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LEFSCHETZ TYPE PENCILS ON CONTACT MANIFOLDS* 

F. PRESASt 

Abstract. We define the concept of Lefschetz contact pencil and we show the existence of such 
structures on any contact manifold. The main idea of the proof is a generalization of the Donaldson's 
arguments used in the symplectic case. We will analyze some of the applications of this existence 
theorem for the topology of approximately holomorphic contact submanifolds. In particular, we 
study the topological relationship between the contact submanifolds constructed in [IMP99]. Lastly, 
we recover the notion of contact blow-up to get fibrations from the pencils imitating the symplectic 
case. 

1. Introduction. S. Donaldson in [Do96] has adapted the concept of very am- 
ple bundle to the symplectic setting. Following this idea some results of complex 
projective geometry have been generalized to symplectic geometry, such as Bertini's 
theorem and Lefschetz's hyperplane theorem in [Do96], connectedness of the space 
of "good" sections of a very ample bundle in [Au97], divisors on projective fibra- 
tions in [Pa98], special position theorems in [Pa99], existence of Lefschetz pencils in 
[Do99], existence of branched coverings of symplectic 4-manifolds over CP2 and asso- 
ciated invariants [AuOO, AKOO], and Kodaira's embeddings theorems and symplectic 
determinantal submanifolds in [MPS99]. These ideas have opened a new insight in 
symplectic geometry allowing to understand symplectic manifolds through the study 
of the linear systems associated to a "very ample" vector bundle. 

In [IMP99] the idea of [Do96] of working with approximately J-holomorphic sec- 
tions was partially translated to the contact case. With these sections and a gen- 
eralization of the local estimated transversality result of [Do96], which is the key of 
the symplectic approach, the ideas of [Do96, Au97] were translated word by word to 
the contact setting. The only important loss was the isotopy results which have been 
developed in the symplectic theory starting with the ideas of D. Auroux in [Au97]. 
The main goal of this paper is to show how to develop a contact geometry of linear 
systems analogous to the symplectic case. This will also show how to partially recover 
the isotopy results in the theory. 

We will prove a theorem analogous to that of [Do99]. In fact, we will show the 
existence of a certain class of pencils on a contact manifold. The main tool in the 
proof will be a generalization of the local transversality theorem proved in [Do99]. 
As in the symplectic case this result is not strictly necessary for the proof, but it 
has interest in its own. It could be used to simplify the constructions of other linear 
systems, as for instance, the one in [MPS99] in the symplectic case. 

In a sense our result is dual to the existence results of convex structures in contact 
manifolds which E. Giroux and J. P. Mohsen are developing by using asymptotically 
holomorphic techniques [GM01]. To explain this, it is worthy to go to the symplectic 
case. In that setting there are two different kinds of decompositions of a closed 
symplectic manifold. The first one consists of taking an asymptotically holomorphic 
divisor and its complementary. This complementary has been shown to be Stein [BiOl, 
GM01].  This can be thought as a kind of "convex decomposition" of the manifold. 
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In the other hand it is possible to construct a Lefschetz pencil on the symplectic 
manifold. In [Do99] it is proved that any symplectic manifold admits a Lefschetz pencil 
decomposition. These two decompositions are not completely equivalent but they are 
very related. In fact, it is possible to pass from the Lefschetz pencil decomposition to 
the convex one. 

In contact geometry, the construction that we are going to show must be under- 
stood like the analogue of the Donaldson's one. Moreover, what Giroux and Mohsen 
have proved is a convex decomposition in the sense of [Gi91], which is the analogue 
of Biran's symplectic construction. It would be interesting to relate our construction 
with this other one, like in the symplectic case. Some indications are given in the 
paper, specially in Section 6, but the equivalence is not absolutely understood. 

A compatible chart in a contact manifold (C,D) at a point x will be a chart 
(j) : Ux C C —> Cn x R, where Ux is neighborhood of x, satisfying ^(x) = (0,0), 
(<j)*)(D(x)) = Cn x {0} and moreover satisfying that the presymplectic form (</>*)d0(:c), 
when restricted to Cn x {0}, is a positive form of type (1,1) at the origin of coordinates. 
If the contact manifold is exact we will impose also that ((/>*(#)(#)), J^) > 0 and say 
that the chart is oriented compatible, where i? is the Reeb vector field and s is the 
real coordinate. 

DEFINITION 1.1. A (oriented) contact pencil on a closed (exact) contact manifold 
C consists of the following data: 

1. a codimension 4 contact submanifold A C C, 
2. a finite set of smooth contact curves A = (Jze/ 7i C C — A; 

3. a smooth map f : V — A —■> CF1, whose restriction to the complementary of 
the set A is a submersion, satisfying also that PA = /(A) is a set of locally 
smooth curves with transversal self-intersections. 

Also the data have to admit the following standard local models: 

• At any point a E A, there are (oriented) compatible coordinates 
(zi,... ,2;n,s) G Cn x M such that A is locally given by {zi,Z2 — 0}. And 
the function f has the expression f(zi,..., zn, s) = ^ G CP1 near a. 

• At a point bi € 7* there are (oriented) compatible coordinates in which f is 
written as f{bi) + <p{s) + zf + ... + z^, where <p : M —> C satisfies (p(Q) = 0 
and ¥'(Q) ^ 0. 

It is clear from the local model that the counter-image f~1(p) is a subset of C — -A, 
whose closure in C is smooth at f~1(p)f]A. Abusing language, we will call fiber over 
b to the closure of the counter-image. It is a smooth submanifold if b is a regular 
value of /. In other case we will have one or two singularities locally modelled by: 

ip(s) + z2
1+--- + zl (1.1) 

In case dim C = 3, the smooth fibers will be (oriented) links on C. The link operation 
that is performed when the image crosses a circle 7^ of the sphere CP1 looks, after 
general projection to a plane, as 

The main result of this article is 

THEOREM 1.2. Given a contact closed manifold (C,D) (resp. exact) and a £ 
#2n-i(C>I£) which is reduction of an integer class, there exists a contact pencil on C 
(resp. oriented) whose fibers are contact submanifolds, homologous to a. 

With this result at hand, it is easy to understand the possibility of finding general 
isotopic constructions for the contact submanifolds constructed in [IMP99]. Once fixed 
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FIG. 1.1. Link operation 

a compatible complex structure in the distribution, in Section 6 we will show how to 
define a sequence of contact fibrations /fc, satisfying /&(()) ~ Nk and /fc(oo) ~ N'k, 
where N^ and iVj^ are sequences of codimension 2 contact submanifolds constructed 
with the method developed in [IMP99]. In order to assure the isotopy between N^ 
and N'k we have only to construct a path between 0 and oo in CP1 which does not 
intersect A, because in this case / restricted to the path is surjective. But this is only 
possible if 0 and oo are in the same connected component of CP —A, which is not true 
in general (contrarily to the symplectic case where A consists of isolated points). We 
will study in Subsection 6.1 the topological relationship between the counter-images 
of the points of a path crossing A. This will prove that 

HiiNk) = HiiNfo 

for i = 0,... ,n — 2. Moreover we will show how to make the result independent of 
the chosen complex structure and of the contact form, thus providing a verification 
of the "contact Lefschetz hyperplane theorem" proved in [IMP99]. The result brings 
us back to the Lefschetz original ideas to prove the hyperplane theorem (see [Le24]). 

From a contact point of view we will check that all the fibers are related through 
surgeries along Legendrian spheres in the sense of [We91]. This will give some nice 
conjectures about the possible (and impossible) relations between the fibers. In par- 
ticular, the related combinatorial descriptions of contact manifolds and the relation of 
contact structures with taut confoliations will be carried out in a forthcoming paper 
[IMP01]. 

In Section 2 we will give the basic results in contact geometry needed to develop 
the proof. In Section 3 we will give the proof of the exact case assuming transversality 
results of approximately holomorphic contact geometry. Afterwards, in Sections 4 and 
5, we develop the local approximately holomorphic techniques needed to achieve this 
transversality. In Section 6 we will study the relationship between approximately 
holomorphic sections transverse to 0. Later we adapt all the study to the non-exact 
case in Section 7. 
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A brief discussion about contact blow-up is given in the last Section. There it 
is remarked the existence of the blow-up construction in some simple cases. Also a 
general proof will be given in a forthcoming paper [IMP01]. 
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interest through the elaboration of this work, specially Vicente Mufioz who has read 
and commented the previous versions of the document. 
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2. Definitions and results. We will assume along the proofs that (C, D) is an 
exact contact manifold, where we have fixed a global contact form 9. In Section 7 we 
will precise the changes needed to extend the results to the non-exact setting. We 
start recalling with the basic definitions and results of [IMP99]. 

