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THE RESOLVENT TRACE FORMULA FOR RANK ONE LIE 
GROUPS* 

YASURO GONt AND MASAO TSUZUKI* 

1.  Introduction . 

1.1. Introduction. Let X = G/K be a Riemannian symmetric space of non- 
compact type with G a connected simple Lie group of real rank one and K a maximal 
compact subgroup of G. In the paper [17], Miatello-Wallach introduced a family 
of bi-i^-invariaint functions Qs, s £ C on G, which satisfies the same differential 
equation as the elementary spherical function <j)s of Harish-Chandra on the open set 
G+ = G — K but has singularities along K. By making the r-fold convolution of Qs, 
they defined a function QrjS on G, which is less singular than Qs itself. Then, given 
a cofinite lattice T of G, they introduced the distribution Pr?s(±,7/) by forming the 
Poincare series 

Pr,5(±, ij) = cr(s) ]P Qr^ix-1^),    x, y e Y\X (1.1) 

with a suitable normalizing factor cr(s) and proved, among other things, that it 
is smooth on the complement of the diagonal in (r\X) x (r\-X") and satisfies the 
differential equation 

(AHhp^-5
2rPr,s(±,-)=5(±) (1.2) 

with A the Laplacian of T\X, 8{x) the Dirac delta supported at x. In the classical sit- 
uation that X is the upper half plane, the distribution Pij5(i;, y), the resolvent kernel 
function of Laplacian for the Riemannian surface r\X, was intensively investigated 
by several German mathematicians from the view point of real analytic automorphic 
forms ([3], [19]). Based on these works, J. Fischer deduced the resolvent trace formula 
by computing the integral 

/     (Pi|S(i;,i?)-Piia/(i,i))di,    5, s' e C (1.3) 
Jr\x 

in two different ways ([5]). 
In this paper, we show that the same type of procedure is possible for a higher 

dimensional X by considering the integral Jr\x Pr,5(x, x)dx with r greater than a half 

of dim X instead of (1.3). As a result, following Fischer, we can obtain another proof of 
the meromorphic continuation of the Selberg zeta function for r\X and its functional 
equation, which was originally proved by Selberg, Gangolli and Gangolli-Warner ([7], 
[8], [20]). 

Although a handy formula of QrjS in the 'polar coordinate '(Cartan decompo- 
sition) is desirable for our purpose, it seems rather difficult to have such a formula 
directly from the definition of Qr?s recalled above. Our strategy is as follows. We first 
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have an explicit formula of Qs — Qi^s in terms of Gaussian hypergeometric series as 
in the classical case, and then use the system of differential equations among Qr,5's to 
show that Qr^ is obtained from Qs by applying the differential operator (^j^)7" to it 
(Proposition 3.1.7, Theorem 3.2.1). Thus a formula of Qr?s in terms of a derivative of 
the hypergeometric series becomes available, which enables us to compute the integral 
Jv^x'Pr^{x,x)dx by dividing it into the local contributions for F-conjugacy classes 
and by using various formulas involving the beta function and the hypergeometric se- 
ries. Consequently we can evaluate the integral by means of the logarithmic derivative 
of the Selberg zeta function for Y\X. On the other hand, by the spectral expansion 
of PrjS(x, —) given in [17], we compute the same integral in terms of the eigenvalues 
of Laplacian on L2(r\X). Combining these two expressions of JT\X Pr,5(:r,d;)<ix, we 
arrive at the resolvent trace formula, which was studied in [5, Theorem 2.5.2, p. 108] 
for G = PSI^R), in [4] for G = PSZ^C) and in [1] for Jacobi forms. 

Finally, we would like to say a few words on the status of our results. The 
resolvent trace formula (RTF for short) for a general compact locally symmetric space 
r\X with rank one X is more or less known, because it is essentially the same as the 
determinant expression of the Selberg zeta function obtained already in [15] together 
with its explicit gamma factor. But we believe that our method, that is a slight 
extension of Fischer's, provides a more direct and elementary way to have the RTF 
than the traditional method employed in [20], [7] and [8], which necessitates difficult 
tools such as the Paley-Wiener theorem and the Plancherel formula for X = G/K. 
We also believe that our Theorem 3.2.1, that gives an expression of QriS in terms of 
the derivative of the hypergeometric series, is new and is interesting itself. 

The authors thank Professor R. J. Miatello for his comments on the proof of 
Proposition 4.1.1. 

2. Preliminaries. In this section we introduce basic objects and fix notations. 

2.1. Notations. We denote by N the set of natural numbers, i.e. N = 
{1,2,3,...}. Put No = N U {0}. The cardinality of a finite set S is denoted by 
#5. 
Let X be a set and f,g two positive real valued functions defined on X. We write 

f(x) -<g(x),    xeX 

if there exists a positive constant c such that f(x) ^ cg(x) for all x G X. 

2.2. Lie groups and Lie algebras. Let G be a connected semisimple Lie group 
of real rank one with finite center. Put Q = Lie(G), the real Lie algebra of G. Let K 
be a maximal compact subgroup of G and 8 the Cartan involution of g corresponding 
to K, then we have the Cartan decomposition g = £ -f p with 6 = Lie(K). We fix an 
Iwasawa decomposition G = NAK of G; A is a maximal split torus in G whose Lie 
algebra a is orthogonal to t with respect to the Killing form B of G and N a maximal 
unipotent subgroup of G normalized by A. Since dim A = 1 by assumption, there 
exists a unique root a £ a* such that nJQ = {X £ g\ ad(iJ)X = j • a{H)X, H G a} 
with j e Z is zero if \j\ > 2, and Lie(iV) = n = na + n2a- 

Let HQ be the unique element of a such that a(iJo) = 1- Let (, ) : ax a —> R be the 
inner product induced by B; it gives the identification a = a*. The dual inner product 
of a* is also denoted by ( , ). Put p = dimRUQ,, q = dimRr^a, po = 2~1(p + 2q), 
c0 = (2p + 8g)-1 and m = 2_1 dim(G/i^). Then by the classification, we have the 
list: 



THE RESOLVENT TRACE FORMULA FOR RANK ONE LIE GROUPS 229 

0 P Q Po m 
su(U) 21-2 1 I I 
«o(Z,l) l-l 0 2-i(l-l) 2-H 
sp(/,l) 41-4 1 21-1 21-1 

f4(-20) 8 7 11 8 

( I is a natural number greater than one.) 

LEMMA 2.2.1.  We have 

2ra = p + <?-j-l,     {Ho, HQ) = CQ
1
,     (a,a)=co. 

Prom now on we assume that m E N, m ^ 2. In other words, we exclude the case 
of Q ^ 5l2(R) or 50(2/ + 1,1) with I ^ 1. 

