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PARALLEL SPINORS AND CONNECTIONS WITH 
SKEW-SYMMETRIC TORSION IN STRING THEORY* 

THOMAS FRIEDRICHt  AND STEFAN IVANOV* 

Abstract. We describe all almost contact metric, almost hermitian and G2-structures admitting 
a connection with totally skew-symmetric torsion tensor, and prove that there exists at most one 
such connection. We investigate its torsion form, its Ricci tensor, the Dirac operator and the V- 
parallel spinors. In particular, we obtain partial solutions of the type // string equations in dimension 
n = 5, 6 and 7. 

1. Introduction. Linear connections preserving a Riemannian metric with 
totally skew-symmetric torsion recently became a subject of interest in theoretical 
and mathematical physics. For example, the target space of supersymmetric 
sigma models with Wess-Zumino term carries a geometry of a metric connection 
with skew-symmetric torsion [23, 34, 35] (see also [42] and references therein). In 
supergravity theories, the geometry of the moduli space of a class of black holes is 
carried out by a metric connection with skew-symmetric torsion [27]. The geometry 
of NS-5 brane solutions of type II supergravity theories is generated by a metric 
connection with skew-symmetric torsion [44, 45, 43]. The existence of parallel spinors 
with respect to a metric connection with skew-symmetric torsion on a Riemannian 
spin manifold is of importance in string theory, since they are associated with some 
string solitons (BPS solitons) [43]. Supergravity solutions that preserve some of 
the supersymmetry of the underlying theory have found many applications in the 
exploration of perturbative and non-perturbative properties of string theory. An 
important example is the AdS/CFT correspondence, also known as the Maldacena 
conjecture, which conjectures duality between the supersymmetric background and a 
certain superconformal field theory [39, 32, 51]. 

In type II string theory one investigates manifolds iV^ x M10~k, where Nk is 
a fc-dimensional space-time and M10~k is a Riemannian manifold equipped with an 
additional structure. Indeed, the basic model is a 5-tuple (Mn,g,H,§,^!), where g 
is a Riemannian metric, H is a 3-form, $ is the socalled dilation function, and \I> 
is a spinor field. The string equations, which are a generalization of the Einstein 
equations, can be written in the following form (see [48]): 

Ric* - \HimnHjmn + 2 • V?a,-$ = 0,    5(e-2*H) = 0. 

The field equations are supplemented with the so-called Killing spinor equations 

(Vg
x-{-jXJH)'^  = 0,     {2.d§-H).y  = 0. 
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Sometimes one requires that the 3-form H is closed, dH = 0, and solutions of this 
type are then called strong. The first of the Killing spinor equations suggests that 
the 3-form H should be the torsion form of a metric connection V with totally skew- 
symmetric torsion tensor T = H. Then the string equations and the Killing spinor 
equations can be written as follows (see [36]) : 

Ricv + i<J(r) + 2 • V9d§ = 0,    <J(T) = 2 • d$# J T, 

V* = 0,    (2 • d$ - T) • # = 0 . 

Ric is the Ricci tensor of the metric connection V, V9 is the Levi-Civita connection 
of the metric g and d<&# denotes the vector field dual to the 1-form d§. If the dilation 
is constant, then the string equations are equivalent to the condition that the Ricci 
tensor of the connection vanishes [36] , Ricv = 0, and the Killing spinor equations 
become 

W  = 0,    T - * = 0 . 

In particular, the spinor field is Riemannian harmonic. More general, the Riemannian 
Dirac operator Dg acts on a V-parallel spinor field via the formula 

D9y + ^T-y = 0 . 
4 

The number of preserved supersymmetries depends essentially on the number of 
V-parallel spinors. In this paper we investigate solutions of all these field equations 
in the case of constant dilation in dimensions n = 5,6,7. In dimension 7 we derive a 
topological obstruction for the existence of such solutions (Remark 5.5). 

A spinor parallel with respect to the Levi-Civita connection on a Riemannian 
manifold Mn restricts its holonomy group (see [33, 50] and [40]). In a similar way a 
V-parallel spinor field reduces the structure group of the frame bundle. Conversely, 
let us start with a (non-integrable) G-structure on a Riengiannian manifold and ask the 
question whether or not there exists a G-connection with a totally skew-symmetric 
torsion and at least one parallel spinor field. In dimension 3 the stabilizer of Spin(3) 
is trivial and therefore the connection is flat. It is well known (see e.g. [47]) that in 
this case (Ms,g, V,T) carries (locally) a structure of a compact Lie group, g is a 
biinvariant metric and V is the invariant connection with torsion given by the Lie 
bracket. In particular, on SU(2) there exists at least one V-parallel spinor. 

The 4-dimensional case was investigated in earlier papers. The restricted holonomy 
group of V should be contained in SU(2) (see [43]) and this is equivalent to the local 
existence of a HKT structure, i.e., a hyper her mitian structure that is parallel with 
respect to V (see [36]). Surprisingly, the geometry of V depends on the type of the 
parallel spinor (see [10]). If M4 is compact, then the holonomy of V is contained in 
SU(2) if and only if M4 is either a Calabi-Yau manifold or a Hopf surface (see [36]). 
We note that there exist Hopf surfaces that do not admit any (global) hyperhermitian 
structure although the holonomy of V is contained in SU(2) (see [24], [36]). These 
Hopf surfaces do not admit any V-parallel spinors (see [10]), which shows that in the 
non-simply connected compact case the holonomy condition is not sufficient for the 
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existence of V-parallel spinors. 

In higher dimensions we fix a subgroup G of Spin(n) preserving a spinor ^o as well 
as a geometric G-structure on a Riemannian manifold (Mn,g). Then 

a) we describe the set of all G-connections with totally skew-symmetric torsion 
for any geometric type of G-structures. In particular, we decide whether or 
not a G-structure admits a connection with totally skew-symmetric torsion 
T and derive a formula for the torsion; 

b) We use the parallel spinor ^o and the algebraic properties of the Clifford 
multiplication in special dimensions in order to derive the field equation; 

c) We study the space of all V-parallel spinors and compare it to the space 
of V-harmonic spinors. In particular, we decide whether or not there exist 
V-parallel spinor fields ^ such that T • ^ = 0. 

In the second and third step we need the Schrodinger-Lichnerowicz-formula for a 
metric connection with totally skew-symmetric torsion. In particular, we prove this 
formula in full generality, including the computation of the curvature term. 

We will give a complete answer in dimension n = 7 and for G2-structures. In odd di- 
mensions (almost contact metric structures) and in even dimensions (almost hermitian 
structures) we solve the first problem. However, these geometric structures reduce the 
structure group of the frame bundle only to the subgroup U(k) , which does not co- 
incide with the isotropy group of a spinor. Consequently, the connection V adapted 
to the geometric structure under consideration does not admit a V-parallel spinor 
automatically and we obtain a further curvature condition for the existence of such 
spinors. We investigate this condition and prove vanishing theorems for V-harmonic 
spinors. 

2. The curvature of connections with totally skew-symmetric torsion. 
In this section we recall some notions concerning the curvature of a metric connection 
with totally skew-symmetric torsion from [36]. Let (Mn, g, V, T) be an n-dimensional 
Riemannian manifold with a metric connection V of totally skew-symmetric torsion 
T. The torsion tensor measures the difference between the connection V and the 
Levi-Civita connection V9 : 

g(VxY, Z) = g{Vg
xY, Z) + \T{X, Y, Z) . 

Let us fix some notation. The differential of an exterior form a is given by the formula 

n 

da = ^e^AVf.a. 
2=1 

The codifferential of the form a can be calculated using either the Levi-Civita con- 
nection V9 or the connection V : 

n n 

59(a) = -^eiJVla,    <5v(a)  = -J^JVe.a. 
i=l i=l 

On the 3-form T, the two codifferentials coincide : 

59{T) = SV(T). 
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This formula is a consequence of the assumption that V has a totally skew-symmetric 
torsion tensor. Let us introduce the 4-form <J

T 

aT{X, Y, Z, V) := g{T{X, y), T(Z> V)) + g(T{Y, Z), T(X, V)) + g(T(Z, X), T(Y, V)) 

= ^(eiJTjAC^JTKX.y.Z.V). 
z i=i 

Then the exterior derivative dT of the torsion tensor T is given in terms of V by the 
following formula (see e.g. [36]) 

dT(X,Y,Z,V)  = aXYZ{(VxT)(Y,Z,V)} - (VvT)(X,Y,Z) + 2aT(X,Y,Z,V), 

where CTXYZ denotes the cyclic sum over X, Y, Z. Moreover, the curvature tensors of 
the Levi-Civita connection and the connection V are related via the formula 

R9(X, Y, Z, V) = RV(X, Y, Z, V) - ±(VXT)(Y, Z, V) + ±(VYT)(X, Z, V) 

-\g(T(X, Y),T(Z, V)) - \aT(X, Y, Z, V). 

The first Bianchi identity for V can be written in the form 

aXYZRv(x,Y,z,v) = ^T(x,y,z,y)-aT(x,y,z,y) + (Vvr)(x,y,z) 

and the difference of the Ricci tensors involves the codifferential of T : 

Ricg(X,Y) = Ric^iX^ + ^iT^X^-^giTie^XlTiY^i)). 
2=1 

In particular, the skew-symmetric part of the Ricci tensor Ric of V is given by the 
co differential of the torsion tensor only : 

Ricv(X,Y)-Ricv(Y,X)  -  -59(T)(X,Y). 

We denote the scalar curvature of V by Scalv, i.e., 

n 

ucai     :=::    y    JrC  ^62,67,67, Ci). 