2.1. Basic concepts. A complex structure on C is a complex structure J defined 
on D, interpreted as a symplectic vector bundle, compatible with the symplectic form 
d6. Recall that the distribution D is contact, if and only if the restriction of d9 to D 
is symplectic. The contact 1-form defines a vector field R by the conditions 

iRe = 1,    iRd6 = 0, 

It is called the Reeb vector field. Given a complex structure we obtain a metric for 
the manifold 

gj(u, v) = d6(u, Jv) + 6(u)6(v). 

This metric is called a contact metric. It depends on the fixed contact form. The 
fc-rescaled contact metric will be defined as gj^ = kgj. If there is not risk of confusion 
we will denote simply gk, supposing J fixed along the proofs. (Observe that the k- 
rescaled contact metric gk is not the contact metric associated to ka8, for any a G R) 

Now we give some definitions to control contact structures in R2n+1. 

DEFINITION 2.1. The maximum angle between two subspaces U, V G Gr^r,n) is 
defined as: 

ZM(t/,Vr)=:maxZ(w,V). 
ueU 

This angle defines a distance in the topological space Gr^r, n) (for details see 
[MPS99]). 

DEFINITION 2.2. Let 6k be a sequence of contact forms in R2n+1
; with associated 

distributions Dk = Ker Ok- The sequence is called c-asymptotically flat in the set 
U C R2n+1 if 

ZM(£>*(()), Dk(x)) < c/r1/2,   for all x € U. 

1Geometria simplectica con tecnicas algebraicas. 
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The sequence is called asymptotically flat if there exists some c > 0 for which it is 
c-asymptotically flat. 

If a contact distribution D is defined at the origin by the horizontal subspace 
R2ri x {0} C M2n+1, we can define at a neighborhood of this point a canonical complex 
structure in D by means of vertical projection of the canonical one defined on R2n. 
This complex structure will be denoted JQ. In the case of the standard contact 
structure we can extend Jo all over R2n+1. 

The standard contact structure in M2n+1 is defined as 6Q = ds + Y^j=iixjdyj, 

where (xj,yj,s) G R2n+1. The sequence of metrics 9ki/2 = k^^ds + A:-1 J^Xjdyj, 
which is obtained from 0o scaling the coordinates by a factor fc1/2, is a sequence of 
asymptotically flat contact forms on any bounded set of R2n+1. 

Following [IMP99] we can define d and 8 operators in any kind of function, mor- 
phism or section defined on a contact manifold, restricting ourselves to the contact 
distribution, or equivalently projecting along the Reeb direction. 

2.2. Approximately holomorphic geometry. We will talk about uniform 
constant, polynomial, when this constant, polynomial, etc. does not depend on the 
chosen point x £ C, nor in the integer k appearing in the context. (However these 
constants can depend on the modulus of the given sections, on the nature of its 
derivatives, on the step of a recurrent reasoning, etc. but always independently of k). 

We will use from [IMP99] the following 

LEMMA 2.3. Given (C,6) a closed contact manifold, a point XQ G C and J a 
compatible complex structure on Ker 9, there exists a uniform constant c > 0 and a 
contact Darboux chart ij) : (C, 6) —» (R2n+1,#o) satisfying that ^(XQ) = 0 and 

-g{v,w) < ((it>*)xv,{^*)xw) < 2g(v,w),\/x G Bg(xo,c),v,w £TXC. 

Also we have that |Vr'0| = 0(1) and |Vr7/;-1| = 0(1), for r = 1,2,3.   Moreover 
\dip{y)\ < c/d(x,y), for a uniform constant d. 

A /c1/2-Darboux chart is a chart (pk - B(x,e) —> R2™4"1 such that ((j)k)*0 = 9ki/2. 
The following result is a direct corollary of Lemma 2.3: 

COROLLARY 2.4. Given (C,9) a closed contact manifold, a point XQ £ C and J 
a compatible complex structure on Ker 9, there exists a uniform constant c > 0 such 
that there exists a contact chart ip : (0,6) —> (R2n+1,0fci/2) satisfying that ^(XQ) = 0 
and 

-gk(v,w) < ((il>*)xv,(il>*)xw) < 2gk(v)w),\fx e Bgk{x,c),v,w e TXC. 

Also_we have that |Vr^| = 0(1) and |Vr^~1| = 0(1), for r = 1,2,3.   Moreover 
|Vr9'0(y)l ^ c'/c-1/2, for r = 0,1,2, for a uniform constant cf. 

These results allows to locally trivialize contact manifolds in an approximately 
holomorphic way. The analogous notion of the c-bounds of [Do99] in the contact case 
is the following 
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DEFINITION 2.5. A sequence of sections Sk of hermitian bundles Ek over the 
contact manifold (C, 8) has mixed Cr-bounds (C£),CR) at the point x G C if it satisfies 

\Sk(x)\<CD, 

\Vj
Dsk(x)\ <cD,   Vj = l,...,r. 

\Vjsk(x)\ <cR,   Vj = l,...,r. 

\Vjdsk(x)\ < CRk'1'2,   Vj = 0,...,r-1. 

The sequence has uniform mixed Cr-bounds (CD,CR) if it satisfies these bounds at 
every point. 

There we denote by VD the restriction of the operator V to the subspace D. The 
metric used in the manifold C to measure the norms in the precedent definition is the 
rescaled contact metric p^. Recall that if sJ

k has (cj^c^) mixed Cr-bounds (j = 1,2), 
then sj. + si has (c^ + c^, c^ + CR) mixed Cr-bounds. 

The following results are used to trivialize bundles over contact manifolds. 
DEFINITION 2.6. A sequence of sections Sk of bundles Ek has mixed Gaussian 

decay in Cr-norm away from a point x € C if there exist a uniform polynomial P and 
uniform constants A > 0, ca such that for all y G X, the sequence sk(y) has mixed 
Cr-bounds 

(P(dk(x, y)) exp(-A4(x, y)2), caP(dk(x, y)) exp(-Xdk(x, y)2)). 

Recall that the uniform constant ca is necessary because we will check afterwards 
that for different sequences of sections this constant cannot be fixed. 

The prequantizable line bundle L over an exact contact manifold C is defined as 
the complex line bundle with connection such that curv(L) = —id6. 

LEMMA 2.7 (Lemma 5 from [IMP99]). Let (C,6) be a closed contact manifold. 
There exists a uniform constant cs > 0, such that given any point x € C, there exists a 
sequence of sections akiX of L®k satisfying \(Jk,x\ > Cs at every y in a ball of gk-radius 
10 centered at x and the sections <7k,x have uniform mixed Gaussian decay away from 
x in C3-norm (in this case ca = 1). 

2.3. Transversality results. Following Donaldson [Do99] and Auroux [AuOO] 
we set up the following definitions. A linear map / : Rn —> W is 77-transverse if it 
has a right inverse is : W —» Mn such that \v\ < r]~1. In the non-linear case we will 
say that / : U C Rn —> Mr is 77-transverse to y £ W over U if Vx G U, such that 
If(x) — y\ < r], then df is 77-transverse. Recall that this is an open condition. In fact, 
if |/ — glc1^ < e/10 and / is e-transverse to y over U then g is, say, e/2-transverse 
to y in U. 

The definition of transversality to 0 for sections of hermitian bundles over Rie- 
mannian manifolds is totally analogous. In the case of contact manifolds we have to 
strengthen the conditions. 

DEFINITION 2.8. A section sk of the hermitian vector bundle Ek over the contact 
manifold {C,6) is rj-transverse to 0 on U C C if for all x G U such that \sk(x)\ < 77 
then VDSk(x) is rj-transverse to 0 (with respect to the gk-metric in C). 

From the discussion of [IMP99] it follows that a sequence of sections sk of the 
bundles Ek over the contact manifold (C,6), which has uniform (CD,CR) bounds and 
which is 77-transverse to 0, has as zero set a contact submanifold, for k large enough. 
The precise result of [IMP99] is 
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THEOREM 2.9. Given a closed exact contact manifold (C, 9). Let e > 0 and let Sk 
be a sequence of sections of the bundles E®L®k, for a fixed hermitian bundle E, with 
uniform mixed Cr-bounds (CD,CR). Then there exists a real number rj > 0 (depending 
on e, CD and CR), and a sequence <7k such that, for k large enough: 

1. ak — Sk has mixed Cr-bounds (e,c^). 
2. ak is rj-transverse to 0. 

In [IMP99] the proof is developed for sequences with mixed C2-bounds, but there 
is not any problem in generalizing it to the mixed Cr-bounds case. We need in this 
article mixed C3-bounds. Given a section s^ = (5°, s£) of the bundle C2 <S> S <g) L®k, 

for a fixed hermitian line bundle 5, whose zero set is Z(sk), we denote FSk = % : 

C — Z(sk) —> CP1 the projectivization of the section. The holomorphic part of the 
differential of this map will be denoted by dFSk. Now we state a generalization of 
Theorem 2.9 which will be proved in Section 4: 

THEOREM 2.10. Given a closed exact contact manifold (0,6). Let e > 0 and 
let Sk = (s2>sfc) be a sequence of sections of the bundles C2 0 S 0 L®k with mixed 
Cs-bounds (CD,CR). Suppose that s-J and Sk are both transverse to 0. Then there 
exists 77 > 0 (depending on e, CD and CR), and a sequence ak satisfying for k large 
enough 

1. ak — Sk has mixed C3-bounds (e,c^); 

2. a® and a® ® aj. are rj-transverse to 0, 
3. dF% is rj-transverse to 0 away from Zfo®). 