2.3. Haar measures. Let dk be the Haar measure of the compact group K with 
total mass one. Let dt be the standard Lebesgue measure of R; by the identification 
R = A = expa, t H^ exp(ti?o)» ^ gives the Haar measure of the torus A. Denote 
by C^(N) the space of compactly supported continuous functions on N. Since N = 
exp(na 4- n2a) is a unipotent Lie group we can take its Haar measure dn such that 
the formula 

f f(n)dn= f    [    f(exp(X + Y))dXdY,    f e C° (N) 

holds with dX (resp. dY) the Euclidian measure of na (resp. n2a)- (We regard nja 

as a Euclidean space by the inner product —B(Z,6Z).) 
Then we fix the Haar measure dg of G = ANK by dg = da • dn • dk. To handle 

various bi-if-invariant functions (distributions) on G, the Cartan decomposition G = 
iif exp([0,oo)i!/o)^ is indispensable. We put 

G+ = G - K = KA+K with A+ = {exp(ttfo)| t > 0}. 

If g G G+, and g = k1(g)a(g)k2{g), with k1{g),k2{g) £ K and a(g) £ A+, then a(g) 
is uniquely determined by g.  We choose the Riemannian metric dx on X = G/Ky 

induced by the restriction B\p of B to p. We then have that the hyperbolic distance 
d(xK,yK) = B(tHo,tHo)1/2 = t if x,y G G and a^^y) = exp(tifo), with t > 0. 

The measure dg on G is decomposed along the Cartan decomposition as follows. 

LEMMA 2.3.1. For any positive measurable function tp on G, the formula 

/ (p(g)dg = CG       /      /   (p(k1exp(tHo)k2)n{t)dk1dtdk2 (2.1) 
JG JK JO    JK 

holds. Here 

/i(t)=:(sinht)p+9(cosht)g, 

cG = 2r(m)-1(2-1co)-m+1/27rm. 

Proof. Define the function / on G by 

/(fci exp(tffo)fc2) = (cosht)2s        (fei, /C2 eK,te R). 

Next integrate / in the both hand sides of (2.1). D 
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3. Spherical functions. In the first subsection, after recalling the standard 
properties of zonal spherical functions for G/K, we introduce a bi-if-invariant func- 
tion (fis ' on G+ with singularities along K, which is called the secondary spherical 
function by T. Oda ([18]). We investigate its properties in some detail to show that 
its r-times derivative with respect to s2 gives the function Qr s of Miatello-Wallach 
([17]). 

3.1. The spherical function with singularities. For s G C, the zonal spher- 
ical function 0S for G/K is defined by the integral 

<j>a(g) = f e(a+P0WH(k9»dk,    geG. 
JK 

Here for g G G, H(g) denotes the unique vector in a such that g G Nexp(H(g))K. 
The basic property of (j)s is listed below. 

(a) It is bi-iT-invariant C^-function on G, i.e., fa G G^i^G/if). 
(b) It satisfies the differential equation 

n<l>a(g) = (s2 - pDMd)*    9£G 

with ft the Casimir element of G corresponding to CQB. 

(c) If Re(s) > 0, then 

lim  e^-^MexpitHo)) = c(s) 
t—*-\-oo 

with c(s) the c-function for G/K given by 

c(a) = 2---rMrWr(i^)"V(^|±^'   , 

Put ui^it) = (j)s(exp(tHo)), t G R. Then by (a), ui^it) is a G^-function on 
R which determines (j)s uniquely, and by (b) it satisfies the ordinary second order 
differential equation 

/T_ d2u      (    V Q      \ du     , o       o, 

which has the regular singularity at t = 0 with characteristic exponents {0,2 — 
2m}. Change the variable by z = tanh2t and consider the function w(z) — 

(cosh^0-5^ (£)• Then it turns out that it; is a solution of the Gaussian hyper- 
geometric differential equation z(\ — z)^- + {c — (1 + a + b)z}^ — abw = 0 with 
a = 2~1(—s + po), b = 2~1(—5 + po — q + 1) and c = m. Thus we have 

W« (t) = (cosh ty-r*^ (Z^1, s + Po-q + l . m . ^2 A j     t £ R 

We are interested in another class of solutions of (D)s which admit a singularity at 
t — 0. Among them, the one with the fastest decay at infinity, which we now define, 
is of particular importance: For s G C — {—1, —2, —3,...}, put 

7(s) = r(f^)r(g-Y2m)r(* + i)^r(m -1)- = 2—m(sc(s))-1. 

PROPOSITION 3.1.1. 
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(i) If s € C is not a pole 0/7(5) and 7(5) ^ 0; then the family {us \us   } gives 
a system of fundamental solutions of {D)s around t = 0. 

(ii) There exists a unique family of functions {(j)i   \ Re(s) > 0} in C00(iir\G+/i;C) 
such that 
(a) 

^)(9) = (s2-pl)4>^(9),    9eG+. 

(b) 

(c) 

<^2>(exp(ttfo)) = 0(e-t^^+^),    (t -> +00), 

lim i2m-2</)(2)(exp(tFo)) = l. 

For a given g € G+ the function s i—> (ps {g) is holomorphic on Re(s) ^ 0. We have 

42)(exp(ttfo)) = u^it) forteR- {0}. 
Proof, (i)   Let us consider the Wronskian of the {ui ',Us  }, put 

W[u^,u^}{t) = uCi)(t). ±u(V{t) - !„(!>(*). „«(«). (3.1) 

It is easy to verify that limt_+o Us (t) — 1, limj^+o ^^s (*) = 0) 

limt^+oi2m-2ui2)(t) = 1 and limt^+oi2m_1^42)(i) = 2-2m. So we have 

= JBm {«?>(*) • ^-^^(t) - t|«W(t) • ^-2n(2)(t) 
= 2 - 2m ^ 0. 

Hence there exists a to, 0 < to < e with a small e > 0, such that W[us ,Ua ](£o) 7^ 0. 
This means that the Wronskian W[us \us '](t) does not vanish identically and we 
have the assertion . 
(ii) By the condition (a) and the fact (i), (j)s ' can be written as a linear combination 

of ui ' and Us    as 

</>(2)(exp(ttfo)) = <*! - n«(t) + a2 • u^(t)    (t > 0). 

Since lim^+o*2™-2^1^) = 0 and limf_+o^2m"2^2)W = 1, the condition (c) 
implies that a2 = 1. Let us check ai = 0. Firstly we assume that Re(s) > 
0. By the explicit formula, we have lim£_>+0o e^0~s^Ws (t) = c(s) ^ 0 and 
limt-^+oo e(p0~sS)tUs(t) = 0. So we obtain ai = 0 by the condition (b). Sec- 

ondly we assume that Re(s) = 0. Then we have Us (i) = O(log(cosht)e""pot) and 
ui2)(t) = O(e-pot) when t tends to +00. Thus we obtain ai = 0 by (b). □ 

PROPOSITION 3.1.2. Put 

c(s) 

(-l)m7r ra-1r /   \ 2        / \ 2 

r(m)r(m-l)   f=\{\2 n{(i)-(f-)}-W^)-K^)}- 
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Then for s £ C with |Re(s)| < 1, we have 

^-lig) = <P?H9) + c(s)M9),    9 € G+. (3.2) 

Proof. The function u_l{t) on t > 0 is a solution of (D)s. Hence by Proposition 

3.1.1, it can be written as a linear combination of ui    and ui ' as 

^(*)=ci-tii1)(*) + C2.u(2)(t)    (t>0) 

Since Kmt-t+ot^-tuPit) = 0 andlim£_+o^2m"2^2)W = lim^+ot2m-2wL2](t) = 1, 
we have C2 = 1. 

