2n+2£(M5l;C)    _Z^    HM(BT'X). 

commutes, where W is the Weil homomorphism associated to PT —> MT, and pr^ is 
the Gysin map for pr : MT —> BT. Let v : M —> g* be the moment map (as in (a) of 
Theorem 2.5) for (M, u) such that z/(M) is an integral convex polytope. Then 

(5.4) f (uyy W» =  j^- { (pr, o W)(c?+*) } (Y, ■ ■ ■ , Y),        Yet, 

for each nonnegative integer j. Let /i : M —> g be the reduced moment map. Put 
C := {/M a;71}-1 /M ^y a;n. By /xy = uy - C, we have 

(5-5)       L^-£w?wLM 

Now, let 0 7^ y G tz, and we consider the subtorus T1 := S1 = {exptY; t G M} 
of T generated by Y\ Replacing T by this one-dimensional torus T1 in the above 
diagram with cohomologies considered over Z, we obtain 

H^iBT1-^) ^ Z 

(pr*oW0(c^)      ^   /c^(y) 
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where pr* denotes the corresponding Gysin map of i72n+2€(M51;Z) to ff^ST^Z) 
by abuse of terminology. Hence, for t. = 1, 

/ 
M Cl 

Since [UJ] is integral, we obtain C € Q. Then by /iy = uy — C and (a) of Theorem 
2.5, we now see that ii{MT) C ft, as required. 

We next consider the situation in (b) of Theorem B. Let 0 ^ X G 0Q. Then for 
some positive integer m, the multiple Y := mX satisfies expY = 1, so that Y is in 
the lattice for the one-dimensional torus T1 generated by Y. Then by the argument 
above, 

/ {vy? un = fLn+t (Y) € Z,        * = 0,1,2, ... 
(n + l)! 

n!£!    ./M 

Hence, in view of /zy = ra/ix together with m G Z+ and (5.5) above, we obtain 
JM^XYU

71
 
e Q. as required. 

By a similar method, we now prove (a) of Theorem B under the assumption that 
[w] is integral. Let Yi, ..., Ye E 0, and let si, ..., s^ G R. Put Y := siYi H hseYt. 
Then by (a) of Remark 5.3, Y G t for some toral subalgebra t of $. Since the right- 
hand side of (5.4) is independent of the choice of w in 5, we now see from (5.4) and 
(5.5) that the left-hand side JM{SIIIY1 + • • • + s^y£)

£a;n of (5.5) is independent of 
the choice of UJ in the symplectic class. Since si, ..., s^ are arbitrary, its coefficient 
JM ^vi ''' MY* UJ

71
 m si--- S£ is also independent of the choice of u in the class, as 

required. 

6. Complex manifolds with symplectic forms of type (1,1). Finally, we 
consider a compact complex manifold M of complex dimension n endowed with a 
pseudo-Kahler form LJQ, i.e., a possibly non-Kahler symplectic form UQ of type (1,1). 
For S as in the introduction, each element LJ in S is written locally in the form 

u =  ^1 V g.dzaAdzP 
27!-      Z-^   U<xP 

a,f3 

for a system (z1, z2,..., zn) of holomorphic local coordinates on M. Here det(# *) 

is nonvanishing wherever it is defined. To each u G C00(M)c, we can associate a 
complex vector field grad^ u of type (1,0) on M by 

Let fya, denote the space of all holomorphic vector fields on M expressible as grad^ v for 
some v G C00(M)c, where we always normalize v in such a way that JM vujn = 0. By 
the notation in the introduction, all UJ in S are wrritten as UJ^ for some tp G C00

(M)R. 

Then we shall show that every element £ = grad^o VQ in J) is rewritten as 

(6.1) f = grad^ v, where u := VQ + (V^l/2ir)€(p. 

