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AN EXTENSION OF A FUNCTIONAL EQUATION OF POINCARE 
AND MANDELBROT* 

QUANSHENG LIU1 

Abstract. We consider the distributional equation Z — A\Z\ + ... 4- A^Z^, where iV, Ai, Z, Zi 
are independent real random variables with N 6 N and Ai > 0. Each Ai is equally distributed as Ai 
and each Zi as Z; the distribution of Z is unknown. After establishing theorems about existence and 
uniqueness of solution, we show asymptotic properties at 0 of the distribution function P[Z < x], 
and those at 00 of the characteristic function Eeltz; such properties are also found for a random 
difference equation. In particular, we prove the absolute continuity of the distribution of Z under 
simple moment conditions. As applications, new results are established for multiplicative cascades, 
for age-dependent branching processes and for branching random walks. 

0. Introduction. Let N be a random variable with law {pn} on N = {0,1,...}, 
and let A be a random variable with values in IR+ = [0,oo). We consider the distri- 
butional equation 

N 

(E) Z^^2AiZ^ 

where = means the equality in distribution, the real random variables Z, Z*, iV, A, Ai 
are all independent to each other, each Ai is equally distributed as A and each Zi 
as Z; the distribution of Z is unknown. By convention the empty sum is taken to 
be zero. In terms of the characteristic function </>(£) = E{eitz) (t G R), the equation 
reads 

(Ef) <t>(t) = f(Ecf>(At)), 

where f(t) = Y^=oPn^n 1S ^e probability generating function of N. 
The equation (E) generalizes considerably the notion of stable laws (and semi- 

stable laws) where both N and A are constants. If A is a constant with A = 1/EN 
and 1 < EN < 00, then the equation (E') reduces to the Poincare's functional 
equation for Galton-Watson processes, whose study is a classical subject: see e.g. 
[20, 44, 2, 14, 9]. If iV is a constant > 2, it becomes the Mandelbrot's functional 
equation about multiplicative cascades [39, 40], and has been studied by many authors: 
see e.g. [27, 19, 15, 26, 41, 3]; see also [15, 25, 5, 21, 12, 46, 30, 37, 38] for some other 
(but not all) references. The general form of the equation is the basic equation in 
typical branching random walks (see Section 8), and can be applied to the study of 
Bellman-Harris processes (see Section 7). For many other applications of the equation, 
see e.g. [42] and [31]. 

Conditions for existence and uniqueness of positive solutions have been established 
in Liu [32]; the special case where N is constant has been studied by Kahane and 
Peyrire [27], Durrett and Liggett [15] and Guivarc'h [19]. In Section 1 below we shall 
extend some of their results to solutions which are not necessarily positive. However, 
our main object is the study of asymptotic properties of the characteristic function 
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and the absolute continuity for any solution, and the asymptotic behavior at 0 of the 
distribution function for any positive solution. To this end we first establish a result 
for a random difference equation which is interesting by its own (see Theorem 2.1). 
The main results are Theorems 3.2, 3.4, 3.5, 4.1 and 4.2 where a polynomial decay 
rate is shown for the characteristic function Ee112 {\t\ -» oo) and for the distribution 
function P(Z <x) (x -> 0). Our results show that the behavior of Z differs according 
to P{A = 0) = po = pi = 0 or not. These results extend those of Harris [20] (see 
also Bingham [8]), Athreya [2] and Dubuc [14] about the Galton-Watson process, 
and complete those of Bingham and Doney [9] (also for the Galton-Watson process). 
Exponential rates will be considered in Theorem 54. A description of the right tail 
probability P(Z > x) (x -> oo) will also be given at the end of Sections 4 and 5, in 
order to compare it with the left tail probability P(Z < x) (x -> 0). 

Specified to limit variables of Mandelbrot's martingales, in addition to new re- 
sults about the characteristic function and the absolute continuity, our results on the 
asymptotic behavior near 0 of the distribution function and on the existence of mo- 
ments of negative orders make precise and complete those of Kahane [26], Molchan 
[41] and Barral [3, 4]: see Section 6; as has been shown by Molchan [41] and Barral 
[3, 4], such results are essential in the study of multi-fractal structure of the Mandel- 
brot's measure. Applied to age-dependent branching processes, our theorems enable 
us to improve an early result by the author: see Theorem 7.1. In Section 8, we shall 
see that our theorems can also be applied to obtain new results for limit variables in 
branching random walks. 