Let us determine ci. First we assume that 0 < Re(s) < 1. By the explicit formula, 

we have limt_+00 e^0-5M2)(£) = 0 and limt_>+00 e^-^u^t) = j{-s) • 2^-s . So 
we obtain 

**-«-*) = ci • 2^r(s)r(m)r(i±^)"1r(s-y2m)"1. 

Thus 

d = (r(m)r(m - i)r(s)r(i - s))_1 

Y-s + poyf^yf-s-Po + 2myfS-Po + 2rn\       (3 3) 

Note that 

r(5)r(l - 5) = 7rsin(7r5)~1, 

2 
m— 1 

i=i 

r;i±Po\     r/    _zS-P0 + 2m 

n(m_i_Z£±^    -ri-Zi^o), (3.4) 

2 

n1(m-J--
s-? + 2-).rfi--s-? + 2").   (3.5) 

Then we have 

1 sin(7rs) 
ci r(m)r(m - 1)      TT 

771—1 

X 
nf/         .     -5 + po\/         •     -s- po + 2m\\ 
.=iir-j—^Jr-J 2—J) 

..p/^-^ + PoApA _ -s + Po\rf-s-po + 2m\r/1 _ -s-Po + 2m 

____J__ sinOrs) "pj-1 f /£N 2 _ /po _   \ 21 
r(m)r(m-l)     TT      fjl^^      V2     ^ J 

TT TT 

Xsin(^±^7r) sin(-s-P2
0+2m7ry 
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Since 

sin(7rs) i\m-ij    ./_5 + Po   \  .        /-s-po + 2m 
sin(^±^7r)sin( —s—po+2m (.1)-1{C0,(- + AV) + 00t(-^±»!!.,)}, 

the formula (3.2) is now established for 0 < Re(s) < 1. By the analytic continuation, 
the formula remains valid on |Re(s)| < 1. D 

The 'bad 'behavior of the function cj)), ^(exp(tiJo)) near t = 0 is controlled by a 
simple function. Indeed, we have 

PROPOSITION 3.1.3.   There exists a function (s,£) h-» Ya(t) on C x (R - {0}) 
with the following properties 

(a) We can write 

m—1 ,   >. 

b(s) (   fs + po\      .fs-po  , - 

with polynomial functions Bj(s) and b(s) such that 

Bj{-s) = Bj(s),    deg(aJ(5)) ^ 2(m-j-1),    j = 0,...,m-l, 

am_i(s) = l,- 
m—l ,  /    x 2 / \  2> 

*>-(-'>-nfG) -(?-•)}• 
Here ip(s) is the digamma function, i.e., the logarithmic derivative of the 
Gamma function, 

(b) There exists a family of polynomial functions {cn(s)}n^i and {dn(s)}n->i such 
that Y^=i Cn(s)tn and Yl^Li ^n(s)tn have positive radius of convergence and 
such that 

^2)(exp(tffo)) - Y8(t) + J2cn(S)tn + \og(t)J2dn(s)tn 

n=l n=l 

on 0 < t < e with a small e > 0. 

Proof Put u = sinh21, a = 2-1(s -pQ) + l and b = 2-1(s + po - 2m) + 1. Then 

42) (t) = 7(5)(1 + u)^m-Po-s)/2-l2Fi Lb.a + b + m_1. _J_\ 
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By the formula [16, (9.7.5), p.257], we have 

up(t) = 7(s). (1 + u)2m~Z0~S^u1-™ 
f        r(a + b + m - 1)        ^ (-l)fc(m - k - 2)! /   «   ^ 

X \r(a + m-l)r(6 + m-l) ^ fc^ (a)fe(6)HrT^i 

(-l)"1"1^ + b + m-l)y,(a + m- l)k(b + m - l)fc 

r(o)r(6) ^ (m + fc-l)!fc! 

x [ V(* + 1) + ^("^ + k) - ip(a + m + k - 1) - */>(& + "» + * - 1) 

Em~   (—l)k(m — k - 2)\ . .   /7.     jt-^+i^ 2m-p0-a   1   , 

(m-2)1*1    ;(0)*(%»fcm+1(l + «)      » 

,/_T->m-i y^ (a + m - 1)^(6 + m - l)fc(a)ro-i(6)m-i 
^     j       ^ jfe!(m-2)!(m+ *-!)! 

x i V(fe + 1) + V>(ra + k) - ip{a + m + k - 1) - ip(b + m + k - 1) 

-log(I^)}^(l + Ur
£^i-fc       (0<H<e) (3.7) 

with a small e. 

Note that 7(5) = r(a + m - l)T(b + m - l)T(a -\-b + m- ^"^(m - l)"1. Now 
put 

Ak{s) = izlg^_l^(a)fc(6),        (fc = o,..., m - 2), (3.8) 

^(5) =  777 TTTT -7—77j  (« e No), (3.9) 
k\{rn — 2)!(m + k — 1)! 

7/c = ^(A: + 1) + ^(m +/c) 

-^(a + m + Jk - 1) - ^(6-+ m + k - 1)        (A; G NQ) (3.10) 

and 

(l+n)-b-fe = £c+fc(5)u"    (H<1), 
n=0 

00 

(i + uJ-^-^^c-^)^  (H<i), 
n=0 

with <.(.)-^(^-n. + * + l).,       ^.^(ilfi^).. 
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Then 

oo   m—2 

n=0 /c=0 
OO       OO f v 

+(-i)m-1EE^(s)cn,fc(s)K-1OS(TT^)rfe+n   ^-^ 
/c=0n=0 ^ ' 

7n—1        /   x 

= E!!xz+b(s)log(«)+a"o(s) 
{OO OO ^ 

EPfe(s)wfc + logWE*(s)u  (■ (3-12) 
fe=i fe=i J 

with b(s) = (-l)mBo(s), 

ai(S)= E Afe(s)<fc(s)       O^l,-..^-!), (3.13) 

/c-f-n—m+l=—j 

m-2 

a-o(3) = E ^W^-x-^W + (-ir-1Bo(a)7o, (3-14) 
k=0 

and Pk{s), Qk(s) are some polynomials. By the foumulae of Ak and c^fc, we see that 
Ak(s) c^k(s) with n^O, 0^A:<m — 1, /c + n — m + l = — j is a polynomial of 5 such 

that deg(Ak(s) c*k(s)) = 2k -\- n = k — j + m — 1. Hence 3^(5) is also a polynomial 
with 

deg(aj(s)) < max        {k — j + m — l} = 2m — 2.7 — 2 = 2(m — j — 1). 

fc+n—7n4-l=—i 

We have 

(a)m-i(6)m-i 
Bo(s) = (m-2)!(m-l)! 