Proof. For 0 < * < 1, put uj(t) := CJQ + (V-l fe^tddip and i;(t) := ^ + 
(y/^l/2ir)t€(p. Then by the same computation as in [10; p.208], we obtain i(£)uj(t) = 
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dv(t) for all t. Hence, the proof is reduced to showing q(t) := fMv(t)u(t)n vanishes 
for all t. 

m = f ( 
JM 

1 /2TT) { (i(Z)d(p) Lj(t)n + v(t) ddip A nuj{t)n-1 } 

= [ (V-[/2'K){dipA(i{Z)Lu(t))Anuj(t)n-1 + dv(t) A dtp Anu^i)"-1} 
JM 

- 0, 

where we used the identities £ip = i(£)dip and i(^)uj(t) = dv(t). Since g(0) = 
IM 

VO
 ^o — 0, we now obtain q(t) = 0 for all t, as required. D 

Now by (6.1), we obtain (j^ = fj^. Hence, f)^ is independent of the choice of 
UJ in 5, and is simply written as \) in this section (see (6.2) below for another char- 
acterization as in the introduction). Moreover, let GQ denote the identity component 
Aut0(M) of the group of all holomorphic automorphisms of M. Then the associated 
Lie algebra is the space go '•= H0(M, ©(T^M)) of all holomorphic vector fields on 
M. Identify iJ^M, O) with the Dolbeault cohomology group ff^^M). Then for the 
natural complex Lie group homomorphism 

and the associated Lie algebra homomorphism p* : go —^ 0^c(^1(^'^))' we Pu^ 
gi := Ker p* and g2 := gi D I). Then go D gi D g2 and go/gi = Image p*. We further 
obtain 

THEOREM 6.1. (a) Both gi and g2 are ideals of the complex Lie algebra go. 

(b) [gi,gi] C g2. In paricular, gi/g2 is an abelian Lie algebra. 

(c) In view of the natural inclusions Q1/Q2 C go/fy C iT1(M, O), the quotient gi/02 is 
regarded as a complex vector subspace o/iJ1(M, O). 

Before proving this theorem, we consider the following situation. Let us choose 
a fine open cover U — {[/A}AGA of M = UAGA ^A in such a way that each U\ is 
a sufficiently small Stein open subset of M with a system z\ = (z^z^... ,z™) of 
holomorphic local coordinates. Let £ G go and on each C/A, we write 

27r   V^   A   ^ 

By d(i(€)uj) = —i(^)duj = 0, we can write i(£)u) = dux for some UA € C00(U\)c, 
X £ A. Then on U\, using the metric tensor of the pseudo-Kahler form CJ, we have 

^  = E^'        a = l,2,...,n. 

Since du^ — dux = i(€)uj — i(€)w = 0 on Ux H t/^, by setting ttAz/ := u^-ux € II0(Ux fl 
Uv,0), we have a Cech 1-cocycle (WAI/) ^ Z1^-, O) and the corresponding class 
[(^Ai/)] ^ iJ1(M, O). We now have a natural map <£ : go —> IIl(M,0) which sends 
£ G go to </>(£) := [(ifcAi/)] ^ IIl{M,0). Now, in terms of the Dolbeault cohomology, 
this (/>(£) is written as the class ^"(OH ^ H1^, O) in the introduction. We now claim 
that 

(6.2) Ker </> = &. 
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Since the inclusion f) C Ker <fi obviously holds, it suffices to show Ker 0 C f). Let 
£ G Ker 0. Then the Dolbeault cohomology class [^(OH vanishes, i.e., i(£)a; is written 
as du on M for some u G C00(M)c. Hence £ = grad^ u and Ker </> C f), as required. 

Proof o/ (c). By (6.2) above, we immediate obtain £Ji/g2 = 0i/(0i H f)) = (QI + 
f))/f) C go/i} = Image ^ c -ff^M, 0), as required. D 

Proof of (a). Since 0i = Ker p*, the Lie algebra Qi is obviously an ideal of the Lie 
algebra go- Next, let £ G go and £ G g2. Then z(£)a; = du\ for some 7iA G C00

(C/A)C 

on each 17^. We further have £ = grad^v for some v G C00(M)c. In terms of the 
symplectic form u, we consider the Poisson bracket 

on C/A, A G A. Then i([f, C])^ = ^[^A^] on each U\. Now by C ^ 02 C gi, the 
1-cocycle (C^Ai/) ^ ^1(W,(9) is cohomologous to zero, i.e., (^uw = wv—w\ on UxOU^ 
for some U?A G fi"0(i7\, O), A G A. Then by setting 77A := £t> — C^A + ^A* A G A, we 
have a smooth function rj G C00(M)c such that 

^|c/x = Vx,        A G A. 

