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TWISTED TORSION ON COMPACT HYPERBOLIC SPACES: A 
REPRESENTATION-THEORETIC APPROACH* 

MARIA G. GARGOVA FUNG* 

Abstract. In this paper we consider a twisted version TQ of the Ray-Singer analytic torsion 
on compact locally symmetric spaces X = K\G/r (with G a noncompact connected semisimple 
Lie group, K its maximal compact subgroup, and F a discrete torsion-free cocompact subgroup), 
where 9 is an automorphism of X with the property that 02 = 1. We obtain a representation- 
theoretic interpretation of the twisted torsion via certain irreducible unitary representations of G. 
By considering 9 = Cartan involution for SOo(2n + 1,1), we show that |T0| = 1 for the compact 
hyperbolic spaces associated to this family of Lie groups. 

1. Introduction. The analytic torsion of a compact Riemannian manifold, in- 
troduced first by Ray and Singer in [18], is an important invariant that allows us to 
distinguish between spaces with isomorphic cohomology rings and homotopy groups. 
It is composed of the spectral information of the Laplacian operators associated to 
the De Rham complex of the manifold. Cheeger and Miiller independently (see [5] 
and [17]) have shown that this torsion coincides with its combinatorial counterpart, 
the Reidemeister torsion. 

In the special case when the manifold is a compact locally symmetric space X = 
K\G/T, with G a real semisimple non-compact Lie group, K its maximal compact 
subgroup and F a torsion-free cocompact discrete subgroup, Speh in [22] expresses 
the analytic torsion in terms of representation-theoretic data. Inspired by work of 
Pried [7] on compact hyperbolic spaces, she describes the spectrum of the Laplacian 
operators via certain irreducible representations in the unitary dual of G. This allows 
Speh to construct a proof different from that of Moscovici and Stanton [16] of the 
vanishing of the torsion on all compact locally symmetric spaces of the type above, 
except in the cases when G has a factor locally isomorphic to 50(p, q) with pq odd, 
or 5L(3,R). 

An automorphism of a compact Riemannian manifold acts on the Laplacian op- 
erators associated to its complex of differential forms, and thus it acts on the building 
blocks of the analytic torsion. Therefore, each such automorphism allows us to con- 
struct a twisted invariant analogous to the usual torsion. In this paper we do this in 
the case when 6 is an involution of a compact locally symmetric space. We prove the 
following vanishing result: 

THEOREM 4.2 For the compact locally symmetric space X = K\G/r with G 
locally isomorphic to 50o(2n-M, 1), K its maximal compact subgroup and T a discrete 
torsion-free subgroup, the twisted torsion 

M = i 
for all outer automorphisms of G such that 62 = 1 and 0(K) = K, 0(r) = F. 

The proof of this theorem is modeled after Speh's proof of the vanishing of the 
analytic torsion. Thus, we first obtain a representation-theoretic interpretation of the 
twisted torsion on a general compact locally symmetric space in 2.3. Then we relate 
this invariant of the locally symmetric space to "twisted torsion" of ^-invariant unitary 
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representations in the discrete spectrum of G/T. This twisted torsion on representa- 
tions is distinct from Speh's torsion on representations only when the automorphism 
8 is outer. 

We specialize to the case when G is locally isomorphic to SOo(2n -f 1,1) and 6 
is the Cartan involution, since for this Lie group it is essentially (up to inner auto- 
morphism) the only outer involution. Moreover, in 3.1 we obtain a reduction of the 
twisted torsion on unitary representations to that of invariant principal series repre- 
sentations. This allows us to get a formula relating the logarithm of twisted torsion 
on the manifold to special values of the twisted zeta functions of ^-invariant principal 
series representations. In sections 4, 5 and 6 we show that under the assumptions of 
the theorem the twisted torsion of all ^-invariant irreducible unitary representations 
of G is 0, and hence the logarithm of the twisted torsion on the manifold is 0. 

We work with the disconnected group G = SOo(2n + 1,1) K {1,0} whose non- 
identity component we denote by GO. We extend each ^-invariant principal series 
representation / of G by induction to a representation of G with irreducible factor 
denoted by /. We interpret the twisted torsion of such an invariant principal series 
representation as the coefficient of the trivial representation in a virtual tensor prod- 
uct module (see 4.5), on the K0 component. At the heart of this character theory 
computation of the twisted torsion is the calculation of the twisted character tr (Ice) 
performed in section 5. It turns out that this character is a locally integrable function 
on the maximal torus of the subgroup M = SO(2n) of G. 

To get our vanishing result, we complete our proof by recognizing the product of 
the two characters that define the twisted torsion on representations as products of 
sums of characters of 5L(2,E). To obtain this interpretation, we use combinatorial 
results in 6 to rewrite, in a suitable form, the characters of those M-representations 
that parametrize the class of ^-invariant principal series for SOo(2n -1-1,1). 

2. Twisted Torsion on Compact Locally Symmetric Spaces. 

2.1. Preliminaries. Let X be a compact Riemannian manifold. Denote by 
A(X) the complex of its E-valued differential forms. By taking the adjoint d* of 
the differential D we can define the Hodge-Laplacian operator Aj on j-forms by 
Aj = Dd* -}-d*D. This operator is nonnegative and elliptic [24] and we can associate 
to it the Dirichlet series 

where we sum over all nonzero eigenvalues of Aj. This series converges absolutely for 
Re(s) large enough, and in fact it can be analytically continued to a meromorphic 
function in the complex plane [21]. 

We define 

detA^exp^C^O)) 

where ^. denotes the first derivative of the zeta function £Aj • 

DEFINITION 2.2. The square of the Ray-Singer analytic torsion [18] rf, corre- 
sponding to the trivial representation of the fundamental group of X, is given by the 
quotient 

(detAiHdetAs)3... 

(detA2)2(detA4)4... 
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We consider only compact locally symmetric spaces of the following kind: X — 
K\G/r, where G is a semisimple noncompact connected real Lie group with maximal 
compact subgroup K and F is a discrete torsion-free cocompact subgroup of G. 

The Lie algebra g of G has the Cartan decomposition g = 60 p, where t is the 
Lie algebra of K and p = T(X)e, the tangent space at the identity of X. 

For every (g,6)-module M of the universal enveloping algebra U (Q) of g we can 
consider the relative Lie algebra complex 

C*(g,M) = Hom6(A*p,M) 

where we consider p as a f-module via the adjoint action. If M is unitary, there is a 
natural inner product on Homg (A*p, M) coming from the Killing form on p and the 
inner product on M. Thus, following the exposition of Chapter 2 in [2], we can define 
a Laplace operator 

AJ
M : Home (AjP,M) -+ Horn* (Ajp,M) . 

Kuga's lemma (page 49 in [2]) then gives us that for each to £ Ajp* and v G M (recall 

that G7^, M) = [(A^p)* 0 M] , where we take the 6-invariants in the latter term) 

AM (W 0 v) = to 0 {-Cv), 

with C being the Casimir operator associated to the module M. On the other hand, 
A(X) is isomorphic to Home (A*p, C00 (G/F)), with C00 (G/F) a module for the uni- 
versal enveloping algebra [/(g) via right invariant differentiation. Thus the spectrum 
of the Laplace operator is in one-to-one correspondence with the spectrum of the 
Casimir operator C on L2(G/T). 

