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ON THE REPRESENTATION OF NUMBERS IN THE FORM 
aiX? + a2X| + a3Xi + a* Wl* 

C. HOOLEYt 

1. Introduction. In a recent paper ([8], to which we refer as I for convenience) 
we established the previously unproved asymptotic formula for the number of ways a 
large integer could be expressed as the sum of three squares and a positive (non-linear) 
ith power, deducing from it known criteria for the represent ability of a number in this 
form. Having a conformation that a heuristic application of the circle method of Hardy 
and Littlewood would foretell, the formula was nevertheless beyond the power of the 
method to deliver and was instead proved by using the theory of Dirichlet's L-functions 
in conjunction with various formulae for the number 7-3(711) of representations of an 
integer 711 as the sum of three squares. 

Since it has been traditional to follow up successful investigations into topics of 
pure Waring's type by what are usually easy generalizations in which the powers 
are affected by integral coefficients, it is natural that we here should now widen our 
sphere of inquiry by contemplating the problem of finding an asymptotic formula for 
the number 1/(71) of solutions in integers of the equation 

aiX? + asXf + a3Xi + aiW1 = n, (1.1) 

where ai, a2, as, a4 are positive integers and Wl is a non-negative power having expo- 
nent / exceeding 1. Yet, although at first sight the change to our problem might seem 
innocuous, a moment's reflection reveals that the widening of the terms of reference 
may introduce a significant new difficulty. This is because the generalization of the 
formula for the number 7*3(71,1) of representations of an integer ni as the sum of three 
squares has been in the classical theory, not a formula for the number raiia2,03(^1) 
of representations of ni as f(Xi, X2, X3) = aiX^ + (L2X2 + ^3^3, but a formula for 
a weighted average of representations of 711 through a set of inequivalent members of 
the genus to which /(X^J^-^s) belongs. To establish a corresponding formula for 
rai,a2,a3(^'i) itself or, indeed, its parallel for any positive ternary form had long been 
a goal of the theory and was fraught with difficulty, particularly as it was appreciated 
that there were exceptions when the expected conclusion was false. Although by now 
matters have advanced to a point where the lacuna has been substantially filled (see, 
especially, the paper [2] by Duke and Schulze - Pillot, which employs the theory of 
modular forms), the newer theory still does not supply an entirely appropriate instru- 
ment for our purposes. Consequently we shall handle the problem of the presence of 
rai,02,03(^1) by approaching it via a different avenue that we briefly describe. 

The genesis of this approach is Heath-Brown's important new version of the circle 
method ([3]; we refer to this as H in what follows), which affords a particularly 
convenient initial expression for 7,

0lja2ia3(7ii) after we incorporate a refinement to 
suit the present occasion. From the resulting formula we isolate an element that 
corresponds to the usually expected asymptotic value, while the other element is 
expressed through exponential sums that are evaluated in such a way that their moduli 
can be satisfactorily averaged over the values n — a^W1 of m. The influence of the 
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former term on z/(n) is treated by a modification of the method of I, it being necessary 
both here and in the latter part of the analysis to depend on results about L—functions 
formed from real characters. Thus there emerges a treatment of our problem that is 
relatively accessible and shuns any reference, implicit or explicit, to modular forms or 
the difficult theory of the arithmetic of ternary quadratic forms. 

In the last part of the paper we use the asymptotic formula to discuss the condi- 
tions under which a large number is expressible in the form aiX^ + 0,2X2 + 03X3 + 
04Wl. The discussion is naturally more complicated than it was in I owing to the 
greater generality of the situation, and we therefore limit our deliberations to the 
case where the coefficients a^ are odd and relatively prime in pairs. 

Some remarks on the circle method should be added. First, Heath-Brown's 
method, which is not truly a circle method but which has a closely allied structure, 
casts rai ,02,03(^1) i^o an especially favourable form, since its formulation does not 
involve a certain class of exponential sums that normally appear in the circle method 
with Kloosterman refinement, or, in other words, it acts much as the latter would if 
all Farey arcs related to a given denominator were of equal length. In fact, the way 
in which such sums normally appear would compromise our estimations, although 
this difficulty would be circumvented by means of our smoothed version of the circle 
method used in [7] at the expense of considerably more calculations. Also, as in I, 
whether of the conventional type or of the Heath-Brown variety, the circle method 
cannot apparently act as a complete envelope for the estimation of v(ri). 

2. Notation. Although the meaning of most of the notation is self evident from 
the context, the following guide may be helpful. The letters n and ni are usually 
positive integers, the former being regarded as tending to infinity in the later part of 
the work; Xi^X^ are integers and W is a non-negative integer; the given exponent 
/ exceeds 1 and should normally be thought of as exceeding 2, since the case / = 2 
is covered by the comprehensive literature on quaternary quadratic forms; e is an 
arbitrarily small number that is not necessarily the same at each occurrence; Bi is a 
positive constant depending at most on ai,...,a4, and l',Bi(e) is like Bi save that it 
may also depend on e; the constants implied by the O-notation are of type Bi save 
when there is an e occurring in the exponent, in which case they are of type Bi(e); A 
is a positive absolute constant, not necessarily the same on each occasion, whose 
value will be determined so that no account need be taken of it when considering the 
constants in the O-notation, a similar comment on the arbitrary integer m in §4 being 
apposite. 

Ordered triples are indicated by bold type, their components being denoted by 
the same letter in italic font with subscripts; if a = (01,02,03), then ||a|| is the usual 
valuation (aj + a^ + 03)2; ab is the scalar product ai&i -|- 02^2 4- 0363; the notation 
0 < a < u means 0 < ai, 02,03 < u; in three dimensional integrals dx is a shorthand 
for dxidx2dx3. 

The highest common factor of integers Ui,...,Ur is denoted by (Ui,...,Ur) when 
it is defined; here r ^ 3 so no confusion arises over the previous usage for triples ; 
<7_a(n) = Ylld\n^~CL an(^ ^(n) = cro(^); for odd k, {J^) = (m\k) is the Jacobi symbol 
of quadratic residuacity. 

3. Initial formula for r3(711). We use Heath-Brown's new form of the circle 
method to formulate an expression for the number r3(ni) = ^1,02,03(^1) of represen- 
tations of a positive number m by the positive definite ternary quadratic form 

/(X) = ai-Y? + a2Xi + asXf, (3.1) 
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whose reciprocal or adjoint 

a2(i2>mi + CL^aim^ + aiG^raj} (3.2) 

we straightway denote by F(m). In setting up this preliminary apparatus, we should 
note that we depart somewhat from Heath-Brown's notation in order to reserve some 
appropriate symbolism for the later part of the exposition, an incidental advantage be- 
ing that some of our language is brought into line with our earlier usages for connected 
themes (see, for example, [7]). 

The source of the formula for r^ni) is the second statement in Theorem 2 of 
H. Translated into our idiom, this asserts that, if w(x) be an infinitely differentiable 
function, then the cardinality of the solutions of /(X) = n\ to which the weight w(X) 
is attached is equal to 

W E E ^3 Qm (m' fc)7M(m, *) (3.3) 
m   k=l 

for any1 M > 1, in which 

CM = 1 + 0(M-
A

) (3.4) 

depends only on M, Qni (m, k) is the exponential sum 

V^ V^    e27ri{/i(/(b)-ni)+mb}/A:5 (v^ 

0<h<k        0<h<k 
(h,k) = l 

and /jvf(in, fe) is the integral 

/«(*)/» (^. Zi^i) e-
2"mx/^x. (3.6) 

Then, following the procedures laid down on pp 153 and 154 of H with particular 
reference to his Corollary 1, we introduce the function 

Wfx) = I e-Vd-*2)    , if \x\ < 1, 
\ 0 , otherwise, 

and use it to define ty(x) in (3.6) by 

so that (3.3) becomes r3(ni) itself, whence, setting 

M = Mi=Mi(ni) = 72?J    x = Afix/ (3.7) 

and then removing the prime from the notation after the substitution, we deduce that 

r3(ni) = CM1Mi^   ]r —Qni(nL,k)JM1\^-^,k\ (3.8) 

•'^The stipulation that M > 1 given in H is easily weakened to a non-strict inequality. 
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where 

JMAv,t) = eJw0{2(f(x)-l)}h(jj-J(x.)-l\e-2™xdx. (3.9) 

Here, since we may assume that |/(x) — 1| < | in the integrand above, the trivial 
part of Lemma 4 in H implies that 

JM1(U,*)=0 (3.10) 

for k > Mi so that the summation over k may be limited to the range k < Mi when 
desired. 