Then z([£, C])^ = 9[wA, v] = d([u\, v] + iyA) = drjx = drj. Hence, [£, C] = grad^ ry and 
[£,C] G f). Since gi is an ideal of go, we therefore obtain [£,£] G gi fl I) = ^2- This 
shows that Q2 is an ideal of go- □ 

Proof of (b). Let £, £' G gi. Then i(^)a; = 9IAA and 1(^)0; = du^ for some 
u\,u'x G C00(M)c on each C/A- In terms of the symplectic form a;, we consider the 
Poisson bracket 

Q;,/3 X / 

on C/A, A G A. Then ^([£5CIV — ^[^AJ^A] on each C/A- By ^g G gi, the 1-cocycles 
(C'^Ai^)? (C^Az/) ^ ^1(^5 ^)) are cohomologous to zero (where u\v := u^ — u\, uf

Xu := 
u'v — n^ on U\ D 17^), i.e., fi'uxv = wu ~w\ and Cw^ = w^ — iyA on C/A fl Uu for some 
II;A> ^A 

e H0{U\,O), A G A. Then by setting TA := ^ - £'1^ - ^A + ^AJ A G A, we 
have a smooth function r G C00(M)c such that 

Then z(K,r])^ = d[ux,u'x] = d([u\,u'x] - w'x + wx) = drx = dr. Hence [f,^] = 
grad^ r and [£, C] G f). Since gi is an ideal of go, it now follows that [£, £'] G gifll) = g2, 
as required. □ 

REMARK 6.2. In the above theorem, consider the special case where (M,a;) is 
a Kahler manifold. Then by the Hodge theory, p above is a trivial map, and hence 
go = gi- In particular, g2 is the Lie subalgebra f) of go associated to the kernel of the 
Jacobi homomorphism a : Aut0(M)-> Aut0(Alb(M)) (^ Alb(M)) (cf. [6]). 

Let £1, £2, • • •, & G I). By writing & = grad^ v*, z = 1,2,... ,£, as in (6.1), we 
define a multilinear form ^ : ®^ —> C by 

(6.3) $£(6,^2,-•■ ,&) =   I viV2--veun- 
JM 
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THEOREM 6.3. The multilinear form $e in (6.3) above can depend only on S, 
and is independent of the choice of u in S. 

Proof For each u G 5, we write to = UJ^ for some <p e C
,00

(M)R. For Vi above, 
put 

u)(t) :=u;+ (y/^l/27r)tdd(-(p), 

Vi{t) := v. + (V^I^TT) t &(-¥>),     t = 1, 2,..., £, 

for all 0 < t < 1. As in the proof of (6.1), we have & = grad^ ^(t). For each i, 
we put Vi(t) := 11^^ Vj(t), where the product in the right-hand side is taken over all 
j € {1,2,...,£} such that j ^ i. Put fi(t) := nf=1^(t) and g(t) := JMv(t)u(t)n. 
Then 

$(*) = - j (>/=l/27r) | fi(t) 95^ A ncj^)*-1 + ^ fe^) i)i(t)w(t)n 1 

= - / (v^^^ia^WAa^Ano;^-1 + ^ (ife)^) A^(t)a;(t)n i 

= - / (y/=i/2ir) | - d<pAdv(t) A no;^)71"1 + ^ (2(6)^) A t)i(t)ci;(t)n 1 

/• i 

= - /   (V^T/27r)y]zte){^A^(i)a;(0n + d(p A T>i(t)a;(t)n} = 0, 

where we used i(€i)u){t) = dvi(t) to obtain the last line. Since a;(0) = uo, we now 
conclude that the multilinear form <$>£ above is independent of the choice of LJ in 5. 
□ 

REMARK 6.4. More generally, given a complex-valued smooth function <£ = 
0(21, '" ■> ze) on C€, the function ^ : Qe —> C defined by $£(*!, •••,!£) = 
/M ^(A*^!' • • • flYt)*^71 ls independent of the choice of u in S 

REMARK 6.5. (a) Recall that the group H in the introduction is the Lie subgroup 
of Aut0(M) associated to the Lie subalgebra \) of iJ0(M,O(r1'0(M)). Then $* in 
(6.3) is regarded as an invariant polynomial in fj* for the natural coadjoint action of 
H on I}*. 