Fix dx to be the Haar measure on G/F coming from the Haar measure on G. 
Then the Hilbert space L2(G/r) of square integrable functions on G/F with respect 
to dx is the completion of the space C00(G/T). Moreover, we can decompose L2(G/Y) 
as a discrete sum of irreducible G-modules with finite multiplicities, by a theorem of 
Gel'fand and Piateckii-Shapiro [9]: 

L2(G/r)^em(7r,r)Jfir7r 

where we sum over all irreducible unitary representations (TT,^) in the unitary dual 
Gu and m(7r,F) = dimHomG (#„,L2(G/r)). 

Hence it follows easily (see [22]) that for A ^ 0 G E, 

dim ker(Aj - A) =    ^   m(7r,r)dimHome(A-7'p,iJ^0), 
7r€Gu 

7r(C)=A 

where H^ denotes the G00-vectors in H^. We denote the dimension of this kernel by 
m(A,i,r). 

This allows us to write 

(2.1) logTf = lim^(-lV'jCA)-(a)   where   CA^^mCA^HA-5. 
3 
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2.3. Definition of the Twisted Torsion and Representation-Theoretic 
Interpretation. Let us fix an arbitrary automorphism 9 of the Lie group G such 
that 6{K) = K, 0(17) = F and 62 = 1. We can think of 6 as an automorphism of 
X = K\G/r, by identifying it with the induced map on the locally symmetric space. 

The automorphism 0 acts on the complex of differential forms A(X), which we 
identify with the space Home(A*p, C00(G/T))1 in the following way: 

6.rJ(YuY2,...yYq)(x)=rj(deYudeY2,...,deYq)(e(x)), 

with rj e Horn*(A*p, C00{GIY)), Yu ..., Yq G p and x G G/V. Another way of writing 
this 6-covariant action is: 

(2.2) 0'V = Ve=Ocl{G,T)oVQ0Mpi 

with 6CO=>{G/T) 
and 0A<*p denoting the action of 6 on C00{G/T) and A9p, respectively. 

The automorphism 6 acts on the Laplacian operator Ag by 

A^ = 6- Agfo) = ^(A,^-1 • T?)) = e(^q{e ■ rj)) 

since the Laplacian is a linear map. 

DEFINITION 2.4. The square of the twisted torsion r| corresponding to the trivial 
representation ofT is 

(detAf)(detAg)3... 

(detA^)2(detA|)4...' 

We would like to obtain a representation-theoretic interpretation of the twisted 
torsion on the compact locally symmetric space X. As a first step in this direction 
we get the analogue of Kuga's lemma. 

We call a unitary (0,£)-module (TT, M) ^-invariant if the module (7r0,M) is iso- 
morphic to the original module, with TT

9
(X) • m = 7r(d0(X)) • m for X G 0, m G M. 

LEMMA 2.5. Let (TT, M) be a unitary, 9-invariant (Q,t)-module with corresponding 
Laplacian operator A(ir). IfrjE Cq(M) = Home(A9p, M), then 

where     C     denotes     the     Casimir     element     associated     to     (TT, M)      and 
rf =9^} or]o9Aqp. 

Proof. The same proof as the one on p.49 in [2] goes through, with rj replaced 
by rj0.     D 

COROLLARY 2.6. A(7r)*(u; 0 v) = u ® 9(-C(9 • v)) for u G A*p* and v G M. 

Proof By the above lemma we have that 

9(A(iT)(ud O v0)) = 0(u>e 0 -C(9 'v))=u>® 9(-C(9 • v)). 

U 
If 9(-C(ve)) = Xv for some A ^ 0, then -C(^) = AiA Conversely, if C^) = 

\v9, then 9{—C(v9)) = —Av. Thus, the spectrum of the twisted Laplacian depends 
on the spectrum of the Casimir element C. 
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Recall now the decomposition of the unitary G-module L2(G/r) whose C00- 
vectors are C00(G/r) (see [9]) 

(2.3) L2(G/r)^em(7r,r)£V, 

where we sum over all irreducible unitary representations (TT, H^) in the unitary dual 
Gu and m(7r,r) = dimHoniG (iJ7r,L

2(G/r)). The map 9 acts on the left side of 
equation (2.3) by 

e.m = mx)) 
for all / G L2(G/r) and x G G/T. Obviously, 0 leaves L2(G/r) invariant. 

Consider now the right side of equation (2.3). There are two possibilities that can 
occur. First, it can happen that the representation H^ is sent by the action of 9 to 
a representation isomorphic to it. In this case, there exists an intertwining operator 
AQ : Hn \-+ Hn such that 

Ae*{9) = v{p{g))Ae 

,42 = 1. 

Notice that the operator AQ is thus determined up to a sign, eg. In this situation, 9 
also acts on a G HomG(i^7r,-^2(G/r)) by 

6 ' a = eL^GlT) oaoeH7r 

with 9L2(G/Y) and 6HV denoting the actions of 9 on L2(G/r) and H^ respectively. 
Note that this action is G-covariant. 

Second, it can happen that 9 sends the representation H^ into a representation 
H^. which is not isomorphic to it. In this case, we can look at the direct sum H^^H^. 
Clearly, this sum is invariant under 9. Moreover, we can show the following. 

LEMMA 2.7. If H* ¥ H^, then the trace of 9, 

tr<9|Home(Aip,H-e(H~)e) = 0    for allJ' 

Proof We can choose a basis of the finite dimensional vector space 
Home(A'7p,iJ^0 0 (H™)0) consisting of B-homomorphisms ai,...,a/ which live on 
(H™)9 and are trivial on H™, for some positive integer /, and £-homomorphisms 
Pi,-- ,Pm which live on H™ and are trivial on (H™)6', for some positive integer m. 
Since 9 is an invertible linear map with the property 92 = 1, it follows that in fact 
I = m. Moreover, 9 maps each cti into ^ • Cjfij (1 < j < I) for some nonzero constants 

Cj, and hence its trace on Hom^A^'p, H™ © (H™)0) is 0.     D 

THEOREM 2.8. Suppose that G/T is compact and let C be the Casimir element 
in the universal enveloping algebra U(Q). For A ^ 0 G M 

dimker(A^ - A) =   ^T   tr0|HomG(tffffL2(cy/r)) tr0|Home(Aip,H~). 
7r€Gu 

7r(C)=A 

Proof Since the operator Aj is elliptic, so is its twisted version A0. This implies 
that we can write A^X) as a direct sum of its eigenspaces.   By the corollary to 
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Lemma 2.5, the action of the twisted Laplace operator corresponds to the action 
of the Casimir element on C00(G/T). By the above analysis, it follows that the 
decomposition claimed in the theorem is precisely the eigenspace decomposition.     D 

REMARK. This theorem implies that if we want to calculate the twisted torsion 
on X it suffices for us to consider only the unitary irreducible representations (TT, H^) 
and their corresponding modules H™ of C^-vectors which are ^-invariant. 