If we anticipate the evaluation of JM! (U, k) to be shortly undertaken, it can be 
seen that the component of r3(ni) answering to the determination of m as 0 resembles 
the principal term in the asymptotic formula for r3(ni) we would usually expect, even 
though the identification is necessarily inexact because of the absence of terms related 
to values of k exceeding Mi. Foreseeing therefore that the contribution due to other 
m should at least be commonly negligible, we write (3.8) as 

rsini) 

= CM1Mi (   ^Ta     Qn1(0,k)JM1(0,k)+ ^ ^ T3     Qrn (m, fc) JM1   ( —^- J 

= CM1MI (eA(ni) + Mm)), (3.11) 

in which, apart from a multiplicative constant, #,4(711) may be regarded as an analogue 
of 0(ni) defined in 1(2) but in which 9B{TII) introduces an element having no parallel 
in the previous analysis. 

The preliminary study of rs(ni) being complete, we treat the integrals JM1 (U, k) 
in the next section before going on to the sum Qni(0, &); however, we reserve the 
study of Qni (m, k) for m ^ 0 till later, since in this case these sums are very different 
from <2ni(0, k) and relate to the influence of 0B(TII) on the proceedings. 

4. The integrals JMI(U, k). We first consider the case where u = 0. Although 
our main formula could be drawn from the relevant parts of H, it is more illuminating 
and inherently easier in present circumstances to adopt a different and more direct 
approach, especially as it serves as a good pathway to the treatment of the other case 
u / 0. We use the substitution 

_i _i _i 
xi = CL-L 

2 p sin 9 sin (/>,    X2 = ^ 2 pcosOsincf),    X3 = a3 
2 p cos 0, 

that expresses rectangular Cartesian coordinates in terms of modified spherical polar 
coordinates, the Jacobian being (aiQ2^3)~IP2sin^. Therefore, since /(x) — 1 = p2 — 1 
by (3.1) so that we may assume that y/(l/2) < p < ^(3/2), we deduce from (3.9) 
that 

I r\/(3/2) /   fc \ /.27r rir 

JM1{0,k) =      /   p2ewo(2p2 - 2)h   —,p2 - 1 ) dp /     d0       sin0# 
^aia2as J^/Jip) \Mi J      J0 J0 

=    /^       /   ^^ p2ewo(2p2 - 2)h (^-,p2 - l) dp 

= -^=r    {a + l)hw0(2a)h(^a)da. (4.1) 
y/a^az J_i/2 \Mi     J 
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Prom this, by H, Lemma 9, it follows in the first place that 

'"<**>-»^(£n-A+o{(£n <-» 
for k < Mi, which relation remains (trivially) true in the opposite case by (3.10). 

For 1 < t < Mi, we shall also require an estimate for 7^(0,^). Although this 
could be taken from H, Lemma 16, it is less demanding in principle to begin with the 
equation 

*;     ; = ,,   , /    {* + l)*e«;o(2<7 \'   ) da, 
dt M1y/a1a2az J_i \     dv     JVz=k/Ml 

and to use the estimate 

that follows from taking the value 2 for N in H,Lemma 5. The required estimate 

dJMrM 
dt 

= 0 ^r-H^-sj)^) ** 
then ensues for 1 < t < Mi. 

So far in this section we have had the option of appealing directly to Heath- 
Brown's lemmata instead of providing our own treatments. But this luxury is no 
longer available to us when we consider JMI(U, k) for u ^ 0 because the results 
provided in H for this case are not keen enough for our purposes. Therefore, somewhat 
as before, we take the case k < Mi and initially advance by inducing the preliminary 
substitution 

_i _i _i 
xi = a-L 2xfi,    X2 = 0,2 2X2,    #3 = a3 

2X2 

that transforms /(x) into x-f + X2 + x£ and ux into u'x ' where 

a,! 2ui,a2 2U2,a3 
2usj . (4.4) 

Then, interpreting x^x^x^ as the rectangular Cartesian coordinates of a point in 
three dimensions, let us take a new system of coordinates x^x^x^ for which the 
x'z plane is the plane u 'x ' = 0 with the consequence that Hu'Uxg = u 'x ' and 
/(x) = x"2 + xp + X32. Hence, if we express x^x^x^ in terms of spherical polar 
coordinates p, 9,0 we deduce from (3.9) that 

JM1 (u,fc) 
/3/2 /   » \ nir r2ir 

\Al«2tt3 Jy^ITi) 
= / p2ewo(2p2 -2)k(ir,p2-l)dp       sin^e27r^iu llcos^ /     d6 
-a2a3 Jy/{1/2J VM1 J        JO JO 

2 rVW^) 

\u'\\y/aia2a3 J^TJ 
/ j  pew0(2p2 - 2)h   — ,p2 - 1   sin27rp||u f\\dp. (4.5) 
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To estimate the last integral above on the right, we set ki = k/Mi  < 1 for 
convenience and use successive partial integrations together with the estimate 

<9m/i(r 
i 1 rl+m \    ' ^2  / J 9y7 

that for 0 < r < 1 and 0 < y < \ is certainly valid by H, Lemma 5, even when m = 0. 
Thence, since all derivatives with respect to p of pewo(2p2 — 2)h(ki,p2 — 1) vanish at 
p = A/1/2 and p = y/S/2 and since the rath derivative is 

0{^min(1' 
*? 

ra partial integrations shew that the integral is 

j       i        fV3/2     i / k2      \      [ 

-4iMiMr*+*£(?^)}-0 

Combined with (4.5) and (4.4), this yields 

JMl (u, k) = 0 

\uf\\mk? 

\u\\m+lkrn 

which provides the estimate 

^(^■^-"(jSHp)   (mi£0) (4-6) 

that we shall use (it is of course trivially true when k > Mi). 

5.  The sums Qni(0,AO and the singular series for r3(ni). If we write 

-j^Qn1{0,k)=A3(n1,k) 

and define as usual the Gauss sum 52 (c, k) by 

S2(c,k)= J2  e27ricb2/k, 
0<b<k 

then (3.5) and (3.1) imply that 

A3(nuk) = ^   Yl   S2(hauk)S2(ha2,k)S2(ha3)k)e-2*ihn^k (5.1) 
0<h<k 
(h,k=l) 

is the kth term of the (as yet) formal singular series 2 for rs(ni) in accordance with 
the usual development of the circle method by Hardy and Littlewood. Thus, in 
particular, A^(ni,k) is a multiplicative function of k.   Also, as will be essential for 

2Note the comment about the meaning of the term singular series in footnote 1 in I. 
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part of our deliberations, Asfoi, k) can be evaluated in terms of the number P3(ni, d) 
of incongruent solutions, mod d, of the congruence 

f(X1,X2,Xs) = ni,    mod d, 

by means of the usual formula 

*<„„*)-    S,Q)^i2. (5.2) 

This will be applied fairly directly to our problem for relatively small values of k but 
will need to be superseded by other formulae when k is larger. 

In the latter situation it is helpful to have a universal bound for As(ni,k) that 
will be especially useful when A: is a product </, say, of powers of the prime divisors of 
2aia2a3. This stems from the obvious relation 

S2{hauk) = (ai,k)S2{hai/((ii,k),k/(ai,k)). 