In closing this section, let us point out that some results of this paper can be ex- 
tended to the more general case where {iV, Ai, ^2,...} is of arbitrary joint distribution 
[36], and let us introduce some notations. If E is a set or a statement, we write Ig 
for its indicator function; if X is a random variable, we write Px for its probability 
law; if f(t) and g(t) are two (real or complex) functions defined for t > 0 large (resp. 
small) enough, we write f(t) = 0(g{t)),t —>> 00 (resp. t —> 0) to mean that for some 
constant 0 < C < 00 and all £ > 0 large (resp. small) enough, \f(t)\ < Cg(t), and we 
write /(*) = o(g(t)) if limf(t)/g(t) = 0, and f(t) - g(t) if limf(t)/g(t) = 1. 

1. Existence and Uniqueness of Solutions. Let M (resp. Mf) be the set of 
all Borel probability measures on M (resp. M+). Put 

N 

(1.1) ao = P(A = 0) and N =  £ 1{^>0}. 
i=l 

Then N is the number of non-zero terms of Ai, 1 < i < N, whose probability 
generating function is 

(1.2) /(*)=/(ao + (l-ao)*),        t > 0. 

To avoid unimportant discussion, we suppose throughout the paper that 

(1.3) P(iV = 0 or 1) < 1 and P(A = 0 or 1) < 1, 

the contrary case being easy [32, Lemma 1.1]. For simplicity, we also assume 

(1.4) /'(I) = EN < 00 and EAlog* A < 00, 

although this is not always necessary. Let F (resp. F+) be the set of all non-trivial 
solutions in M (resp. Mf). We say that a random variable Z or a characteristic 
function (j) is an element of F or F+ if so is the corresponding probability measure. 
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The following result gives necessary and sufficient conditions for (E) to have non- 
trivial and non-negative solutions, and can be easily obtained from known results. As 
usual, we put log+ x = logx if x > 1, and log+ x = 0 otherwise. Recall that a positive 
and measurable function l(t) is called slowly varying at 0 (resp. oo) if it is defined for 
alH > 0 small (resp. large) enough such that as t -> 0 (resp. oo), l(Xt)/l(t) ->■ 1 for 
each given A > 0. 

THEOREM 1.1. 
(i) ¥+ y£ 0 if and only if 

(1.5) (1 - ao)EN > 1, ENEAa = 1 and EAa log A < 0 for some a G (0,1]. 

(ii) Assume (1.5).  There is fj, € F+ with finite mean if and only if 

(1.6) ENEA = l,EN log"1" N < oo and EA log A < 0; 

when (1.6) holds, all fi G F+ have finite mean, and are parametrized by their means; 
for any given function I slowly varying at 0, there is at most one element /J, 6 F+ 

whose Laplace transform ^(t) = f e~~xtn(dx) satisfies lim^_404- tai(i)  =: •'■• 
(i ii) If fj, G F+, then the extinction probability q = /i{0} is the unique fixed point 

in [0,1) off. 

Notice that the number a determined by (1.5) is necessarily unique, and is the 
least solution of the equation ENEAX = l,x > 0. 

Proof of Theorem 1.1. Parts (i) and (hi) follow from Theorem 1.1 and Lemma 
3.1 of Liu [32]. In part (ii), the third assertion is just Corollary 1.4(a) of Liu [32], the 
second assertion is a consequence of the first and the uniqueness theorem of Biggins 
and Kyprianou [7, Theorem 1.5], while the first comes from Theorem 1.1 of Liu [31] 
and the fact that 

N N 

(1.7) £7(5^i4i)log+(53i4i) < oo & EA\og+ A < oo and £iVlog+ N < oo, 

which can be proved as follows. Evidently, 

N N n 

E(Y^ Ai) log+ C£ JU) = po + PiEA1 log+ A1 + £ pnnE(A1 log+ £ AJ. 
2=1 i=l n>2 i=l 

Since log(a; + y) < logx 4- logy if x > 2 and y > 2, we have E(Ai log"f XwLi ^i) < 
E(Ailogmax(2,Ai))   +£;AiElogmax(2,2?=2i4*)   for   each   fixed   n    >    2;    as 
£;(logmax(2,Sr=2^)) < lo&E™x(2>E"=2Ai)} < log(2 + n^^i), this gives the 
implication "^=" in (1.7). To see the opposite implication, it suffices to remark that, 
by the law of large numbers, for some no G N and all n > no, -P(X^=2 Ai > nEA/2) > 
1/2, so that £[log(X;^2 Ai)] > \ log(n£A/2).     D 

We now give a theorem about existence and uniqueness of any non-trivial solution. 