COROLLARY 2.9. Suppose that X = K\G/r is a compact locally symmetric space 
and lettr(\,j,r) = J2 1Z^GU trfl|HomG(HwlL2(G/r))tr^|Home(Ai7r,H«»)- Then 

7r(C)=A 

Furthermore, 

CA^) = Etr(A'j>r)A-s for se 

logT! = limV(-iyiCk'(s). 
3 

Proof. Since |CA? I is dominated by ICA,- I for the zeta function of the usual torsion, 
it converges for Re(s) large enough (the classical case is shown in [10]) and can be 
extended to a meromorphic function on C. Hence, the two equations in the corollary 
make sense (see also equation (2.1)). The fact that they hold is obvious.     D 

In view of this result, it is reasonable to consider the following functions on (0,6)- 
modules. 

DEFINITION 2.10. Let (p,M) be a 6-invariant (%,t)-module. Define the torsion 
tor(p) and its twisted version tore(p) to be 

tor(p) = ^(-l^jdimHom^A^M) 

tore(p) = ]r(-l)Jjtr%ome(AiplM)- 
3 

We would like to find conditions under which these two functions coincide. 

PROPOSITION 2.11. Suppose that 6 is an automorphism of X which comes from 
an inner automorphism on G, and let (p,M) be a 6-invariant (g^t)-module.  Then 

\tor(p)\ = \tore(p)\. 

Proof The automorphism 0(g) = aga"1 is defined by an element a G G of finite 
order. This means that a 6 K. Denote by Xa the corresponding element in 6. Let 
u G Homt(A''p, M) and Y G A-^'p. Then 

6 • (u)(Y)) = AjWiY) = A^uj(ad(Xa)Y) = A^piXaMY). 

Now we can choose Ae = p(Xa).     D 

COROLLARY 2.12. Assume 0 is an automorphism of X coming from an auto- 
morphism of the group G of the form 0 = 0i o 02 where 0i is an outer automorphism 
and 02 is an inner automorphism.  Then for 0-invariant (gyt)-modules (p,M), 

\tore(p)\ = \tor9Hp)\. 

Proof. This is immediate from proposition 2.11 and the multiplicative property 
of the trace.     D 
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3. Twisted Torsion on Representations of 50o(2n + 1,1). Prom this point 
on we are going to assume that the Lie group G is isomorphic to the connected group 
50o(2n + l,l). 

3.1. Reduction to the Principal Series Case. Let P = MAN be a minimal 
parabolic subgroup of G, a an irreducible representation of M = SO(2n), and v a 
character of Lie (A) = a. Denote the principal series representation Indp(cr 01/01) 
by (/(P,a, i/),7r).   The action of G here is by /ir(x)f(g) = f(x~1g) for x,g G G, 
/e/ = /(P,(7,i/). 

For an admissible representation U such that U0 = U o 6 = U and an automor- 
phism 6 of G with the property that 02 = 1, recall the following definition (in view of 
2.10): 

DEFINITION 3.2.  The twisted torsion ofU with respect to 0 is 

tore{U) = ^(-irttr^omtfCA'p.tf). 
i 

We observe that the twisted torsion tord(I(P, cr, v)) is independent of the character 
v since it depends only on the iiT-type structure of I(P,(J, v). Moreover, as in lemma 
2.7, if Ue is not isomorphic to C/, we can show that 

tr^|HomK(Aip,l7e^) = 0* 

Now we can explore the vanishing properties of TQ on the associated locally sym- 
metric space, by considering only the twisted torsion of ^-invariant modules of G. 

LEMMA 3.3. Let U be an admissible, 6-invariant representation of G. Then 
the twisted torsion tore{U) is completely determined by tor0(I(P,a,i/)) for the prin- 
cipal series representations which appear in the unique decomposition of U in the 
Grothendieck group of G. 

Proof. Write U in the Grothendieck group uniquely as 

where m(?7, a <g) v) are integral coefficients. As before, we may assume that I = Ie, 
because U is ^-invariant. Then the action of 8 on U is completely determined by the 
operator AQ acting on /. The fact that the twisted torsion of a principal series is 
independent of the parameter i/, together with the linearity of the trace, then gives 
us the required result.     D 

PROPOSITION 3.4. Suppose that X is the compact locally symmetric space asso- 
ciated to G.  Then 

E(-1)i^iW=  E tore{U)tr8\m{ux)U{Crs 

j ueG'u 

where G^ denotes the collection of all 6-invariant irreducible unitary representations 
on which the Gasimir element C has a nonzero eigenvalue. 

Proof.   This follows from corollary 2.9 since the series are absolutely convergent 
for Re{s) large enough.     D 

Now we can conclude that 
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COROLLARY 3.5. // the twisted torsion tor6(I) is zero for all 0-invariant principal 
series representations of G, then the twisted torsion rj^X) equals 1 on the associated 
locally symmetric space X = K\G/r. 

Proof By (3.3) and (3.4) it follows that the logarithm of r|(X) is 0.     D 

3.6. The Twisted Principal Series of SOo(2n + 1,1). The only outer auto- 
morphism (up to composition with an inner one) for SOo{2n + 1,1) is the Cart an 
involution (see [19]), and thus from now on we will fix 6 to be exactly this map. It is 
explicitly given by conjugation with the (2n + 2) x (2n + 2) matrix 

/-l     0 
0     -1 

0 

..      0 0\ 

..      0 0 

..   -1 0 

..      0 1/ 

with 2n + 1 (—l)'s down the diagonal. We denote by 8 the Cartan involution, both 
on the group and Lie algebra level. 

We want to calculate tore{I{P,<j,v))   = tor0(I).    Recall that 0 acts on a  £ 
Homj^A'p,-?) by 

a = 07 o a o A'pj 

where #/ and 0Ai? denote the actions of 0 on / and A2p, respectively. The Cartan 
involution acts by — 1 on the whole subspace p, and thus its action on A*p is given by 
(—1)\ The action of 0 on (/,7r) is determined by an intertwining operator AQ, known 
up to a sign, with the properties that 

Aoir(x) = 7r(0(x))A0 and Aj = 1 

for all x G G. 
We want to obtain an explicit formula for AQ. As noted above, we assume that 

I0 = /. First we analyze the twisted representation I0 = I o 0. A calculation shows 
that we can identify I0 with the principal series /(-P,cr, —i/), where P = 0(P). We 
would like this principal series to be isomorphic to /. By the theory of intertwining 
operators (see [13], [14]) this will happen if there exists an element wo G NK(A) (in 
fact, WQ here is a representative for an element of the Weyl group W(G, A)) such that 
wo o a = cr, WQ O 0V = v and WQ

1
(P) = P. Furthermore, we can explicitly exhibit the 

map Int : I0 -> /: 

f(9) >-> </>(#) = aefigwo1) 

for all g G G. Here ae is defined to be a map (again determined up to a sign) 
a>e : VwoOa —> VG between the M-modules with the same underlying vector space 
and different actions, encoded by the corresponding subscripts (i.e. for v G Vwrfa, 
m-v = a(wo0(m)) • v). This operator has the following properties: 

aecr{m) = cr(wo9{m))a9 and a% — 1. 