(b) If G is a compact real Lie subgroup of i7, then the associated Lie algebra % is 
regarded as a Lie subalgebra of f) by 

where each element in g is written as £R := £ + £ for some unique £ G f). We obviously 
see that the multilinear form $£ in (6.3) above, when restricted to (g^g, coincides with 
the one in (a) of Theorem B. 

For each u G 5, let cr(a;) denote the scalar curvature of UJ defined in Appendix. 
Moreover, to «S, we associate constants c and CQ as in Appendix. Recall that we fixed 
an element CJQ in 5. Then the functional S 3 to i-> coK(a;o,^) G M is an analogue 
of the K-energy map (see (A.4) in Appendix). Obviously, LJ G 5 is a critical point of 
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this functional if and only if the scalar curvature cr(u;) is constant on M. As in [19; 
(5.5)] and [10; (2.1)], the linear map Fs : f) —> C defined by 

^s(0  :=   / v&u)<T(u>)u)n =   [ v&u){a(u)-nc}un,        $ e f), 
JM JM 

is a Lie algebra character independent of the choice of a; in 5, where i>(£, a;) G C00(M)c 
is such that the equalities £ = grad^(£,a;) and fMv(^u)un = 0 are satisfied. 

For the complex Lie group C* = {£; 0 7^ ^ G C}, the associated Lie algebra is 
CC = C, where C := 2'Ky/^ltd/dt. Let S1 C C* be the maximal compact torus. 
Then 

LEMMA 6.6. Let t: C* ^-> H be a complex Lie subgroup such that some symplectic 
form LJ in S is preserved by the action of i(51). If the symplectic class of S is integral, 
then the associated character L* : C —> g satisfies Fs^+Q € Q- 

Proof. For the integral symplectic class of 5, we have a holomorphic line bundle 
L on M such that u represents ci(L). Then by Proposition 2.1, the action of ^S4) on 
M lifts to a holomorphic bundle action on L. Let no be a sufficiently large positive 
integer. For the anticanonical bundle K]^ of M, put Lj := K]^ 0 £,no+n-2j for 

integers j. Then by no >• 1, the classes ci(Lj)?0 j = 0,1,...,n, admit symplectic 
forms which are preserved by the action of t{Sl). Now, the real vector field X := C+C? 
when restricted to S1 C C*, is a generator of the lattice Z in the Lie algebra (= R) 
of S1. Hence, 

j=0 /      \   / 

where we obtained the last equality by translating, word for word, Nakagawa's mod- 
ified version [22; (3.2)] of Tian's formula to our case. □ 

Proof of Theorem C. Let 3(6) be the center of 6. Since the identity component of 
the center of K fixes some element to of 5, every element rj in 3(8) is written as grad^ TZ^ 

for some real-valued smooth function Urj on M. Then the restriction of the bilinear 
form $2 • ®2I) —> C to (8)23(6) defines a positive definite real-valued quadratic form on 
$(£). Hence, there exists a unique element £5 of 3^) such that ^(C) = ^(CJ^S) for 

all C G 3(«). Moreover, as in [9; (2.1)], ^([^cUW) = *2(*c, [ec,3(t)]) = W = 
J\s([£c?£c])- Hence, we have 

^s(0 = *2«>£s)        for all C €tc, 

Now the same arguments as in [9; (3.3)] show that, if the symplectic class of S is 
integral, then by Lemma 6.6, Remark 5.3 (c) and Remark 6.5 (b), we have exp(i/^s) = 
1 for some positive integer v, as required. □ 

Proof of Corollary D. (a) Let u be strictly extremal. Then Ad(/i)ra; G 6 for some 
he H. Further by (6.2), FsiC) = ^(C^a,) for all C G f). Hence, if C G fo then by 
setting C := Ad(/i~1)C, we have 

*2(C,&) = ^s(C) = ^s(0 = ^(C'.ru,) - ^(Ad^C', Ad^r,) = $2(C, Ad^rc). 