THEOREM 1.2. 
(i) The following condition is sufficient for F ^ 0: 

(1.8) (1 - ao)EN > 1, ENEAa = 1 and EAa log A < 0 for some a G (0,2]. 
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(ii) If (1.8) holds with EAa log A < 0, then for any given complex number c, there 

is at most one element (j) G F with lim£_K)+   "ffi ^ = c; 
(Hi) Let 8 > 0 and let I : (0,6) -» (0, oo) be a function slowly varying at 0 and 

bounded away from 0 and oo on each compact subset of (0,6). If there is an element 
<p G F with \imt-+o+ ^afAy = c /or some rea/ a G (0,2] anc? some complex c ^ 0, and 

E[Aa+€] < oo for some e>0} then ENEA" = 1. 

REMARKS. (1) As a consequence of part (ii) together with Theorem 1.1, if (1.6) 
holds (so that a = 1), then for any given number c G M, there is only one integrable 
solution Z satisfying EZ = c; moreover almost surely (a.s.) Z>0ifc>0, Z < 0 
if c < 0, and Z = 0 if c = 0; so rader fi.ffj, to consider integrable elements of F, it 
suffices to consider elements of F+. However, the conclusion does not hold any more if 
(1.6) fails: for example, when A = l/y/2 and N = 2 a.s. (so a = 2), both the normal 
law iV(0,1) and the Dirac measure 6o are solutions of (E) with mean 0. (2) In the 
proof, we shall see that in part (iii), when I is constant, the condition E(A<:x+€) < oo 
can be relaxed to E(Aa) < oo. (3) If we replace the constraint a G (0,2] by a > 0, 
and if instead of F, we consider F ={</>: (j) satisfies (E') and (j)(t) = 0+(|£|a)(V£), where 
</>+ is the Laplace transform of some element // G M+ }, then all the conclusions (i), 
(ii) and (iii) still hold. In fact to see that (i) holds it suffices to take (j)+ to be the 
Laplace transform of a non-negative solution of (E) with Ai replaced by Af; the proofs 
for (ii) and (iii) remain the same as in the proof of Theorem 1.2. Many results in the 
following sections also hold for elements of F, assuming only a > 0. 

Proof of Theorem 1.2. 
(i) We use an argument of Guivarc'h [19]. By Theorem 1.1, there is a non-negative 

and non-trivial random variable Y satisfying 

(1.9) Y±A<ZY1 + ... + A%YN, 

{Yk} being independent copies of Y and independent of {N, A\,A2,...}. Let X, X^ be 
random variables with stable distribution of index a, all the random variables N,Ak, 
X,Xk, Y,Yk being independent each other. We claim that Z = XY1/® is then a 
solution of (E). In fact, by the preceding equation, we need only to prove that 

X(i4f ri + ... + A%YN)1^ = AxXtfl1" + ... + ANXNY]la. 

Putting Vi = AiY}'", this just says X(l71
0 + ... + ^)1/af = XyU1 + ... + XNUN, which 

holds by the property of stable laws with exponent a.     D 

(ii) Assume that ^ are characteristic functions satisfying (E') and 
lim£_>o+ 1~<rK\b) — c, k = 1,2. Write A<j) ^cfri—fa. Then by the mean value theorem, 

|A0(t)| < f'{l)E\^{At)\,        t > 0. 

Put h(t) = ' f^,t > 0, and let B be a random variable with law P^cte) = 
(EN)xaPA(dx). Then P(B > 0) = 1 and h(t) < Eh(Bt), t > 0. By iteration, if 
Bi, B2,... are independent copies of S, then 

h(t)<Eh(Bi...Bnt),        n>M>0. 

Let t > 0 be fixed. As ElogB = ENEAa log A < 0, we have 5i...5n -> 0 a.s. by the 
law of large numbers. Since 

hm h(x) =   hm    L- ^^  = 0, 
x-+o+   v  /      x->o+l       a;a xa 
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using the preceding inequality on h(t) and the dominated convergence theorem, we 
obtain h(t) = 0. This means <j>i(t) = fait) for all t > 0, and then for alH € K. because 
(f)k are hermitian symmetric. 