Now, we can compose the two maps Int o 0 to obtain a map Ae : I -t 1. 
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LEMMA 3.7.  The operator Ae : I -*• / such that for f G I, 

(3.1) Aef(g) = a0mg)wo1), 

gives explicitly the action of 6 on the principal series I = (/(P,cr, z/),7r). 

Proof.   It is trivial to check that AQ = 1 and A07r(g) = 7r(6(g))AQ.   Consider 
f{xman) = Aef(xman)^ for x G G, m G M, a G A and n E N. 

/(reman) = ae f {9{xman)wQ1) 

= aef(0(x)wo1mwoarwon) with £™0 denoting ^op^1 

and by WQ O 0(n) = n 

= a^-^+^^^^^VCm^0)-1/^^)^1)        since / G / 

= eWo^+PI^o^aa0a(wooe(m))-1f(e(x)w-1) 

by the definition of ae 

and WQ O 9U = v. 

= e-<<1/+pl)lozaa(m)-1aef(6(x)wQ1) 

Thus / belongs to J.     D 

REMARK. If we assume the existence of tuo, then the class of ^-invariant principal 
series is determined by the class of tempered representations on M with the property 
that WQ o a = a. In the case that we are interested in, this translates into the class of 
irreducible representations of M such that WQ O a = a. 

For G = SOo(2n + 1,1), the element wo can be chosen to be the 
(2n + 2) x (2ra + 2) matrix 

/-I 0   0   0 
0 0    10 
0 10   0 
0 0   0    1 

\0 0   0   0 

0\ 
0 
0 
0 

1/ 

with (2n — 1) 1's down the diagonal, starting at the 4th row. This choice is based 
on selecting, for the maximal abelian subspace a of p, the set of (2n 4- 2) x (2n + 2) 
matrices (bij) whose only nonzero entries are the 61,271+2 = 6271+2,1- By Probenius 
reciprocity we have that for all i 

Horn*(A'p, J(P, <7,1/)) S HomMC^p, V), 

with (<J, V) denoting an irreducible representation of M. Thus we have to consider 
only those representations of M that appear in the exterior powers of the (2n + 1)- 
dimensional vector space p . This is the set of M-modules consisting of the trivial 
representation Tir, the standard representation Vst of degree 2n, AlVst for 2 < i < 
(n — 1), and the two irreducible representations Vi, V2 of degree l(2^) into which 
AnVst splits. As pointed out on p.185 in [2], the action of WQ sends Vi exactly into 
V2, and since we know these two modules are not isomorphic to each other, we should 
not take them into account when determining the value of the twisted torsion. 
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Therefore, in calculating the twisted torsion for the principal series / = 7(P, cr, z/) 
for SOo(2n + 1,1), the set of ^-invariant modules / is exhausted by those with a- 
parameters in the set of wo-invariant irreducible M-modules given by: 

(3.2) { Ttr, VsU A% | for 2 < i < (n - 1)}. 

3.8. Example. Let G = 50o(3,l). Then we have that K S 50(3) and M = 
50(2). By (3.2) we only need consider the trivial M-module (Ttr^triv). Hence, 
tore{I(P,triv,v)) = tor0(I) equals 

-tr0|HomK(p,/) +2tr^lHomK(A2p,/) " 3 tr ^|HomK(A3p57)- 

Since the trivial representation of M appears exactly once in each of the exterior 
powers of p when considered as M-modules, it follows that 
dim HomM(A*p, Ttr) = 1 for all i. Let Ej be the basis element of p whose only nonzero 
(4, j)-th and (j,4)-th entries are 1, for j = 1,2,3. Then a basis of Hom;<:(p,Tir) is 
given by CXM such that aM(Ei) = v ^ 0 6 T and CXM^) = ^M(ES) = 0. We can 
pull back aM to a homomorphism A G Hom^(p, /) such that for X E p and k G if, 

A(X)(k) = aM(p(k)-1X)) 

where p denotes the representation of K on p given by conjugation. By choosing 
ae = 1, the action of 6 maps A(X) into 

Oj o A(X) o ep = Ao(A(-X))(k) = -AWikiwo)-1) 

= -ctMipikwo^X) = -aMiikwofX). 

The multiplication {kwo)1 negates the entries in the first row of the element k* and 
thus produces a negation of X. Hence, we get that 

tr%omK(p,/) = (-l)(-l) = l- 

A completely analogous calculation shows that 

tr0|HomK(A2P,/) = "I 

tr0|HomK(A3p,/) = -1 

and thus we get that 

tor6{I) = -1 + 2(-l) - 3(-l) = 0. 

Therefore, we have shown that the twisted torsion vanishes for all principal series 
representations of 50o(3,1) and thus \TQ\ = 1 on the associated locally symmetric 
space. 

4. A Character Approach. 

4.1. The Vanishing Theorem. In the course of the following three sections 
we prove the following theorem. 

THEOREM 4.2. For the compact locally symmetric space X = K\G/T with G 
locally isomorphic to 50o(2n+l, 1), K its maximal compact subgroup and T a discrete 
torsion-free cocompact subgroup, the twisted torsion 

M = i 
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for all outer automorphisms 9 of G with the property that 62 = 1 and 0(K) = K, 
0(r) = r. 

Since in this case it suffices to consider only the Cartan involution for the au- 
tomorphism 0, and in view of the reduction to principal series, it is enough that we 
show 

THEOREM 4.3. For the Cartan involution 6, the twisted torsion of all 6-invariant 
principal series representations /(P, cr,i>)=IofG = SOo(2n -f 1,1) 

tor9 (I) = ^(-iritrfllHom^p,/) = 0. 
i 

We change our viewpoint by considering the disconnected group G given by the 
semi-direct product G K {1,0}, with multiplication defined by 

(gi,Oi)-(92,ej) = (9i(>i(92),0i+i)    fovi,je{l,2}. 

This group has two components: the connected component of the identity which is 
clearly isomorphic to G, and a second component consisting of all elements of the 
form (g, 0) which we denote by GO. 

We want to extend the representation (/, TT) of G to a representation on G. There 
are two distinct ways to think about this extension. First, we can look at the induced 
representation liidG(I). Since we have assumed that I = Ie, this induced represen- 
tation will have two irreducible components, each corresponding to the choice of sign 
of the intertwining operator Ag. Second, we can define the extension of / to G by 

(4.1) 7r(g K 0*) = 7r(g)Ai    for zG {1,2}. 

Just as in [l],we make the following definition: 

DEFINITION 4.4. The twisted character of the representation (/, TT) is the distri- 
bution on G whose value on f G C™ (G) is given by 

trace(7r(/)^). 

Hence, the twisted character is in fact the trace of the irreducible factor / of the 
extension of IndG(/) on the component G0. 

4.5. A Different View of the Twisted Torsion. In the disconnected group 
G the analogue of the maximal compact subgroup K of G is the group K = K tx {1,0}. 
For G ^ SOo(2n + 1,1) we have that 

LEMMA 4.6. K is isomorphic to the compact group 0(2n -hi), and thus is the 
direct product SO(2n + 1) x Z2. 

Proof The disconnected group K has its identity component isomorphic to 
SO(2n + 1) and all k G K are orthogonal: 

(M) * (M)' = (M) ' (k\e) = (/c0(A;*),l) = (JfcJfc*,!) = 1. 