= O Uca, jfe)*fc* } = O(fci)    {(A, k) = 1} (5.3) 

and is the consequential bound 

Mni,k) = o(jA. (5.4) 

But, for numbers k prime to 2aia2as that are denoted by ki or k^ we have another 
exact formula for As(ni,k) that arises from its comparison with the general term 

Ai(n2>fc) = i   Yl   S2(h,k)e-2*ih^k 

0<h<k 
(h,k)=l 

of the purely formal singular series associated with the equation X2 = 77,2. In fact, 
since 

S2(hailh) = (j±\ S2(h,h) (i = 1,2,3) 

when (h,ki) = 1, we have 

1   ^        1      ^ 0<h<ku 

(/i,fci)=l 

0</i<A:, 
(M:i) = l 

^1   \     ^1     / 0<h<kl 

(/l1fcl)=l 
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by using further properties of Gauss sums as in the derivation of (9) in 1. There is 
also the formula 

d\k     ^   ^ 

in which, being the number of incongruent roots of the congruence 

X2 = 712,    niod d, 

the entity pi(n2,d) was systematically evaluated in our paper [4].    Consequently 
Ai(—hi,ki)/k is the coefficient of k^3 in the formal series 

k ki Q2a1a2a3\** + s)   k, k-^ 

C2a1a2a3(2 + 25) ^ rf2' 
a  |n, 

(d,2aia2a3)=l 

where 

i „Jr   ..,.,_    ^    f-»i/*\i C2a1a2a3(5) = JZ ^7 and ^-ni/d2^) = J^ f 
o=l 6=1 

(0,2010203)=! (6,2010203)=! 

Hence,    extracting   the   value   of   Ai(—ni,ki)   from   this   and   multiplying   by 
(aia2a^\ki)/ki, we find from (5.5) that 

_ 2  t2»      i \ 
6 

Eiu
2(a)     1 f-a1a2a3n1/d2\ 1 

"^2" • ^   J;   i (5-6) 
a2d26=A;1 

d2|ni 

and then conclude from the multiplicativity of A(ni, k) that 

A (      i\ ST A (        \/x2(a)     X (-a>ia'2a?>ni/d2\ 1 
i43(ni,fc) = 2^ ^(ni,^)^- • 5 (^ 6 ) 6' (5-7) 

ga2d2b=k 
(ad6,2aia2Ci3)=l 

d2|ni 

in which formula there is of course just one value (possibly 1) of g for each value of k. 
A particular corollary of (5.6) will be needed during the preliminary study of the 

singular series for i/(n). This is that, if p\2a\a2Ci3^ then 

P3(n1,P)=P
2{l + A3(n1,P)}=P

2(l + l(-aia
p
2a3ni)), (5.8) 

for which formula a companion will be produced for the case p|ai,p f 202*23 when the 
investigation of the singular series for v(ri) is resumed at the end. 

In using the above work for larger values of k we shall need as in I to study 
the properties of characters defined by the Jacobi symbol. However, since these are 
needed for the disparate entities ^3(77,1, k) and #B(ni), it is appropriate to hold back 
the relevant analysis involving L-iunctions until a later section. 



NUMBERS IN THE FORM axXf + a2X| -f aaXf + a^W1 203 

6. The singular series for i>(n). We have reached the stage corresponding 
to §4 in I where some results on the singular series &(n) for 1/(71) are needed in 
anticipation of the estimation of the first piece to be cut off from u(n). Being a simple 
generalization of what was previously obtained in the special case ai = 0,2 = as = 
a4 = 1, our requirements are easily met and therefore need not detain us for long. 

The A:th term in the singular series (3(n) being now 

A(n,k) = ^   Yl   S2{a1h,k)S2(a2h,k)S2(a3h,k)Si(a4h,k)e-27Tihn/k (6.1) 
0<h<k 
(M)=l 

where 

s^ck) = Yl e2*icbl/k> 
0<b<k 

we let r(n, d) denote the number of incongruent solutions of the congruence 

aiXi + a2X| + 03X3 + aiW1 = n,    mod d, 

and deduce in the customary way that A(n, k) is a multiplicative function of k and 
that 

*».*>-EM (3 W- («•» 
d\k A        / 

Prom this and (5.8), it follows for pf 2aia2az that 

p3A(n,p)=r(n,p)-p3=    Yl    {pz(n-a4Wl,V)-V2} 
0<W<p 

in which the sum is (i) 0(pz) by a theorem due to Weil when p \ 0,471, (ii) is never 
more than p in absolute value. Hence we always have 

A(n,p) = o(-j)   (pfn),    A(n>p) = o(i)       (pin), (6.3) 

since the estimates are trivial when pfta^asdi. 
When a > 1 sharp bounds for A(n,pa) are not required and we therefore act as 

in the second part of §4, I, using the special case 

S2(aiKpa) = O (p**) ((/i,p) = l,i = 1,2,3) 

of (5.3) and its analogue 

Si(a4h,pa) = Oip*-1) (a > 1, (A,p) = 1) 

that proceeds from a well-known estimate for generalized Gauss sums. Absorbed in 
(6.1), these yield the adequate bound 

A(n,pa) = O (p-^-1) , (6.4) 
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which with (6.3),(6.2), and the Mobius inversion formula implies that 

1<P<0C 

P2 ^2P20+ 

<1+
B2{p'3

n)i. 
p2 

Thus we deduce that 

r(n,0=o|z3n(l + y)l-o{z3a_|(0} (6.5) 

and confirm through Euler's multiplicative principle that the singular series 6 is 
absolutely convergent. 

7. Decomposition of z/(n) and estimation of ^i(n). We are ready to estimate 
the first tranche ^i(n) of the sum ^(n), the definition of which follows from setting 

iV-n*1 (7.1) 

for a suitably small positive number 5i and writing 9A(TII) in (3.11) for ni < n as 3 

Y^Mnuk)JMl(p,k)+ J2 Mnuk)JMl{0,k) = e^m) -^ 92^) (7.2) 
k<N k>N 

by analogy with 1(14). Then ^i(n) emerges as one of the constituents in the equation 

a1X2+a2XZ+a3X$+a4Wl=n 

=       Yl      r3(n-a4W
l) 

W<(n/a4)^ 

=       E      r3(n-a4W
l) + 0(l) 

W<(n/a4)i 

Y      CM1(n-a4Wl)h1(n-a4W
l) 

^<(n/a4)T 

+      5Z      CM1(n-a4Wl)h2(n-a4W
l) 

W<(n/a4)T 

+      X)      CM1(n - a4W
l)ieB(n - a4W

l) + 0(1) 

W<(n/a4)T 

= i/i(n) + V2(n) + i/B(n) + 0(1), say, (7.3) 

that is stated on the understanding that m = n — a4W
l and that the first part of 

(3.7) shall hold. Already clearly analogous to its namesake in I, this entity must now 

3Note that 0i(ni) and ^2(^1) depend on both m and n. 
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be thrown into a slightly different form to enhance the resemblance and thus promote 
its estimation by previous methods. 

First, by (4.2) and the succeeding comment, we may replace JMI(0, fe) in the 
formula for r3(n — 04 W') by 

2.    ri+0/     * 
V^i^s I \(n-a4Wl)i. 

even when k > n — a^W1 > 1, while also using the special case 

cMl = l + o(- l——T) 

of (3.4). Consequently, by (7.3) and (7.2), 

tvi(n) =    , 27r Y      (n - a4W
1)? V A3{n - a4W

l, k) 

W<(n/a4) l — 

+0\       5Z       ^lk\A3(n-a4Wl
1k)\ 

\w<(n/a4)i k^N 

^      J2       J2     {n-a4W
l)iA3(n-a4W

l,k) 
—     ly <(n/a4) ^ 

+0       £     £*4 
k vv <(n/a4) i     — 

27r 

y/aia2a3 
^+0(71*^)', say, (7.4) 

because of the universal bound (5.4). 
The main part of ^i(n) having been identified, its estimation follows that 

of the parallel item in I almost verbatim if one substitute the new meanings of 
P3(n,d),^(n, A;),r(n,d), and A(n, k) given by (5.2) and (6.2) for those previously 
assigned. Indeed, by the latter cited equation we now have, as the analogue of 1(26), 

k<N d\k      V   / 

where the inner sum in the last term of the equation 

E^,! =       E      P^n - ^W\d)(n - a4W
l)i 

W<(n/a4)T 

=   ^^  Psin - CLAC
1
 ,d)        ^Tj       (n-aiW1)* 

0<c^d W<(n/a4)T 
W=c,    mod d 
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is estimated as 