1 (S-PO , A       /s + po-2m       \ 
l)r(m)V    2 ym-A 2 yL-i r(m-l)r(m)V    2 /m-r 

m-2 

r(m-i)r(m) lH-y-+^-|-1Jl 2 +J + 1J 
m—1 

-i^W)n(iTs+j)(1Ta-"'+j) 
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m—1 

m-2 

Using the formula 

m—1 

^(y + m) = il>(y + 1) + V — :       (m 6 No), 
^ y + m-j 

we have 
771—1 

+ao(s) (3.17) 

771—1   f O 2^ /771—1 „ K 

-«.*(.)-n{(5) -(?->) }-(Es_^+
2
2m_2,-^)-^)) 

i=i 
m-2 

+ E^(s)c--i-^(s)- (3-18) 
A;=0 

By the formulae Ak(s) and c^k(s), we have that ao(5) is a polynomial function with 
degree no more than 2(m — 1). Put 

771—1 

Y'(t):=g(Ss|j + b(s)l0E(5'nh2() 

Then all the assertions in Proposition 3.1.3, except that aj(s)'s are even functions 
are established. To have aj(s) = aj(—5), we use the functional equation in Proposi- 
tion 3.1.2. From that equation 

Bji-s) = 3,(5)        (j = 1,...,m - 1), (3.20) 

ab(-5) = ab(s)+c(5). (3.21) 

Prom (3.17) and (3.21), we have 

ao(-s) -ao(s) 
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with 

At \           Js~Po   \  ,        ^{s + po-2m  \        fs-po       \ 
A(s) = 7rcot(—TT-K) +7rcot( TTJ +^1— h 1) 

^(•+a)_,p^ + 1)_,(-±«.). (3,3) 

We claim A(s) = 0. Indeed, the formula ip(y) — ^(l —y) = — 7rcot(7n/) gives 

^•+ffl)_*(1_i+ffl)+,0*(i+ftT).(l 

Since 7rcot(7ry + m7r) = 7rcot(7ry), we have A(s) =0. D 

We introduce a family of functions 0s   (Re(s) > —1, r G No) as 

DEFINITION 3.1.4. For r e No, we pttf 

The basic property of <pa   we need is as follows. 

PROPOSITION 3.1.5. Let r e No and s e C tyrt/i Re(s) > 0. 
(i) The function ^ belongs to C^iRXG+fK). 

(ii) We have 

^W(exp(*jjo)) = 0(e-*(ReW+Po))5 

on t > R with a large R > 0. 
fmj Ifr^m, then the function ($  has a continuous extension to all of G.  We 

have 

Urn     4r](s) 

fzvj Let Re(s) > po- TAen we /lave 

(f)-5
2 + ^)^+1] = -0M,    re No, 

(ft-s2 + Po)40]=£ 

in t/ie 5en5e of distributions on G/K with 5 the Dirac delta supported at the 
origin of G/K. 

Proof 
(i) By the explicit formula of $1 \exp(tHo)) = Us \t), it follows that 

4](exp(tHo)) = {-j-sTs)ru{s*\t) is C00 on t > 0 and ^rl(exp(tiJo)) = 

(j)s (exp(—tHo)). From this, the assertion follows. 
(ii) Since 2Fi(£:^, ^^ + m ; 5 + 1 ; z) is holomorphic with respect to (5, z) 

on the domain {(5, z) \ Re(s) > 0, |z| < 1}, the function z H-> (jL)i2^(5^ ±^0 + 
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m ; 5 + 1 ; z) is holomorphic on \z\ < 1, especially bounded at z = 0. It is easy to see 

that (ps (exp(£ffo)) is expressed as a finite sum of the functions of the form 

with 0.X j ^ r and ^(5) a holomorphic function on Re(5) > 0. Therefore we have 

(/>M(exp(t#0)) = 0(e-<ReW+"O*)        (as t _, +00). 

(hi)   By the formula of Y5(£), we have 

\2~sfc) Ys(t) = § (sinht)2^"^^) aj(s) 

+ (-^)rb(S)log(sinh2i) + y(s) (3.24) 

with some 2/(5) independent of t. Since 3^(5) and b(s) are even polynomial func- 
tions of degree no more than 2(m — 1), (—^j^Y^ji^) = 0 for j = 0,..., m — 1 and 
(— <^:^)rb(s) = 0 if r > m. Hence (—^^)rVs(t) becomes smooth at £ = 0 as well as 
on R — {0}. Since 

*<«***»-?F^(-5s)V'(" <3'25) 

is continuous in £ on all of R (Proposition 3.1.3 (b)), cfis (exp(£iJo)) has a continuous 
extention to all of R if r ^ m. This establishes the first part of (iii). The formula in 
(hi) follows from the explicit formula of Ys(£) in Proposition 3.1.3. 

(iv)    If fi ^ 0, then we set Cf?(G) equal to the all functions / G C00(G) such 
that 

px,p(f) = sup\\g\\-»\Xf(g)\<oo 
geG 

for all X G U(g). We endow C<^{G) with the topology induced by the seminorms 
Px./Lt- (see [17, page 675].) The argument below is similar to the proof of [17, Lemma 
2.2]. Let / G C™(G/K) with /x > 0, and Re(s) > po + fi. By the integration formula 
in Lemma 2.3.1, we have 

Co1 I tfHx-iy) ■ ((Q - s2 + p2
0)f) (y) dy 

= f j    f fflfa exp(tHo)k2) ■ ((fi - s2 + pg)/) (x ■ hi expQHofoMt) dk-^dtdki 

<t>W (exp(iiJo)) • ((fi - s2 + Po)^) (exp(tflo)M*) & (3-26) 
r+oo 

JO 
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with F(g) = JKf{xkg)dk    (g e G).   For t > 0, put hr(t) .= (/)ir](exp(tiJo)) and 
Fo(t) = i7,(exp(tiJo))- Then by integration by parts, the last formula of (3.26) becomes 

/ Jo 

4-oo 

hr(t)-DtFo(t)-n(t)dt 

= lim   ]imi KOKiOFoiC) - n(C)hr((;)Fo(Q - ^e)hr{e)F0{e) + ntfKMFfc) 
C—►oo e—»4-0 (^ 

/•+oo 
+ /       Dthr{t) - Fo(t) - v{t) dt (3.27) 

with Dt = AA(*)"1s(A4(*)^) + Po - s2- % Proposition 3.1.5 (i), we have hr(t) -< 
e-(Re(s)+po)C as £ _> +00 and ^(t) ^ e-(Re(5)+^)^ as C -> +oo. By the formula of 
/i(£), we have, fi(Q -< e2poS as ^ —> +oo. Using the property of the norm || • ||, we have 
some constants T and MQ > 0 such that 

||a;fcexp(tflo)|| < ll^ll • II exp(tHo)\\ < MoHe*    (Vt ^ T, Vfc E if). (3.28) 

Since / G C™{G/K), we thus have 

1^0(01 <P/i(/)-Mo We^        (VC^T), 

1^0(01 < PHoAf) ' MoMJ"       (VC > T). (3.29) 

Therefore the first and the second terms in the bracket of the right-hand side of (3.27) 
is estimated as 

IMC)MC)iV(C)t -< e<-Ito«+'»+'* 
\fjL{Ohr'(C)Fo(0\ -< e(-Re(5)+^+^)C5 (3.30) 

so they tend to zero as ( —> H-oo. We evaluate the third and the fourth term in the 
right-hand side of (3.27). By the expression of (fis (exp(tHo)) around t = 0 given in 
Proposition 3.1.3, we have 

|/ir(e)H c"2(m"1)    (e^+0). 