3. The Schrodinger-Lichnerowicz-formula for connections with totally 
skew-symmetic torsion. Consider an n-dimensional Riemannian spin manifold 
(Mn, g, V, T) with a metric connection V of totally skew-symmetric torsion T and de- 
note by EMn the spinor bundle. The Dirac operator D depending on the connection 
V is defined by 

n 

2=1 

where ei... en is an orthonormal basis. The Dirac operator D is a formally self adjoint 
operator since the torsion of the connection is totally skew-symmetric (see [21]). In 
case of a Riemannian manifold the well-known Schrodinger-Lichnerowicz-formula 
expresses the square of the Dirac operator with respect to the Levi-Civita connection 
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by the spinorial Laplace operator and some curvature term (see [46, 14]). In the 
articles [5, 1], a generalization of this formula for connections with arbitrary torsion 
is indicated. For connections with totally skew-symmetric torsion we shall derive the 
curvature term and prove the following explicit formula : 

THEOREM 3.1. (S-L-FORMULA) Let (Mn,g,V,T) be an n-dimensional Rieman- 
nian spin manifold with a metric connection V of totally skew-symmetric torsion T. 
Then, for any spinor field ^, the formula 

3 1 n 1 
D2^ = V* W + ^-dT • * - -aT - * + 59(T) - * - V ek J T • Vefc# + -ScaF • # 

4 2 z—' 4 
/c=l 

holds, where V*V is the Laplacian ofV acting on spinors by 

2 = 1 

Proof At a fixed point p £ Mn we choose an orthonormal basis ei, ..., en such that 
(V^e^p = 0 and [e^, ej}p = —T(ei, ej)p. Then the vector field e^ is Vg-parallel in the 
direction of e^ at the point p : (Vf.ei)p = 0. We calculate 

n 

n n n 

= -^VeiVei*+ Y, Hv(ei)eJ-)ei-ei-*-53eiJr-Ve4* 

1 n 

i<j,k<l i=l 

The curvature term in the latter equation can be written in the form 

a(Rv) ■ * - ^[Ric^e,-, e*) - Ricv(efc, e,-)]^- • e^ • * + -Scalv • * , 
j<k 

where <7(i?v) is the 4-form given by 

<7(iiv)(x,y,z,y) = *XYZ{IF(X,Y,Z,V) - IFWXMZ)} . 

Using the formulas for dT as well as the formula comparing the curvature tensors R9 

and Rv we obtain 

Inserting the latter formula as well as the formula for the skew-symmetric part of the 
Ricci tensor into the expression for D2^ yields the desired formula. D 

COROLLARY 3.2. Let ^ be a parallel spinor with respect to V. Then the following 
formulas hold: 

^T.^-i(7T.^-|-i^(T).^ + TScalv.^ = 0, 
4 2 2 4 
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(^XJdT + VxTV#-Ricv(X).# = 0. 

Proof. The first formula follows directly from Theorem 3.1. We prove the second one 
by contracting the well-known formula 

n 

0 = VW =   ^ i?v(ei, ej) -ei-ej-V 

and using the formulas relating the symmetrization of the curvature tensor Rv and 
the derivative of the torsion form T. □ 

The next formula compares the action of the Dirac operator with the action of the 
torsion form on spinors. 

THEOREM 3.3. Let (Mn, g, V, T) be an n-dimensional Riemannian spin manifold 
with a metric connection V of totally skew-symmetric torsion. Then 

n 

DT + TD = dT + 59(T)-2-aT-2Y/ei-lT'Vei. 
2 = 1 

Proof. The proof is similar to the proof of Theorem 3.1. □ 

Let us apply Theorem 3.1 and Theorem 3.3 in case of a V-harmonic spinor field ^ on a 
compact manifold Mn. Since ^(T) is a 2-form, the real part of the hermitian product 
(59(T) - ^5^) vanishes. Moreover, the Dirac operator D is symmetric. Combining 
Theorem 3.1 and Theorem 3.3 we obtain the condition 

/    (ll W||2 + ](dT • *, tf) + I^r . ^ ^ + lScalv . ||$||2\   = 0 
JMn   \ 4 Z 4 / 

This formula proves the following vanishing theorem. 

THEOREM 3.4. Let (Mn,g,V,T) be a compact Riemannian spin manifold 
with a metric connection V of totally skew-symmetric torsion T. Suppose, more- 
over, that the eigenvalues of the endomorphism dT + 2 • aT + Seal acting on 
spinors are non-negative. Then any V-harmonic spinor field is V-parallel. In case 
the eigenvalues of the endomorphism are positive, there are no V-parallel spinor fields. 

4. G2-connections with totally skew-symmetric torsion. We study under 
which conditions a fixed G-structure on a Riemannian manifold admits an affine con- 
nection preserving the G-structure and having totally skew-symmetric torsion tensor. 
For this purpose we describe the different geometric types of G-structures from the 
point of view of gauge theory using a certain 1-form Y with values in the associated 
bundle of typical fibres so(ri)/Q. This approach is completely equivalent to the classi- 
fication of different geometric G-structures used in differential geometry and mainly 
based on the decomposition of the covariant derivative of the tensor related with the 
G-structure. The advantage of our approach is that the method applies even in cases 
where the G-structure is not defined by a tensor (see [15, 49]). To begin with, let 
(Mn,g) be an oriented Riemannian manifold and denote by ^{M71) its frame bundle. 
The Levi-Civita connection is a 1-form 

Z9 :T(F(Mn)) —>50(n) 
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with values in the Lie algebra so(n). Its torsion tensor vanishes. We fix a closed 
subgroup G of the orthogonal group SO(n). A G-structure on Mn is a G-subbundle 
1Z C ^(M71). We decompose the Lie algebra so (n) into the subalgebra g and its 
orthogonal complement m : 

$o(n)  = g0m . 

In a similar way we decompose the restriction of the 1-form Z9 

Z
9
\T(II) = z®r. 

Z is a connection in the principal G-bundle 1Z and F is a 1-form with values in 
the associated bundle 1Z XQ m. The different geometric types of G-structures are 
defined by the irreducible G-components of the representation Rn 0 m. An arbitrary 
G-connection Z differs from Z by an 1-form E with values in the Lie algebra 9, 

z = z^-r-fE, 

and the corresponding covariant derivative V is given by the formula 

VxF = v£y-rpo(Y) + E(X)(y). 

Since the Levi-Civita connection V^ is torsion free, the torsion tensor of V depends 
on F and S : 

T(X,y,Z) = -g(r(X)(Y),Z)+g(r(Y)(X),Z)+g(X(X)(Y),Z)-g(Z(Y)(X),Z)^ 

T is a 3-form if and only if 

g(r(Y)(X),Z)+g(r(Z)(X),Y)   = g(Z(Z)(X),Y) +g(X(Y)(X),Z) 

holds. Now we introduce the following G-invariant maps: 

$:Rn®0->Rn®S2(ir),  $(E)(X,r,Z):=^(E(Z)(X),y)+^(E(y)(X),Z), 
* :Rn ® m -> Mn ® 52(Rn), *(r)(X,y,Z) := g(r{Y)(X),Z) + g(r(Z){X),Y) . 

Consequently, we proved the following 

PROPOSITION 4.1. A G-reduction 71 c ^(M71) admits a G-connection Z with a 
totally skew-symmetric torsion tensor T if and only if^(r) is contained in the image 
of the homomorphism <£. In this case the set of all these connections Z is an affine 
space over the vector space ker($). 

We will use representation theory in order to study the diagramme 

Rn<g>m 

By splitting the G-representation Rn <g) m into irreducible components we can decide 
whether or not the image of a certain component is contained in the image of <1>. 
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In this way we characterize the geometric G-structures admitting a G-connection Z 
with a totally skew-symmetric torsion tensor. We will apply this general method to 
the subgroup G2 C 50(7). Therefore, let us recall some notions of G2-geometry in 
dimension seven. The group G2 is the isotropy group of the 3-form in seven variables 

CJ
3
 := eiAe2Ae7+eiAe3Ae5—eiAe4Ae6—e2Ae3Ae6—e2Ae4Ae5+e3Ae4Ae7+e5Ae6Ae7 . 

The 3-form a;3 corresponds to a real spinor #0 £ A7 and, therefore, G2 can be defined 
as the isotropy group of a non-trivial real spinor. We identify the Lie algebra of the 
group 50(7) with the space of all 2-forms : 

50(7)  = A2(R7)  =  Ij^^ij -ei AeA . 
i<j 

The Lie algebra #2 0^ the group G2 is given by the equations 

^12+^34+^56    =   0,      - LUis + ^24 - ^67   =   0,      LJu + ^23 + ^57   =   0, 

^16 + ^25 - ^37   =   0, Uis - UJ26 - ^47   =   0,      UJ17 + UJs6 + ^45   =   0, 

The space M7 := A7 is an irreducible G2-representation, the 2-forms A2 = A7 ® A2
4 

0^27 + ^35 - ^46    =   0 • 

^pi^odiuctun-m, tne z-torms A.   ^^ ./Y7 ® •^■14 
split into two irreducible G2 -components : 

A2:={a2eA2  :  *{LU
3
 A a2) = 2 ■ a2}  =  {XJUJ

3
  : X € R7} , 

A2
4 := {a2 e A2  :  *("3 A a2) = - a2}  = Q2 . 

The space of 3-forms A3 = A3 ® A3 0 A37 decomposes into three irreducible G2- 
components : 

A? := {t - LJ
3
  : t G R} , 

A^ — i^Aa1)   :  c^GA1}  =  {Jfj+w3   :  X € R7} , 

A3
7 := {a3 e A3  :  a3 A a;3 = 0, a3 A *u;3 = 0} . 