The techniques used in Section 4 improve slightly the ones of [IMP99] and thus 
could allow a simpler proof of Theorem 2.9 avoiding some of the complications of the 
globalization process in that article. 

3. Proof of the main result. Take a complex line bundle S with connection 
V satisfying that curv(V) = PD(a). This is possible since a is an integer class. 
Starting with any sequence of sections s^ of C2 (8) 5 (g> L®k with mixed C3-bounds, 
we can perturb it using Theorems 2.9 and 2.10 to achieve a sequence of sections s/- 
verifying properties 2 and 3 of Theorem 2.10 and with mixed C3-bounds (CD,CR). 

We consider this sequence as starting datum and will use it to construct the oriented 
contact pencil. 

From the 77-transversality of Sk the zero set A = Z(sk) is a codimension 4 contact 
manifold where FSk is not well defined. We will write F instead of FSk whenever 
it causes no confusion. Now we will study, as in [Do99], the shape of the "bad 
set" T = {x £ C : \dF\ < \dF\}. From [IMP99] we know that if we prove that 
F = {x e C : dpF = 0} we will have obtained that the fibers of F are contact at all 
smooth points. This will be proved in several steps. 

LEMMA 3.1. There is a constant £ > 0, depending only on cp, CR and e, such 
that if k is large enough then \SQ\ > £ on F. 

Proof The proof is analogous to that of Lemma 7 in [Do99]. □ 
Define A as the set of points where dF = 0. The connected components of A 

form a discrete set of smooth curves by the transversality condition imposed to dF. 
Also we can assure that this set of components is finite because it is contained in 
F, which by Lemma 3.1 is contained in the complementary of a 7-neighborhood of 
Woo = Z(sjJ), for 7 > 0 a uniform constant small enough. We define: 

n€ = {P e c, |so(p)| > e/2}. 
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The following step, adapting again Donaldson's argument, is to estimate the shape 
of the set A. This is the content of the following: 

PROPOSITION 3.2. There is a uniform constant po > 0; such that the po- 
neighborhoods of each connected component 7* of A are disjoint and are contained 
in Q,^. Moreover for any p < po, for k large enough (only depending on p), the set T 
is contained in a p-neighborhood of the set A. 

The proof of this result is absolutely analogous to the proof of Proposition 9 in 
[Do99] and depends strongly on Lemma 8 in that paper. We refer the reader to [Do99] 
for the argument. 

Finally, we need to perturb the sequence dFSk in arbitrarily small neighborhoods 
of A and A to achieve the local models required in Definition 1.1. The perturbation 
required in A needs a careful analysis, but again the situation in A is a straightforward 
generalization of [Do99]. We need only to define 

LDX = Vsg © V^ : TCX -> Lfk © Lfk. 

With this notation the result we need in our case is 

LEMMA 3.3. For a point x £ A, F can be represented in the standard model of 
Definition 1.1 atx if and only ifTAx {^[D is a symplectic subspace and the restriction 
of dO to the symplectic orthogonal CAX (in D) of TAX p| D is a positive form of type 
(1,1) with respect to the complex structure on CAX induced by LDX. 

We do not provide a proof of this Lemma, which follows word by word the proof of 
Lemma 11 in [Do99]. Thanks to the (c^c^) mixed C3-bounds and the transversality 
of the sequence Sk, it is easy to check that a small C3-perturbation of the sequence 
satisfies the hypothesis of Lemma 3.3, thus completing the study in the neighborhood 
of A 

Now we study the map F near A. Again Donaldson's ideas work in this case, 
however the adaptation of the proof needs some changes. Select a smooth connected 
curve 7i in A. We are going to perturb F in a 7-neighborhood of A. By Lemma 3.2, 
the perturbations can be made in each connected component 7^ in an independent 
way. 

Recall that, for k large enough, the curve 7^ is contact, i.e. Vx E 7$, TXC = 
Tx^i@Dx. Moreover, the angle between T^i and Dx is bounded below by a uniform 
constant because of the transversality of the sequence. Using the contact metric gj 
associated to the fixed complex structure J to define a geodesic flow, we can obtain 
a diffeomorphism: 

& : Up -> Vp C S1 x Cn, 

where Up is the p-neighborhood of 7* (in g^ metric) and Vp is its image by the flow, 
which is an open neighborhood of S1 x {0}. We can construct a metric in S1 by 
imposing the condition that (0i)|7. is an isometry with respect to the rescaled contact 
metric #&. In Cn we will fix the standard metric. The product metric will be denoted 
by #g. We can select with this choice a uniform p > 0 such that 

Am0fc(d0*(v),d0iM) < \g^(v,w)\ < \M9k(d(/)i{v)>d<l>i(w))>   V^™ ^ TxC,\/x <E Up, 
(3.1) 

where Am,AM > 0 are uniform constants. Once we have fixed <^, we obtain a dis- 
tribution Dk in <j)i{Up) constructed as the image of the distribution D.   Denote by 
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Dh the integrable distribution given as {p} x Cn defined in S1 x Cn. Perhaps after 
shrinking p uniformly, we can check that 

£M{Dk(s,z),Dh(8,z)) < cu\z\k-^\ V(5,s) G Vp C S1 x Cn, (3.2) 

where cu > 0 is a uniform constant. Moreover, we can impose without loss of gen- 
erality that (<?y*J(7i) = Jo- So we can project orthogonally (<j)i)*J (defined on Dk) 
to D/! obtaining a new almost complex structure J. In fact it is easy to check, as in 
[Do96], that 

d = do + fido,   d = dQ-\-fido, (3.3) 

where d and do are the operators defined by the structures J and Jo in 51 x Cn, 
and \fji(z)~\ < cl^lfc-1/2, where c is a uniform constant. In order to finish the proof 
we follow these steps: we will define the perturbation, afterwards we will prove it 
satisfies the conditions for the distribution Dh with the almost complex structure J, 
and finally we will check the result for the distribution D^. 

Given any differentiable function / : C —» C, we denote /o = / o 0~1. By 
the inequalities (3.1) we can use FQ instead of F for all the computations using the 
induced distribution D^. To construct the perturbation we define the complex Hessian 
H = T^ddF. Using the trivialization <^ we may regard it as 

Ho(s,z) = ^2Hap(s)zazp, 

on <f)i{Up). Also we take a cut-off function jip : S1 x Cn —» [0,1] satisfying 

1. i8p(^(p)) = l,ifdfc(p,7i)<f. 
2. /Wi(p))=0,if4(p,7i)>P. 
3. \VI3p\ = 0{p^). 

We can adjust /? to assure condition 3 because of equation (3.1). The constant p < po 
will be fixed along the proof to assure that the conditions are satisfied (namely we 
will have to shrink p in a uniform way). A modification of F will be 

/o(s, z) = 0p(w'(8) + Ho{s, z)) + (1 - /3p)Fo(s, z), 

where w' : 51 —> C is any smooth function. 

We denote by d and 8 the operators associated to the almost complex structure 
J acting on Dh- Respectively we denote by dk and dk the operators associated to the 
action of (fa)*J in Dk- The equivalent to Lemma 10 of [Do99] is 

LEMMA 3.4. If p > 0 is small enough, k is sufficiently large, ^'(s) — FQ(S,0)\ 

is sufficiently small and \ w
d£

3' \ = 0(1), then the inequality \dkfo\ < \dkfo\ is only 
satisfied in 7$. 

Proof. First, assume that we are at a point where (3p = 1. Then /o — W' + HQ and 

dfo = dHo,   dfo = dH0. 

The 7/-transversality of OFQ yields the bound 

|0ffo(s,*)l>4zMa(^o)(z=o)IM. 
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Now recall that dd + dd = 0 on functions and that the norm of ddF^ is controlled 
because F has uniform mixed C3-bounds. Then we can write 

IdtfoMI^M-Cu/r1/2!*!. 

Using the inequality (3.2) and that | JjiJ^s)! = 0(1) (as follows from the mixed 

C3-bounds of F) and recalling the bound |^-| = 0(1), we rewrite the inequality as 

|dfctfoM|> T?!*!-c^-1/2!*!, (3.4) 

where c'u > 0 is a uniform constant. On the other hand, 

|9tfo|<cnK
2fc-1/2, 

and thus, by an analogous argument, 

\dkH0\<c'M2k-ll2 + cZlzlk-1/2. (3.5) 

Now, if we impose that |<?fc.Ho| ^ l^/c^ol? we obtain by comparing (3.4) and (3.5), 
z = 0 for k large enough. 