The second statement follows from [4].     D 
Just as we can think of dimHom/c (A2p,/) as the coefficient of the trivial repre- 

sentation of K in the tensor product Azp* 0 /, we can interpret tr0|HomK(Aipj/) as 

the coefficient of the trivial representation of K when restricted to its 0-component 
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in the tensor product A2p* 0 I. This is because / extends to the ^-component of K 
precisely by the intertwining operator Ae (see (4.1)). Hence, just as the usual torsion 
associated to the principal series / is the coefficient of the trivial representation in the 
Grothendieck group of K of the tensor product 

^(-l^AV®/ 
i 

(see [20]), we can interpret the twisted torsion tore(I) as the coefficient of the trivial 
representation in the Grothendieck group of K when restricted to the component K6 
of the tensor product 

^(-lyiAV®/. 
i 

This means that to prove the vanishing theorem 4.3 it will suffice to calculate the 
virtual character of K0 on 5^i(—1)*« A2 p* and the twisted character tr (I\GO)* Then, 
after restricting the latter to K0, we can multiply them together as they are characters 
of the non-identity component of the compact disconnected group K = 0(2n + 1). 

4.7. Virtual Character on $^(—l)li A* p*. Let t denote a Cartan subalgebra 
of t Denote the set of roots of t on p by 53 (t, p). Here the dimension of the maximal 
abelian subspace a of p equals the multiplicity of the 0-weight space, which is 1 in our 
case. Furthermore, if a root a is an element of XX^ P)* then so is —a. 

As" shown in [20], the character of K of the virtual representation 
£•(-!)**    A*    p* = dE      is      given      by       ft(pE(t))\t=i       where 
pE(t) = IlaGYXt.p)^ ~ te**). We use this result to obtain the character of K 
restricted to the ^-component. 

PROPOSITION 4.8. Define the function psit) - IIo^E^p)^ + *eC*)* Then 

jl{pE(t))\t=i is the character of K on the component K9 of the virtual representation 

E^-I^AV- 
Proof. It is shown in [20] that PEQ) = De^eEC^p)^ ~~ ^^ ^or ^ a ^ar^an 

subgroup of K, is the character of K on ^("l)2 ^ P*- We extend this to the 6- 

component of K\ ne^eEC^.p)^-6"^ w'iere ^ *s t*16 ^-component of T = TK {1,^} 
and £(T0, P) = { a G t* | Ad(t0)X = ea<<x^X } with t = eXt. If e" € ^(TO, p), then 
—ea E ^2(T,p) and vice versa, since 

Ad(to)Xt = teXte-H-1 = -(tXtt-1). 

Therefore, 

n (i+eft)= n u-o. 
eaeE(^P) c«€E(^,p) 

Finally, observe that the coefficient of tl in psit) is the character of K0 on A*p* 
multiplied with (—1)*, which proves the required result.     D 

LEMMA 4.9. For SOo(2n + 1,1) we have that 

Jt(PEmt=i = (2n + 1) ^(l + e^)(l + e-«<) 
i=l 
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forai,...,an in XX^P)- 

Proof. This is an application of the product rule and the identity 

e"* (1 + e-^) + e-^(l + ea') = (1 + e^)(l + e"^) 

for all l<j<n.     D 

REMARK. Note that we can rewrite this formula for the character ^i(pE(i)\)t=i 
as 

(2n-M)J](e^/2+e-^/2)2 

2=1 

since (1 + eai)(l + e-ai) = 2 + eai -f e'^ = (eai^ + e-ai/2)2 for all 1 < z < n. 

4.10. The ^-regular Elements in 50o(2n + 1,1). For the purposes of calcu- 
lating the twisted character tr(/|G^) we need to extend the notion of regularity of ele- 
ments to the group G. Following the presentation of Bouaziz in [3], for x G (5, we can 
look at /(#), the multiplicity of the eigenvalue 1 of Ad(x). We put l(Gx) = inf G(j l(y) 

where Gx denotes the connected component of G containing the element x. 

DEFINITION 4.11.  Consider the analytic function on G given by 

det (y + 1 - Ad(x)) = D(x)y1^^ mod (ylidx)+1) 

where y is a variable. An element x G G is regular if and only if D{x) ^ 0. 
This definition allows us to conclude, just as in the connected case, that the set 

of regular elements G' of G is an open G-invariant dense set in G. 
In the case we are considering we are interested in the regular elements on the 

^-component GO of G. Their counterparts in the component of the identity (under the 
obvious correspondence (g,6) H> g) are the elements we call the 6-regular elements of 
Gs50o(2n + l,l). 

We follow the procedure described in Lemma 1.6.3 in [3] to find the conjugacy 
classes of regular elements in GO. Let x = x(a\,... ,an) for 0 < OLI < 27r be the 
element in the maximal torus T of K given by the following matrix: 

/i \ 
cos ai      sm ai 

— sin ai    cos ai 

cos an     sm an 

— sin an    cos an 

\ V 
We first look at the algebra ax9 = {Y G g\x0(Y) = Yx}.   Then the group H = 
Z(G, axe) that consists of the set 

{ g G 50o(2n + 1,1) | gA = Ag for all A G ax$ } 

has two connected components: the connected one containing the identity is precisely 
the maximal torus T of K, and the other component is -/dsoo^n+i,!)^1- Thus we 
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already get that the elements of the form hQ for h G H and ai ^ 0, TT for all 1 < i < n, 
as well as their conjugates under G, are regular elements on G6. 

It is easy to verify that the only subalgebra of the form aye C I) = a © t, contained 
in the unique (up to conjugacy class) Cartan subalgebra J) of G, comes only from 
elements y € T. 

Finally, we have to determine whether there is more than one conjugacy class 
of 0-Cartan subalgebras aye C I). By Lemma 1.6.3 in [3] any two subalgebras are 
conjugate via an element of the Weyl group W(Gc, fyc)- In our case this is the Weyl 
group for type -Dn+i, which is isomorphic to Sn K Z^. If we think of the elements 
in f) as matrices H(a,e) parametrized by a £ R and e = (ei,... ,en) £ Mn, then we 
can exhibit an element g £ SO(2n + 2, C) such that gH{a, ejg"1 is a diagonal matrix 
with 2n imaginary eigenvalues. Then it becomes clear that every element of the Weyl 
group which takes J) into I) leaves axe invariant. Therefore, we have shown that 

PROPOSITION 4.12. Every regular element in G0 is conjugate via an element of 
G to an element of the form t6 or —t0 for t = £(ai,..., an) £ T, the maximal torus 
of K, with each ai ^ 0, TT for 1 < i < n. 

REMARK. Let us denote the 0-Cartan subgroup T U {-Id)T by TG- Notice then 
that the above proposition says that we can write every ^-regular element of g of G in 
the form y^(y)-1 for some y £ G (since {gj) = (j/.lJMXir1,!) = (yt6(y)-\e)) 
and some t £ TQ with each i ^ 0,TT for 1 < i < n (t £ T^). 

5. Calculation of the Twisted Character. Recall from section 4 that we 
are considering ^-invariant principal series representations / = (I(P,cr,v),iv) of G = 
SOo(2n + l,l). 