/lr(e) = ^r(l + 0(eloge))    (ifr = 0), 

\h'r(e)\^ e-(2m-2r-V    (ifr>0). 

Since /x(e) -( ep+g = e2"1-1 and 

Fo(e) = Fo(0) + 0(e),    Fo(€)-<l, 

We have 

|/x(e)/ir(e)Fo(e)H e    (e->+0), 

|/i(e)^(e)JFo(e)| -< e2r    (e -» +0) if r > 0, 

fi(e)h'r(e)Fo(e) = ^(l + 0(cloge))Fo(0)    (r = 0). 

Therefore, the third and the fourth term of (3.27) are equal to zero if r = 1 and are 
equal to CQ1i?o(0) if r = 0. Suppose r = 0. Since the last integral in the right-hand 
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side of (3.27) vanishes due to the differential equation Dth(t) = 0 (t > 0), we have 

cd1 f <l>l^'1y)(^'-s2 + 4)f)(y)dy 
JG 

= FoiO)^1 = f{x)ccl (3.31) 

When r > 1, all the terms in the right-hand side of (3.27) except the last one vanish. 
Consequently we have 

CG
1
 [ ^H^ym-^ + pDf^dy 
JG 

nOO 

= /    Dthr(t)'Fo(t)-n(t)dt. (3.32) 
Jo 

To compute Dthr{i), we need a formula: 

CLAIM 3.1.6. For r > 1, we have 

A,(- 1  dy 
\   2sds 

LA.)7"1 

2s Is) 2s dsJ 

Proof of the claim. Obviously it is sufficient to prove 

1   d\r 
s2 (-±±)r   =r(-± 

'V   2sdsJ V   2s 
1  dy-i 

J dsJ 

If r = 1, then this is checked by a direct computation. Let r > 1, and assume that 
the formula for r — 1 is valid. Then, 

V   2s ds/ 
2f     1   dV"1 

\   2sds)       ' \2sds) 
1   d\r-i     2                 /    1   dV"2 

- — — 1       ^^(r-l)^ -1 -{( 
_/    1   dy-1   -s d /    I   d\ 

~ \   YslTs)       '~2"cb+^r~   '\2uds) 

2s ds ) 
1   dx^-1   -5 d 

2s ds)       \\   2sdsy 
1   d\r-i 

To have the second equality, we used the induction-assumption.  Since — f ^ = 1 + 
i   d \ 02 ("if)5 2, we obtain 

■(- 
1  dy 

2s ds) 

\   2s ds)      V 
1 d\»-i 

2s ds 

1   dN'-i 

■^^-^-ro) 

V   2srfsy V   2s ds) 

This completes the proof of the formula for r. □ 
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Let us finish the proof of the proposition. We apply the claim to the function 

42)(exp(£#o)) in s. Then 

AM*) 

=D'(-^)'rai^*H°>> 

Since A^i   (exp(^o)) = 0 for t > 0, we have 

Dthr(t) =-hr-i(t)     ioit>0. (3.34) 

By (3.32), (3.34) and (3.26), we consequently have 

JG 

a1 f ^r1]^-1y)-f(y)dy (3.35) 
JG 

for r ^ 1. By (3.31) and (3.35), we have the desired formula. □ 
We have a characterization of the family {(fry }. 

PROPOSITION 3.1.7. Let{ipryS\ r e No, Re(s) > po} be a family of bi-K-invariant 
distributions on G with the following properties. 

(i) Forr G No, Re(s) > po the distribution (pr,s is represented by a C00-function 
onG+. 

(ii) For Re(s) > po, 

tlimot
2m-Vols(exp(^o)) = l. 

(Hi) For r € No, Re(s) > po, 

^s(exp(tHo)) = Oie-^3^),    t -> +00. 

(iv) Let 'Re(s) > PQ. If we regard (pr,s 's as distributions on G/K, they satisfy the 
differential equations 

(ft - S2 + /0o)<Pr+:M = -^r,s,      ^ ^ NQ, 

(ft - 52 + Po)^0,S = 5. 

Then for r G No and s G C, Re(s) > po ^e have ipr,s{g) = (frs (g) on G/K in the 
sense of distributions. 

Proof. The difference <po,s —(frsK considered to be a distribution on G/K, is anni- 
hilated by the elliptic differential operator ft — s2 + pg on G/K (see Proposition 3.1.5 

(iv)). Hence by the elliptic regularity theorem <po,s ~ (frs is smooth on all of G. By 

Proposition 3.1.1 (ii) the two distributions <po,s and 0s   coincide with each other on 
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the open dense set G+. Therefore (pQjS = (f)[ J on all of G. Let r > 0. We use induction 

on r to show (prjS = 05 . Assume <Pr-i,s = <fis • Then from the property (iv) of 

cpr}S and Proposition 3.1.4 (iv), the distribution (pr^ — vs (on G/K) is annihilated by 
the elliptic differential operator Q — s2 -\- pi; hence it becomes smooth on all of G and 
is actually a constant (say Co) multiple of the zonal spherical function <ps. But the 

property (hi) and Proposition 3.1.5 (ii) give that ((£rjS — </))[*)(exp(tiJo)) is of exponen- 
tial decay as t —» -foo. Since (j)s(exp(tHo)) with Re(s) > po grows exponentially as 
t —> +00, the proportionality constant Co should be zero. This completes the proof. 
□ 

3.2. Miatello-Wallach's spherical functions. We recall some basic proper- 
ties of the functions Qr)S, r E N which Miatello-Wallach introduced and studied in 
detail ([17]). 

(i) For s E C, Re(s) > 0, QM G C00(^\G+/i^) ([17, Theorem 1.1 (a)]) . 
(ii) For a fixed g € G+, the function s H-> Qi,s(g) is holomorphic on Re(s) > 0 

and has a meromorphic continuation to C ([17, Theorem l.l,(b)]). 
(iii) 

Qhs(eXP(tH0)) ~ ^££(£1 . f-lrn        t _ +0 
m — 1 

([17, Theorem 1.1, (d)]). 
(iv) Let Re(s) > po and r G N.   Then QrjS is bi-if-invariant and integrable 

function on G satisfying the formula 

Here • means the convolution on G with respect to the measure dg. (see [17, 
page 678]). 

(v) Let Re(s) > po and r € N. Then 

Qr,s(exp(tiJo)) = O(e-^Re^0>),    t -> +oo 

([17, Lemma 2.4]). 
(vi) Let Re(s) > po- Then the distributions QriS on G/K satisfy the differential 

equations 

(ft - s2 + Po)Qr+i,5 = -2sc(s)Qr,s 

for r G NQ with the convention that Qo,5 = ^ the Dirac delta supported at 
the origin of G/K ([17, Lemma 2.2, Lemma 2.6]). 

Thus the family {—(2sc(s))_(r+1)(2r4-i,,j| r G NQ, Re(s) > po} possesses all the 
properties (i) to (iv) in Proposition 3.1.7. Hence applying that proposition, we have 
the following theorem, which is one of the main results of this article. 