Now we study points in the annulus containing the support of V/?p. In this case, 

dfo = dp^w' + Ho- FQ) + 0pdHo + (1 - Pp)dFo. 

Bounding the right hand side as in [Do99] we obtain an expression for the value \dfo\. 
Using (3.2) and the bounds |^| - 0(1) and \dkFo\ = Oik-1/2), we conclude 

\dkfo\ < c(p2 + fc-1/2 + \Fo(s, 0) - w^p-1). 

In the same way we know that 

dkfo = dkpp(w' + Ho- Fo) + l3pdkHo + (1 - PP)dkF0. 

Using the transversality of F we can obtain a lower bound for |dfc/o|. The argument 
follows the one of Donaldson arriving to the final expression 

\dkfo\ - \dkfo\ > f - c(p2 + k-1'2 + \w' - Fo{s, O)!^1). 

Obviously, once fixed a sufficiently small p, for k large enough and |JFO(S,0) — w'\ 
small enough compared with p the inequality is strictly positive for any point in the 
annulus. □ 

To finish the proof we only have to check that the function / conforms the local 
models at any point of A. We use the perturbation w' to assure that the curves 7* 
project smoothly into CP1, this is equivalent to impose 

Vvf{x) ± 0, 

for any point x E A and any nonzero v £ T^A. This can be achieved by a generic 
perturbation, and so w' can be selected to get it. Also we can assure, using this 
perturbation, that the intersections of branches of /(A) are transverse, again by a 
genericity argument. 
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Finally, given any x G A there exists coordinates (s,xi,yi,... ,xn,yn) such that 
/ is locally written as 

/(S, Zi, . . . , Zn) = <p(s) + Y^ H(xp(s)ZaZ(3, 

where ^'(0) 7^ 0 (this condition is equivalent to the smoothness of the branches 
of /(A)). Now at a neighborhood of s = 0 the 1-parametric family (Hap(s)) of 
bilinear complex forms can be diagonalized by a smooth family of complex changes of 
coordinates if the eigenvalues of {H^p) are all distinct. This is a genericity condition 
that can be achieved at all the points of A by a generic perturbation of 0{k~1^2) 
in F, before starting the perturbation process which we have developed along this 
section. With this condition, we obtain a smooth family of invertible complex matrix 
P(s) such that 

^Ha^ZaZp = ZTP(S)TP(S)Z, 

where z = (zi,... ,zn). Therefore the change of coordinates 

(5,z)->(5,P(5)z) 

gives us the required local model. This finishes the proof of the main theorem. 

4.  Transversality results. In this section we will prove Theorem 2.10. 

4.1. The globalization scheme. First we recall how the globalization process 
developed in [Do96] adapts to the contact setting. This adaptation was carried out 
in [IMP99]. Now, we set up the process in a functorial way in the style of [AuOO]. As 
uaual, we denote by (C, 9) an exact contact manifold. 

DEFINITION 4.1. A family of properties V(e,x)xec,e>o of sections of bundles over 
C is local and mixed Cr-open if, given a section s satisfying V(e1x), any section a 
such that s — cr has (77, CR) at x mixed Cr-bounds satisfies V{e — cur),x), for some 
constant cu. 

PROPOSITION 4.2 ([IMP99]). Let V(e:x)xec,e>o be a local and mixed Cr-open 
family of properties of sections of vector bundles E^ over C. Assume there exist 
uniform constants c, c'', c"', p and a function f : R3 —> R+ such that, given any 
x € C, any small enough 5 > 0, and mixed Cr-bounded sections s^ of Ek with uniform 
mixed Cr-bounds, say (CD,CR); there exist, for all large enough k, mixed Cr-bounded 
sections 77^ of E^ with the following properties: 

1. Tk,x has mixed Cr-bounds (c'£, /(c'tf, CD,CR)), 

2. the sections ^Tk,x have mixed Gaussian decay away from x in Cr-norm, 
3. Sk + Tk,x  satisfy the property V(r\,y) for all y   G   Bgk(x^c),   with r)   = 

c^OogOJ-1))-*. 
Then, given any a > 0 and mixed Cr-bounded sections Sk of Ek, there exist, for 

all large enough k, mixed Cr-bounded sections a^ of Ek, such that Sk — (Jk has mixed 
Cr-bounds (a, CR) for some CR > 0. Also, the sections ak satisfy'V(e,x) for some 
uniform e > 0 at any x G C. 

Sketch of the proof Although this is just a slight variation of the globalization 
argument in [IMP99] we provide the main lines by completeness. Let S be a finite set 
of points in C verifying the following properties: 
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2. There exists a partition S = [jjej Sj verifying that dgk (#, y) > J\f if a;, y £ Sj. 
Af will be fixed along the proof. 

3. The cardinal of J is 0(A/*2n+1). 

The idea is to achieve the property V(e,x) in all the balls Bgk(x,c), x G Sj at once. 
Using the hypothesis at each x G Sj we can build a local section r^x which satisfies 
V{r),y) for all y G Bgk{x,c), where 77 = c//5(log((J~1))~p. We select M large enough, 
such that at a given x G Sj the components of the perturbations due to the rest of 
the points of the set Sj through the directions defined by the distribution D do not 
destroy the transversality obtained at Bgk(x,c). The condition we impose to J\f is 

c//(J(log((J-1))-p > 2cnc'5exp(-AAf2), (4.1) 

where cu is a uniform constant. The left hand side of the inequality is the amount of 
transversality obtained by the perturbation at a point x G Sj. The right hand side is 
a value greater than the double of the value of the norm of the sum of all the other 
perturbations in the set 5^- (different from the selected and multiplied by the uniform 
constant provided by the local and Cr-open property). So the inequality assures us 
that, after adding the perturbation, we have obtained V(^c//5(log(5~1))~p,y) at a 
c-neighborhood of Sj. 

Now the process is clear. We perturb in 5i to obtain V(rji,x) at a c-neighborhood 
of it. Afterwards we add again a perturbation with mixed Cr-bounds (^-771/2, c^) 
to achieve V(min(r}2,r)i/2),y) for all y at a c-neighborhood of Si IJ52. The number 
of steps is independent of fc, so the achieved final property is 7^(77, x) where 77 does 
not depend on k. The added section has also mixed Cr-bounds (6, CR). The constant 
e is obtained by adjusting the rji in the iteration, which is possible by property 1. 
The constant CR is uniform because at each stage does depend only on the precedent 
values of CR and 77^-, so it is independent of k, and thus the uniformity is obvious since 
the number of stages is independent of k (i.e. C^A/*271"1"1)). Remark that CR cannot 
be bounded since property 1 provides uniformity but not control of the constant! 

To end we have to check the inequality (4.1) in all the steps of the process. Fol- 
lowing the asymptotic analysis of [Do96] we conclude that it is possible to obtain an 
integer Af independently of the step j. This ends the proof. □ 

4.2. The local perturbation. We are going to achieve the transversality prop- 
erty for <9F, required in Theorem 2.10, by using Proposition 4.2. The first observation 
is the following 

LEMMA 4.3. There exists a uniform constant £ > 0, such that, for k large enough, 
any point x verifying \dF(x)\ < £ lies in the set f22£- 

The proof is identical to that of Lemma 3.1 and we refer again to [Do99] for details. 

We are going to perturb the sequence of sections sj. on order to obtain transversal- 
ity. The open mixed C2-open property V(e^x) which we have to obtain in C is that 
dF is e-transverse to 0 at x. We are in the hypothesis of Definition 4.1. Now we are 
going to construct a local section satisfying the hypothesis of Proposition 4.2, thus 
concluding the proof. We can choose c > 0 uniformly to assure that Bgk(x,8c) C £\ 
for any x G Qsc and also that Bgk(x, 8c) is in the complementary set of Q,^ for any x 
in the complementary set of ^3^. 