Thus, £5 = Ad(/i)ra;. Now by Theorem C, exp(uru) = 1 for some positive integer v. 
Then by Proposition A applied to the 51 generated by r^, both maxM{cr(u;) — nc} and 
minM{(7(a;) — nc} are rational. Since nc is rational, so are maxM a(uj) and minM <T(U;). 
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(b) If a; is a Kahler form, then the one-parameter group {exp(tra;); t G M} obviously 
sits in the compact group of the isometrics of (M,LJ). SO, we next assume that H is a 
reductive algebraic group, and it suffices to show r^ G %($). Then f) = [^c^c] ©3c(^) 
for the complexification Zc(fy) of i(fy m §- Further by 

^([ecJcl.Tc,) = Ts([lc,tc]) = W. 

together with $2([6c,6c],3c(t)) = *2(tc,[ftc,3c(t)]) = {0}, it follows that r^ € 
3c (£)• Since (7(0;) is a real-valued function, we obtain r^ €3(6), as required. □ 

REMARK 6.7. Let Mi be a Fano manifold as in [16] with an extremal Kahler 
metric in the class CI(MI)R such that Aut0(Mi) is a reductive algebraic group. Put 
M := Mi x M2 for a Kahler-Einstein manifold M2 with ci(M) < 0, while CI(M)R 

is chosen as the symplectic class of S. Then this gives a rather trivial example of 
Theorem C and Corollary D above. 

Appendix. K-energy maps. In this appendix, we generalize K-energy maps to 
complex symplectic cases. Fix a compact complex connected manifold M of complex 
dimension n with a complex symplectic form UQ of type (1,1), i.e., with a d-closed C00 

(1, l)-form UJQ with complex coefficients such that LJQ is nowhere vanishing on M. Put 
w<p '-= WQ + (\/—I/27r) ddif for each complex-valued smooth function tp G C00(M)c. 
Let Sc denote the set of all complex symplectic forms on M expressible as o;^ such 
that 

KMTV^o") G MapCM.S1) 

is homotopic to a trivial map. Hence, if u G 5c, then log(u;n/a;o) is a possibly 
complex-valued smooth function on M which is uniquely determined by u up to 
2^T^/^1Z. For each to G 5c, we put Ric(u;) := (\/=T/27r) 99logo;71, and let cr(tj) be 
the scalar curvature of tu defined by a(u)) := n Ric(cj) Aujn~'1/ujn. Put CQ := fMwn. 
Let c be the constant 

r1 / Ric(u;), 
JM 

Ao;71"1   G C, 

which is independent of the choice of 00 in 5c. For a;, a/ G 5c, there exists C £ 
C00(M)c such that u/ = a; + (>/--l/27r)dd(. As in the explicit formula of Bando 
[2] (see also [12]) for the K-energy map in Kahler cases, we can similarly define a 
functional K, : 5c x 5c —> C/V^TZ by setting, modulo V^l Z, 

K(a;,a;') 

LEMMA A.l.  The functional K satisfies the 1-cocycle conditions, i.e., for all u, 
u', u" G 5c, the following equalities hold: 

(a) K,(UJ,UJ) = 0; 
(b) tf^u/) + Kiu'iu") = /^(o;,^). 

Proof,  (a) is straightforward from the definition of c. To see (b), let 5c denote 
the set of all ip G C00(M)c such that uo^ G 5c. Then for <p, ^ G 5c with to = UJ^ and 
u/ = o;^/, 

^(cjjtc;')  = c0
1^i((^,^/) + (nH-1)   1c0 

1ncK/2((p,(p/), 
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modulo \/—IZ, where KI : 5c x <Sc —* C/A/—TCQZ and K2 : 5c x 5c —» C are the 
functionals defined by setting 

n-l 

Kite, VO := /M JM^M^ _ (^ _ ^)Ric(c) go;-1-^! , 

for all (/?, ^/ G 5c- Here, in the first identity for «i, the right-hand side is taken 
modulo yf—Yc^TL. Now, the proof of (b) above is reduced to showing the 1-cocycle 
conditions 

(A.2) «i(^^/) + «i(<^/.V//) = «i(v.^//)» 
(A.3) «2(^, ^) + ^(v'. V'O = «2(v» ^O. 