THEOREM 3.2.1. Let Re(s) > po and r G NQ. Then as distributions on G/K the 
equality 

r+l ^=-(^yr Q^ 
holds. 



THE RESOLVENT TRACE FORMULA FOR RANK ONE LIE GROUPS 243 

4. Miatello-Wallach's function PrvS and its spectral expansion. 

4.1. The function Pr,5. Let X = G/K. Let T be a neat co-finite lattice of G, 
that is a discrete torsion-free subgroup of G such that r\G has finite volume. We 
assume that if Y is not cocompact then it satisfies the Langlands' axiom. Here is a 
notational convention: A point of the double coset space T\X is denoted by a letter 
with a dot and any one of the lifts of that point to G is by the same letter without a 
dot. For example if x £ G then the corresponding coset TxK £ Y\X is x. 

Let A be the Laplacian of r\X corresponding to — fi. 
In [17], Miatello-Wallach introduced the functions Pr?s (r £ No, Re(s) > po) by 

Pr,*(£,2/) = -f ^Ts) )   YlQr^x~liy^    x,yeY\X 

with Qr^ the spherical function which we recalled in 3.2. Among other things, they 
proved that 

(a) the series Pr,s(x,y) converges absolutely and defines Pr)S(a:,y) holomorphic 
in s on Re(s) > po and smooth in i, y in the complement of the diagonal of 
(r\x) x (r\x); 

(b) for each x £ Y\X, as a distribution on Y\X PrjS(x) —) satisfies 

(A + S
2-p2

0yPrtS(x,-) = -8(x) 

with 5(x) the Dirac delta on Y\X supported at x 
([17, page 685, Theorem 3.4], [2, page 621, Theorem 3.2]). 

PROPOSITION 4.1.1. Let s £ C with Re(s) > po. Ifr>m, then Pr)S(x, y) has a 
unique continuous extension to all of (Y\X) x (r\X). 

Proof. This is a consequence of [17, Corollary 2.5]. Indeed, by that corollary, 
Qr?s £ L2(G) if r > ra/2 and Re(s) > po. Hence Qr?s is continuous on all of G if 
r > m and Re(s) > po? since in general the convolution of two L2-functions on G 
gives a continuous function. By the discussion in [17, pp.683-687], the continuity of 
Pri5 follows. D 

REMARK. Proposition 4.1.1 is also a corollary of our earlier results. Indeed, from 
Proposition 3.1.5 (iii) and Theorem 3.2.1, the function QrjS (r > m, Re(s) > po) has 
a continuous extension on G. 

By this proposition, we can consider the restriction of 1PriS(x,y) to the diagonal 
x = y of (r\X) x (r\X). From now on we assume that Y is cocompact. Then 
Pr,s(:E, y) becomes bounded on (r\X) x (r\X) if r > m; in particular the function 
Pr,s(x, x) is integrable on r\X. We want to evaluate the integral 

L Pr-hl,s{x,x)dx (4.1) 
r\x 

with r ^ m explicitly. 

4.2. Spectral expansion of Pr)S(i;,y). In this subsection we compute the in- 
tegral (4.1) by using the spectral expansion of Pr+iiS(±, y). Since we assume that Y is 
cocompact the Laplacian A has no continuous spectrum on L2(r\X). The eigenvalues 
of A forms a countable subset of non-negative reals enumerated as 

0 = AQ < Ai < A2 < ... ^ An ^ ... 
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so that each eigenvalue occurs in this sequence with its multiplicity. Let {<£>n}n^o be 
the orthonormal basis of L2(r\X) such that (pn G C00(r\X) and A(pn = An</?n. For 
each n we fix a complex number sn such that Xn = pQ — s^. 

PROPOSITION 4.2.1. LetreNo and s G C be such that r ^ m and Re(s) > po- 
Then 

n=0 ^ Sn' 

Here the infinite series in the right-hand side of this identity converges uniformly in 
(x,y)e(r\x)x(r\x). 

Proof Since r 4-1 > m and r\X is compact, [17, Theorem 4.2, page 689] implies 
that the series 

|yn(*)l2 

n IS2 - S2 |r+l 
n=0 ' nl 
E 

converges uniformly in x G r\X. Hence by Cauchy-Schwarz inequality, we have that 
the series 

Vn(x)¥n(y) 

n=0 ^ S^) 

converges absolutely and uniformly in (x,y) G (r\X)2, which in turn means the 
continuity of the function $(a:,y) on (r\X)2. Since Y\X is compact, for a fixed x, 
the function <I>(±, —) is bounded on r\X; in particular it is in L2(r\X). Moreover 

($(±,-),<pn) = - ^n(^) 
(52-52)r+l 

for n G NQ. Since the last formula equals (PrjS(i;, — ),^n) ([17, page 688]), the 
difference <I>(:r, —) — PrjS(i:, —) is orthogonal to all <pn. Noting that the difference is 
continuous on r\X (Proposition 4.1.1) we indeed have $(:£,?/) = Prs(±, y) for all y. 
D 

By this proposition we can compute the integral (4.1) in terms of the eigenvalues 
of A. 

PROPOSITION 4.2.2. Ifr^m and Re(s) > p0, then 

I ' Pr+1,5(^, X)dx = -J2 r,2       -2V+1- (4-3) 
r\x n=0 V^      ^n; 

Proof This is a direct consequence of Proposition 4.2.1 D 

5.  Computation of the integral Jr\X Pr,s(ri:,x)di: and the resolvent trace 
formula. 
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5.1. Computation of hyperbolic term. Let F be as in the previous section. 
Then an element 7 £ F — {e} is G-conjugate to an element /i7 of A+M with A+ = 
exp((0, +00)HQ) and M the centralize! of A in K; h7 is not uniquely determined by 
7, but its ambiguity is unimportant for our purpose. We can write 

/i7 = exp(tryHQ)m7)    iy > 0, m7 € M. 

Let Gr
7 be the centralizer of 7 in G and put r7 = F n G7. Then G7 is reductive 

and r7\G7 is compact. We fix a Haar measure dg7 on G7 in a manner analogous 
to the manner in which the Haar measure on G was fixed, following the Iwasawa 
decomposition of G7, and piit dg7 for the invariant measure on r7\G7. The group 
r7 is known to be isomorphic to Z. Hence there exists a unique generator 70 of r7 

and a positive integer ^'(7) (the multiplicity of 7) such that 7 = To . Let W(r) be 

the set of F-conjugacy classes in F — {e}. We first calculate the orbital integral of </>s 
associated with a hyperbolic conjugacy class. 