(iii) By considering the distribution of A conditional on A > 0, we can assume 
A > 0 a.s. (cf. the proof of Proposition 4.10). Let us extend the definition of 
/ by putting l(t) = 1 if t > S. Then for some constant Ci > 0 and all t > 0, 
1 — 0(0 5: Ctal{t). By the functional equation (E'), we have 

It is evident that we can assume e < a. Notice that by Potter's theorem [10, p.25, 
Theorem 1.5.6(ii)], there is a constant C2 > 0 such that for all x > 0 and y > 0, 
Ky)/l(x) <C2ra3x{(y/x)e,(x/yY}. Therefore 

(! - *(**)) _ (l-0(^))/(^) ClC9maxMe ^-^a 

so that by the dominated convergence theorem, limt^o ^wfh^ = cEAa. It follows 

by (1.10) that c = cEA" ^Si ip*, from which 1 = ENEAa. So the proof is finished. 
D 

2. A Theorem on a Random Difference Equation. In this section, A, B, Z 
are real random variables which are not necessarily positive. We consider the random 
difference equation 

(2.1) Z = AZ 4- S, with A, B, Z independent of each other, 

where the law of Z is unknown. In terms of characteristic functions, the equation 
reads 

(2.2) <l>z(t) = <l>B(t)E[<l>z(At)],       ten, 

where </>y(£) = Ee1^ if Y is a real random variable. It is well known that if Z 
is a solution not concentrated at a point, then its distribution is either absolutely 
continuous or singularly continuous [18], but in general it is not easy to prove the 
absolute continuity. The following result gives a sufficient condition for the law of Z 
to have a density function with some regularity properties. For all k € N, we denote 
by Ck the class of functions g : R -> E with fc-fold continuous derivatives, C0 being 
the class of continuous functions. 

THEOREM 2.1. Assume £ := limsup^i^^ |^B(£)| < 1 and let Z be a solution of 
(2.1). Let a > 0 be fixed. If ^{A^ < 1 (which reads E\A\-a < 00 when C = 0), 
then 

(2.3) \<j>z(t)\ = 0(|ra) (1*1 -+ 00) and  f \cf>z(t)\ l^"1 dt 
JR 

< OO. 

In particular, if C^m~a < 1 for some a > 1/2, then the law of Z has a square 
integrable density (with respect to the Lebesgue measure); if the condition holds for 
some a > 1, then the law of Z has a density function of class C^-1, [a] being the 
integral part of a. 
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Proof of Theorem 2.1. Set g(t) = sup|a|>t |0z(s)|,£ > 0, and let e > 0 be 
sufficiently small such that (C + e)E\A\~a' < 1. Choose to > 0 large enough such that 
l<M*)| < C + e for all |*| > to. Then by the equation (2.2), for all t > to, 

g(t)<({ + e)Eg(\A\t). 

So the conclusions are immediate consequence of the following Lemma 2.2 (with C = 
0) which extends a result of Barral ([4]) and is also applicable in other contexts.     D 

LEMMA 2.2. (i) Letg : IR+ —> Rf be a bounded and measurable function satisfying 

(2.4) g(t)<pEg(At) + £,        t>to, 

where 0<p<l,a>0, C>0, to > 0 are constants and A is a positive random 
variable with pEA~a < 1. Then as t -> oo, g(t) = 0(t~a). (ii) We have moreover 
Jo   ta"'1g{t)dt < oo if the inequality (2.4) can be strengthened to 

(2.5) g{t) < pEg(At) + -^,       t > to, 

for some mesurable function h : (to, oo) —> (0, oo) such that J^0 -^midt < oo. 

Proof. Part (i) has been established in [33] and can be proved as follows. We can 
assume *0 = 0 by taking C large enough if necessary; then by induction, for all n > 1 
and all t > 0, 

(2.6) g(t) < pnEg(A1...Ant) + Ct-a[l+pEA-a + ... + (^"T"1], 

where Ai are independent copies of A; letting n -> oo gives g(t) < Ct~a/(1 —pEA~a). 
To prove part (ii), let Ci > 0 be sufficiently large such that for all t > 0, 

g(t) < pEg(At) + Cl 

(l + *)aM*)' 