The representation A27 is isomorphic to the representation of G2 in the space 5$ (R7) 
of all traceless symmetric bilinear forms. 

PROPOSITION 4.2. The map  $ : R7 ® g2 -> R7 0 52(R7)   zs injective. 

COROLLARY 4.3. Le^ (M7,g,a;3) 6e an oriented, 7-dimensional Riemannian 
manifold with a fixed G2-structure UJ

3. TAen ^/iere exisfe at most one affine connection 
V such that Va;3 = 0 and the torsion tensor T is a 3-form. 

Proof. Given E E R7 (8) 02? the condition $(E) = 0 is equivalent to 

zjE(y) + yjs(z) = 0 

for any two vectors Y,Z G R7. Using the standard basis ea A ep of the Lie algebra 
5o(7) we decompose the elements E(ej) G 02 ^ 50(7)) 

s(ei)  :=      $^    w*ttiS • ea A e^ . 
l<a,/5<7 
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The condition $(£) = 0 implies u;^ = —LUaip. Consequently, E depends on 35 
parameters u;^ (l<i<a</3<7). Moreover, E(ej) belongs to the Lie-Algebra 02 
and hence we obtain seven equations for any index i = 1,2,..., 7. Altogether, these 
are 49 equations for 35 variables and a careful examination of the system yields the 
result that ujiap — 0 is the only solution. □ 

The low-dimensional GVrepresentations, their highest weights, dimensions etc. are 
listed in the following table (see [22]): 

highest weight dimension space 

(0,0) 1 A? := A0(R7) = A? 

(1,0) 7 A^:=A1(R7)=A| = A? 

(0,1) 14 02 = A?4 

(2,0) 27 A3
27 = 50

2(R7) 

(1,1) 64 A64 

(3,0) 77 A77 

We now compute the G2-decomposition of the three representations related with the 
maps \I> and <I>. 

PROPOSITION    4.4. The   following   decompositions   into   irreducible   G2- 
representations hold: 

1) R7 (g) m = A? © A£ © A?4 © A|7; 
2) M7<g)g2 = A£©Ai7©A64; 
3) R7 <g) 52(R7) = 2A^ © A?4 © A|7 © A64 © A77. 

Proof. The first decomposition is an elementary one, the second and third decompo- 
sition can be obtained using a suitable computer programme. □ 

Since the G2-map $ : R7 0 ^ is injective and the multiplicity of A| 
m 

27 
is one, we obtain 

COROLLARY 4.5. 
1) *(A;©Ai7)cIm($); 
2) #(A?4)nIm($) = 0. 

Finally, we have to decide whether or not the space ^(Ay) is contained in the image 
of $. Since the representation A7 has multiplicity two in R7 0 52(R7), we cannot use 
a universal argument is before. 



312 T. FRIEDRICH AND S. IVANOV 

PROPOSITION 4.6. ^(Aj) is contained in Im($). 

Proof. First of all we compute ^(F) for a given vector F € A7. The element in R70R7 

related to F is the 2-form (skew-symmetric endomorphism) F J LU
3
 and therefore we 

obtain 

^(r)(x,y,y) = 2^^3(r,r,e,)-a;3(e,,x,y) 
i=l 

= 2g(r, X) ■ g(Y, Y) - 2g(r, X) ■ g(X, Y). 

Suppose now that ^(Ay) C Im($).   Since $ is injective, there should exist a map 
E : A£ -> R7 ® g2 such that 

$(E(r)) = ^(r). 

The multiplicity of A7 in R7 ® ^ equals one. Consequently, E(r) is proportional to 
the map 

So(r)(F)   := prgjFAy), 

where pr^   : A2(R7) = so(7) —» ^2 is ^^e orthogonal projection. The 2-forms 

^eiJw3' - '7r7jw3 

constitute an orthonormal basis of the subspace m C so (7) and the projection is given 
by the formula 

1   
7 

Prfl2(
a2)   = a2--J2(eiJ^3^a2)-(eiJ^3)- 

i=l 

Now we compute $(Eo(r)): 

$(Eo(r))(x,y,r) = 2.5(xjprg2(rAr),y) 

2 7 

= 2 • (F A Y)(X, Y) - - Tiei J LU
3
, T A Y) • w3(ei, X, F). 

Finally, we obtain 

$(Z0(r))(X,Y,Y) = ^(r)(X,Y,Y), 

and the latter formula proves the Proposition. □ 

To summarize the previous discussion we proved the following theorem. 

THEOREM 4.7. Let (M7,g,a;3) be a 7-dimensional Riemannian manifold with a 
Gz-structure u3. The following conditions are equivalent: 

1)  The A14-component ofT is zero. 
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2)  There exists an affine connection V with totally skew-symmetric torsion pre- 
serving the G2-structure, 

VCJ3   =  0. 

In this case the connection V is unique. 

The Riemannian covariant derivative Vguj3 of the G2-structure is given by the formula 

where £3 is the differential of the representation of 50(7) in A3(R7). The G2-map of 
M7 (g) m into R7 ® A3(R7) given by the formula X (8) Y -> X <g> gs(Y)uj3 is injective 
(see [15]). Consequently, the different geometric classes of G2-structures introduced 
by Fernandez/Gray (see [11]) using the covariant derivative V^CJ

3
 can be defined via 

the algebraic type of T e A1(M7) 0 A1(M7). The condition T G A? © A^ 0 A|7 

characterizes the so-called integrable G2-structures, i.e., the G2-structures of type 
Wi 0 W4 0 Ws in the notation of [11]. Let us decompose F into its three parts: 

F = A • Id^MT) 0 0 0 r^7 . 

The A^ -part acts as a map A • Id^^7) : R7 —^ m via the formula 

(A-IdT(M7))P0   :=   A.(XJW
3). 

The component 0 e A7 is a vector field and we will use the embedding E7 c M7 ® m 
given by the equation 

1 1    7 

P(X)  :=  z.prmC9AX)  =  - ^(/3 A X.e, J a;3) • (e* J a;3). 

The third component F^ £ A27 is a 3-form defining a map F^ : M7 —> m by the 
formula 

1 1   7 

TITPO  ==   2-prm(Xjri7)  =  - ^(X J F^e^ J a,3) • (e, Ja;3). 

We describe the action £3(a2) of a 2-form a2 G A2(R7) = 50(7) on the form a;3. 
Suppose that the projection of a2 onto the space A2 is given by a vector Z £ R7, 

prm(a2)  =  ZJu3. 

Then the representation gs(a2) acts on the 3-form CJ
3
 by the formula (see [19]) 

g3(a
2){LJ3)   =  - 3-(ZJ*a;3). 

Consequently, we obtain a formula for the covariant derivative Vguj3 involving the 
function A, the vector field ft as well as the 3-form F^: 

A 7     1 1 
VW  =  - j' (X J^UJ

3
) -J2{jP AX + -X JTl^eiJu;3) - (aJ^uj3), 

2 = 1 
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Now we can express the differential diu3 and the codifferential 5
9
(UJ

3
) of the 3-form 

by F. For example, we have 

7 7 

The map 

7 

rl7 GAl7\—> 53 (ei J r27' ei J ^J ' (ei J (e»J *a;3)) G A2(E7) = A? © A2
14 

is obviously trivial and the map 

7 

/? G R7 i—> X! ^ A ei'fii J ^^ * (e-?' J (ei J *a;3)) € A2
(
R7

) = A7 © A14 

must be proportional to the map ft —> /? Jo;3 since the multiplicity of the 7-dimensional 
component in A2(R7) is one. Computing the constant we obtain 

7 

^{ftAej.eiJu^'iejJieiJ^u3))  =  -4-(/?Ja;3) 

and, finally, 

59 (OJ3)   =  -ftJu3. 

We handle the differential da;3 in a similar way. Using again that the multiplicities of 
R7 and A37 in the GVrepresentation A4(R7) are one we verify the idendities 

7 

53(ejjri7,eiJa;3).(eiA(eiJ*a;3))  =  - 2 • (*r3
7), 

i,J=l 

7 

Y^(fthej,ei Jco^-icj Afe J *CJ
3
))  =  -3-(/?Aa;3). 

2,.7 = 1 

Then we obtain the formula 

7 3 
d^3  =  ^eiAVf^o;3  -  -A • (*u;3) + *r3

27 + - • (ft A c^3). 

We compute now the 1-form S(r) G R7®^ defined by the condition $(E(r)) = *(r). 
Since *(A • Id) = 0 we have S(A • Id) = 0, i.e., E(r) does not depend on the A? -part 
of T. The 1-form *(r) with values in 52(R7) is given by 

^(r)(x,y,y) = 2-g(r(Y)(x),Y) = p(xjprm(yjr3
7 + i/?Ay),F). 

On the other hand, let us introduce the map E : A7 0 A27 —> R7 0 02 given by the 
formula 

E(r)(y) := -i-pr02(yjri7-i/3Ar). 
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Proposition 4.6 and a direct calculation yields that E(r) is indeed the 1-form with 
values in the Lie algebra 02 corresponding to F: 

$(Z(rl7))(X,Y,Y) = -g{XJW92(Yjrl7),Y) 

= -(YJ rl7)(X, Y)+g(XJ prm(Y J1^), Y) 

= *(ri7)(x,y,y). 

We introduce a new 1-form T*{X) := T(X) - S(r(X)), 

r(X)  =  A.(xjw
3) + i.(Xjri7) + ^prm(/3AX)-i-(/3AX) 

and remark that the torsion form T is given by 

T(X,Y,Z) =  -g(T*(X)(Y),Z)+g(r(Y)(X),Z). 