PROPOSITION 5.1. For a function f £ C™(G) we have that 

trace(7r(/)A^) = / eef{kmanwQ1k-1)e^+p)lo%aXa{m) dmdadndk, 
JKMAN 

with Xc denoting the character of the representation a of M. 

Proof. We assume the conventions on fixing the Haar measures on G, K, M, 
A and N which appear in [12] and [13]. We follow the presentation of Chapter X, 
section 3, in the latter source. 

Using the decomposition G = KM AN we can write an element x of G in a 
non-unique fashion as 

x = hi(x)fi(x)(exp H(x))n. 

Then for the vector-valued function ip £ L2(K) taking its values in the Hilbert space 
y*7, in the compact picture of the principal series representation, we have that 

because Ag(<£>(&)) = ae^pikw^1). For the projection operator E given by 

E(p(k) — I        (T(s)(p(ks) dsy 
JKHM 

we look at ir(f)E(Ao(p)(k): 

(5.1) / c-^+p>H^"lfc<1V(^-1ifc«;6"1))*VW^(a^)(«(«"1fc^1)) dx. 
JG 
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The change of variables xhw^1 *->► x of the unimodular group G followed by 8.44 in 
[12] produces then 

(5.2) f e-^-ti^atm)-1 fikw^n^a-1™,-1^1) 
JKxMxAxN 

x E(a0(p(kf)) dk dm da dn. 

Now we substitute the formula for E as above. After we perform the change of 
variables k's i-> kf and observe that, by the normalization of the Haar measure on 
K D M1 the integral there is 1, we obtain 

(5.3) / e^-p)losa~\(m-1)f(kwQ1(man)-1kf~'1)a9^(k,)dk,di{man). 
JKxMAN 

By 8.30 in [12] this can be written in the form 

(5.4) f e^+p^osaa(m)f(kwQ1mank,~1)ae(p(k,)dk,dmdadn. 
JKx(MAN) 

Since the expression 

/       f{kw^1mank'~1)e{v+p) log V(m) dm da dn 
JMAN 

just as in [13] is a smooth compact average of a trace class operator, and as Xa exists 
and 7r(f)E is of trace class, then by Lemma 10.15 in the same source, we can conclude 
that 

(5.5) tTace(ir(f)Ao) = [ eef(kw-1mank-1)e^^lo^aXa(m)dmdadndk 
JKMAN 

with ee the choice of sign coming from ae. Now the change of variables kvjQ1 \-¥ k 
gives the desired result.     D 

Before we proceed with the calculation of the trace, we need an analogue of the 
Weyl Integral Formula (see p. 141 in [13]) for the twisted case. 

LEMMA 5.2.  The map $ : G/TG xT^-+ [JxeG^G6^)'1 9iven by 

(x,t) ^xtd{x)~1 

is an everywhere regular ||W(G,TG)| : 1| map, with W(G,TQ) denoting the Weyl 
group NG(TG)/ZG(TG). 

Proof. Recall that the elements of TG, as determined in the previous section, are 
fixed by the automorphism 9. 

Take a point y = xtQ^x)"1 € \JxeGxT'G6{x)~l. It is clear that the complete 
inverse image under $ of y consists of | W(G, TG) \ points (w • x, w • t) where w - x = 
xtwT, w -t = twt9{t~1) = twtt~l for tw E NG(TG), which are all distinct. 

To show regularity of $ we follow the proof of Proposition 1.4.2.3 in [25]. A 
calculation for po = (^o^b^o) £ G/TQ X TQ then produces that 

Idet^J^det^o)-1-^!. 



184 M. FUNG 

But the latter term equals 

IdetOMftO^ofl-lJa/tl 

since the automorphism 02 = 1. We chose to E X^, so by the observation on regularity 
following equation 4.11, we have that 

and so $ is regular.     □ 
We know from section (.4.10) that the 0-regular elements of G form a dense sub- 

set and each of them can be expressed as a union of ^-conjugates gt9(g)~1 of TQ, 

Therefore, if we normalize the Haar measures in such a way that for / 6 C^0(G) 

/ f(x)dG(x) = /        <        f{xt)dTGt \ dG/TGx, 
JG JG/TG UTG ) 

we obtain the twisted version of the Weyl Integral Formula: 

(5.6)     f f(x)dG(x) = \W{G,TG)\-1 

JG 

x f   \fet{Ad{t)-1 oO -l)\Q/idTGt 
JTG 

x /       f(xt6(x)-l)dG/TGx. 
JG/TG 

To proceed with the derivation of the formula for trace(7r(/)i4^) we are going 
to apply the twisted version of the Weyl Integral Formula to the reductive group 
MA. First, observe that TG is still a 0-Cartan subgroup in this case. Let us write 
an element t G TG as t = t^tM with IA G A, IM £ M. Note that IA can be 
either the identity or the element given by the diagonal matrix where the top-most 
and bottom-most entries are (—IJ's and the rest are I's. In fact, the Weyl group 
W(MA,TG) = W(M,TG) = W(M,T) with T the Cartan subgroup of K and of M, 
since ataT1 = t for all a G A, t G TG (as t C m = Zt^ and TG = T x Z2). Moreover, 
we have that 

|det (Adit)-1 °0- l)|(TOe«)/t = 2I det (M^M)-
1
 - l)|ro/t 

because 0(m) = m for all m £ M, and ^(^"^(r) - F = -27 for all F e o. 
Furthermore, we have that 

| det (AditM)'1 - l)|m/t = |AM(*M)|
2
, 

where following the notation in [26], 

aeA+(tc,mc) 

for the positive roots a, their exponentials £0,, and their half-sum pM- 
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We begin by applying the Twisted Weyl Integral Formula to the group MA in 
the trace formula (5.1): 

(5.7) t™ce(7r(f)Ae) = 2eo\W(M,T)\-1 J \&M(tM)\2xAtM)dt 

x  /    / /   f(krnat0(ina)~lnwQ1k~1)dkdnd(Wia). 
JK JMA/T JN 

LEMMA 5.3.   Let h e MA be such that det (Adih)'1 - ^)|diag(n©n) ^ 0> ^^ 
n = ^(n) and diag(n © n) = {(Z, 0(Z)) \ Z E n}. Then the mapping £ defined by 

(n,0(n)) ^ h^woO^h^n-1 

is an analytic diffeomorphism 0/diag(JV x 9(N)) onto WQ diag(0(iV)iV). 

Proof.   It is clear that £ is analytic. Given hwo    = w^hwo, and fixing n € iV, 
Z en, we have that 

£(nexp (tZ),0(ri) exp (t0(Z))) = 

f (n,0(n)) exp (^d(^(^0"1)"1)^(^)) exp (-Md(n)Z). 