2     />(n/a4)" I 1,1 

- / (n - atu1)* du + O (n*) =—r /       (n - ul)*du' + 0(n*) 

r(i)r(T + 1)   i+i     ^A  ^ 

dajrd + i) v   ^ 

Having gained the counterpart of (27) in I, we continue as in I by deducing via the 
definition of r(n, d) that 

V-         r(i)r(T + 1)nHi      ^(M)     ^f   i   ,    ^1 >        =     V2y  1
u ^    .     v      y +0^n2r(n,d)^ 

a4 \2 "*" iJ 

and then infer from (7.5) and (6.2) that 

_ r(f^ + .^t ^ ^ + 0 / ■ ^ 
o4r(2 + l) fe<JV<i|fc       V    ^ \       k<N d\k       a 

.mm^ Y.Mn.^oUN^) (,e, 

just as in the derivation of 1(28). 
To round off this formula we still adhere to previous practice.    By (6.5) the 

remainder term is 

O In^N ]r (7_i(d) ] = O (n^iV2) , (7.7) 

while the tail 

k>N 

of the singular series &(n) is majorized by 

N 

<^n(1+f#)n^ 
p /   p\n 

^ B4(e){B3(e)r^  ^ B5(e) 

because of (6.3), (6.4), and the argument near the end of §5, I. Therefore, summing 
up the influence of this, (7.7), and (7.6) on (7.4), we complete the estimation of ^i(n) 
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by concluding that 

Vl(n) =      27rr (t) r (l tiLfifa^i+l + 0 fniATf) + O fnH}Ar-l+^ 
V^^v^rd + i) v      ;      v ; 

2*r(§)r(} + i)   6(n)nW + 0 /ni+4+e) (7.8) 

after putting 

^ = § (7.9) 

in (7.1). 

8. Real characters and the Dirichlet's L-functions formed therefrom. 
The treatments of both V2(ri) and ^(n) involve, in rather different ways, the real 
Dirichlet characters defined by the Jacobi symbol and the properties of the L-functions 
associated with them. Therefore, slightly widening the previous context of §3, I, we 
express a given integer 77-2, positive or negative, as DO,2 where D is square-free and, 
for any odd positive divisor d of fi, enumerate some attributes of the function 4 

^ '     '     /      [ 0, if 6 even. 

(8.1) 

These are: 
(i) x(6, n2/d2) is a non-principal character to a modulus not exceeding 4|n2| 

unless D = — 1, in which case it is a principal character; 
(ii) if D ^ —1, then x{bin2/d2) is associated with a primitive character, the 

modulus of which is 2|D|,4|i?|,or 4|JD| according as D = 3, mod 4,D = 
1, mod 4, or D is even; consequently, any such primitive character cannot 
correspond to different values of D of the same sign (nor, indeed, of the 
opposite sign, since a change in the character accompanies a change of D into 

-D)\ 
(hi) a unique primitive character is associated with all the characters x(6, r^/d2) 

for any given value of 722 for which  D =^ — 1. 
The properties required of the Dirichlet's series formed with these characters are 

covered by the following two results, the first of which is a slight restatement of Lemma 
2 in I. 

LEMMA 1. Let 771,772 be any positive constants (less than 1) and suppose that 
Vs =z WsiWiiW) is a sufficiently small positive constant. Then, save when the non- 
principal character Xk, mod k, is associated with at most OiY711) exceptional prim- 
itive characters %*,   mod q, we have 

y-     Xk{m) =     /I 

yi<m<y2 

4Note the change from the notation in I to avoid any confusion in the interpretation of Lemmata 
1 and 2 below. 
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for k < 4Yand AY"12 <yi <y2<Y. 
Our second lemma will be needed during the estimation of VB (n) and depends on 

a similar order of ideas, which, being familiar to practicians in the subject, need only 
be treated briefly. 

LEMMA 2. Let rji be any positive constant (less than 1). Then, save when the 
non-principal character Xk to a modulus k not exceeding AY is associated with at most 
0(yr71) exceptional primitive characters, we have 

V ^^ = O (log log log Y)        (Y > 1000) 
p<u 

for u < Y. 
We stay in the zero-free region found in the proof of Lemma 2 in I for functions 

L(s,Xk) not associated with functions L(s,x*) appertaining to an exceptional set of 
moduli q of cardinality 0(yr71). Thus, confining attention throughout to the non- 
excluded L-functions and taking T = 2Y^ as before, we may assume that L(s,Xk) is 
regular and subject to the inequality 5 

| logL(s, xk)I < ^logy 

in the region 

<r>l-jiVi,     W^l7- 

In this environment let A(n) be the von Mangoldt function and use the formulae 

y^ Xk(p) = y^ Xk{n)A(n)     Q [ y^ JL ] = y^ Xk{n)A(n) 

and 

p ^    n log n [^ P2 /        <r p<u n<u \P<u        I        n<u 

v-. Yfc(n)A(n)        1     r+i00,     r/      ,      suS , 

Under the condition 

log30/7?1 Y < u < Y (8.2) 

and accompanied by a deformation of the contour of integration, these imply that 

y/
mEl = ^gL(l,Xk) + ^ logL(s + l,Xk)-ds 

lu2 1 
+0    —      max      \logL(l + <T+-iT,Xk) 

V -'   -Tim<<r<2 2 

,,2    oo IXfcMI +oh-T    lxfc(m)l        +o(i) 

5We only need what was extracted from the Borel-Caratheodory theorem in I; the improvement 
rendered by Hadamard's three circles theorem is superfluous here. 
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whence, by (8.2), we infer that 

£ X*M = logL(l,Xfc) + O (u-*"1 logYlogT) 

= logL(l,Xfc) + 0 (log"*111 Y) +0 (^) +0(1) 

= log£(l,Xfc) + 0(l) 

subject to the initial restriction, then seen to be unnecessary, that u— | be an integer. 
Therefore, by first selecting the lower limit for iz, we conclude that 

logL(l,Xfc) = 0(log log logy) 

and then that 

y XiM = o(iogiogiogy) + 0(1) = 0(loglog logy) 
Z—/ p 
p<u 

when (8.2) is in place, the result being trivial for smaller values of u. 

9. Estimation of U2(n). The estimation of V2(n) is sufficiently close to its coun- 
terpart in I that it is enough to portray it with a broad brush. Apart from the addi- 
tional factor aiG^as in the Jacobi symbol, the formula for As(n — Wl, k) in I is mainly 
changed into our formula for As(n — a^W^k) in (5.7) above by letting the special 
number g take over the role previously played by powers of 2. As before, to dissect 
As(n — aiW1, k) we set n\ — n — a^W1, writing the right-side of (5.7) as 

E ^  E i 
a2gd2>Ni      a2gd2<N2 

and letting the respective contributions of these portions to #2(^1) in (7.2) be 62(ni) 
and #2 (ni)- The effect of the former on ^(ri) by way of (7.3) is then easily dismissed 
because the above cited equations, (5.4), (4.2), and (3.10) imply in succession that 6 

d2|ni „2    ,2 
a'igd^b<n2 

a'2gd2>N2 
d\ni 

= oflogn    T    -L-^^of^T-^) 
a2gd*>N? ^ 

= 0fl08ruf(n1)^(2a1aaa,)|=   o ^N ^ 

6We note that Lemma 1 of I is not needed here and in similar places because the presence of 
JM(0, k) in the workings restricts the size of b. 
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the contribution of which to 1/2 (n) is 

\ 
0[-^r      E      (n-aiW

l)i\=0(ni+i-*<)=0(nl+&) 
W<(n/a4)T / 

(9.2) 

by (7.1) and (7.9). 