- r71^-!. where h^t) = 1 if 0 < t < to, and hi(t) = h(t) if t > to. Put G(T) = /p t^gtydt 
for T > 0, and write C2 = Ci f™ ^"H1 + t)~~alhi(t) dt. Then C2 < 00 and, by the 
preceding inequality, for all T > 0, 

G(T) < pE /   giAfy^dt + (72 = p£;[A-a]JBG(Sr)] + C2, 

where B is a random variable with distribution Psidx) = x~'aPA(dx)/EA~a. By 
iteration, for all n > 1 and all T > 0 , 

(2.7)      G(r) < (p£;>l-a)n£;G(J5i...JB7ir) + C2[l +pEA-a + ... + (pEA-*)"'1], 

where 5^ are independent copies of B. Write ||#||oo = supt |^(0I; notice that 

(pEA-a)nEG(B1...Bnt) = {pEA-a)nE [ *     " g(t)ta-ldt 
Jo 

< WglUpEA-^iEB^Tya = ||^||ocPnT7a -> 0 as n -> 00, 
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so letting n -* oo in (2.7) gives G(T) < €2/(1 - pEA-a). Since T > 0 is arbitrary 
and the right side is independent of T, we obtain f™ ta~1g(t) dt < €2/(1 —pEA~a), 
as desired.     □ 

REMARKS. (1) It may be useful to remark that if EA~a < oo but pE[A~a] > 1 
and A is not a.s. constant, then the assertions (i) and (ii) also hold with a replaced 
by b := alog(l/p)/logJ5A~"a.  In fact, because b/a < 1, by Jensen's inequality we 

have pEA-b = pE[(A-a)b/a] < p[EA-a]b/a = 1, so applying the proved results for b 
gives the desired assertions. If A is a.s. a constant, say, A = S € (0,1), then the 
number b defined above becomes b = logp/log8\ this time we still have g(t) = 0(t~b) 
if the condition in (ii) holds with a replaced by b and with h non-decreasing (for 
example if the condition in (i) holds with C = 0). In fact we can assume that g 
is non-increasing by considering g(t) = sups>£ (?($) instead of g(t) if necessary. By 

iteration, for all n = 1,2,..., ^(t) < pn(t){5nt) + ^YJiZl h^t) if *"* > *o. Notice 

that the sum in the last display is bounded by (1 — 6)~1 Y^kZo Jifc+ij xh(x)^x^ w^c^ 

is smaller than (1 - d)'1 f™ -^dx if 5nt > to, so that g{S-n2to) < diS-^to}^ 

for some constant Ci > 0 and all n > 1; as g is monotone, this gives (f)(t) = 0(t~b) 
(t -¥ oo). (2) If a. s. A > 0 and B > 0, then the conclusion of Theorem 
2.1 also holds when the Fourier Transform (j)z is replaced by the Laplace transform 
ipz(t) = Ee~tz,t > 0. This can be easily seen by the proof. (3) By the remark (1) 
above, if |A| is not constant and C-1 < E(m~a) < oo, then the conclusions hold with 
a replaced by b := alog(l/Q/logEA~a; when |A| is constant, say |A| = 5 G (0,1), 
then \<i)z(t) = 0(|£|~5) (|^| -> oo), where b = log(/log5. This remark have evident 
consequences in the following two sections, but for simplicity we shall not mention 
them. 

Let us give some comments for the case where A = 5 is a constant in (0,1). In 
this case a solution of (2.1) can be expressed as the sum of a random Taylor series: 

oo 

(2.8) Z = Y,BnSn,: 

n=0 

where {Bn} is a sequence of independent and identically distributed (i.i.d.) real 
random variables; by the formula of the radius of convergence of a Taylor series, the 
series converges a.s. for each 6 6 (0,1) if Elog+ \BQ\ < oo (which implies that a.s. 

limsupn_).00 
log JBn' = 0 by the law of large numbers). 

Assume 5 E (0,1) and Elog+ \Bo\ < oo, and let Z be defined by (2.8). An 
interesting question is to study asymptotic properties of the characteristic function of 
Z, and to know when its distribution is absolutely continuous. By the second remark 
after the proof of Theorem 2.1, we know that if 

C:= limsup|£;eiiBo| < 1, 
|t|-KX> 

then as \t\ -* oo, \EeltZ\ = 0(|£|-6), where b = logC/log5, so that the distribution of 
Z has a square integrable density if C2 < 8- Of particular interest is the case where the 
law of Bo is a Cantor-like measure, for which K.S.Lau and T.Y.Hu [23] have recently 
obtained some interesting results about the value of £. When {I?n} is a Rademacher 
sequence, the study of the series (2.8) is then a classical subject: see for example 
[16], [24], [22] and [45]. However in this case our result gives no information (because 
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3. Asymptotic Properties of 0 G F and Absolute Continuity . In this 
section, for simplicity we assume ao = po = 0; this condition may be removed by an 
argument of reduction (cf. Proposition 4.10). Recall that we always assume (1.3), 
(1.4), and that F (resp. F+) stands for the set of all non-trivial solutions (resp. 
non-negative solutions) of (E). 