Therefore, since 0^o   = 05 we get that 

det (dOn = det (M^0"1)-1 o 0 - l)ldiag(nefi) = det (M^)-1 - «)|«u^(n®ii) ^ 0' 

which implies that £ is everywhere regular. 
An inductive argument with iV then shows that £ is in fact 1 — 1 and onto (see 

Lemma 10.16 in [13]).     D 

COROLLARY 5.4. Fix h e MA such that det (Adih)'1 - 0)|diag(nen) ^ 0. Then 

(5.8) f     f(wQ0{n)hw^n-1w^1) d(won) 
JWQN 

= | det (Adih)-1 - 6)\-? {nm) f /(hnwo1) dn 
J N 

for any function f € €^{0). 
We apply lemma 5.3 to the element h — mat0(ma)~1 of MA. Then 

(AdlmatOimay1) - 6>)|diag(nen) = {Adit'1) - 0)|diag(nen) 

since det Ad(0(m)) det ^(m)"1 = 1 for m G MA. Therefore, we have that 

| det (Adit)-1 - 0)|diag(n®n) = ^ H C1 " ^^'^ 
a6A+(tc,diag(ncenc)) 

with S^^ = f — l) niimt>er of roots in A+(tc,diag(nc©nc)) 

Now let us substitute this corollary of lemma 5.3 in the equation (5.7): 
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(5.9) trace(7r(/)^) = 2e^|^(M,T)|-1 

x /   |AM(^M)|
2
X^(^M)| det (Adit)-1 - 0)|diag(nen) dt 

JTG 

x  /    / /       f(kwod(n)wQ1rnat9(rna)~1Won~1WQ1k~1)dkd(won)(]Wia. 
JK JMA/T JWON 

We do a change of variables WQU \-¥ n. The observation that 0(n) = w^nwo and 
the change of variables kw^1 i-> k let us rewrite the triple integral in the following 
form: 

(5.10) III fiknmateima^ein^k-^dkdndma. 
JK JN JMA/T 

Putting it all together then we get: 

(5.11) trace(7r(/)^) = 2ee\W(M,T)\-1 

xf   |AM(^M)|
2
X.(^M)^

/T H (l-feW-1)* 
TG a€A+(tc,diag(ncenc)) 

/       feigtOigr^dg 
JG/Tn 

X 
lG/TG 

where fo(gtg~l) — f{knmat8{knma)~1)^ since 6(k) = k for all k G K. 
A direct calculation shows that 

sNIT      n      a - kw1) =sK,M Ed - ^e-)-1) 
aGA+(tc,diag(nc©nc)) *=1 

for ai,... ,an the positive roots for SOo(2n + 1,1) in A+(tc,^c) which are not in 
A^tctuc), and sK/M again denoting (-1) to the power equaling the number of 
positive roots in this product. To keep the notation consistent, set 

£ai+.„+an =: £pK/M 

and 

n 

^PK/M^M) JJ(1 -^(^M)
-1

) =: AK/M(*M). 

Then we have the following equality: 

(5.12) 8a/T°Ae{t) =sM/TAM(tM)V2sK/MAK/M(tM), 

with 

|det(M*r1oe-l)U = |A9(t)|a. 
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By analogy with the usual invariant integral, consider 

*/.=A'(i) /       feigtOig)-1). 
JGITG 

Then the trace from equation (5.11) becomes 

(5.13) VSciw^rr1 / sGiTsMiT^M(tM)x«mn$)<&- 
JTG 

The integral $^ is invariant under conjugation by elements of W(iW", T) and so is Xc 
Moreover the quotient 

SPK/M£-P£PM
3 A 

= S
KIM±KIM 

is invariant under conjugation by all of VF(G, TQ). Therefore we can rewrite equation 
(5.13) as 

(5.14) sGlT\W{G,TG)\-1 

v   {    x.    u\ \t9sMITsGITG^eyV(G,TG)IW{MJ)Xwc(tM)\ Agu^ 
XJT0*

hit){ AW^) )A it)dt 

Hence, we have the following 

THEOREM 5.5.  The twisted character trace(7r(f)Ae) is a locally integrable func- 
tion given by 

tQS    '    S   '   GYlweW{G,TG)/W{M,T)Xwcr(tM) 

A^/M^M) 

on the 6-regular elements of G and 0 elsewhere. 

Proof.  Consider the function FQ on G which vanishes outside the set of ^-regular 
elements of the group and such that 

1. F^xteix)-1) = Fe'(t)     (t eTG,ge G); 
2. For t E TG 

EKTAIN        
edS S        G ^weW(G1TG)/WlMtT)Xwa(tM) 

^O \t) =  A 77~x • 
^K/MytM) 

We claim that, in the sense of distribution theory, trace(7r(/)^4^) = F^, for / e 
C^iG). By using the Twisted Weyl Integral Formula and the expression for F£ we 
obtain 

j f{x)FSix)dx 
JG 

= 1^(0,TG)!"
1
 /   \lS?(t)\2FJ(t)dt f       figteig)-1) dg 
JTG JG/TG 

= S
G
'
T

O\W{G,TG)\-
1
 f   A9(t)Fd*mfe(t)dt 
JTG 

= V26e\W(M,T)\-1 [   sG/TGsM/TAM(tM)x*mfe(t)dt. 
JTn 'TG 

This final equation is exactly what we had in (5.13). The local integrability follows 
from section 11.6 in [13].     □ 
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6. Conclusion. We first rewrite the character formula trlloe for the groups 
50o(2n + 1,1) K {1,0}. Recall that the group M here is isomorphic to SO(2n) 
and T is its maximal torus. Thus we are in the situation of type Dn and hence 
|W(Af,T)| = n!(2)n~1. Also, notice that we have in this case sM/T = 1. Furthermore, 
observe that W(G, TQ) = W(K, T) and thus we are in the situation of type Bn. Then 
\W{G,TG)\=n\2n, so 

\W{G,TG)IW(M,T)\ = 2. 

In fact, we can choose the element WQ as the nontrivial representative of this quotient. 
For n odd we have sG/T = — 1, and for n even sG/T = 1. 

This allows us to rewrite the numerator of the twisted character formula in the 
following way: 

weW(G,TG)/W(M,T) 

The class of representations of M under consideration (see 3.2 in Chapter 2) are those 
for which a = WQCT; in fact it is the set given by the n irreducible representations 

Mr = {TtrtVst, A'Vst | 2 < i < n - 1}. 

Therefore, for the choice of ee 
formula: 

(6.1) 

= 1 we obtain the following form of the twisted character 

(-l)n2x. 
AK/MW 

for cr G Mn 

We would like to write the characters xVst ? • • • > XA
71
-

1
 vst 

m a suitable form. Let us 
denote the highest weight of the irreducible representation AkVst by A = ai H h ak, 
for 1 < k < n — 1. We use the combinatorial results described on p. 469 in [8]. It 
turns out that XAkv3t equals the determinant of the following matrix 

i 
0 

hi 
h 
1 

hs 
hi 
hi 

0 0 0 
0 0 0 

0 0 0 
\0 0 0 

hk-i 
hk-2 
hk-s 

hk 
hk-i 
hk-2 

hk+i    - 
hk 

hk-i    • 

hn-i 
hn-2 
hn-S 

hn-1     ] 
hn-2 

1 
0 

hi 
1 

h2      ! hn-k 
-    hn-k-2 

hn-k+1 
hn-k-1 

0 
0 

0 
0 

0       . 
0       . 