Consequently, we obtain a formula for the torsion form T, 

T = -^.w
3-r!7 + 2>, 

where the 3-form Tp is defined by the equation 

WX, y, Z) := | • (prm(/? A y)(X ^) - prm(/3 A X)(Y, Z)) 

+i • (^(/3, Y) • ^(X, Z) - 0(0, X) • 5(y, Z)) . 

The map 0 G M7 i—> T^ G A3(R7) must be a multiple of the map /3 i—> /3 J *a;3 

since the multiplicity of R7 in A3(R7) is one. Computing algebraically the constant 
we obtain the equation 

Tp  =  -l-OSJ*.;3). 

We thus computed the torsion form of the unique connection preserving the G2- 
structure: 

T   =   _^.w3_r37_l.(/jJ^3)_ 

Using the equations for the exterior differential and the codifferential of the form u3 

we can substitute the function A as well as the 3-form P^: 

1 3 
A  =  -- .(dcj3,*u;3),    rl7 =  *dcj3 + A-a;3--*(/?ACJ

3
). 

For any vector /3 we have 

*(PAUJ
3
)  =  -(/3J*a;3). 

Let us summarize the result. 
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THEOREM 4.8. Let (M7,g,LU3) be a 7-dimensional G2-manifold of type A?® A^e 
A27. The torsion form of the unique affine connection V preserving the structure with 
totally skew-symmetric torsion is given by the formula 

T =  - • (du3, *a;3) • CJ
3
 - *duj3 + *(/? A CJ

3
) . 

The vector field p as well as the differential and the codifferential of the 3-form UJ
3 

are related by 

59(LU3)   =   -(pJcj3),     dcu3   =   ^•(^3,*a;3).(*cj3) + *r^ + ^-(PAu3) . 

The particular case T = A • Id?^7) corresponds to nearly parallel G2-structures. In 
this case, the Riemannian manifold (M7,g) is Einstein, the parameter A is constant 
and related to the scalar curvature of M7 (see [19]). 

COROLLARY 4.9. Let (M7,g,u3) be a 1-dimensional Riemannian manifold with a 
nearly parallel G2-structure (F = A • Id). Then there exists a unique affine connection 
V such that 

Vo;3  =  0    and    T is a 3-form. 

The torsion tensor is given by the formula 6 • T — (dcu3, *CJ
3
) • LU

3
. T is V-parallel and 

coclosed, VT = 8T = 0. 

COROLLARY 4.10. Let (M7,g,Lj3) be a 7-dimensional nearly parallel G2- 
manifold. Then the triple (M7,g,T* := 3 • T) is a solution of the string equations 
with constant dilation: 

mc%--AT*mnT;mn = 0,   ^(r*) = 0. 

A cocalibrated G2-stiuctuie is defined by the condition that a;3 is coclosed, 59(u)3) = 0. 
Equivalently, F depends only on a function A and on a 3-form F^ of type A3

7, 

F - A.id + r3
7. 

The differential as well as the torsion form T of cocalibrated G2-structures are given 
by the formulas: 

du3  =  -A-(*a;3) + (*r|7),    A =  - - • (du3, *u;3), 

7 7 
T =  -(*duj3)- -- A-o;3,    c/*r =  ---dXAxuj3 . 

In particular, T is coclosed if and only if A is constant. This occurs, for example, if 
the G2-structure is of pure type A? or A37. 

Another distinguished class is A7 © A3
7. The torsion is given by 

T =  - *dj3 + *(/?Aa;3). 
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Examples of this type were presented and discussed in connection with type IIB 
supergravity solutions in [26] where this expression with a non trivial /? was first 
given, though by a different approach, making use of both Killing spinor equations.1. 

The last class of G2-structures we want to emphasize is A? 0 Ay. Then (3 is a closed 
1-form and we obtain 

^(o;3)  =  -/?Ju;3,    du;3  =  -A-(*a;3) + ^.(/3Aa;3), 

T =  -^•^3 + j*(/?Au;3)  =  - y-a;3- *dj3 + *(/? Aa;3). 

In particular, if A = 0, then the torsion form is coclosed, 5g(T) = 0. 

5. The V-Ricci tensor of a G2-structure. We consider a G2-manifold 
(M7,<7,a;3, V) of type A? 0 Ay © A27 and its unique connection V preserving the 
G2-structure. The totally skew-symmetric torsion tensor T is a 3-form of type 
A3 0 A3 0 A27. For any vector field X the covariant derivative VxT is again a 
3-form of type A3 0 A3 0 A37. Moreover, the V-parallel 3-form CJ

3
 defines a V-parallel 

spinor field #0 (see [19]). The Clifford products (V^T) • #0 and {X J dT) • #0 depend 
only on the (A3 0 A3)-part of the corresponding 3-forms: 

1 1   7 

7r3(VxT)   :=  -.(VxT,cc;3).a;3,    7r3(VxT)   :=  - ^(VxT,e, J *a;3) • (e, J *a;3), 
i=l 

1 1 7 

Trl(XJdT) := -■(XJdT,u)i)-u3,    ir%{XJdT) := - ^(XJdT,eiJ*w3)-(eiJ*w3). 
2=1 

The second equation of Corollary 3.2 becomes 

i(X J dT) • #0 + (VxT) • #0 - Ricv(X) • tto = 0. 

Using the algebraic formulas 

(XJ*a;3).#o  = 4-X-*o,    ^3 • ^0  =  - 7 • #0 

valid for the special spinor ^0 related to a;3 we conclude 

7 

2 

1    7 

(XJdT,us) = -2.(VxT,a;3),    Ricv(X) =  - ^(XJdT + 2. VxT.e* J+CJ
3
)-^ 

i=l 

The relation between the Ricci tensors 

Ricv(X)  = Ric^pO + \J2 3Cr(ei,.X:),T(eJ-,ei)) • e,- - | ^^(T)^,^) • e. 

1We thank J. Gauntlett for drawing our attention to their work, in particular to the possible 
class Ay which was missing in a preliminary version of our paper. 
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allows us to compute the Riemannian Ricci tensor. We summarize all the derived 
results in one theorem. 

THEOREM 5.1. Let (M7,g,uj3,V) be a G2-manifold of type A? © A£ 0 A|7 and 
its unique connection V preserving the G2-structure. The Ricci tensor Ric is given 
by the formula 

i    7 

Ricv(X)  =  -J2(XjdT + 2-^xT,eiJ^u3)-ei . 
2 = 1 

T is a solution of the equation 

Ri4 - ^TimnTjrnn -^{eiJdT + 2- V^T, e,- J *^3) - ^(T)^  = 0 , 

and satisfies, for any vector X, the condition {XJ dT^cu3) = — 2 • (VXT,UJ
3
). There 

exists a V-parallel spinor field \I/o such that the 3-form cu3 and the Riemannian Dirac 
operator D9 act on it by 

^3.^0  =  _7.^0,    D9^)  =  _3   r.$0  =  _I.A.^o + 4-(£J*a;3)-^o. 
4 o ID 

EXAMPLE 5.2. Consider the case of a nearly-parallel ^-structure (F = A • IdT(M7))- 
The torsion form is proportional to the form of the G^-structure, 

A A2 

T =  --.u3,    duo3  =  -A-(*a;3),    dT =  — . (*a;3). 

Then we have 

27 
Ricf,- = —■\2-5ij,    jTimnTjmn = —^-kj,    ^eiJdT.^W) = f^-A2-^- 

27 1 3 1 24 
— •A   'Oij,       -J-imn-Ljmn   —   3r*A   -d^,       — (Cj Jtti , Cj J *a;  J   =   — • 

The formula of Theorem 5.1 for the Ricci tensor generalizes the well-known fact that 
a nearly-parallel G2-nianifold is an Einstein space (see [19]). 

We consider now only the cocalibrated case, (3 = 0. Then the covariant derivative 
VxT is a 3-form of type A3 0 A27 and the formula for the Ricci tensor does not 
contain the Vx^F-term. If M7 is a compact, cocalibrated G2-manifold we can apply 
the estimate for the first eigenvalue of the Riemannian Dirac operator (see [13]) 

/-||^o||2-vol(M7).Scal^n< /   (Z?'*o,I>*tto), 
4 ' O JM7 

where Scal^n denotes the minimum of the Riemannian scalar curvature. Using the 
equation 8 • D9

(^Q) = — 7 • A • ^0 and the definition of the function A we obtain an 
Z/2-lower bound for (dLU3,*LU3). 

THEOREM 5.3. For any compact, cocalibrated G2-Tnanifold the following inequal- 
ity holds 

3 
•vol(M7).ScalLn< /   (<**>*,> 

JM7 
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Equality occurs if and only if the cocalibrated G2-structure is nearly parallel. If the G2- 
structure is of pure type A^, then the minimum of the scalar curvature is non-positive. 

The formula of Theorem 5.1 computes in particular the Ricci tensor and the scalar 
curvature of the connection V : 

1 1   7 

Ric?   =   -(eiJdT.ej J*CJ
3
),    Scalv  =  - ^(e* J dT, e* J *u;3). 

2 = 1 

A cocalibrated G2-structure (A/^CJ
3
, V, ^0) together with its canonical connection 

and spinor field solves all of the three string equations Ricv = 0, V^o = 0, T • ^0 = 0 
if and only if the G2-structure is geometrically flat (A = 0 = T). Therefore we study 
the first of these equations only. 

THEOREM 5.4. Let (M7,^,^3) be a 7-dimensional Riemannian manifold with a 
cocalibrated G2-structure. The following conditions are equivalent: 

1)  The Ricci tensor Ric    vanishes. 
2)- The torsion form T is closed and coclosed, dT = 0 = 69(T). 
3) A is constant and the G2-structure a;3 satisfies the equation 

7 1 
d*duj3 + - - X-duj3  = 0    A  =  ---(duj3,*uj3). 