For positive solutions with finite mean, the following result is a consequence of a 
theorem of Biggins and Grey [6]. The basic idea in the following proof is inspired by 
an argument of Athreya [1]; some similar arguments were used in [6]. 

LEMMA 3.1. Assume (1.8) and ao = po = 0. Let /J, G F and let (j) be its 
characteristic function. Then lim^-^oo (j)(t) = 0. 

Proof. Set / = limsup^oo \<f>(t)\. Since (/> is Hermitian symmetric, it suffices to 
prove that 1 = 0. 

(i) We first prove that / = 0 or 1. By (E'), |^)| < f(E\<f>(At)\), t 6 R. Letting 
t -)► oo and using Fatou's lemma, we obtain / < /(/). Therefore Z = 0 or 1, noting 
that f(x) < x if 0 < x < 1. 

(ii) We next prove that for all t ^ 0, \<t>(t)\ < 1. Otherwise, by Lemma 4 of 
Chap.IV.l of Feller [17], there is some h> 0 such that |^(/i)| = 1 and |0(*)| < 1 if 
0 < t < h. So 1 = \(j){h)\ = f{E(j)(Ah)) < E<l>(Ah)\. Therefore, a.s. \<t>(Ah)\ = 1. 
Since P(0 < A < 1) > 0, it follows that for some 0 < a < 1, \(f>(ah)\ = 1, which is a 
contradiction with the definition of h. 

(in) We then show that / < 1. Assume 1 = 1. Let 0 < £o < oo be arbitrary 
fixed, and let 0 < e < 1 - \(f>(to)\. Choose ti = ti(e) and £2 = ^(e) such that 
0 < ti < to < £2 < 00, with 

mi)\ = |^2)| = 1 - 6 and |^)| < 1 - e if t € [tut2]. 

This is possible since (j) is continuous and |0(O)| = limsupt_^00\(l)(t)\ = 1. By the 
equation (E'), for all t € E, \</)(t)\ < E\<l>(At)\. It follows that if Ai (i > 1) are 
independent copies of A, then: |0(*)| < E\</>(A1...Ant)l E\(/)(At)\ < £7|0(i4i...i4n*)|, 
and 

|^)| < f(E\4>(At)\) < fmiA^AnW)       (n>l,te R). 

Therefore, using \<p(Ai...Ant2)\ < 1 - e if 11 < A1...Ant2 < t2 and \^(Ai...Ant2)\ < 1 
otherwise, we obtain: 

E\4>(Ai...Ant2)\ < (1 - e)P[<i < Ai...Ant2 < fe] + 1 - P[ti < A^Ant* < h] 
= l-eP[t1<Ai...Ant2<t2], 

1 - e = |^2)| < fiEMA^.AnhW < /(I - eP[h < A^Anh < t2]), 

1 - /(I - ePjh < A^.A^ < t2]) < 1  

eP[ti < Al...Ant2 < tj] ~ -P^i < A1...Ant2 < fc]' 

Since lime-^o h{e) = 0 (this can be easily verified) and ti{t)/t2{c) < ti(e) -> 0 (e -)• 0), 
letting e -> 0 in the above inequality gives 

/'(I) < l/PlA^.An < 1]. 
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Let a € (0,2] be defined as in (1.8), so that EAa = 1/EN < 1. Then by Markov's 
inequality, 

P[Ai...An > 1] = P[(i4i...i4n)a > 1] < [E(Aa)]n -> 0     as n -^ oo. 

So limn-^oo P[Ai...An < 1] = 1. Therefore, letting n -* oo in the preceding inequality 
on /'(I) gives /'(I) < 1. This contradicts the hypothesis that /'(I) = EN > 1. So 
Z<1.     D 

THEOREM 3.2. Assume (1.8) and ao = po = 0. Let fi E F and let (p be its 
characteristic function. Write m = mm{i > 1 : pi > 0} and let 0 < a < oo be a 
positive number. 