for all tp, tp', (pfl £ Sc. For simplicity, put ( = (pf — (p, (' = tp" — tp', 00 = LO^, UJ' = CJ^/ 

and a;'7 = a;^//. Then 

r r iogK7^n) vn    log^/^)   »    logKTc^   4 

/   { C Ric(a;) 53 a/1-*-V* + C' Ric^O ^ a;,n-i-1a;,,i - (C + CO Ric(a;) ^ u)71^"1^ 
JM

   I z=0 t=0 z=0 

Ric^)^"^1}^ - /  CRic^)^^"^1 J {un-uj,)YJ^
J^,i~1~J 

Since a;" — a;' = y/^-LddC and \/^-Tdd( = u' — u>, taking integration by parts, we 
now obtain (A.2) as follows: 

n—1 « n—1 

-1   Jfi 

JM i=o JM    i=o 

RicHu,"-*-1 y* -  [   \ CV - «) Ric(w) ^ o;""^1 ^ w'^"'-1^ 
•'^  ( i=l j=0 

= / C'RicMi£(w,V",-1-i-wn-<-V'i) + ^;£(w-a/)wn-<-1 cStu"*-1-* 

= 0. 
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Similarly, we obtain (A.3) as follows: 

-«2(<P, V1) - K2(v', <p") + K2(V, ip") 

JM    [ 2=0 2=0 2=0 J 
{TL Z™ 1 71 % 

i=l j=0 i=l j=l 

-1a;/Z-^//n-2 I   = 0. 
,M \   2=1^=0 2=1 j = l 

D 

Let {c^t; a < t < 6} be an arbitrary smooth path in Sc- Along the corresponding 
path in 5c, we differentiate the identity defining K(UJ,UJ'). In view of Lemma A.l, we 
obtain 

(A-4)        QI^OIUJ^) =  —^(UJ^UJ^J = CQ
1
 j   cptiaitu^-nc}^ 

where (fit = (d/dt)(pt. Hence, the functional 5c 3 OJ i—> hi(ujQ,uj) G C is a symplectic 
analogue of the K-energy map. Obviously, LJ £ Sc is a critical point of the functional 
if and only if the scalar curvature <J(UJ) is constant on M. 

REMARK A.5. For w, u' € 5c, we put x(a;,u/) := e2^^^'). Then x - Sc x 5c -* 
C* is a functional satisfying the 1-cocycle condition multiplicatively, i.e., for all CJ, a/, 
u/' € 5c, 

(a) x(a>>w) = 1; 
(b) X(a;,a;')x(^,a;'0 = x(^,^). 

Let us now assume that UQ above is a real form, and let 5 denote the set of all real 
forms in 5c. Then it coincides with the definition of 5 in Section 5. Take a smooth 
path {cpt; 0 < t < 1} in 5, and put 

and hence u/ = u + (\f—1/2^)3&(>. In Kahler cases, the following formal computation 
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allows Bando to obtain the explicit formula for the K-energy map: 
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^f-idd l   -<Pt{(7(v<pt) -nc}^t dt = V^dd /   -mptlRic^t) - CLJ^UJ™ 1 dt 
Jo Jo 

pi J pi i 

= J   -{Ric(wvt) - cu)Vt} — uj^t dt = - J   mc{uVt) — w» dt + 
n + 1   vt 

-[t=i 

^Tiw*" 

■Ric^Jw" 
nc 

^Ti""- La 
+ '/:rml{Kr'^}^dt + 

= {-Ric(a;')w'n+Ric(a;)a;n} + (n + l)_1nc(w'n+1 -a;n+1) 

= {RicH-Ri(V)K" - Ric(w)(w'n - un) + (n+l)~1nc(w"'+1-a;B+1) 
n—1 /    f N     n 

= {Ric(Lj)-Ric(uj')}uj'n - (^-^RicH^a;71-1-^ + nC[UJ '^'j^^'^ 
t=o n +1      i=o 

= V-159 
,,     log(a;'7^n) 

27r 
ncC 

- CRic(a;) ^a;71-1-^ + -^i- ^CJ^V* 

2=0 2=0 

This formal computation, as well as the action of the operator V^Tdd, should be taken 
over some 'imaginary' space sitting over M, where Bando asked why this kind of formal 
computation is valid after all. By complexifying the smooth path {ipt; 0 < t < 1}, we 
shall now give some geometric answer to this in our symplectic situation. By (A.4), 
this consequently gives another proof of Lemma A.l not only in Kahler cases, but also 
in the case where the above uo, u', u/' are pseudo-Kahler forms on M joined together 
by piecewise-smooth paths of pseudo-Kahler forms in the symplectic class. 