PROPOSITION 5.1.1. Let r G NQ and Re(s) > pQ. For [7] e /H(T), put 

JW([7] ; s) = vol(r7\G7) /       ^(g-^g) dg*, 
JG^G 

where dg* is the G-invariant measure on G7\G normalized so that dg = dg7dg*. Then 
the integral J[rl([7] ; 5) converges absolutely and uniformly on Re(s) ^ po + e for any 
e > 0 and is evaluated as 

1/     1   d\r( 1 , ^t e-^+f*0^} 

Proof We shall compute the orbital integral 

lM([7];*)= /       Wig-^dg;. (5.1) 

Let h = h^ = exp(^7J:fo)^7 = exp(tHo)m G A+M, to which 7 is conjugate. Then 
jM([7] ;s) = JW([/I] ;s) and 

jW([/i] ;5) = /       ^fe-1^)dg*h = vol^G,)-1 /     ^"(y-1^) ^,      (5.2) 
7Gh\G 7A\G «a 

where vo\(A\Gh) = JA\Gh ^. Moreover 

/     4>[l\9~1hg)T-= I  I ^{k^n^hntydkdn 
JA\G da       JNJK 

= / 0ir1(n-1ftn)dn=|det(l-Ad(/i)|„)r1 / ^M(n/i)dn. (5.3) 
VAT JN 

We recall a lemma (cf. [12, p.487]) to calculate the integral (5.3). Put \Z\2 = 
-B(X, OX) for Z G 0. If n = exp(X + Y) with X G n^, Y G 112/3 and we write 

nh = n • exp(tHo)m = ki exp(uiJo)&2        (fci, fe G X, w > 0), (5.4) 

then we have 

c 2 
cosh'"^) = |cosh(t) + ^Wl   +ce-2t\Y\2, (5.5) 
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where c = 4~1(p + ^q)'1 = 2~1co. We first treat the case of r = 0. We have 

/ (j)W(nh)dn 
JN 

— /   <t>s(kiexp(uHo)k2)dn 
JN 

= (o %m\ i ^(expuH^ dXdY 

--^)*,l„„{Hh<,)+fe"'|X|2)2+^'|y|f^ (2-2m)        jnf)X„2li 

JL 
(cosh(i) + f e-'l^l2)2 + ce-2'|r| 

x^fa^^ + l;,^^ ,  „t.Y.2.„„t.v.2)dXdY,       (5.6) 

whereon = (s-\-po)/2 and^S = (5-/9o+2m)/2. SubstitutingX = cosh(£)2 (2~1c)~^e^ 
and Y = cosh(t)c~ 26*77, we have dX = (cosh.(t)2(<2~1c)~:2e'2)pd^ dY = 
(cosh(£)c-2^)^77 and dXdY = (cosht)poePot2-%c-m+id€dri. So the integral (5.6) 
equals 

(2^t)7(s)X-xR. {(1+K"2)''+ll''112}"*'' (^tr^^*" 

-1 

=      _G      T^Xcosh^-V^gc-771-^/^). (5.7) 

Here, /(s) is given by 

LJ(i+Kiy+hf}"^»'i,+Ni/im£M0^M 

Using polar coordinates for Rp, R9 and the power series expansion of the hyper- 
geometric function, we carry out the integral term by term; this is permissible by 
dominated convergence theorem. Hence, 

/                          (cosht)-2    \ 
X2-F1 ( a,/3 ; 5 + 1 ; —^—-^    dprfp*. 

o     ^     o     -2. /»00  rOO S+P0 

X 
r(s + i) ^r(a + fc)r(/? + fc)/  (cosh^)-2  \fc 

r(a)r(/?)^o  r(s + i + fc)fc!  V(i + pf)a + ^/ 

27rf ari r(g + i) ^        r(a + fc)r(^ + fc) 2fc 

r(H)r(|)r(a)r(/3)^/fe(s) r(s + i + A)Jb! (cosht) (5-9) 



THE RESOLVENT TRACE FORMULA FOR RANK ONE LIE GROUPS 247 

with 

Ik{s) = JoJ     ^ti'X^ + ft   +p22}     2       dpldp2    (fceNo)-        (5-10) 

By making the substitution p2 —> (1 + Pi)p2, we have the expression for Ik(s) as 

rP
p

1-
i(i+P

2
1r

{s+po)-2k+qdP1. rpr^i+pir^-'dp*.    (5.11) 
Jo Jo 

The relation 

£?*-\l+ ?)-*-*dp = §^,        ReCx), Ite(y) > 0 

gives 

ir(f)r(* + po + 2fe-g-f)  ir(f)r(^ + fc-f) 
fcW      2        T{s + pQ + 2k-q) 2        r(^ + fe) 

4 V2J l2/r(s + po-9 + 2fc)r(^ + A;) 

_ 1 /p\ fq\ T{s + 2fc) • .7rh-(s+P°-g+2fc-1> 
_4   U/   l2/r(^ + A;)r(^±f=2 + fe+i) 

= 4rUJrl2J IXa + W + fc) • (5-12) 

The third equality is obtained by the duplication formula: 

Y(2z) = v-H2*-lY(z)T{z + |), (5.13) 

for 2z = s+po—q-\-2k and the last one is by s+po— 9+1 = s+f+l = s+2m—po = 2/9. 
Substituting (5.12) into (5.9) and using the duplication formula (5.13) for 2z = s + 2fc, 
we have 

TY^ =     |(p+q+l)2-^-P0+q+l r(S + 1)   V^       r(s + 2fc)      2-2fc(       u t->-2fc 

= ^0^)2-^^ + 1) ^ r(f + fc)r(^ + fc) 
r(a)r(/j)^   r(s + i + ife)jfc!   (coshtj 

= 2-Po+^(p+g)r(s + i)r(f)r(^)    /£ £±i        ._j_x 
r(a)r(/3) r(s + i) ^1V2'  2   '5 + 1'cosh2*/   (5   j 

By [16, (9.8.3) in p.259]: 

l + x/T^ -2a 

2F1(a,a + A;2a + l;z)=(^^ J      , (5.15) 

we get 
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By (5.6), (5.7) and (5.16), we have 

)dn 
JN 

-I 
_        CG I <l>W(exptLHo)dXdY 

rip Xn2/y (2 - 2m) 

_c      7(5)(cosht)-gep0t22c-m+2 .7(s) 

r(a)r(/j) 
-(coshi)-s-epot2tc-m+2 

(2 - 2m) r(s + l)r(m - 1) 

XZ-PO+IKKP+Q)
TffJ('2 )e-st(2coshty 

&   c-m+^m-* yr(§ )r(^)   s_on,t 

(2-2m)    r(m-l)        r(« + l) 
c^1     27rmc-m+5 e-(s-''0)t 

(2-2m)   r(m.-l) s 
c-l ^ ^   ^m^m+i e-(s-po)t e-(«-/3o)t 

-(2-2m)(2m-2)^>) J" = ZT- ^^ 
The proof for r = 0 is finished by 

j[0]([7];5)=vol(r7\G7)/[0)([7];5) 

= vol(r7\G7)vol(^\G/l)-
1|det(l-Ad(/i7)|n)|-1 / ^(nKjdn 

JN 

= vol(r7\G7)vol(A\G/l)-
1e-2^£|det(l-Ad(/ir1)|n)|-1 / (j)M(nh)dn (5.18) 

JN 

and [23, Theorem 11.30, p.189] (or [6]), 

vol(r7\G7)vol(^\G/l)-
1 - ^(T)"1- (5.19) 

Finally we have the formula for J^fy] ; s) (r ^ 1), by interchanging integration and 
differentiation. □ 

Recall the integral (4.1), which is expressed by eigenvalues of Laplacian in Propo- 
sition 4.2.2. Now we obtain another expression of that integral. 