Moreover, in this case we have 

( * dcu3 + - • A • u;3) A du3  = 0 . 

If the G2-structure is of pure type A^ or A3
7 and Ricv vanishes, then the Riemannian 

manifold M7 is a Ricci flat space with holonomy G2 - 

Proof. The condition Ricv = 0 means that X J dT is orthogonal to the subspace 
{Y J *a;3} = A7. Moreover, X J dT is orthogonal to a;3 and therefore it belongs to 
the subspace A27. Consequently we obtain for any vector X the conditions 

{XJdT)f\u3  = 0    and    {XJdT)A*LU3  = 0. 

The subspace of all 4-forms satisfying these algebraic equations is a GVinvariant 
subspace of A4 and it is not hard to see that this space is trivial, i.e. we conclude 
that dT = 0. Since 59(T) is the antisymmetric part of the Ricci tensor Ricv, the 
codifferential of the torsion form must vanish, too. These arguments prove the 
equivalence of the three conditions in the Theorem. The torsion form is of type 
A? © A27 and we differentiate the equation T A oo3 = 0. Then we obtain the last 
equation of the Theorem. □ 

REMARK 5.5.  The cocalibrated G2-structure (M7,g,uj3, V) defines a (homoge- 
neous) solution to the string equations with constant dilation 

Ric?,. - \TirnnTjrnn  = 0,    59(T)  = 0 

if and only if a;3 is a solution of the cubic equation 

d * duo3 + - • A • du3  = 0, 
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and 7-A = — (du3, *a;3) is constant. In this case the torsion form is closed and coclosed. 
In particular, if Mr is a non-flat G2-structure, we obtain a necessary topological 
condition: 

i73(M7;Z)  ^  0. 

We have not succeeded in constructing any cocalibrated G2-structure satisfying this 
non-linear equation. 

THEOREM 5.6. Let (M7,g,uj3,V) be a 7-dimensional compact nearly parallel 
G2-manifold and V be the unique G2-connection with totally skew-symmetric torsion. 
Then every V-harmonic spinor ^ is V-parallel. Moreover, the space of V-parallel 
spinors is one-dimensional. 

Proof The Dirac operator D is selfadjoint. Let M7 be compact and consider a 
V-harmonic spinor, D^f = 0. Then Theorem 3.3 implies 

i=l JM7 

jr-Ve^,^) = 0, 

since dT = 2 • aT holds in case of a nearly-parallel structure. Using the latter equality 
as well as the Schrodinger-Lichnerowicz formula we obtain 

/    fl|V^||2 + i(rfT.^,^) + iscalv||^||2)   = 0. 
JM

7
 v 2 4 / 

The 4-form *6J3 acts on spinors as a symmetric endomorphism with the eigenvalues 
+1 and —7. The result follows now from the estimate 

i(dT.#,tf) + iscalv||#||2> (i.24.A2(-7) + i.48-A2.7)||^||2  = 0. □ 

REMARK 5.7. Let us discuss the result from the point of view of the spectrum of the 
Riemannian Dirac operator. The first eigenvalue of the Riemannian Dirac operator 
on a compact, simply connected nearly parallel manifold (M7,g,u;3, V) is 

1     7'R        7-A 

(see [13]). Here we have constructed a V-parallel spinor 

Wo  -  V^o-^-A-(XJa;3).tfo  = 0. 

Let us compute the Riemannian Dirac operator : 

D9$o- IT-A-CJ
3
 .tfo  = 0. 

The endomorphism u3 acts ^0 by multiplication by —7. Therefore we obtain 

D^o = -|-A-*o, 

i.e. the V-parallel spinor field on M7 is the real Killing spinor on M7. In this sense 
the V-parallel spinors on (non-nearly parallel) cocalibrated (^-structures generalize 
the Killing spinors. 
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6. Examples. Denote by H(3) the 6-dimensional, simply-connected Heisenberg 
group and consider the product M7 := H(3) x R. There exists a left invariant metric 
and an orthonormal frame ei, ..., 67 such that the corresponding 3-form a;3 defines a 
cocalibrated GVstructure of pure type A27 (see [12]). Indeed, the exterior differentials 
are given by the formulas 

dei  = de2  = de^  =  des  = dej  = 0 , 

de^  =  ei A e64-e3 A 67,    de^  =  ei A 63 — CQ A 67 

and an easy computation yields the following formula for the differential 

du3  = ei A 62 A 63 A 64 + 62 A 64 A ee A 67 + ei A 62 A 65 A ee — 62 A 63 A 65 A 67 . 

We see that dco3 A u3 = 0, dw3 A *a;3 = 0, i.e., the G2-structure is of pure type A27. 
The torsion form T = — * du3 equals 

T  =  — (65 A ee A 67 — ei A 63 A 65 + 63 A 64 A 67 + ei A 64 A ee) 

and its differential is given by 

dT =  - 4 • ei A 63 A 66 A 67 . 

The Ricci tensor 2 • Ricv(X, Y) = (X J dT, Y J *a;3) is a diagonal matrix 

Ricv  = diag(-2, 0, -2, 0, 0, -2, -2) 

and the scalar curvature becomes negative, Scalv = —8.   The symmetric tensor 
TimnTjmn is of diagonal form too, 

TimnTjmn  = diag (4, 0, 4, 4, 4, 4, 4), 

and thus we obtain the Riemannian Ricci tensor 

1, 
4" 

Ricf,-   =   -JimnTjmn + Ric^   =   diag (-1, 0, -1, 1, 1, -1, -1) . 

Now we study the V-parallel spinors. First of all we need the 4-forms 

1 1 
-dT+-crT — —eiAe3Ae6Ae7 + (e3Ae4Ae5Ae6 —ei Ae4Ae5Ae7 —eiAesAeeAey), 
4r Z 

3 1 
-dT—-aT = -3eiAe3Ae6Ae7-(e3Ae4Ae5Ae6-eiAe4Ae5Ae7-eiAe3Ae6Ae7). 

LEMMA 6.1. 

1) The A-form dT/A + aT/2 acts in the spinor bundle as a symmetric endomor- 
phism with eigenvalues (2, —4, 2, 0, 2, 0, 2, —4). 

2) T/ie 4-/orm 3 • dT/4 — aT/2 acts in t/ie spinor bundle as a symmetric endo- 
morphism with eigenvalues (2, 0, 2, —4, 2, —4, 2, 0). 
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The proof of Lemma 6.1 is an easy computation in the spin representation of the 
7-dimensional Clifford algebra. 

COROLLARY 6.2.   There are four V'-parallel spinor fields on M7.   The torsion 
form acts trivially on any of these spinors, T • ^ = 0. 

Let G be a discrete group of isometries acting on M7 and preserving the G2-structure 
a;3. Then M7/G admits a G2-structure of type A27. 

COROLLARY 6.3. If M7jG is a compact manifold and ^ is V-harmonic, then 

6- /       ll^f  >   /       ||W||2 . 
JM

7
/G JM

7
/G 

Proof. Combining the Schrodinger-Lichnerowicz formula and Theorem 3.3 we obtain, 
in case of a V-harmonic spinor, the equation 

JM7  (11 WII
2
 + i^T • *' *) + \^T • *> *) + iScalV • II*II

2
) = 0 • 

Since Seal    = — 8, the proof follows directly by Lemma 6.1. □ 

We now discuss a second example. The product M7 = N6 x R1 of R1 by a 3- 
dimensional complex, solvable Lie group iV6 admits a left invariant metric such that 
the following structure equations hold (see [9]): 

dei   = 0,    de2  = 0,    de?  = 0 , 

de^  =  ei A 63 — 62 A 64,    dei  =  e^ A 63 + e\ A 64 , 

des  =  —ei A 65+ 62 A ee,    de§  =  — 62 A 65 — ei A ee . 

A computation of the exterior products yields the formulas : 

d * cu3   =  0,     dej3   =  2 • ei A 63 A 64 A 67 — 2 • ei A 65 A ee A 67 . 

In particular, the corresponding G2-structure is cocalibrated and of pure type A27, 

*dLU3 A CJ
3
  = 0,     *dLU3 A *u;3  - 0 . 

The torsion tensor T of the connection associated with the G2-structure is given by 

T = 2-62 A65 Ae6-2-e2 A63 A64,    dT = -4-ei A62 A65 Aee — 4-ei A62 A63 A64 . 

We compute the scalar curvature Seal    = —16 of the connection V and the 
4-forms 

3 1   T -dT a     =  - 3 • ei A 62 A 65 A ee - 3 • ei A 62 A 63 A 64 + 2 • 63 A 64 A 65 A ee , 
4 2 

1    1 
-dT + -aT  =  - ei A 62 A 65 A ee - ei A 62 A 63 A 64 - 2 • 63 A 64 A 65 A ee . 
4    2 
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LEMMA 6.4. 
1) In the spinor bundle the 4-forms dT/A + aT/2 acts in the spinor bundle as a 

symmetric endomorphism with eigenvalues (4, 4, —2, —2, —2, —2, 0, 0). 
2) The 4-form 3 • dT/4 — crT/2 acts as a symmetric endomorphism with eigen- 

values (4, 4, 2, 2, 2, 2, —8, —8) m t/ze spinor bundle. 
COROLLARY 6.5.    There are two V-parallel spinor fields on M7.   The torsion 

form acts trivially on any of these spinors, T • * = 0. 

Let G be a discrete group of isometries acting on M7 and preserving the G2-structure 
CJ

3
. Then M7/G admits a G2-structure of type A3-. 