Alongside the earlier part of (9.1), there is the equation 

E i 
a2gd2<Ni 

(a(i,2aia2Ci3)=l 
d2\ni 

/x2(a)A3(ni,gf) 
a2d 

El f-a1a2a3n1/d2\ 2    2 
- I ) JMl{Q,a*gdzb) 

b>N/a2gd2 

(6,2) = 1 

E H2(a)A3(ni,g) 
a2d E 1 f —aia2asni/d2 

a2gd<N2 
(ad,2aia2CL3)=l 

d2|ni 

N/a2gd2<b<n?/a2gd2 

(b,2)=l 

JM1{0,a2gd2b), 

(9.3) 

for whose application we need only consider the inner sum for ni > iV2 after reminding 
ourselves that N = nsi. In this case let us first use Lemma 1 with the values Y = 
01020372,771 = 57,772 = ^pand V = Vs (^J iz) • Then, since the lower bound yi for 6 

lies between TVa = n772 = (aia2a3)~772y7?2 and nl/a2gd2, the related sum 

5(2/1,2/2)=     X) 
2/i<&<2/2 
(6,2)=1 

-aia2a3ni/(i2\ 1 
b 

is O (n-77) for yi < 1/2 < ys = nf /a2gd2 provided that the (unique) primitive character 
associated with all the characters x(6, a^azni/d2) for given n\ in (8.1) do not belong 
to an exceptional set with 0(n3i) members. In this situation the inner sum in (9.3) 
equals 

ry3 
/    JM1(0,a2gd2t)ds(y1,t) 
Jyi 

-12/3 

JM1%aIgd2t)s{yut) 
Jyi     Jyi 

d JM1 (0, a2gd2t) 
It 

s(yi,t)dt 

_1_ [y3 a2gd2dt\ 
2gd2t ) 

o(±.)+our£. 
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by (4.2) and (4.3). Hence, much as before, 

/ \ 

211 

fl^ni) = 0 
1 

713' E 
a2gd2<N? 

d2\n 

( 

= 0 

/ 
d2|ni 

i 

and the effect of this on V2(n) due to the relevant values of W is 

\ 
4-      T     (n-04W)i I =0fni+t-i'»y 0 

712' 
(9.4) 

l^<(n/a4)T 

On the other hand, (9.3) implies that we always have the assessment 

/ \ 
1 

02(ni) = O logn      ^2 

\ 
a2gd?<N2 

d2|ni 

i a2g2d 
= 0(lognd(ni)) =0(ne), (9.5) 

/ 

of which we avail ourselves when x(^5 aia2^3^i) is associated with an exceptional 
primitive character of the type previously described. In this case, if 

a^asni = aia2as(n — a^W1) = Dfi2, (9.6) 

then by (ii) in §8 there are at most 0(n^) possible values of D, to each of which there 
will answer those solutions in W of the absolutely irreducible equation (9.6) for which 
0 < W < (71/04)T and 0 < fi < (aiG^asn)^. Since the number of these solutions is 
0(n2T+e) by a theorem due to Bombieri and Pila [1], the set of W for which we must 
use (9.5) has cardinality 0(n6T+e) and therefore makes a donation of 

0(ni+£) 

to 1*2 (n). 
In summation, we deduce from (9.2), (9.4), and (9.7) that 

iAj(n) = O (ni+i-M 

(9.7) 

(9.8) 

for a suitably small positive constant £2. 

10. The sum Qni(m, k) for m ^ 0. The sum Qni(m, A;) occurring in (3.5) 
belongs to the class of sums described in Lemma 3 of [6] that have a multiplicative 
property. From this, or from Lemma 23 of H, we have 

LEMMA 3. For coprime moduli ki,k2 let ki,k2 be defined, modulis k2 and fei, 
respectively, by kiki = 1,   mod £2 and fc2^2 = 1?   mod ki. Then 

Qni(m,/ci/c2) = Qni(fe2m,fci)Qni(feim,A;2). 
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Our examination of Qni (m, k) for m / 0 depends first on our recollecting the 
definition of .F(m) in (3.2) and using the lemma in respect of the representation 
k = k'g, where, in a modification to the notation in §5, k' = k'^ (with or without 
extra subscripts) denotes a number prime to 2aia2a^F{m) and g = gm is a number 
whose prime factors all divide 2aia2a^F{m). Of the two sums that occur, the first of 
type Qni (m, k') can be handled explicitly very accurately, whereas the second of type 
Qni (m, g) is not amenable (at least fully) to the same method and is treated by our 
finding an all embracing bound for the sums Qni (m, k) that serves our needs for the 
special moduli g. Both methods, however, rest on the properties of the generalized 
Gaussian sum 

S(u,i;;ifc)=   Y,  e2™^2"^/* (10.1) 
0<K/c 

in terms of which the formula (5.1) is extended to 

pQni(m)A) = i   £     H   S{aih,mi;k)e-^ih^lk (10.2) 
Q<h<k l<j<3 
(M)=l 

in virtue of (3.5). 
The universal bound for Qni{m,k) depends on the assessment 7 

S(u,v]k) = 0{(u,k)iki}] 

this is not easily traceable in the literature but is easily verified by Weyl's method. 
Accordingly we at once gain the estimate 

that actually includes (5.4). 
But in the case where k is of type kf the formula (10.2) can be exploited more 

effectively because then the sum within it can be calculated by means of the Gauss sum 
through an obvious transformation, to facilitate which we let b denote a solution of 
bb = 1, mod fc, when (6, k) = 1. Indeed, only initially assuming that (&, 2aia2as) = 1 
and following a not unfamiliar line of attack, we express the argument in the summand 
of S(ah, m\ k) when (2a, k) = 1 as 

ahl2 + ml = ah(l2 + 2.2ahml) = ah(l + 2ahm)2 - lahm2 

and deduce that 

S{ah, m; jfc) = ^(a/i, k)e-2™UTim2/k. 

Hence, since 

S2{ah,k) = (^)s2{l,k)={^y^-^kK 

7The better bound 0{(u, v,k) 2/c2 } is easily confirmed but does not confer any extra benefit 
here. 
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we find from (10.2) that 

—Qni (m, k) = -4 f01612^) it^"1)2     V     f-^ eaTriC-Zini-^Caimi+aaml+aam^^/fe 

(h,k)=l 

= ^(^)ii^2T(-n1,-Aa1a2-a3F(rn)), (10.4) 

where 

0</i<A; 
(/i,ife)=l 

is a generalized Kloosterman sum of Salie type. This has been known since the time 
of Salie to be amenable under various conditions to an explicit evaluation, of which 
we find it convenient to give our own quick account. 

Here it is enough to suppose merely that (2v, k) = 1 although what we find would 
be equally valid when (2u:2v,k) = 1. First, having changed h into hv, mod fc, to 
shew that 

TO, v, k) = (|) T{uv, 1; k) = ±T{uv, 1; /c), (10.5) 

we arrive at T(w,l',k) by treating the sum 

Z(w,k)=       Y,       e Aniv/k 

v =w,    mod k 
0<i><k 

which equals 

1    V^       Y^      Aniv/k   2irir(i>2-w)/k _ 1    V^    ^Tzirw/k    V^    e2>Ki(rv'2+2v)/k 

0<r<k0<v<k 0<r<k 0<u<k 

If (r, k) = k* > 1, the inner sum equals 

027zirv*2/k V^ 2T:irv*2/k V^ Aniv/k _ Q 

Q<v*<k/k* v=v*,    mod /c//c* 
0<i/<A; 

so that 

Z(w,k) = -    Y^    e~27rirU;//c    ^    e27rt{r(i/+f)2-f}/fc 

0<r</c 0<^<A; 
(r,/c)=l 

= i   V   e-2^rw+r^kS2(r,k) 
Ki 

0<r<k 
(r,k)=l 

14 V^     fJi\    -2iri(rw+f)/k 
i £ (i) ^2 0<r<fc 

(r,/c)=l 

±—-T—T(^i;*) 
/C2 

e 
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by the usual determination of the Gauss sum. Thus 

\T(w,l',k)\=k^\Z(w,k)\. (10.6) 

On assuming that k is not only prime to 2aia2as but also to F(m), we infer from 
(10.4), (10.5), and (10.6) that 

^3|Qni(m,fc)|=     iTni(l,fc),    (m^O) 

where 

and 

rni(h,k) = Tni>m(h,k) = \      Y,      e47riWfel (10-7) 
G(I/)EE0,    mod k 

G(i/) = Gni,m(i/) = 4aia2a3i/2 - niF(m). (10.8) 

This is valid for numbers k of type k' but must be supplanted by (10.3) for those of 
type g. Hence, if k — k'g and gg = 1,   mod A/, Lemma 3 gives 

pQni(m,*) = O (^\Qni(gm,k')\ J = O (5*^(5,A/)) . (10.9) 

Moreover, it also shews that Tni (/i, fc') has the property that, if (fcj, A;^) := (^5 ^1^2) ^ 
l,then 

Tm (^5 ^1^2) ~      *-ni\h'k2<) /c1jTni(/l/c1, ^J, 

as may be otherwise seen without restriction on h from Lemma 3 in our paper [5] 
whose method we shall shortly follow. 