(i) IfpiEA~a < 1 (which reads EA~a < oo when pi = 0), then 

/oo 

I^WI itr0-1* < oo. 
-oo 

(ii) When pi = 0, the condition P(A < x) = 0(x~a) (x -> 0) suffices for <j)(t) = 

O(|i|-mo) (1*1 ->• oo). 

Proof, (i) We notice that the equation (E) can be regarded as a special case 
of the random difference equation (2.1) with B = Yl2<i<N AiZi (the empty sum is 
taken to be 0), whose characteristic function is 0B(£) = fi(E(f)(At)), fi being the 
probability generating function of N — 1. By Lemma 3.1, C •= lim|t|-^oo I^BWI = Pi I 
so by Theorem 2.1, piEA~a < 1 implies 

/oo 

|0(t)| Itl""1^ < oo. 
-oo 

This ends the proof of (3.1) in the case where pi > 0. Assume pi = 0. Then m > 2 
and by the equation (E'), 

(3.3) \m < m<KAt)\) < (^i^(^)i)m- 

By (3.2), there is a constant C > 0 such that |0(i)| < C|t|-a for all t ^ 0, 
so that E\(j>(At)\ < E\CAt\-a = CEA-a\t\-a. Consequently by (3.3), |0(*)| < 
Cm{EA-a)m\t\-ma and 

/oo poo 

\m \tr-1 dt < /  (E\<p(At)\ wr^EMAw w-1 * 
-oo J —oo 

/oo 

l^t)!!*!"-1* 
-oo 
/oo 

|^(a;)| l^l0-1 dx. 
-oo 

The last integral is finite by (3.2). So the proof of (i) is finished. 
(ii) Under the given conditions, we have m > 2 and EA~ai < oo for all 0 < ai < a, 

so the conclusion in part (i) implies ^(t) = 0(\t\~b) for for all 0 < b < ma. Now choose 
6 e (a, ma) and let Ci be such that \^(t)\ < Ci(l + \t\)~b for all t ^ 0. Then a similar 
argument as above gives 

W) < [E(P{At))m < Cr(E[(l + A\t\)-b})m = 0(\t\-ma), 
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where the last step holds by the following Lemma.     D 

LEMMA 3.3. [33, Lemma 4.3] If P(A < x) = 0(xa) (x -+ 0) for some a > 0, 
then for all b > a, 

E[(l + At)-h] = 0(t-a) ast-^oo. 

When /i G F+ has finite mean, a similar argument as in the proof of Theorem 3.2 
gives the decay rate of the derivative ${1), (j) being the characteristic function of ^: 

THEOREM 3.4. Assume (1.6) and ao = Po = 0. Let /J, E F+ and let (j) be its 
characteristic function. Write m — inf {% > 1 : pi > 0} and let 0 < a < oo be a 
non-negative number. 

(i) If piEA~a < 1 (which reads EA~a < oo when pi = 0^ then 
/oo 

|^(0| \t\madt < oo. 
-oo 

(ii) When pi = 0, the condition P(A < x) = 0(x~a) ( x -+ 0) suffices for 
<l>'(t) = 0(\t\-^m^) (\t\ -> oo). 

Proof. Without loss of generality, we assume / x^dx) = 1. Still by the equation 
(E'), we have 

(3.6) <l>'{t) = f'{E(t){At))E(j)'{At)A,        t e R 

Let Z and A be random variables with distributions xfi^dx) and f'(l)xPA{dx) re- 
spectively, and let B be a random variable with characteristic function (fr^t) = 
f^E^At))/'/'(I); Z, A and B being independent of each other. Then Z has charac- 
teristic function 0^(^) = 0'(£)/i, and the preceding identity reads 

(3.7) 0ZW=^B(WZ(A),        *€R 

(i) Notice that C := hmltHoo \<f>B(t)\ = f'(0)/f'(l) = ft//'(l) and C^|i|-(a+1) = 
pxEA-" < 1, so by Theorem 2.1, 

/oo 

\4f(t)\ \t\adt < oo. 
-oo 

This completes the proof of (3.5) in the case where pi > 0. Assume pi = 0. Then 
m > 2. Because I^WI < (E^iAt)])™-1, it follows that for alU G M, 

(3.9) \4>2(t)\ < (E\<f>(At)\r-lE[\<t>2(At)\]. 