COROLLARY 6.6. If M7/G is a compact manifold and \I/ is V-harmonic, then 

6- /       ||*||2  >   /        ||W||2 . 
JM7/G JM

7
/G 

We would like to mention that any hypersurface M7 C R8 admits a cocalibrated G2- 
structure (see [11]). This structure is of pure type A? if and only if the hypersurface 
is umbilic. The pure type A27 occurs if and only if the hypersurface is minimal. 
The function A is proportional to the mean curvature of the hypersurface (see [11]). 
Moreover, it turns out that in the decomposition 

T =  -i.A.cj3-r3 

6 27 

of the torsion tensor T the 3-form F^ corresponds to the traceless part of the second 
fundamental form of the hypersurface via the GVisomorphism ^(M7) = A27. The 
torsion form is coclosed for hypersurfaces of constant mean curvature. In this case we 
obtain solutions of the equations in Theorem 5.1 such that 59{T) = 0. 

7. Sasakian manifolds in dimension five. The case of the group G2 and 
dimension n = 7 discussed in detail fits into a more general approach described in 
the introduction. We study two further natural geometric structures: almost metric 
contact structures and almost hermitian structures. To begin with, let us consider 
the case of 5-dimensional Sasakian manifolds. 

PROPOSITION 7.1. Every Sasakian manifold (M2fc+1,g,£,77, cp) admits a unique 
metric connection with totally skew-symmetric torsion preserving the Sasakian struc- 
ture : 

V£ = Vry = Vc/? = 0 . 

The connection V is given by 

The torsion form T is V-parallel and henceforth coclosed, 89(T) = 0. The 4-form 
2 • aT coincides with dT, 

2-a7  = dT = drjAdr). 
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Proof. The existence of the connection has been noticed in earlier papers (see 
e.g. [38]). The uniqueness will be proved in a more general context in Theorem 8.2. □ 

We now consider a 5-dimensional Sasakian manifold M5 and orient it by the condition 
that the differential of the contact form is given by 

dr) = 2 • (ei A 62 + 63 A 64) . 

Furthermore, we fix a spin structure. The endomorphism 77 A drj = 2 • (ei A 62 + 63 A 
64) A 65 acts in the 5-dimensional spin representation with eigenvalues (—4, 0, 0, 4). 
Consequently, the spinor bundle splits into two 1-dimensional and one 2-dimensional 
V-parallel subbundles. The Clifford multiplication by £ preserves this decomposition 
of the spinor bundle and acts on the 1-dimensional bundles by multiplication by z, 
on the 2-dimensional bundle by multiplication by — i. Suppose that there exists a V- 
parallel spinor fy. Then one of the subbundles under consideration admits a V-parallel 
spinor 

V9
x^ + hxjVAdrj)'^ = 0 

and the Riemannian Dirac operator for this spinor is given by the formula 

3 
D9^+-(rjAdrj)'^ = 0 . 

Let us first discuss the case that ^ belongs to one of the 1-dimensional subbundles 
defined by the algebraic equation £ • ^ = z • \I>. In this case we apply Corollary 3.2 

i . (X J dT) - * - Ricv(X) - * = 0 

as well as the following algebraic lemma. 

LEMMA 7.2.   The spinor ^ = (1, 0, 0, 0) or (0, 0, 0, 1) belongs to the kernel of 
the endomorphism 

5 

/ "ijk ' ^i ' 6j ' 6j   1   /     %i ' 62 

l<i<j<k<5 i=l 

in the 5-dimensional spin representation if and only if the following equations hold : 

Xl    =   -£234,      ^2   =   £l34,      £3   =   -£l24,      £4   =   *123>      £5   =   0, 

^125   =   -£345>      ^235   =   — £l45 5      ^245   =   ^135 • 

Using these formulas we conclude Ric = diag(a, a,a,a,0), where 2 • a := 
dT(ei, 62,63,64) = dr) A dr](ei,e2,63,64) = 8. In particular, we obtain 

Ric^ - diag(2, 2, 2, 2, 4)  = Ric^ - -TirnnTjmn  = Ricv , 

i.e., Ric9 = diag(6, 6, 6, 6, 4). A proof similar to the proof of the existence of Killing 
spinors on Einstein-Sasakian manifolds (see [18]) shows that this condition is the only 
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integrability condition for V-parallel spinors in the 1-dimensional subbundles. The 
endomorphisms act in the spinor bundle 

^dT - la7 + iscalv  = 4.(ei-eo.e3-64 + 1)  =  ~dT + -aT + iscalv 

4 2 4 " 4 2 4 

with eigenvalues 0 and 4. Corollary 3.2 and Theorem 3.3 yield 

THEOREM 7.3. Let (M5,#,£,77, ip) be a simply connected 5-dimensional Sasakian 
spin manifold and consider the unique linear connection V with totally skew- 
symmetric torsion preserving the Sasakian structure. There exists a V-parallel spinor 
in the subbundle defined by the algebraic equation £ • ^ = i • \I/ if and only if the 
Riemannian Ricci tensor of M5 has the eigenvalues (6, 6, 6, 6, 4). A V-parallel 
spinor of this algebraic type is an eigenspinor of the Riemannian Dirac operator, 
D9^ = ±3 • \I/. In case M5 is compact any V-harmonic spinor ^ is V-parallel. 

EXAMPLE 7.4. Sasakian manifolds with the described form of the Ricci tensor 
can be constructed - for example - as bundles over 4-dimensional Kahler-Einstein 
manifolds with positive scalar curvature. Indeed, consider a simply connected 
Kahler-Einstein manifold (N4,J,g*) with scalar curvature Seal* = 32. Then there 
exists an 51-bundle M5 —> iV4 as well as a Sasakian structure on M5 such that the 
Ricci tensor has the eigenvalues Ric5 = diag(6, 6, 6, 6, 4) (see [20]). More general, 
the Tanno deformation of an arbitrary 5-dimensional Einstein-Sasakian structure 
yields for a special value of deformation parameter examples of Sasakian manifolds 
satisfying the condition of Theorem 7.3 (see Example 9.3). The Einstein-Sasakian 
manifolds constructed recently in [6] admit V-parallel spinors with respect to a 
Tanno deformation of the Sasakian structure. 

We discuss the case that the V-parallel spinor field ^ belongs to the 2-dimensional 
subbundle defined by the algebraic equation drj • ^ = 0. A spinor field of this type is 
a Riemannian harmonic spinor. Let us again compute the Ricci tensor Ricv: 

LEMMA 7.5. The spinor ^ = (0, 1, 0, 0) belongs to the kernel of the endomor- 
phism 

5 

/ v      tijk ' ei • Cj ' Cj -f- y ^ Xi ' 6^ 

l<i<j<k<5 2=1 

in the 5-dimensional spin representation if and only if the following equations hold : 

Xl    =   £234,      £2    =   -^134,      £3   =   *124,      #4   =    -ti23,      £5    =   0, 

£l25   =   ^345,      ^235    =   £l45,      ^245   =   — ^135 • 

In this case we obtain 

Ricv  = diag(-4, -4, -4, -4, 0),    Ric^  = diag(-2, -2, -2, -2, 4) . 

We compute the endomorphisms acting in the spinor bundle : 

^-dT - laT + iscalv   = 4 • (ei • e2 • e3 • e4 - 1)  =  idT + i(7T + ^Scal^ 
4 2 4 4 2 4 
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The Clifford product ei • 62 ■ 63 • 64 acts in the 2-dimensional subbundle of the spin 
bundle as the identity. Corollary 3.2 and Theorem 3.3 yield 

THEOREM 7.6. Let (Mb,g,{;,r},(p) be a 5-dimensional Sasakian spin manifold 
and consider the unique linear connection V with totally skew-symmetric torsion pre- 
serving the Sasakian structure. If there exists a V-parallel spinor in the subbundle 
defined by the algebraic equation drj • ^ = 0, then the Riemannian Ricci tensor of M5 

has the eigenvalues (—2, —2, —2, —2, 4). Any V-parallel spinor in this 2-dimensional 
subbundle satisfies the equations 

Vftf = 0,    Va
x* = ±<p(X)-Z.* = -±tp(X).*,    dri-V = 0. 

In particular, it is harmonic with respect to the Riemannian connection. Any 
V'-harmonic spinor ^ on a compact manifold M5 satisfying the algebraic condition 
drj • fy = 0 is V-parallel. 

EXAMPLE 7.7. In M5 we consider the 1-forms 

d  =  --ctei,    62  =  --dyi,    63  =  7: ' ^    e4  =   9 'dy2' ' 

65  = ^ = 2 ' ^ ~ yi ' dXl ~ y2 ' dX2^' 

We obtain a Sasakian manifold (see [4]) and it is not hard to see that it admits 
V-parallel spinors of type dr] • $ = 0. The Sasakian structure arises from left invariant 
vector fields on a 5-dimensional Heisenberg group. 

Sasakian manifolds with V-parallel spinors of type F • ^ = 0 may be constructed as 
bundles over the 4-dimensional torus. Indeed, suppose that the Sasakian structure 
is regular. Then M5 is a 51-bundle over JV4. The spinor field \I/ is projectable and 
induces a parallel spinor field #* in the negative spinor bundle £-(iV4) over iV4 (see 
[41]). Consequently, iV4 is a selfdual, Ricci-flat Kahler manifold. On the other hand, 
the endomorphism <p projects too and we obtain a second integrable, but in general 
not parallel positive complex structure. There is only one possibility for TV4, the torus 
T4. In a forthcoming paper (see [17]) we will study these V-parallel spinor even for 
normal almost contact metric structures in more details. In particular it turns out 
that the Example 7.7 is (locally) the only Sasakian space with V-parallel spinors of 
type dr) • ^ = 0. 