(A.6) Justification of the formal computation-. For the annulus D := {z G C; 1 < 
\z\ < e}, we define a real-valued smooth function s = s(z) on D by setting s := log \z\ 
for each z £ D. Then by 

S1  x D -> £>,    (e^10, z) h-> e^1^, 

the group 51 acts on D. Put ipSit :— (pst and £s := y?a>i — ips^ = ips — ipQ. For 
0 < 5 < 1, we further put 

n-l 

i=0 '   " 2=0 

and define T2(s) := JM^
8

)' ^en ri(5(z)) and T2(5(2:)) are SMnvariant real-valued 
smooth functions on D. Define a real (1, l)-form cDVait and Ric(a;v,s  ) on .D x M by 

^W = ^o + (V-l/2ir)dd(p3it, 

Ric^t) = (-V-i/2ir)ddlogu>ZMttt 
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where the operator dd is taken on the complex manifold D x M, and Cbtpait is distin- 
guished from the realtive (1, l)-form UJIP3 jt on D x M over D. Define 

n-l 
ncCs 

^^ — 27r    ^•1 "^^^'^Z^^Vo    wv-,i + ^Ti Z^a;^.oa;fP.,i' 
2=0 z=0 

where we here observe that UJIPS Q = u and UJIPSA = CJ^. For every smooth real- 
valued function (j) = (j){z) on JD whose support is a compact subset of the interior 
{z G C; 1 < \z\ < e } of D, we have (see [23] for a similar computation in a different 
context): 

/ tWV^lddrMz)) = [ nisWV^iddcKz) 
JD JD 

= i I! {LM -n ^r {^^) -c^.'} ^A ^^w} * 

- /       \<Kz) I  -{Ric(wVjit)-cu;v.it}-a;5 

= /     ^){/1-R^K.,.)4^..,d* + 

= /     <Kz) 
JDxM 

dt 

~n+l 

n + 1    ^^ 

t=i 

4=0, 

-Ric(^)t)^S)t o+r{^Ric(a;-j^^^- 
nc 1*=!' 

n + 1   *••' t=o 

^.t/r^..** 

-i g 
QiUJ<Ps,t(U<Ps,t*' 

where in the last line, we have 

/     0(*) / {^K, 

= -j     fa) f S^MUUZ.)' 
JDxM JO I v / 

=-L„i/=i35*,r{(<-)"ii<.-}^"'B 

-/ox>,
i/=i**<'»r{(<-)",s"««}'«-* 

JDxM JDxM 

Hence, in view of the original formal computation above, we obtain 

/ ^)v=i aSri(5(z)) - /     #z) ([-RkKs,()^ 1 *   + [-^T^+11    1 
JD JDXM [L Jt=0      Ln'i"i Jt=oJ 

= /        ^{-Rk^J^^+Ri^K^)^ + (n + l)-1nc(^+1-^+0
1)} 

JDxM *• } 

= /       0(z) 7=19977(5) = /       {V=ld00(z)H(*) = /       {>/=I^(Z)}J7(S) 
JDxM JDxM JDxM 

=    f {V^lddct)(z)}T2(s)=   [  <f>(z)y/=lddT2(s(z)). 
JD JD 
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Therefore, dd{T2(s(z)) —ri(s(z)) } = 0 on D. Since the function T2(s(z)) — Ti(s(z)) 
on the annulus D is S1 -invariant, it then follows that 

d2 

^2{T2(5)-r1(5)}   -   0, 0<5<1. 

On the other hand, the equality TI(0) = 0 = T2(0) obviously holds. Furthermore, by 
the same computation as in (A.4), we have ri(0) = T2(0). Hence, Ti(s) = T2(5) for all 
0 < 5 < 1. Thus TI(1) = T2(l), as required. 
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