11. The sum ^(n) - the initial treatment. It is opportune to decompose 
the sum ^(n) in (7.3) into constituents upon which the theory of the previous section 
can be brought to bear. Consequently, returning to (3.11) and using (3.10) and (4.6), 
we have 

\m^Q       i|1      "     fc<Mi 
W1||mir - T^KMnU)! 

\m^Q       i|1      "     fc<Mi 

and then, 8 by (10.9), 

0m(ni) 
•   say, 

#0 "    " 

(11.1) 

8Whether or not the series occurring below were finite, the majoration would be valid under 
usual conventions regarding series with positive terms even though we would obviously only use it 
in the foreknowledge that the former case was in place. 
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1 . 
where it is still to be understood that Mi = n^ and that ni will become n — 04W'f. 
Hence, by (7.3) and (3.4), 

^B(n) = 0 

Vm^0 ^<(„/a4)^ / V^0"      "     / 
(11.2) 

Having completed the dissection of the sum, we go on to the sum 6rn(n — a4Wl) whose 
treatment depends on the size of ||m|| and whether or not W belong to an exceptional 
set. 

12. Estimations of 0m(ni) and UB (n). In anticipation of these estimations, we 
let p(k) = pni,xn{k) (not to be confused with P3(ni,d) and pi(n2,d)) be the number 
of incongruent roots,    mod fc, of the congruence 

G(^) = 0,    mod fc, 

defined by (10.8), still assuming as in §11 that m ^ 0. Then, by the theory of quadratic 
congruences as described for example in [4], we have 

LEMMA 4. //p{2aia2a3F(m), then 

t OL\ / f 2> if a = 1, 
^^12^,    ifa>l, 

always, while 

(aia2a^niF{m) 
p{p) = 1 + 

V       p 

and, under the additional condition p \ ni,p(pa) = p(p) for a > 1. Also p(k) is a 
multiplicative function. 

We first find an always valid bound for the sums 

R(g,u)= 52 ?(§,#) 
k'<u 

that will be both an auxiliary tool and also a surrogate for more accurate bounds 
which may fail when either ||m|| > ns or W is exceptional. This follows from the 
inequality Y(g,kf) < p(kf) and unfolds as 

/c'<u k'<u p<u \ r P 

0 I u 11 f1 + ")   \=0{u log4 2«) (12.1) 

in virtue of Lemma 4. Incorporated in the equation 

Mni)=  Yl g^RfaMi/g) (12.2) 
g<Mi 
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implicit in (11.1), this yields 

Mni) = o(M1log42n1 J2 ^i) = O i iWilog42m        JJ (l - \ 
\ 9<M92 ) y plaaiOaOsFM ^ p2 

= o{Milog42n1 a.i (2010203^(111))} =0(Mi||m||elog42ni) (12.3) 

as a bound without restricting conditions. Also, in preparation for a more accurate 
assessment of 0m(ni), we rewrite (12.2) as 

0m(ni)=   E  9iR(9,M1/g)+     X      9*11(9,M^g) = ^ + ^3,say)  (12.4) 
1 1 

wherein 

-OrM^log^niHmll6) = O (M^HmH6) (12.5) 

by a virtual repetition of previous arguments. 

The crux in the method occurs when we size up R{g, x) for values of x between 

rii and ra-f that correspond to the range of Mi/g in ^2* ^ave for a preliminary 
transformation, this is performed much as in our proof of our Theorem 1 in our paper 
[5] on the distribution of the roots of polynomial congruences, wherein the polynomial 
f{u) is replaced here by the quadratic G(u) for given values of ni and m and wherein 
\S{h,k)\ becomes T{g,k'). The degree n in [5] is now 2 and the summation over 
k is initially only limited to one over k'. But, since the possible presence in kr of 
prime divsors of ni means that part (iv) of Lemma 4 in [5] is no longer available, the 
treatment requires some remodelling, which for brevity of description is best instituted 
here by letting the symbols k" and gi denote numbers of type k' that are, respectively, 
those that are prime to ni and those that are composed entirely of prime factors of 
ni. Then 

R{g,x)=   Y.   ^(9k",9imgguk")<   £   p(ffi)T(5fli,fc") 
gik"<x gik"<x 

i i 
gi<x8      gi>x8 

where we have utilized the fact that g, mod £/, is also a multiplicative inverse of g, 
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mod k". Here, by (12.1) and Lemma 4 again, the second sum does not exceed 

£   p{Si)    E    P(k") = 0\xlog4x   J2 
91>X8 k"<x/gl 9i>x& 

P(gl) 
51 

^ Pin!   X . 

= O fx^nilog4xJ = O (x^\ , 

whence, on setting 

Ri(99i,v)= ET(^i,n 

for values of y between xs and x and hence between n^and n^, we have 

R{g,x)= Y^ p(9i)Ri(ggi,x/g) + 0(x;£). (12.6) 

The method of [5] can now be applied because Ri (ggi, y) is a sum over numbers 
that are prime to m. Starting with numbers ftj ,^2 that stand in the same relation 
to k" as ki, k2 did to fe in [5], we follow the procedure in that paper from its Lemma 
7 until we reach (11) therein, whereupon we are confronted by the sum 

whose analysis begins with its majorization as 

pHk'i) 

(12.7) 

O    (log log n) 2   £ 

^1 <nl 
K 

= 0    (loglogn)* J] (^fO-J) 
-IN 

p<ni;p7^2 
(aia2a3niF(m)|p)=l 

o^ (log log n)2 n 
p<ni;p7^2 

(010203 ni F(m)|p)=l 

i+i) 
V2 

(12.8) 

by Lemma 4. We then go on to scrutinize the last product through the principles of 
§8, assuming that 0 < ||m|| < ns. 
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Let us now suppose, for such a given m, that 

a1a2a3(n - a4W
l)F(in) = -Dtt2    (0 < W < (n/a4)T) (12.9) 

so that, under the discussion of §8, x(6, —aia2a3niF(m) is a non-principal character, 
mod 2\D\ or 41^1, when D < —1. Then, setting Y = Aa^asn* in Lemma 2, we 
know there are at most 0(y 451) = 0(7191) exceptional values of such D for which the 
inequality 

2<p<n1 

and hence the inequality 

-t^,. V        P        ) P 

E        1*1 Z {^(--7r(m))}; 
2<p<ni ^ 2<p<ni   ^ V y / J  y 

(aia2a3niF(m)|p)=l 

< - log log 2ni -\- A log log log n 

are false. Thus, save in the case of failure, the product in (12.8) and thence the sum 
(12.7) are of the form 

O {log^2ni(loglogn)A} , 

wherefore, completing the argument on p.47 of [5], we find that 

/ y(loglogn)A \ 
Ri(ggi,y) = 0 

Vlog1- 
y/2, '27li/ 

and deduce from (12.6) and Lemma 4 that we can replace (12.1) by 

R(9,X)=oHf°^Aj:^)+o(x%) 
W-s^mV   9i  J       \    / 

) ^(loglogn)-4 TT A  , 3       5_ 

_      /a;(loglogn)A\ 

l,log1-^2nJ 
when the circumstances are favourable. This we put in ^2 to yield 

^   _     /MxCloglogn)* y.  1 \ /Mxllml^loglogn)^^ 

^ Vlog1-^2n1  V»V V      log1-i^2n1      ) 

by the reasoning associated with (12.5), and we deduce that 

V     log1" 2 ^2^      ; 
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in the light of (12.4) and (12.5). Finally, the contribution to z/m(n) in (11.2) for those 
values of W for which (12.10) is successful is 

na+z Ural 
O    n* ||m||e(loglogn)A      V       r7=     = O , , , 

\ W<(n/a4)i      6 V 4       ;y \ / 

(12.11) 
for any exponent 8s less than 1 — |\/2. 