If we are in the complementary set of Qa^ we can choose the section Tk,x to be 
zero, because of Lemma 4.3. 
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Choose a point x € fia^. Take an approximately contact holomorphic chart 
(5, zl,..., z%) satisfying the properties of Corollary 2.4. Generalizing [AuOO, MPS99] 
we define the 1-forms 

J   ref 
j        0/   k   k.x \ 

Sk 

In Vt^ these forms have uniform mixed C3-bounds because the term Vrdz3
k can be 

bounded near re, and furthermore both s™*. and s^ have mixed C3-bounds, as well as 

s\ is also bounded below. Recall that (MJ[.)j=i,...,n Is a unitary basis of D* at x, and it 
is almost unitary in the ball Bgk (x, 8c) (i.e. the basis ji^ is arbitrarily close to a unitary 
basis), after eventually shrinking c uniformly. We define a map v : Bgk(x,8c) —> Cn 

by the formula: 

3=1 

In matrix notation, 

dF = vT-fik, (4.2) 

where ^ = (fij,,... ,£*£). Thus it is possible to understand fik as a linear map 
Mfc(y) : Cn -> T*M. Multiplying by /xj^1 in (4.2) we obtain 

This implies that \v\ = O(l), since /x^ is approximately unitary. We compute now the 
derivatives of v using equation (4.2). To do this, recall that dF has mixed C2-bounds 
in the ball Bgk(x,8c) (because F has mixed C3-bounds). Also, in the same way, /ik 
has mixed C2-bounds. Differentiating (4.2) 

VdF = VvT -Lik + vT - Vnk, 

which implies that |VfT-/i/c| = 0(1) and using again that /i^ is approximately unitary, 
we finally get 

|Vt;|=0(l) 

Differentiating respect to 8 we find that \dv\ — 0(/>;_1/2), and iterating the process 

|VVi;| = 0(l),   \Vdv\ = 0{k-1'2). 

Now we use the approximately contact-holomorphic chart \I/ defined in Corollary 2.4, 
after eventual uniform shrinking of c. We construct the function v = vo^f~1. By the 
properties of \1/, it is easy to check that: 

|T)| = 0(1),   |Vr£| = 0(l),   \Vr-1dv\=0{k-1/2),   r = l12. 

Scaling the coordinates by a uniform constant we can assume that ^(^^(a;, 2c)) C 
£2n+i(0,2) C ty(Bgk(x,8c)). Now, we are in the hypothesis of the following 

PROPOSITION 4.4. Let fk: B x [0,1] —> Cm be a sequence of functions where B is 
the ball of radius 1 in Cn and B x [0,1] is equipped with a sequence of contact forms 
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6(k) whose distributions are asymptotically flat. Let 0 < 5 < 1/2 be a constant and let 
a = S(log(S~1))~p, where p is a integer depending only on the dimensions. Assume 
that fk satisfies over B x [0,1] the following bounds 

IM<1,      |9o/fc|<<7,      |V9OA|<<T, 

for k large enough, where do is the (0,1) operator defined in D(k) = keiO(k) by vertical 
projection of the standard complex structure JQ. Then for k large enough there exists 
a smooth curve Wk'- [0,1] —> Cm such that \wk\ < 5 and the function fk — Wk is a- 
transverse to zero on J5(0,1/2) x [0,1]. Moreover, if\dfk/ds\ < 1 and \dVfk/ds\ < 1, 
we can choose Wk such that \d'lWk/dsl\ < $(5), (i — 1,2); d^Wk/ds^O) = 0 and 
d^Wk/ds^l) = 0, for all j G N; where c is a uniform constant and $ : R+ —> R+ is a 
function depending only on the dimensions. 

This proposition will be proved in Section 5. This is the analogous in the contact 
case to Theorem 12 in [Do99]. For the particular value of m = 1 it has been proved 
in [IMP99]. 

Now we apply this proposition to the map v over [—1,1] x 5, because for k large 
enough, it satisfies the hypothesis (without loss of generality we can choose [— 1,1] x B 
instead of [0,1] x B, also we suppose \v\c2 ^ !> multiplying by uniform constants). 
The obtained path w is extended to R x Cn as 

r w(l)       ,for 5>1, 
w(siz)=<   w(s)       ,for s G [-1,1], 

[ w(-i)    ,for s<-l. 

We keep the same notation for this extended map. The map v — w is transverse to 0 
in 5(0,1) x [—1,1], thus v — w is also transverse to 0 in £?2n+i(0, !)• Remark that the 
chart ^ is defined in a ball of radius 0(k1/2). So the pull-back of w by \I/, denoted wy 

is well defined in this ball, and it will be enough for our purposes. By the properties 
of \I/ we have that v — w is 77-transverse to 0 over the ball Bgk(x, c). The constant 77 
does not coincide with the transversality obtained by v — w by a uniform factor, so 
rj = cu5(log(5~1))~p, the constants cu and p are uniform and S is the norm of w up 
to a uniform factor cu', i.e. \w\ < cu/5, cU' ^ 0. 

The needed perturbation is 

n 
Ere/ 

W3Z3Sk,x- 

3=1 

The first question is whether 77^ has the desired mixed C3-bounds. The verification 
is mere routine and it follows the lines of [IMP99]. As an example, we compute the 
bound for Brk^x' 

dTk,x = Y, dW3Z3Srk/x  + W3^Z3Srkfx  + ^^^^ 

The third term is easily bounded by 

\wjZjd8r
k
ef\ < 0{l)2dk(x,y)cak-

ll2P(dk(x,y))^(-Mk{x,y)2) = 

= k-1!2Q{dk(x,y))eM-^dk{x,y)2). 
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The second one is bounded in the same way recalling that dz = cok~ll2dk(x, y), where 
Co > 0 is uniform. For the first term we proceed as follows: 

\^w3z3srkfx\ ^ |3^j|^(4(^,y))exp(-A4(a:,y)2). 

Recall that 6ki/2 is asymptotically flat. Using this fact we obtain that \VWJ\ < 
0(fc~1/2)dfc(x,y), thus in particular \dwj\ < 0{k~1/'2)dk{x^y). This concludes the 
bounding. 

Now we have to compare r^ x with w.  If d^ir were wT'/i^, the proof would be 
' sfc 

rapidly concluded. But we are almost in this situation because 

re/ 

sk sk 

Using (3.2) again, we obtain 

sk 

Therefore, we can find w such that d^r = ^fik and \w — w\ = 0(k~1^2). So, for k 

large enough v-w is, say, 0.977-transverse to 0 in Bgk (re, c). We end by remarking that 

gsk-rkiX ^ c5?7-transverse to 0, C5 > 0 a uniform constant, if v — w is 0.97/-transverse 
sk 

to 0. This is obvious since both just differ by the application of the almost unitary 
matrix fi^. □ 

5. Local results. The aim of this section is to prove Theorem 4.4. This is 
the generalization of the local results in the symplectic setting, needed to achieve 
controlled transversality in the contact case. 

5.1. Reduction to integral distributions. We can easily reduce the proof to 
the following 

PROPOSITION 5.1. Let f: B x [0,1] -> Cm be a complex valued function, where B 
is the ball of radius 1 in Cn. Let 0 < 5 < 1/2 be a constant and let a = 5(log(5~1))~p, 
where p is a suitable fixed integer depending only on the dimensions n, m. Assume 
that fs satisfies the following bounds over B x [0,1] 

|/«|<1, \dfs\<<T, |V9/a|<<7. 

Then there exists a smooth curve w: [0,1] —> Cm such that \w\ < 5 and the function 
fs—w(s) is a-transverse to zero over the ball B(0,1/2). Moreover, if\dfs/ds\ < 1 and 
\dV'fs/ds\ < 1, we can choose w such that \d7'w/ds'l\ < &(5) (i = 1,2^ d^w/ds^(0) = 0 
and d^w/ds^(l) — 0 for all j G N, where $ is a function depending only on the 
dimensions n,m. 

The proof of this Proposition is a generalization of Lemma 10 in [IMP99] to the 
case m > 1. 

Proof of Theorem 4-4- We have to obtain the transversality of fk — Wk when we 
restrict V(/fc — Wk) to the distribution defined by 9(k). Recall that 9(k) is asympto- 
tically flat, so ZM(£>/I, Ac) = Oik-1/2), where Dh = Cn x {p} and Dk = Ker <9(/c). 
The key idea is that V(/fc — Wk) = 0(1), so if fk — Wk is 77-transverse to Dh, then it 
is, say, 0.977-transverse to Dk for k large enough. The factor 0.9 can be eliminated by 
increasing p uniformly. □ 



292 F. PRESAS 

5.2. Proof of Proposition 5.1. Let / : Cn —> Cm be a smooth map. We define 
the subset U(f, w, 5, a) of the ball B(w, 5) of radius 8 as the set of points where / is 
cr-transverse to w all over the ball ^B2n, the ball of radius 1/2 in Cn. First we prove 
the following 

THEOREM 5.2 (Extension of Theorem 12 in [Do99]). For any n, m, 5 > 0 and 
0 < 7 < 1 there is a p = p(n, m,7) swc/z that if we define a = 5(\og(5~1))~p then for 
all the maps f : B2n —> Cm verifying that 

|/|<1,   |<9/|<<7,   |V5/|<<r, 

^ere exists a connected component of U(f, w, J, cr) containing another path-connected 
set [/'(/, itf,<J, <J) w;fto5e volume is at least 7 ^zmes ^e to^a/ volume of B(w,5) and 
such that given two points x, y £ Uf(f,w, 5, a) is possible to find a smooth curve 7 in 
U(f, w, 5) a) joining x and y with curvature at each point and length bounded by ${d), 
where $ is a function depending only on the dimensions n,m. 