8. Almost contact connections with totally skew-symmetric torsion. 
Let us discuss the latter results from a more general point of view and consider 
an almost contact metric manifold (M2k+1,g,t;,r},(p), i.e., a Riemannian manifold 
equipped with a 1-form 77, a (l,l)-tensor cp and a vector field £ dual to 77 with respect 
to the metric g such that the following compatibility conditions are satisfied (see [4]): 

7j(0 = 1,    <p2 = -Id+7^,    gteWMY)) = g(X,Y)-Ti(Xyri(Y),    <p{Z) = 0. 

Let us introduce the fundamental form F{X,Y) := g(X)cp(Y)) as well as the 
Nijenhuis tensor 

N(X,Y)  :=  [<p{X)MY)] + <f?[X,Y]-<p[<p(X),Y\-<p[XMY)]+dri(X,Y)-t, 
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N2(X,Y)  := dr,{<p(X),Y) + dT,(XMY)). 

We recall some notions describing the different types of almost contact metric struc- 
tures. If 2 • F = drj, then we have a contact metric structure, if JV = 0, we have a 
normal contact structure. A K-contact structure is a contact metric structure such 
that the vector field f is a Killing vector field. If the structure is normal and K- 
contact, then it is a Sasaki structure (a complete classification of almost contact 
metric structures is presented in [2, 7, 8]). The Nijenhuis tensor of type (0, 3) is given 
by N(X,Y,Z) = g(N(X,Y),Z). We have the following general identities [4, 7, 8]: 

2 • g((V9
x<p)(Y)y Z) = dF(X, <p{Y)MZ)) ' dF{X, Y, Z) + N{Y, Z, <p{X)) 

+T1{X) • N2(Y, Z) + r,{Z) ■ drjiviY), X) + r,(Y) • dr,(X, <p(Z)) , 

9((V9xV)(Y)> Z) + 9{{V9
x<pmY)), <p{Z)) = V(Y) • (?&)&&) 

-Tl(Z) ■ (Va
xV)(<p(Y)) , 

g((V9
xV)(v(Y)),0 = (V9

xv)(Y) = g(V9
xZ,Y) , 

N(X, Y, Z) = -N(v(X), <p(Y), Z) + V(X) ■ N& Y, Z) + ^Y) ■ N(X,£, Z) 

= -N(<p{X), Y, <p{Z)) + r)(Z) ■ N& X, Y) - r,(X) ■ N(Z, <p(Y), tp(Z)) . 

Finally, we introduce the forms 

dF-(X,Y,Z) ■.= dF{XMY)MZ))+dF{tp{X),YMZ)) 
+ dF{<p{X), ^(y), Z) - dF(X, Y, Z), 

d*F(X,Y,Z) := -dF{<p(X)MY)MZ)), 

and a direct consequence of the definitions is the following 

PROPOSITION 8.1. On any almost contact metric manifold the identities hold: 
1) dF-(X,Y,Z) = -N(X,YMZ))-N(Y,ZMX))-N(Z,XMY)) , 
2) N(X,Y) = (V»(X)¥>)(Y) - (V£(y)y>)(*) + (V9

xv)(<p(Y)) - (Vf,V)(^(X)) 
-v<y)-vs

xz+Ti{x)-va
Yt. 

A linear connection V is said to be an almost contact connection if it preserves the 
almost contact structure : 

Vp = VT? = V<p = 0 . 

THEOREM 8.2. Let (M2fc+1,g,£,77,(£>) be an almost contact metric manifold. The 
following conditions are equivalent: 

1) The Nijenhuis tensor N is skew-symmetric and £ is a Killing vector field. 
2) There  exists  an  almost  contact  linear connection V   with  totally  skew- 

symmetric torsion tensor T. 
Moreover, this connection is unique and determined by 

g{VxY,Z) = g{V9
xY,Z) + \T{X,Y,Z), 

where V9 is the Levi-Civita connection and the torsion T is defined by 

T = ri/Kdrj + dTF + N -r)A{Z,JN) . 
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Proof. Let us assume that such a connection exists. Then 

0 = g(V°xZ,Z) + ±T(X,Z,Z) 

holds and the skew-symmetry of T yields that £ is a Killing vector field, drj = £ J 
T, £Jdr? = 0 and 

T(<p(x), <fi(Y), z) - T(X, Y, z) + r^x), r, ^(z)) + T^, v(r), ^(z)) 
= -7V(x,y,z). 

The latter formula shows that N is skew-symmetric. Since </? is V-parallel, we can 
express the Riemannian covariant derivative of <p by the torsion form: 

T(X,F,V(Z))+T(X,vp(r),Z) = -2.ff((v»y,z). 

Taking the cyclic sum in the above equality, we obtain 

ax?,zT{X,YM{Zj)  =  -ax,Y,z9((V9
x<p)Y,Z). 

We use Proposition 8.1 as well as the identity preceding it to get 

-VX,Y,ZT(X,YMZ))  = cTX^zg((V9
xcp)Y,Z)  =  -dF(X,Y,Z). 

Adding this result to the formula expressing the Nijenhuis tensor iV by the torsion T, 
some calculations yield 

T(VpO,¥>(n<^))  = dF(X,Y,Z)-N(X,Y,<p(Z))-r1(Z)-N2(X,Y). 

By replacing X, Y, Z by (p(X)1(p(Y)1(p(Z) and using the symmetry property of the 
Nijenhuis tensor mentioned before Proposition 8.1, we obtain the formula for the 
torsion tensor T. For the converse, suppose that the almost contact structure has 
the properties 1) and define the connection V by the formulas in 2). Clearly T is 
skew-symmetric and £jT = dr} = 2W9rj. Since £ is a Killing vector field, we conclude 
Vg = V£ = 0. Furthermore, using the conditions 1) and Proposition 8.1, we obtain 
^JdF = N2. Finally we have to prove that V<p = 0. This follows by straightforward 
computations using the relation between Vtp and the torsion tensor T, Proposition 
8.1 as well as the following lemma. D 

LEMMA 8.3. Let (M2;c+1,g,£,77,(/?) be an almost contact metric manifold with 
a totally skew-symmetric Nijenhuis tensor N and Killing vector field £. Then the 
following equalities hold: 

Vf£  = ZJdri = 0, 

N(<p(X),Y,Z)=N(XMYU) 
= N2(X,Y) = dF(X,Y,t) = -dF(tp(X)MYU) . 

Proof The identities in and before Proposition 8.1 imply 

0 = N(X,tO = (Vf^XO,    0 = N(Z,X,X) = (V9
xV)(X)-(V9

v(x)ri)(lp(X)), 
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N(X, Y, 0  = dTi{X, Y) - dq{<p{X), <p(Y)) . 

Hence, the first two equalities follow. We take the cyclic sum in the second idendity 
before Proposition 8.1 and put X = £ to obtain 

-dF{Z,Y,Z)+g({V°ip)(<p<y))MZ))   =  -(V^)(V(Z)) + (V|77)KF)). 

On the other hand, using again the general formulas we calculate that 

-dF(ZMY)MZ))  - ff((Vf^)(<,"(l")).v(^)) + (V^(y)r/)(Z)-(V9
v(z)77)(y) . 

Summing up the latter two equalities we obtain the last equalities in the lemma since 
£ is a Killing vector field. □ 

We discuss these results for some special contact structures. 

THEOREM 8.4. Let (M2k+1,g,t;,ri,(p) be an almost contact metric manifold with 
totally skew-symmetric Nijenhuis tensor N. Then the condition dF = 0 implies N = 
0. 

1) A contact metric structure (2 • F = drj) admits an almost contact connection 
with totally skew-symmetric torsion if and only if it is Sasakian. In this case, 
the connection is unique, its torsion is given by 

T  =  r/Adrj 

and T is parallel, VT = 0. 
2) A normal (N = 0) almost contact structure admits a unique almost contact 

connection with totally skew-symmetric torsion if and only if £ is a Killing 
vector field.  The torsion T is then given by 

T = rjAdrj + d^F. 

Proof If dF = 0, Lemma 8.3 implies that N2 = £ J N = 0. Then Proposition 8.1 
leads to 0 = dF-(X,Y,Z) = -3 • N(ip(X),Y,Z). The assertion that VT = 0 in a 
Sasakian manifold follows by direct verification. □ 

9.  Almost contact structures,  parallel spinors and holonomy group. 
Let (M2;c+1, g, £, 77, y?) be a (2k + l)-dimensional almost contact metric manifold with 
totally skew-symmetric Nijenhuis tensor N and Killing vector £ and denote by V the 
unique almost contact connection with a totally skew-symmetric torsion (Theorem 
8.2). Since V£ = 0 the (restricted) holonomy group Hoi of V is contained in U(k). 
This group cannot occur as the isotropy group of any spinor. The spinor bundle E of 
a contact spin manifold decomposes under the action of the fundamental form F into 
the sum (see [20]) 

E  =  Eoe.-.Efc,    dim(Er)  =   f * 

The isotropy group of a spinor of type EQ or E^ coincides with the subgroup SU(k) C 
U(k).   Consequently, there exists locally a V-parallel spinor of type Eo,Efc if and 
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only if Hoi is contained in SU(k). We shall express this condition in terms of the 
curvature of V. The group Holv is contained in SU(k) if and only if the 2-form 

1  2k+l 

Z     2 = 1 

vanishes, £V = 0. Let us introduce the torsion 1-form uv as well as the 2-form Av by 

1  2k+l -  2/c+l 

^(X)  :=  -- 2 T^eiM*)),    Av(X,y)   :=  - £ dT^.r^.^eO) • 
i=l 2=1 

PROPOSITION 9.1. Let (M2k+1,g,^rj,ip) be a (2k + 1)-dimensional almost contact 
metric manifold with totally skew-symmetric Nijenhuis tensor N and Killing vector £. 
Let V be the unique almost contact connection with totally skew-symmetric torsion. 
Then one has 

gv(X, Y) = Ricv(X, <p<y)) - (Vxw^)(Y) + ±AV(X, Y) . 