In the situations not yet covered for a given value of m, there are 0(nM) possible 
values of D even when we add the previously excluded value —1, to each of which 
there will correspond those W in the absolutely irreducible equation (12.9) for which 
0 < W < {n/a±)~i and 0 < fi < (aia2a3.F(m)n)2 < An*. Since the number of 
such solutions is 0(n8*+e) by the Bombieri-Pila theorem already used after (9.6), the 
number of W for which we are obliged to use the estimate (12.3) is 0(n4r), whose 
contribution to ^m(n) is therefore 

O (n2 + 4T||m||elog4nJ 

by (11.2). With (12.11), this then implies that 

Mn) = o(^M^ (12.12) 
log03 n 

On the other hand, for ||m|| > ns, we have the trivial estimate 
for 0 < ||m|| < ns. 

i/in(n) = O    n2||m||elog4n      ^      1=0 fn2 + J ||m||elog4nJ 

\ W<{n/aA)T    ) 

that flows from (12.3). Hence, choosing QA to exceed 7, we conclude that 

\ 
i/B(n) = 0 

(12.13) 

13. The primary asymptotic formula. If we combine (7.8),(9.8), and (12.13) 
in (7.3), we obtain at once the required asymptotic formula in its primary form. This 
we state in 

9 A less generous value of A would obviously suffice. 
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THEOREM 1. Let ai, (22, as, 04 be positive integers and iy(n) the number of repre- 
sentations of a (large) integer n in the form aiX^ -f c^Xf + asXf + a^W1. Then 

v/alaiai>/ajr(f + 7) ylogd3ny 

/or an?/ positive exponent 83 less than 1 — ^\/2. 
However, just as at the corresponding place in I, it would be premature to attempt 

to draw conclusions from this formula until we have studied the singular series in 
appropriate circumstances, since we do not yet know when the explicit term dominates 
the remainder. Indeed, as shewn in I, there are cases where the formula would not be 
efficacious unless the remainder could be reduced in size in the appropriate context. 

14. Return to the singular series. In the examination of z/(n) and S(n), as 
is usual in this sort of subject, the necessary divisibility of n by ((11,0,2,(13,(14) for 
the existence of the proposed representations means that we can always assume that 
this highest common factor is 1. Under this simplifying supposition, any individual 
case one cares to choose can in theory be so analyzed that an appropriate conclusion 
can be reached about i/(n) and the representation of large numbers. Yet so many 
different situations arise that it would be both impracticable and dreary to attempt 
to cover them all here exhaustively, a difficulty, moreover, that could not be instruc- 
tively removed by our assaying conditions in terms of solubility over p-adic rings. We 
therefore confine our attention to the case where 

ai, a2, as, 04 are odd and relatively prime in pairs; (14.1) 

this affords the most natural widening of the scope of I and is a good indication of 
how one might proceed within a wider frame of reference. 

We shall need the analogue 

p p 

of (45) in I that stems here from §6, applying it by means of the following two 
principles. 

PRINCIPLE A. A contribution of p3^-1) to r(n,pa) is due from each solution, 
mod p, of 

ai^2 + a2X'2
2 + asXg2 + 04W'1 = n,    mod p, (14.3) 

for which either aiX'i ^ 0, mod p, for some i when p ^ 2 or 04 W ^ 0, 
mod p, when p \ I, all such solutions being primitive in the sense that p f 
(a1X[1a2X^a'sX^a,

4W
f). 

PRINCIPLE B. If the congruence Yf = Hi, mod 8, with odd Hi have a solution 
Ui, mod 8, then the congruence Y = H, mod 2a, with H = Hi, mod 8, has a 
solution Y,   mod 8, that is congruent to Ui,   mod 8, when a > 3. 

We also now require the promised analogue of (5.8) in the case where p divides 
just one of 01,02,03 and where, therefore, we may assume for illustration that p\ai 
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and p f 2a2a3. Here P3(ni,p) is now p times the number of solutions,    mod p, of 
a^^f + asXf = ni,   mod p, which equals 

£   - ^2 \ f -Q>3X$ + m 

0<X3<P   v \P /    \ P 

Hence, by a formula due to Jacobsthal, 

(14.4) 

a result that could otherwise be derived less simply by forming an analogue of (5.5). 
From this, under the same condition where therefore 04 ^ 0, mod p by (14.1), we 
then deduce the equation 

T(n,p) =    Yl   Ps(n~a4Wl
)p) 

Q<W<p 

3     /   ^asN   2     /   a2a3\   2 

where iJ, the number of incongruent solutions of a^W1 = n, mod p, does not exceed 
p-1. Thus 

= p{p-[-a-f)}{p+l-a-f)H}>^+P>^  (14.5) 

which inequality immediately enables us to dismiss the case where p\aia2as in the 
product in (14.2). If for example p|ai, the number of incongruent solutions of (14.3) 
for which X2 = X^ = 0, mod p, is pif with the consequence that the number of 
solutions satisfying the data in Principle A is not less than r(n,p) — pH > p2, whence 
9(n,p) > 1/p and 

TT    e(n,p)>—?—. (14.6) 
XJ- aia2a3 

p|aia2a3 

In the opposite situation for odd primes p where p \ aio^as, we merely use a 
simplified version of the procedure in the corresponding part of I. Since here the 
number of incongruent solutions of (14.3) not satisfying the criteria in Principle A is 
not greater than the number H of those for which X{ = X2 = X^ = 0, mod p, the 
remaining solutions have cardinality not less than r(n,p) — H > r(n,p) — p, where by 
the statements (i) and (ii) in §6 

r(n,p) = p3 + 0(p2)   (p \ n) and r(n,p) > p3 — p2 always. 
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Hence, by Principle A, 

B 11 
0(n,p) > 1 3- > 0(p]n,p > B') and e(n) > 1 ^   {p\n or p < B!) 

pi p     pz 

with the result that 

#4 
n e(n,p)>B3n(i-^)> 

20,10.203       '"|'" 

which combines with (14.6) to yield 

M .xx-/       loglogn' 
p\2a\a<2a3 p\n 

]\Q(n,p)>—^_. (14.7) 
^ loglogn 

Even if p = 2, there is still no difficulty when / is odd because then it is easily 
verified that there is always a solution of (14.3) for which W is odd and for which 
therefore Principle A is applicable. Thus 

e(n,2)>£6      (/odd). (14.8) 

Yet, much more so than in I, the remaining case with p = 2 and even / presents us 
with a greater problem than those that preceded it when we confront the congruence 

*(Xi, ...,X4) = a^ + ... + a4X% = 2%,    mod 2a, 

and its associate 

y{Xu ..., X3, Wil) = a^l + ... + azXl + aAW
l = 2%,    mod 2a, (14.9) 

where here 2^\\n and n = 2^ni with rii odd. This is due in part to there being a 
multitude of categories requiring individual analysis and also to the fact that primitive 
solutions do not always answer to the congruences 

*(X{,...,^) = 0,    mod8, 

that contain those of the type 

tf^.^W^SzO,    mod8. (14.10) 

It is with these congruences we begin and easily find that the condition that either 
one be primitively soluble is that either 

^i+a2 + as+ ^4 = 0,    modS, (14.11) 

or 

en + CLJ = 0,    mod 4, for some pair of (necessarily) unequal subscripts      (14.12) 

because it is required that exactly two or four of the unknowns be odd (one of which 
is necessarily an X- in (14.10) in this instance). Two cases, which are to be separately 
analyzed, then emerge, namely, 