We repeat the proof of Theorem 12 of [Do99] taking care of some details. 

Proof The first step in the proof is to approximate fs by a holomorphic function 
fs such that \fs — fsls^1 < £& (see Lemma 28 in [Do96]). This process does not 
hold over all of the unit ball. This is the reason why we restrict ourselves to the ball 
B/ = ^B2n in the sequel. Then we approximate fs by a polynomial. We can obtain 
polynomials gs such that \gs — fs\B' c1 ^ ccr and their degree d can be estimated by 
CKlogCa-1)). 

Adapting notations of [Au97, IMP99] we denote by Zhaie the images of the set of 
points of B' which are not e-transverse to 0 for hs. We want to prove that one com- 
ponent of the complementary set of Zf3ia satisfies the required properties. The first 
observation is that the (71-closedness of fs and gs assures us that Zfsya C Zgs^c+i^a. 

We use now the following 

THEOREM 5.3 (Theorem 26 of [Do99]). Given a polynomial g : Cn -+ Cm of 
degree d and e > 0 there is a real-algebraic subvariety A(g) C Cm of codimension 
2 and degree D such that Zg^ is contained in the Ke-neighborhood of A(g), where 
K,D <(d-\- l)Pj for some integer p depending only on the dimensions n,m. 

Given a hypersurface A define Ae to be the e-neighborhood of A. We use the 
following Donaldson's result: 

PROPOSITION 5.4 (Proposition 31 in [Do99]). For each integer N and real number 
6 > 0, there is a fi = /i(#,iV) with the following property. For any real-algebraic 
hypersurface A C Rn of degree D and e < (D -f 1)^, 

Vol(BN nAe)<Q. 

Denote a* = (c + 1)<7. With these two results and following the discussion in 
[Do96] p. 689 about the behavior of the function 5(log8~1)~p we can assure that the 
a' = 51og((5~1)~p-neighborhood, p a fixed integer, of the bad set A(gs) has volume 
arbitrarily small. Also we can assure the same condition for the Scr'-neighborhood 
(changing p slightly). We take a covering of J3(0,5) by balls B(xi,cr'/2) of centers 
Xi and radius a'/2 and assuring that the covering of balls with radius a7 centered in 
the same points cover each point of 5(0, S) only a finite uniform number of times, 
for instance less than u times.  Denote by C the set of centers Xi of the balls of the 
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covering contained in the 2cr/-neighborhood of A(gs). Recall that the union of these 
balls is contained in ^3^/(^5), so we can conclude that 

J2 voliBixi,*')) < isvol(A3ar(gs)). 
Xi€C 

And from this expression we can easily obtain a bound for the number of points in C 
as 

card(C) < cu52n/{a,)2n, 

where cu is a uniform constant and so this number only depends on 5. But observe 
that 

Aa,{ga) C  (J B(XUG'I2) C U B{XU<7') = WSC A^{gs). 
xiec xiec 

Now following the proof of Theorem 12 in [Do99] (that we do not detail) we find 
that there is a connected component U" of the complementary of A^(gs) which vol- 
ume arbitrarily close to the total one. Obviously, there must be connected components 
Uf and U of the complementaries of Ws and Aw (ga) satisfying U" C U' C U. We will 
assume that U' = U'(f, w, (5, cr) and U = [/(/, w, 8, a) are the sets in the statement of 
the Theorem. To finish we have only to check that these two sets satisfy the required 
properties. 

We adapt the ideas of [IMP99]. We call N = card(C). Observe that we have fixed 
a, and then N — f(5) and 27raN = g(8), for some functions / and g. Now take 
y, z points in the large connected component U of the complementary of Z+. Denote 
L(yy z) the straight segment joining them. This segment cuts at most at 2N points 
yo, 20,2/1»• • • to the border Bor = d(XJXi£c ^(XUCT

1
)). Obviously L(^, 2/i+i) C U and 

-^(y^ Zi) C Ux.-ec B(xi,af). We replace the lines L(yi, zi) by curves C(yi, Zi) contained 
in Bor connecting ^ and z^. We construct the curves following maximal diameters 
of the spheres which define the border and so length(C(^, Zi)) < g(5). Therefore the 
curve 

V = L(y, yo) [j C{yo, ZQ) (J L(ZO, 2/1) • • • 

satisfies 

length(y) = L(y,yo) + L{zq,z) + ^L{yuyw) + VC{yuz*) < 28 + 

+m9(5) = mfr 
where $ is some function depending only on the dimensions. Perturbing slightly 7' to 
make it differentiable and removing it from the border we obtain 7 which, bounding 
enough the perturbation, satisfies length(7) < $(8). So the length between two points 
can be bounded by a function of 8. Moreover, if we translate the diameters in the 
border Bor till the border of [Jx.eC B(xi,af/2), we can assure that the curvature of 
the path can be bounded by 0(1/a'), again a function of 8. 

□ 
With the precedent result we can easily finish the proof of Proposition 5.1. Recall 

that fs satisfies 

, dfs, , dWfs, 
OS OS 
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This implies by a simple application of the Mean Value Theorem of the Differential 
Calculus (for vectorial maps) that: 

|/s-/s+e|<e,   |V/s-V/s+e|<6. 

Recall that given two maps f,g : Cn —> Cm such that |/ — g\c^ < e, if / has a left 
inverse with norm less than r/-1, for a large enough uniform constant CQ, g has a left 
inverse of norm less than (77 - coe)-1. This implies that 

U(fsA 5, <7) C J7(/a+e, 0, J, a - coe). (5.1) 

We choose a number <7, which satisfies the hypothesis of Theorem 5.2, with 7 > |. 
Take an integer q satisfying that 

- < CT/CQ. (5.2) 

We can choose Xi G U(gi/q, 0,5, (c+Vje) f) U{gi<ijrl)/q, 0,5, (c+l)o-), for z = 0,..., q-l. 
Consider the path Hi = xi x [i/g, (i + l)/g]. There exists a smooth path Vi connecting 
Xi with Xi+\ in Uf(g(i+iyq,0,5,a). Its length is bounded above by §(5), as well as 
its curvature at any point. We parametrize Vi by its arch-length. 

We choose a smooth function /?: [0,1] —> [0,1] satisfying: 

f 0, se [0,1/4], 
/?(x) = <   0 < ^(x) < I,    1/4 < x < 3/4, 

1  1, xe [3/4,1]. 

and compute |/3|c2 = Q,. Denote ft (a;) = ft(x) • length(Vi). This function has norm 
Ift|c2 < C6^(^)- Define a path 

"(«/* + <) = V, (ft (* («+£))),      |e|<i. 
The map w is smooth and we obtain \w\c2 < Q,<i>(£), a bound which is a function of 5. 
Remark that the first derivative depends on the length of the path Vi and the second 
on its curvature. Finally we observe that by (5.1) and (5.2) w(s) is a/2 transverse to 
0, for all 5 G [0,1]. We can find an integer p' such that a' = 5(log(5~1))~p < a/2 
and the proof is finished. 

6. Topological considerations. In this section we will do some simple topo- 
logical remarks about the contact Lefschetz pencils. In the first subsection we will 
study the topological relationship between the smooth fibers of a contact fibration. 
In the second one we study the relationship from a contact geometry point of view. 

We fix (R2n,ct;o) with the standard symplectic form UQ = T.dxi A dyi. Choose an 
integer 0 < k < n and define the Morse function / = — x^ • • • — x| + #1+1 • • • + Vn- 
The set /_1(—e,e) is a A:-dimensional handle. The descendent sphere 5_e = {xk+i = 
... = yri = 0,xf + • • • -f xl, = e} is an isotropic submanifold. The level set f~1(—e) 
is a contact manifold. It can be shown that any isotropic sphere S inside a contact 
manifold C admits a trivialization changing the picture to the model given by S-e 

inside /_1(e). So we can perform a surgery using the local model obtaining a new 
contact manifold. This is usually called an isotropic surgery of index k [We91]. In 
the particular case where k = n we will say that the surgery is Legendrian, because 
the descendent sphere is Legendrian. 
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The result that we will prove in the two following subsections is 

PROPOSITION 6.1. Given a contact fibration (/, A, A), any pair of regular fibers 
are related, for k large enough, by a sequence of legendrian Weinstein surgeries. 

6.1. Crossing critical curves. Over each of the connected components of 
CP1 — /fc(A) the fibers of /& are isotopic. Now, we are interested in analyzing the 
topological behavior of the fibers when crossing through A. We will prove in this 
subsection the following 

PROPOSITION 6.2. Given a contact fibration (f,A,A), choose a path 7 : [0,1] —> 
CP1 such that 7(1/2) G /(A) and the rest of the points of 7 are regular values of 
f. Then N = /~1(7(1)) is built up from N' = /~1(7(0)) by adding a n-dimensional 
handle and removing another n-dimensional handle. Therefore Hj(N) = Hj(N') 
(resp. TTjiN) = KjiN')) for j = 0,..., n - 2. 