PROPOSITION 5.1.2. 
(a) The infinite series 

^hypW = - £ ^r'ldeta-Ad^u)!-1^-^— 

converges absolutely and uniformly on Re(s) ^ po -\- e for any e > 0. 
(b) Ifr^m and ~Re(s) > p^, then we have 

f     Pr+1,s(x,x)dx = vol(r\G)(     lim      M(g)\+   J2   Jlr](h]',s), 

(5.20) 
where the series in the right-hand side of (5.20) converges absolutely and 
uniformly on Re(s) > po + e for any e > 0. 
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Proof. The assertion is ensured by the next lemma. □ 

LEMMA 5.1.3. Suppose that T is a discrete subgroup of G such that r\G is 
compact. Then the counting function 

MT) := #{{7}r € n(T) | N(7) = e* < T},    T > 0 

satisfies the growth condition 

TTOCT) = 0(T2po)    as   T->oo. 

Proof (Similar to [4, Lemma 2.6.3, p.70]) It is well known that logiV(7) = 
iy = inf{d(x, jx) \ x € X}. Set ax(7) = {x G X \d(x1jx) = t7}, the axis of 7. 
Since r\G is compact, F has a compact fundamental domain Xp C X such that 
TXr = X. Let 7 G F, hyperbolic and suppose that z G ax(7). Then there is an 
element ho G F such that hoz G Xr and hence £7 = d(z,jz) = d(fto^j ^oT^o"1 ' ^0^) 
with ft = fto7ft^1 G {7}r- Let d(.A, B) := inf{d(rz;,.t/) | x G -A, y G B} denote the 
hyperbolic distance between the non-empty sets A, B C X, and B(x,r) the ball with 
radius r > 0 centered at x G X. Put do := sup{<i(:E, y) | a;, y G Xr} and choose a point 
xo € -Xr- 

^o(T) -#{{7}r G W(r) I iV(7) - e^ ^ T} 

<#{ftGr|d(Xr,ftXr)<logT} 

^#{ft G F I d(xo,hxo) ^ logT + 2do} 

^#{ft G F I ftXr C B{xo,logT + 3do)} 

<vol(B(a:o,logr + 3do)) 

vol(Xr) 
/.logT+Sdo 

vol(Xr; /o 
2-(p+2g) /-log^.-Sdo 

<     oirY? / (e*-e-*)^(e* + e-^dt 
vol(Xr)    7o 

^    (p + 2g)vol(Xr) 

So we have the desired formula 7ro(r) = O(T2p0) as T -> 00. D 

5.2. The resolvent trace formula. From Proposotion 4.2.2, Proposition 3.1.5 
(hi) and Proposition 5.1.2, we arrive at the formula. 

THEOREM 5.2.1. Ifr^m and Re(s) > po, then we ho^ 

with 
r>-m-3/27r-mrm-l/2 

Ms) = vol(r\G)^ j^S (_!)".+■ 

n{(l)-(?-)}-W^)+ 
^hypW = - E jCTr'ideta-Ad^ju)!-1^—— 

■yeu(r) 
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6. Selberg zeta function. 

6.1. Analytic continuation of the Selberg zeta function. We recall the 
definition of the Selberg zeta function for r\X with F as in the previous section. 
Let H be a 0-stable Cartan subgroup of G containing A. Then H = AH~ with 
H- = H n K. Let P be the set of those root /? for (fjc, 9c) with P(HQ) > 0, and A 
the set of linear forms on t)c of the form 

A = J2 nrf,        n0 ^ No- (6.1) 
/3€P 

For A G A let TTIA denote the number of the ways to express it in the form (6.1). 
Let Prim(r) be the set of primitive conjugacy classes in H(r),i.e., the set of non- 

trivial F-conjugacy class which is not a power of any other F-conjugacy class. Then 
for [7] € H(r) there exists a unique [70] € Prim(r) such that [7] = [70 ] with ,7(7) 
the multiplicity of 7. 

Since H~ is a Cartan subgroup of the compact group M, any element of M is 
M-conjugate to an element of H~. Hence the G-conjugacy class of a [7] G H(r) 
contains an element of H expressed as 

hj = exp(^7ifo)^7 ,        £7 > 0, h~ G H~. 

For A G A the associated character of H is denoted by £\ : H —► C*.  With these 
notations, the Selberg zeta function for r\X is defined as the Euler product 

Zr(s)=      [I       n^-^Me-^r*. (6-2) 
[7]GPrim(r) AGA 

It is easy to see that the logarithmic derivative of Zr(s) is related to the function 
Jh.yp{s) by the formula 

- —^logZr(5 + po) = JhyP(s) (6.3) 

Hence by Proposition 5.1.2 (a), the infinite product (6.2) converges absolutely and 
locally uniformly on Re(s) > 2po defining Zr(s) holomorphic in 5 on that half-plane. 

COROLLARY 6.1.1. The Selberg zeta function Zr{s), defined for Re(s) > 2po, 
has the analytic continuation as a meromorphic function on the whole complex plane. 
Zr(s) has zeros located at s = po =b 5n,n ^ 0. If An ^ p^, the order of the zeros at 
s = po ± sn equals the multiplicity of the eigenvalue Xn. If PQ is an eigenvalue of the 
Laplacian A, then the order of the zero at s = po equals twice the multiplicity of the 
eigenvalue A^ = PQ. 

Proof By (6.3) and Theorem 5.2.1, we have 

1/1  dW,  _      Id 
1^   (~2 _  e2 ^(^--xlogZr^ + po)   • (6.4) (s2- siY+1 r\\   2sdsJ   V 25 ds 
n=0 v n/ x /      v 

The left-hand side of (6.4) is a meromorphic function of s G C and its poles are 
located at the points s = ±sn with order r + 1 (or 2r 4- 2 if sn = 0). It is simple 
to see that Jid(s) is meromorphic on C and its all the residues are integers. Hence 
4- logZr(s) is a meromorphic function with simple poles only at s = po ± sn and at 
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points coming from Jid(s). For An ^ PQ, the residue of ^ logZr(s) at s = po ± sn 

is equal to the multiplicity of An, and if p^ is an eigenvalue, the residue of the pole 
at s = po equals twice the multiplicity of the eigenvalue p^. SO all the residues at 
5 = po. ± 5n are non-negative integers. This completes the proof. □ 

REMARK 1. For almost all n ^ 0, sn is purely imaginary. 

REMARK 2. We can also show that there exists a meromorphic function ^(s) 
such that 

- — —logZ[d(s + po) = Jid(s). 

Since the left-hand side of (6.4) is invariant under s —> —5, the completed Selberg 
zeta function Zr(s) '•— Zr(s)Zid(s) satisfy the symmetric functional equation 

Zr{2p0-s) = Zr{s). 

The function Z^(s) is called gamma factors (or identity factor) of Zr(s). It is known 
that Zid(s) is described by the multiple gamma functions. We refer [15], [21] and [9] 
for this topic. 
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