1 
0 

hi 

1 / 

Here h^s are the complete symmetric polynomials of degree i in the set of variables 
{ 21,.....,zn,z^1,..., z"1 } where zi = eai. By expanding along the last n — k rows, 
we conclude that this determinant is equal to the determinant of the k x k matrix: 

Ak = 

1     fti 
0      1 

\0     0 

hk-i 
hk-2 
hk-s 

hk \ 
hk-i 
hk-2 

hi J 



TWISTED TORSION 189 

THEOREM 6.1. We have det^ = e^ for 1 < k < n — 1, where e^ denotes 
the elementary symmetric polynomial of degree k in the ordered set of variables 
{ Zi,..., zn, z^   ,..., zn   J. 

Proof.  We prove this theorem by induction on k. 
For k = 1, we have that hi = ei. Let us assume now that det Ai = ei for all 

positive integers / < k — 1. Consider now det^/c- We expand along the last row of 
Ak to get 

det yU = hi det Ajb-i - det Bk-ifa), 

with Bk-i{h2) denoting the (fc — 1) x {k — 1) matrix 

Bfc-l(/l2) = 

(hi /i2 
1 /ii 
0 1 

Vo 0 

hk-z    hk-i 

hk-4    hk-2 

1 h2 J 

By the induction hypothesis we have that detAk-i = e^-i. Now expand Bk-ifa) 
along the last row to get: 

detBk-i(h2) = /12 det ^_2 V-det5^-2(^3). 

Now continuing this process, while successfully applying the induction hypothesis, we 
obtain the following equality: 

det A* = ftxcfc-i - faeM + h3ek-i + (-l)khk.3 + (-1)*+1 det ^3(^-2). 

Here 

detBs(hk-2) 
hi    h2      hk 

1     hi    hk-i 
0     1    hk-2 

= hk + hlhk-2 - h2hk-2 - eihk-i. 

We make use of Newton's identity (for example see [15]): 

hk - eihk-i + 62/^-2 + (-1)^ = 0. 

Thus by plugging in the expression for hk = eihk-i — 62/^-2 + • • • -f (—l)kek and 
h2 = ef — 62 in det B3{hk-2) we have that 

(6.2) det Ak 

=ek-ihi - ek-2h2 4- ek-3h3 h {-l)ke3hk-3 

+ (-l)*+1(C3ftib-3 - 64^-4 + • • • + (-l)"+1e^) 

= ek. 

DEFINITION 6.2. Let i < n - 1. Then we define Si to be 

E       ^jl+zr1)...(zji+zT1) 
l<ji<---<ji<n 
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where the sum is taken over all increasing sequences I < ji < - • < ji <n of length i 
of integers between 1 and n. 

THEOREM 6.3.  We have the following expressions for the elementary symmetric 

'3 
polynomials eu in the variables ZJ,ZA 

1 where 1 < j < n: 

3    /n-2i-l 
(6.3) ^ = iz{rV    "" •   ^l^i+i z/fc = 2j + l 

(6.4) ^ = E(nI2<)Sw ifk^lj. 

Proof. Consider the space of the elementary symmetric polynomials e^ 's as above 
and the space of weighted sums of S^s as above. It suffices to show that the dimensions 
of these two spaces are equal. In fact, the equality of these two numbers follows from 
a generating function argument, as follows. 

LEMMA 6.4. Let n and k be positive integers with k < n — 1. Then 

m   m^fr-fwa **-*• 
'       i=o       N J       /   \ 

Proof. Consider the generating function (1 + z)2n = (1 + 2z + z2)n and compute 
the coefficient of zk on both sides.     □ 

This proves the theorem.     D 
Let us conclude the proof of the vanishing theorem by considering first the case 

of the trivial representation of M. Its character equals 1, so with the choice of CQ = 1, 
the twisted character has the form: 

2(-l)n 2(-l)n 

AK/M       n^i(eai/2-e-ai/2)" 

The character formula of K6 on ^(-l)^ A2 p* is given by: 

(2n + l)JJ(e^/2-l-e-^/2)2. 

Hence we can write the product of the two characters in the following way: 

For each 1 < i < n, we can interpret the term 

(6.7) 2(2n + 1)(-1)« ft (01±^P) (e^ + e"^). 

etti/2 + e-oti/2 

eai/2 _ e-ai/2 
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as the difference of the characters 0^,+, 0^- of the two discrete series representations 

V£ and V^ of 81(2, E). Now we work with 50(2)-types. On the right side of (6.7) 
we are left with terms of the form 

which correspond to the sum of the characters of the two irreducible representations 
parametrized by the integers 1 and — 1. However, on the left the 50(2)-types which 
appear (all with multiplicity 1) are the representations parametrized by 2,4,6,... and 
—2, —4, —6, Thus, we obtain that the coefficient of the trivial representation is 0, 
for each i. Therefore, we have that the coefficient of the trivial representation is 0 in 
the whole product (6.7). 

Next let us look at XAkvst for 1 < A; < n — 1. We assume that k is even (the case 
when k is odd is handled completely analogously). Write k = 21 for some positive 
integer /. We showed that 

2=0 

Recall that 

S2i = ^        (eai + e""1)... (e*'"* + e"^). 
l<ji<---<J2i<n 

Again, after we choose ee = 1, we obtain for the product of the twisted character of 
K6 and its character on ^(-l)*i A* p* the following expression: 

(-1)n2(2n+^ (n^l^-'eSU)) n^72+e-"/2)2- 
We can rewrite this formula as: 

(-l)»2(2n+l)^(' 
i=0  ^ 

n — 2i 

l-i 

x 
l<ji< — <J2i<n 

11    (gOy/2 ^g-Oi^) 
j=l   >> / 

We will denote each set of indices {ji,... ,J2i} appearing in 522 as fa. Then the 
second sum in equation (6.8) can be taken over all possible J2i's. For each such fa 
let us regroup the terms of the summand in the following way: 

rr e3/2^+e-3/2^+e^/2 + e-^/2   a./2      _aj/2 

11 ec*;/2 _ e-ai/2 (e  '      + e ' 
(6.9) VeJ2i 

etti/2+e-tti/a 

jeJ\J2i 

Again we identify the first term of each factor as a character formula involving the 
discrete series representations of 51/(2, M). The expression 

■e3/2ai _!_ e-S/Zaj + ^j/2 + g-ai/2 

gai/2 ^Q-aj/2 
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can be viewed as 0^+ — 0^- + 0^+ — Qv- with 0 denoting the characters of the 
discrete series representations determined by its subscript (see p. 345 in [13]). Just 
as in the case of the trivial representation, we have that 

ea;/2 + e-<Xj/2 

eai/2 _ e-oy/2  = 0^2+ ~ ^2 ' 

In both case when we multiply with the factor eaj/2 4- e"01^2 we look at SO(2)-types 
to conclude that the coefficient of the trivial representation is equal to 0 for every j. 
Therefore, when we sum up all the products of zeros, we get that the coefficient of 
the trivial representation is simply 0. 

Since our choice of k was arbitrary, this argument shows that for every irreducible 
representation of M in the set Ma, we get that the twisted torsion equals 0. This 
concludes the proof of the Vanishing Theorem 3.1.1 for the family of groups 50o(2n + 

1,1). 
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