This proves the first part of Proposition 6.1. 

Proof We restrict ourselves without loss of generality to neighborhoods of 7(1/2) 
and of the critical point of /, where we can define a compatible chart. So, with the 
usual identifications, we can suppose that / : R x Cn —> C. Moreover, for simplicity, 
we will assume that /(s, 21,..., zn) = s + zf + • - + z^ (being the general case a 
straightforward generalization) and the path will be j(t) = 2(t — l/2)i with a critical 
value for / at t = 1/2. 

The proof of the result reduces to show that B = /-1(7([0,1])) is a cobordism 
between iV = /~1(7(0)) and N' — /~1(7(1)) with only one surgery of index n. And 
this follows if we find a Morse function with a critical point of index n. Choose 
h = im(f) = 2xiyi + 20:22/2 + • • • -f- 2xnyn. We can assume at a neighborhood U of 
the critical point 0 = (0,... ,0) that Bf\U C 5'~1(0), where g(s,xi,...) = Re(f) = 
s + x\ + yl + ... + x^ -f 2/n- To compute the index of g we have to restrict ourselves 
to ker Vg(0) which is 

ker Vfl(O) = {(0, *!,..., zn) : (*i,..., zn) G Cn.} 

Finally, recall that 

VV/i = (   0      0      2In 

Restricting to ker V^(0) we obtain 

Y7Vh (     0        2In VV/l|kerVp(0) = I     2^        Q 

which has index n. D 

Now we can obtain a geometrical relationship between the contact submanifolds 
obtained in Theorem 2.9 as zero sets of transverse sequences with mixed C3-bounds. 
The result will be 

COROLLARY 6.3. Let S be a line bundle with connection over a closed exact contact 
manifold (C, D) Given Nk and Nf

k sequences of contact submanifolds obtained as zero 
sets of transverse sections with mixed C3-bounds of the bundles S<8)L®k, then Nj^ and 
Nf

k are cobordant through a cobordism defined by surgeries of index n. 
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Proof. Initially we will suppose that the almost complex structure J used in the 
definition and construction of the sequences of sections are coincident in the two cases. 

Choose two of such sequences a^ and cr^ which are //-transverse to 0, for some 
rj > 0. We claim that we can assume without loss of generality that <J^ 0 (j| is r/- 
transverse to 0, for some rj > 0. If we suppose this to be false, we can apply Theorem 
2.9 and find a sequence of sections r^ 0r^ with mixed C^-bounds (r)/2, CR), such that 
(al + Tfc) 0 ((j| + T%) are //-transverse to 0. Define 

It is easy to check that the sections cr3
k(t) are rj/2-transverse to 0, therefore its zero 

sets are isotopic. So we can impose directly that a® 0 al is transverse to 0. 

Define the function 

Fk-.C-ZialeaD^CF1 

p    4(PY 

By an analogous argument to that in the precedent lines we assume that dF^ is rj- 
transverse to 0 away from Z(al 0 cr|) Recall that i7^"1(0) = Z(al) and F^"1(oo) = 
Z(al). Following the proof of Section 3 we obtain a contact fibration /&, for k large 
enough. But, we do not impose the local model at a neighborhood of A, therefore 
we do not perturb any neighborhood of A. We observe that the perturbation at a 
neighborhood of the set of critical points A does not change the counter-images of 
the points 0 and oo. It follows since there exists a po-neighborhood, being po > 0 
a uniform constant, of these two fibers which does not intersect the "bad set" F, 
because of the mixed C3-bounds of the sections a^ and cr^ (which assure contactness 
at a neighborhood of the zero set of the section). So we perturb the sequence Fk in a 
p-neighborhood of A, with 0 < p < po- Therefore, even after performing the needed 
perturbations, //^(O) = Nk and /^(oo) = Nf

k. 

By Proposition 6.2 we obtain, following a path between 0 and oo, that /^"1(0) = Nk 
and /^"1(oo) = JVj£ are related by a sequence of operations of index n. This finishes 
the proof if we admit that the complex structures coincide for the two sequences of 
sections. 

Suppose now that the sequence of submanifolds Nk is the zero set of a sequence 
of sections cr^ with mixed C3-bounds respect to an almost complex structure JQ. 

Furthermore Nf
k comes from s^ with mixed C3-bounds respect to Ji. Fix a continuous 

path Jt joining JQ and Ji in the moduli of compatible almost complex structures. We 
use the following 

LEMMA 6.4. Let JQ be a compatible almost complex structure in C. There exists a 
uniform e > 0 satisfying that for any compatible almost complex structure J such that 
| J — Jo | < e, there exist two sequences of sections Sk and s^ with mixed C3-bounds, 
respect to Jo and J, which are rj-transverse to 0; for some rj > 0. Moreover the zero 
sets of Sk and s'k are isotopic for k large enough. 

Find the uniform constants et = e provided by Lemma 6.4 for the almost complex 
structures Jt. By the continuity of Jj, there exists e£ > 0 such that we can find two 
sequences of sections s^ and 5^. with mixed C3-bounds respect to Jt and J^+e' whose 
zero sets are isotopic, for k large enough. 
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Now we cover the segment [0,1] by open segments (t,t + ej). The segment is 
compact, so we can find a finite subset (0, CQ), (h, h 4- eJJ,... (tjv, 1) of the precedent 
set of segments which covers [0,1]. Obviously, without loss of generality, we can choose 
tj + e't. = tj+i. 

Denote Z(s) the zero set of a given section 5. Observe that the sets Z((Tk) and 
Z(s^) are related through a cobordism of index n, for k large enough. But, recall now 
that Z{s^) and Z(s%) are isotopic for k large enough. Again, Z(s\ ) and Z(st^) are 
related through surgeries of index n... Following this argument we find that Z(cr£) 
and Z(G\) are related through surgeries of index n. 

REMARK 6.5. We cannot make the construction independent of the choice of con- 
tact form. For instance, if we change 6 by 26 the degree 2k contact pencils associated 
to 9 will be equivalent to the degree k contact pencils associated to 26. Obviously these 
families of pencils are not equivalent; moreover, they are related by a doubling degree 
operation like in the symplectic case. 

What we could prove is that the doubling degree operation keeps the homology and 
homotopy groups till the needed order, because it is simply to construct a Gromov- 
Gompf gluing of two copies of the submanifold along a codimension two submanifold 
inside them. (Not exactly the Gromov-Gompf symplectic sum, but the natural contact 
analogue) We do not give the details of this construction. 

Proof of Lemma 6.4- Construct a sequence of sections cr^ 77-transverse to 0 using 
the globalization argument of Proposition 4.2, for some uniform constant 77 > 0. Thus, 
we obtain 

Ere/ Wk-Sk/X., 
jeJ 

where the points Xj are elements of the set S with the properties described in the 
proof of that Proposition. Recall that the definition of ah makes sense if we change 
the almost complex structure Jo by another one J. The obtained section a^ will be 
different because the reference sections 5^. depend on the complex structure. It is 
clear that a^ has mixed C3-bounds with respect to J. We claim that a^ and af

k are 
C1-close. 

The steps to prove this are : 

1. Check that |S^Jo(y)-^(y)!^ =0(eexp-4(x,y)2/4). 
2. Check that the sum of all the reference sections still satisfies |crfc — cr^lc2 = 

0(6). 

□ 
Proposition 6.3 is weaker than the "contact Lefschetz hyperplane theorem" proved 

in [IMP99], but it is more geometrical and enlightens the behavior of the generic 
sections of the bundles L®k. It would be interesting to study the different connected 
components of CP1—A to control the topology of all the "approximately holomorphic" 
contact zeroes of L®k. 

6.2. Contact information. In this subsection we will understand what happens 
with the contact structure of a fiber when we cross through a critical curve. The 
first thing to say is that fibers in the same connected component of CP1 — /(A) are 
contactomorphic because of the Gray's stability theorem. 
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The change in the contact structure when we cross a critical point is summarized 
in the following 

PROPOSITION 6.6. Given a contact fibration (/, A, A). Choose a path 7 : [0,1] —> 
CP . Suppose that 7 only intersects /(A) at the point 7(1/2). Denote by v the 
unitary tangent vector defined in 7(1/2) by the oriented curve /(A). Assume that 

{ 7'dt' \v} is a positively oriented basis, then /_1(7(0)) and /_1 (7(1)) are related 
through a symplectic cobordism with a Weinstein surgery along a Legendrian sphere 
inf-1 (7(0)). 

This proves the second part of Proposition 6.1. 