A   —    (14.12) does not hold but (14.11) does (I even) , . 
and       B   —    (14.12) holds (I even). (14.1dJ 
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The residual case in which (14.10) is not primitively soluble is then described by 

C   —   neither (14.11) nor (14.12) holds (/ even). (14.14) 

As a prelude to the study of cases A and C, we must examine some modular properties 
of the ternary form /(X'^X^X^) when property (14.12) is denied. First ai, 02,(23 are 
not all incongruent, mod 8, because otherwise the even numbers ai +02,02 + 03, G3 4- 
ai would assume three incongruent values, mod 8, one of which would perforce 
be congruent to 0, mod 4. Next, excluding the case ai = ^2 = 03, mod 8 where 
it is known that /(X^X^X^) does not represent all odd residues, mod 8, let us 
isolate all other eligible forms with a like property. In the typical case where a2 = 
ai, mod 8,and as ^ ai, mod 8, the obviously incongruent representable residues 
ai 4- 4a3, as + 4ai cannot both assume values, mod 8, that are neither ai nor as so 
that, for example, as + 4ai = ai, mod 8, and as = 5ai, mod 8, and thus, equally 
well, ai -h 4a3 = as, mod 8. Characteristically /(Xi^X^X^) must be congruent, 
mod 8, to an odd multiple of X^ -f X22 + 5X 2, which qualifies because the only odd 
residual values, mod 8, of the latter form are 1, 5, and 7. Moreover, it is easily 
verified that /(X{, X^ X^) primitively admits all oddly even values, mod 8, but not 
those that are evenly even, as is also true for the previously excluded forms that are 
an odd multiple of X^ + X^ 4- X32,   mod 8. 

Let us first describe the scene under the first heading A. Since each of ai 4-a2, ai 4- 
03, ai 4- 04 is congruent to either 2 or -2, mod 8, two of them are congruent to each 
other and thus typically ai + a2 = ai 4- as = ±2, mod 8, with the implication that 
a2 = as, mod 8, and as 4- a^ = ±6, mod 8, by (14.11), the same sign being used in 
both instances. Therefore there is a class of forms ^(X'^X^X^X^) in Category A 
consisting of those congruent, mod 8, to 

aXi2 4- (±2 - a)X'2
2 4- (±2 - a)X'3

2 + (4 4- a)^2,        (a odd) 

which, on specializing a and reducing, mod 8, we see are all odd multiples of 

X'I + X'J + X'I + SX'2, 

all classes being exhausted by permuting the coefficients. Here, whatever be the 
position of the coefficient 5, we see that ^(X^X^X^ W'21) can primitively represent 
all residues, mod 8, save 4 (in the case of 0 we already knew this from the preamble), 
whence, advancing via Principle B to (14.9) for a > 3, we deduce that r(n,2a) > 
23a-3 for all p^2 and thus that 

0(n, 2) > B7   (case A : /? ^ 2). (14.15) 

Yet, although (14.9) is not primitively soluble when (3 = 2 and a > 5, there 
remains the possibility that there may be imprimitive solutions necessarily satisfying 
2\\{X1,X2,X3,W), which, on setting X1 = 2X^X2 = 2X,

2,X2t = 2X'3, W = 2W7, we 
observe must conform to the congruence ^(X^X^X^^^ l) ~ n, mod 2Q!~2, that 
for a = 5 is tantamount to one or other of conditions of the type 

a(Xi2 -I- X'2
2 + X32 4- 5.2Z-2W,Z) EE m,    mod 8, 

aiX'2 4- X2
2 + 5X32 + tf^W'1) = m,    mod 8, 

containing an odd value of a. Taking these congruences, we first suppose that I = 4 
and choose Wf so that ni — abAW l or rii — aAW l is not an odd number that escapes 
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primitive representation, mod 8, by the relevant ternary form a(X1
2 + X2 + X^) or 

a(Xi2 + X22 + 5X32). Thus in this case r(n,pa) > B8p
3a for a > 5 by Principle B, 

and we deduce that 

e(n, 2) > #8     (case A;(3 = 2; I = 4). (14.16) 

However, if / > 4, then our needs are met if and only if 2 { (X^X^X^), in which 
event by starting with the exponent a = 5 we find that only three odd residual values 
of ni are admissible. Therefore in this case we deduce that r(n,pa) > Egp3** or 
T(n,pa) = 0 according as ni does not or does belong to one specific residue class, 
mod 8, whence 

0(n2) > BQ    (case A] ft = 2; I > 4; 

ni belongs to one of three odd residue classes, mod 8) (14.17) 

and 

9(77,2) = 0(case A]/3 = 2; / > 4; rti belongs to the remaining residue class, mod 8); 
(14.18) 

of course, in the latter case, is(n) itself is necessarily zero. 
On arrival at Case B, we cease to justify our assertions because the methods of 

demonstration have been amply rehearsed above and in I. We therefore first merely 
state the inequality 

6(n,2) > Bio (case B). (14.19) 

Case C comprehends the whole situation in I, the only significant difference being 
that we must discriminate between the cases where the ternary form /(X^^X^X^) 
represents all four odd residue classes, mod 8, and where, as in I, it only represents 
three such classes. We have 

e(n)2)>__ = _ 

in the following instances: 
(i) case C; 0 odd; (14.20) 

(ii) case C; ft even; /(XL, X2, X3) neither an odd multiple, mod 8, of X2-{-X^+X^ 
nor of a form with coefficients 1, 1, 5 (in some order); (14.21) 

(hi) case C; /3 even; f(Xi)X2)Xs) either an odd multiple, mod 8, 
of Xi + Xf + X3 or of a form with coefficients 1, 1, 5; either one of /? — 2, 
(3,(3 + 2 congruent to 0, mod Z, or 774 is congruent to one of three odd 
residues, mod 8. (14.22) 

In the remaining situation, 

(iv) case C; none of (i), (ii), (iii) apply, 

both 0(n,p) and u(n) are zero because r(n, 2a) vanishes for large enough a. 
Our study of the singular series ends by the insertion in (14.2) of (14.7) and our 

results for 0(n, 2). We first find that 

6(n) > r^- log log n 
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when 

one of .he conditions in (14.8), (14.15), (14.16), (14.17) or (14.19) holds.   (14.23) 

Also 

&(  ) >     j^i3ni        _ ^13 
n log log n 2^ log log n 

when 

one of the conditions (14.20), (14.21), or (14.22) holds. (14.24) 

In all other circumstances both u(n) and &(n) are zero. 

15. The final theorems. On applying our results on (3(n) to Theorem 1, we 
immediately deduce our 

THEOREM  2.      To  the data in  Theorem 1  let us add the requirement that 
0*1, a2, ^3,04 be relatively prime in pairs.  Then we have 

(i) if stipulation (14.23)/zoM; 

i/(n) ~ .     ...1     ■,.n*+'&(n) 

(15.1) 
as n —> 00 : 
(ii) let n — 2^ni where ni is odd and j3 < S log log n for some small positive 

number 5; then the asymptotic formula (lb.I)is still valid when (14.24)is in 
place: 

(hi) in the situations outlined above a large number n is representable as a^X^ -j- 
c^Xf 4- 03X3 + a^Wl\ but, if both (14.23) and (14.24)/ai/; there are no repre- 
sentations and the asymptotic formula is trivial. 

As it stands, this theorem has the blemish that a limit has been placed on the size 
of the power of 2 in n in certain circumstances. However, just as in I, this defect can 
be removed by an initial transformation of (1.1) because only certain cases included 
in C require attention. After all relevant details have been attended to, we can reach 
our final inference in the form of 

THEOREM 3. The conclusion in part (ii) of Theorem 2 is still valid when it is only 
assumed that ni —> 00; part (hi) is then to be interpreted in the light of the revised 
part (ii). 

Thus we have achieved our goal of obtaining a meaningful asymptotic formula for 
v(n) in all cases under (14.1) where the odd constituent ni of n tends to infinity. We 
are therefore also provided in these circumstances with a criterion for deciding when 
n is representable in the proposed form. 

In other situations we still have the asymptotic formula of Theorem 1 but, as 
previously stated, further work is needed to elucidate it in any individual instance. 
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