Proof. We follow the scheme in [36], Section 3, and use the curvature properties of V 
from Section 2 to calculate AV(X, Y) : 

2A;+1 

-2(yxu)(Y) + 2(VYLj)(X) + 2j2 (^(XMeiMeiV-WrtetWiXMei)) . 
2 = 1 

The first Bianchi identity for V together with the latter identity implies 

4pv(X, Y) + 2Ricv(y, <p(X)) - 2Ricv(X, ^(y)) 

= AV(X, Y) - 2(Vxw)(y) + 2(Vya;)(X) . 

Using the relation between the curvature tensors of V and V^, we obtain 

Ricv(F^(X)) + Ricv(X,V(r)) = (Vxa;v)(y) + (Vya;v)(X) . 

The last two equalities lead to the desired formula. □ 

We apply Proposition 9.1 in case of a Sasakian manifold. 

THEOREM 9.2. Let (M2/c+1,#,£,77,^, V) be a simply connected (2k + 1)- 
dimensional Sasakian spin manifold and V be the unique almost contact connection 
with totally skew-symmetric torsion. Then there exists a V-parallel spinor of type So 
or Efc if and only if the Ricci tensor is given by the formula : 

Ricv  = 4 • (k - 1) • (g - rj ® rj) . 

This condition is equivalent to 

Ric9  = 2 • (2k - 1) • g - 2 • (k - 1) • rj <g> rj . 

Proof. On a Sasakian manifold T = rj A drj = 2 • r) A F and VT = 0, where F(X, Y) = 
g(X, (p(Y)) is the fundamental form of the Sasakian structure. Consequently, we 
calculate that 

2k+l 

V(u;v) = 0,    Av = 16-(l-fc)F,     J g^X.e^^Y.ei)) = S-g+S^k-l^rj, 
2=1 
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and the proof follows from Proposition 9.1. □ 

REMARK 9.3. Sasakian manifolds with the prescribed form of the Ricci tensor 
admit Sasakian quasi-Killing spinors of type (±1/2,6) (see [20], Theorem 6.3). The 
Tanno deformation of an Einstein-Sasakian manifold defined by the formulas 

<p  := <p,    £  :=  a2 • £,    fj  := a~2 • rj,    g  := a-2 • g + (a-4 - a~2) • r) 0 rj 

yields for the parameter a2 := 2fc/(fc-j-1) a Sasakian manifold satisfying the condition 
of Theorem 9.2 and vice versa (see [20], Lemma 6.7 and Lemma 6.8). 

10. Almost hermitian connections with totally skew-symmetric tor- 
sion. In this section we study connections with totally skew-symmetric torsion and 
preserving an almost complex structure. These exist, for example, for nearly Kahler 
manifolds. In dimension n = 6 nearly Kahler manifolds have special properties and 
they are precisely the 6-dimensional manifolds admitting real Killing spinors (see [30] 
and [31]). 

THEOREM 10.1. Let (M2n,g,J) be a 2n-dimensional almost complex manifold. 
Then there exists a linear connection with totally skew-symmetric torsion preserv- 
ing the hermitian structure (g,J) if and only if the Nijenhuis tensor N(X,Y,Z) :— 
g(N(X,Y),Z) is a 3-form. In this case the connection is unique and is determined 
by 

T(X, Y,Z)   =- dn(J(X), J(Y), J(Z)) + N{X, F, Z), 

where SI is the Kahler form. 

Proof. The result can be derived from the considerations in [25] or from Proposition 
4.1. We sketch a direct proof. Since Vg = VJ = 0, we have 

T(J(X), J(n Z) - T(X,Y,Z) + T(J(X),Y, J(Z)) + T(X, J(Y), J(Z)) 

= -N(X,Y,Z), 

which shows that N is a 3-form. The formula for the torsion form follows from the 
following identities on an almost complex manifold with skew symmetric tensor N. 

2-0((V^J)y,z) = dn(X,J(Y),J(Z))-dn(X,Y,Z) + N(Y,Z,J(X)) 

dJT(X, y, Z) := df2(X, J(Y), J(Z)) - dSl(X, F, Z) + dfi(J(X), J(y), Z) 

+dn{J{X),Y,J(Z))  = -3.N(J(X),Y,Z) . □ 

COROLLARY 10.2. On an almost Kahler manifold there does not exist a 
hermitian connection with totally skew-symmetric torsion. 

COROLLARY 10.3. On any nearly Kahler manifold the torsion form T is 
V-parallel and henceforth coclosed, 59(T) = 0. 

Proof. If (M2n,g, J) is a nearly Kahler manifold, then 

4'dn{X,YZ) = -cKr(X,y,Z)  = 3>N(J{X),Y,Z) 
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and Theorem 10.1 yields that 4 • T = N. Moreover, V is the characteristic connec- 
tion considered by Gray [28] and T is V-parallel, VT = ViV = 0 (see e.g. [37, 3]).      □ 

We compute the Ricci tensor Ric    for a 6-dimensional nearly Kahler spin manifold. 

PROPOSITION  10.4.     On a 6-dimensional nearly Kahler manifold with non- 
vanishing Nijenhuis tensor N ^ 0 we have 

5 
TimnTjmn  = 2 • a • Qij,    Ric9  =  - • a • #,    Ricv  =  2-a-#. 

The 4-form 2 • aT coincides with dT, 

2'GT  = dT = a • (Q A 0) . 

Proof. We recall (see [28]) that any 6-dimensional nearly Kahler manifold is Einstein 
and of constant type, i.e. 

Ric9 =  ya-g,    ||(V^J)F||2  -  1 • a ■ (\\X\\2 • ||F||2 - g\X,Y) - g2(X, J(Y))) 

where a := Scal5/15 is a positive constant. Polarizing the latter equality und using 
the identity 4 • J{V9

X J)Y = -N(X, Y) = -4- T(X, Y) we get 

We calculate Ric^ = Ricf • — | • TimnTjmn = 2 • a • gij and the result follows. □ 

We consider again the general almost complex case. Let {M2n,g,J) be an almost 
complex manifold with totally skew-symmetric tensor iV. Then M2n is of type Gi 
according to Gray-Hervella classification (see [29]). Denote by V the unique hermitian 
connection with totally skew-symmetric torsion T described in Theorem 9.1. The 
Ricci form of V is defined by 

Z   2 = 1 

The holonomy group Holv of V is contained in SU(n) if and only if £V = 0. We 
define the Lee form 6 and the tensor A^ by 

-    2n 2n 

W  = -oE^WO' e»' J(e<))'    ^(X,y) = 5]dT(X, Y, eu Jte)) . 
i=l i=l 

We remark that the formula (3.16) in [36] holds in the general case of a Gi-manifold, 

Q
V
(X,Y) = mcv(X,J(Y)) + (Vxe)J(Y) + ±\»(X,Y). 

THEOREM 10.5. Let {M2n,g,J,V) be an almost hermitian manifold of type G\ with 
its unique linear connection V with totally skew-symmetric torsion. Then Hof7 C 
SU(n) if and only if 

0 = Ricv(X, J(Y)) + (Vx0)J(Y) + ^"(X.y) . 
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COROLLARY 10.6. Let (M2n,g, J,V) be a nearly Kdhler manifold. Then Holv is 
contained in SU(n) if and only if 

mcv(X,Y)  = ±\"(X,J(Y)). 

If the manifold is not Kdhler and the dimension is 6; then the above condition is 
always satisfied. 

Proof. In the nearly Kahler case the torsion form T is V-parallel and therefore 0 is 
parallel too, V0 = 0. In the 6-dimensional strictly nearly Kahler case the condition 
of the Corollary 10.6 is a consequence of Proposition 10.4. □ 

Finally we study in detail the V-parallel and V-harmonic spinor fields on a 6- 
dimensional nearly Kahler manifold M6. The spinor bundle E(M6) splits into the 
1-dimensional subbundles E± C S±(M6) of the spinor bundle defined by the equa- 
tion 

as well as their orthogonal complements. The connection V preserves this decom- 
position. We discuss the integrability condition (see Corollary 3.2) for the existence 
of a V-parallel spinor. A purely algebraic computation in the 6-dimensional spin 
representation proves the following 

LEMMA 10.7. A spinor 1fy± satisfies the equation 

hx JdT) -V* -Bic^tX) -V*  = 0 

for all vectors X if and only if it belongs to E±.  The endomorphism 

ldT- V     lScalv =   1^+1  T     lScalv 
4 2 4 4 2 4 

= a • (ei • 62 • 63 • 64 + ei • 62 • 65 • 66 -r 63 • 64 • 65 • 66 -I" 3) 

acts in the spinor modules Ag   with eigenvalues (0.4a, 4a, 4a). 

Consequently, Corollary 3.2 and Theorem 3.3 yield the following results : 

THEOREM 10.8. Let (M6,g,J) be a 6-dimensional nearly Kdhler spin manifold 
and let V be the unique linear connection with totally skew-symmetric torsion 
preserving the nearly Kdhler structure. Then there exist two V-parallel spinors. 
These spinors are sections in the subbundles E± . If M6 is compact, then every 
V-harmonic spinor is V-parallel. 

REMARK 10.9. A 6-dimensional nearly Kahler manifold admits two Killing 
spinors with respect to the Levi-Civita connection (see [30]) and these spinor fields 
are the V-parallel spinors. 
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