Proof. Just copy all the setup of Proposition 6.2. The only change will be the 
assumption about </>. We will assume here, without loss of generality, that 0(s) = i • s. 
Therefore the curve 7 is assumed to be laying on the real axis. The cobordism is 
simply B = /~1([0,1]). There is a neighborhood U of the critical point p (which is 
the one in the fiber /~1(0)) where the local model for / holds. A Morse function for 
the cobordism in this case is Re(f) = h = x\ — yf + • • • + x^ — y^ which is defined on 
Bf]U. Therefore, where the local model holds, the cobordism is defined in R x Cn 

by the equation 5 + 2xiyi + • • • + ^nVnt which is a hypersurface. We can define a 
diffeomorphism 

(f): Cn -> R x Cn 

(zi,...,zn) -> (-2x12/1 2xnyn,z1,...,zn). 

Recall that the form d6 induces at the critical value (the point (0,..., 0) in the trivial- 
ization) the standard pre-symplectic form ^0 — 2 dxjAdyj. Recall that for increasing 
k LOQ and d6 are closer and closer. 

Check that ^*UJQ = u which is the standard symplectic form in Cn. Now, through 
the diffeomorphism 0, the fibers of B (in a neighborhood of U) are just the level sets 
in Cn of the Morse function (j)*h = x\ — y\ H Vx^ — y^. Fortunately the picture that 
we have got is exactly the local model defined in [We91] for the Legendrian gluing 
of a symplectic cobordism, when they are defined along a Legendrian (n — l)-sphere 
defined by the equation 

SE(Z) = {(xi,yi,...,yn) : xi = • • • = xn = 0,i/? + • • • + yl = e}. 

This almost finishes the proof. Recall, now, that all the construction we have done 
is only approximated because we are using LUQ instead of d6. But, what we know is 
that SE{^) is totally real and asymptotically Legendrian when k is large and e is small 
enough (this second condition is needed to be inside U). We can bring back SE(C) to 
/~1(7(0)), denoting this new "approximately Legendrian" sphere by the same letter. 
To finish what we need to do is to change /~1(7o) by another very close contact 
manifold for which SE(^) is actually Legendrian. By Gray's stability theorem the 
proof is finished. □ 

We have proved that all the fibers in a contact fibration are related through Leg- 
endrian surgeries. This could have important consequences. First at all, it could 
be possible to define invariants in 5 dimensional manifolds simply by choosing 3- 
dimensional invariants preserving Legendrian surgeries. 

A first result in this direction is 
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THEOREM 6.7. Given a symplectically fillable contact manifold, all its contact 
pencils have symplectically fillable fibers. 

This is proved in [PrOl] and it is a corollary of the existence of pencils in symplectic 
manifolds with boundary. 

REMARK 6.8. Giroux and Mohsen's paper [GM01], in particular, shows that the 
fibers of the contact pencils are always holomorphically fillable (a stronger result than 
Theorem 6.7).  This restricts the class of invariants what must be looked for. 

7. The non-exact case. To conclude the discussion we consider now the non- 
exact case. The important point is the following standard result 

PROPOSITION 7.1. Given a non-exact contact manifold (C,D). There exists 
an exact contact manifold (C, D) which is a non-trivial double covering of C. The 
projection is a contactomorphism and it can be found a contact form 6 in C such that 
the structure ^-action of the covering is a strong anti-contactomorphism, i.e. for 
a G Z2, it is a*Q = —0. 

For a simple proof, see [IMP99]. Now, we follow the ideas in [IMP99]. We lift S 
to the double covering and denote it again by S. It is easy to find an almost complex 
compatible structure J satisfying that a*J = — J, this implies that a*gk = gu- The 
map a lifts to a morphism of bundles a : L®k —► L®k (in fact recalling from [IMP99] 
that L is trivialized by construction, we take the identity in each fiber). This morphism 
preserves the connection. So it is easy to check that if Sk is a sequence of sections 
of the bundles S <£> L®k with Cr-bounds (CD, C#) with respect to the contact form 6 
and the almost complex structure J, then a*Sk is a sequence of sections of the bundle 
S <g) L®k with respect to the contact form — 6 and to the compatible almost complex 
structure — J with the same mixed Cr-bounds {CD,CR). But, now we identify the 
bundle L®k with L®k using the anticomplex isomorphism provided by the identity. 
Then a simple computation shows that a^Sk is a sequence of sections of the bundles 
S <g) L®k with the same mixed C3-bounds. 

Our only task is to assure that all the objects in the construction are Z2-invariant. 
The precedent considerations assure this condition in the local constructions. Now 
we are going to study the globalization process. The first point is to achieve the set 
of points S invariantly. Moreover each Sj has to be Z2-invariant. This is only true if 
the action of Z2 is free, because in any other case we would have problems to assure 
the second property of the set. The perturbation is performed in a similar way that 
in the standard case. The key idea is that the perturbation term r^x constructed to 
obtain transversality close to a point x can be transported to the point a(x) by means 
of Tk,a(x) = a*Tjfe,B' There is no interference between x and a(a;), because 

dk{x,a{x))=0{k1l2). 

The term rfc)Q;(x) produces the same transversality as r^x because of the Z2-invariance 
of the construction. 

The perturbation of the function FSk can be made invariantly. In the set A it 
is clear. In A, the trivialization is invariant, as well as the function H and we can 
choose w' invariant without loss of generality. 

So we have constructed a pencil in C which is Z2-invariant. This Z2-invariance 
property allows us to quotient by the group Z2 obtaining new data A = A/Z2, A = 
A/Z2 and / = //Z2. It is a trivial exercise to check that the object so defined is a 
contact pencil on C. □ 
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8. Birational equivalence. A natural question to be thought is how to con- 
struct a contact fibration starting with a Lefschetz pencil. The way to follow is to 
blow-up the base points set to avoid the intersections between different fibers. In the 
symplectic case this is absolutely standard and tells us that every symplectic manifold 
is a Lefschetz fibration up to birational equivalence. We will say that two symplectic 
manifolds are birationally equivalent if they are related through a sequence of sym- 
plectic blow-up's and blow-down's. This characterization has allowed S. Donaldson 
and I. Smith [DS00] to prove several results concerning symplectic topology. 

Our task is to look for a similar argument in the contact case showing that contact 
manifolds are always "birationally equivalent" to contact fibrations. Two remarks 
before starting. Firstly, the definition of contact Lefschetz fibration is the natural 
one: a contact pencil with no base points set. Secondly, we mean by "birational 
equivalent contact manifolds" two contact manifolds related by a sequence of blow- 
up's and blow-down's. This definition only makes sense if we are able to define what 
is a contact blow-up. 

This notion is not so new, M. Gromov spoke about the construction of contact 
blow-up's about thirty years ago. Recall that it is easy to define a topological complex 
blow-up. Suppose we have got a submanifold N inside a smooth manifold M with 
complex normal bundle. In this case, we blow-up each one of the fibers of this bundle. 
What we get is a new manifold M called the topological blow-up of M. There is a 
natural projection TT : M —> M which is a diffeomorphism in M — 7r~1(N). In the 
symplectic case it is well-known that if N is a symplectic submanifold then M admits 
a symplectic structure. It makes sense to "topologically" blow up a contact manifold 
along a contact submanifold. 

The problem is to define a contact structure in the manifold so constructed. In 
general we have got only the following 

CONJECTURE 8.1. Let (C,D) be a contact manifold and let N be a compact 
contact submanifold. Then there exists a contact structure D in the topological blow- 
up of C along N. The contact structure is defined by the pull-back of D through TT 

outside an arbitrary small neighborhood of N. 

We will call quantum contact manifold associated to a symplectic manifold (M, u) 
to the circle bundle C(M) over M with connection 0 whose curvature is the pull-back 
of UJ. The quantum manifold C(M) has got a natural contact structure given by 6. 
M. Gromov has proved 

THEOREM 8.2 (Exercise (c) pp. 342-343 in [Gr86].). Suppose we have the same 
hypothesis than in Conjecture 8.1. Also assume that the contact submanifold N is the 
quantum manifold associated to a symplectic manifold M. Moreover, assume that the 
symplectic normal bundle v(N) of N is the pull-back of a symplectic bundle over M. 
Then Conjecture 8.1 holds. 

With Theorem 8.2 we can prove some partial results 

COROLLARY 8.3. Every 5-dimensional contact manifold (C, D) is birationally 
equivalent to a contact Lefschetz fibration with fibers Poincare dual to any given ele- 
ment of H2(C). 

Proof. By Theorem 1.2 the contact manifold has got a contact Lefschetz pencil 
with the required fibers. To conclude we only need to blow-up the base locus set. In 
the 5 dimensional case, the set A is a finite set of transverse contact curves. But, 
obviously, this is the quantum manifold associated to a finite set of points. To satisfy 
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the condition of Theorem 8.2, we need only to assure that its normal bundle is trivial. 
But this is obvious since rank 4 vector bundles over 51 are always trivial. Therefore 
we can blow-up the manifold along A to obtain the required fibration. □ 
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