Recall that \4>(t)\ = 0(\t\-ma) by Theorem 3.2 and <j)'(t) = 0(\t\-^+a^ by (3.8); so 
for some constant C > 0 and all t £ K, \4>(t)\ < C\t\-a and |^l = W(')l < C|t|-(1+0): 
Therefore by (3.9), 

(3.10)      \<t>z{t)\ < (£;ci^ra)m_1^i^r(1+a)] = Cii<r(ma+l), 

where Ci = Cm(EA-a)m-1E[A-^+^] = f'(l)Cm(EA-a)m < oo. This gives 
the first assertion in (3.5). For the second assertion, we remark that for all t, 
(E\<t>(At)\ta)m-1 < (CEA-*)™-1 -. Ca, so that by (3.9), 

^OO 

dt 
/oo poo 

\<t>z(t)\\trdt<C2E        \^(At)\\t\ 
-oo I—oo 

/oo 

-oo 
dx. 
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Because EA~^a^ = f'(l)EA~a < oo, the second assertion in (3.5) follows from 
(3.11) and (3.8). 

(ii) Under the given conditions, we have m > 2 and EA~ai < oo for all ai G (0, a), 
so by the conclusion in part (i), we know that ^(*) = 0(|t|~^1+m^) (|*| -> oo) for all 
0 < b < a. Choose b E (a/ra, a) and let C3 > 0 be a constant such that for all t G R, 
I0WI < Csl^l"0 and 10'(01 < W + |t|)-(1+m6). Then for all t E K, 

|^(*)| < (jB|0(i4*)|)m-1S[|^(it)|] < (^3|^|-a)—^[(73(1 + |i*|)-(1+m6)] 

Since P(i < x) = 0(a;1+a) (a; -> 0) and l+mh > l+a, we have E[(l-|-|it|)"(1+m6)] = 
0(|t|"^1+a^) by Lemma 3.3; it follows by the preceding inequality on 0^(t) that 

|0z(*)l = 0(|t|-(ma+1>).   n 

Notice that the condition piE^l-0, < 1 always holds for a = 0, so that by Theorem 
3.4(i), under (1.6), all </> G F+ satisfies 

/oo 

|0'(t)|<ft<OO. 
-OO 

As an application of Theorems 3.2 and 3.4, we obtain the absolute continuity of 
/j, G F under simple moment conditions: 

THEOREM 3.5. Assume (1.8) and ao = po = 0. Let JJ, G F and let </> be its 
characteristic function. Write m = mm{i > 1 : pi > 0}. Then n has a density 
function with respect to the Lebesgue measure if one of the following conditions holds 1 : 
(a) pi = 0 and EA~a < oo for some a > l/(2m); (b) pi > 0 and piEA~a < 1 for 
some a > 1/2; (c) (1.6) and ji G F+; ("dj /x 6 F+, a < 1, A is noit a.s. concentrated 
on a geometric series, and EN1+e + EA1*6 < oo /or some e > 0. Moreover, if (a) or 
(b) holds with a > 1/m, then /J, has a density function of class Cfmal_1

; given by 

(3.13) x i-> — /     <})(t)e-ltxdt; 
^ J-oo 

when (c) holds, /J, has always a continuous density function on (0, oo), given by 

1      f00 

(3.14) x H> —— /     (j)'(t)e-itxdt, 
2mx J_00 

which is of class C^ma^ if additionally (a) or (b) holds with a > 1/m. 

Proof. If (a) or (b) holds, then </> is square integrable by the first assertion in part 
(i) of Theorem 3.2, so that fi has a square integrable density function; if the condition 
holds with a > 1/m, then by the second assertion in part (i) of the same theorem, 
0 is integrable and ^ has a density function of class C'[ma]-1 given by (3.13). If (c) 
holds, then the measure x/i(dx) has Fourier transform t \-> fity/i, which is always 
integrable by Theorem 3.4 (i) (cf. (3.12)), so that the measure xfj,(dx) has a density 
function given by x H> ^ Jl^o <t),(t)e~'Ltxdt; this density function is of class C^ma^ 
again by Theorem 3.4 (i). If (d) holds, then // is absolutely continuous because, by 
[32, Theorem 7.3], JJ, is the distribution of XY1/*, where Y is a non-negative and 
non-trivial solution of (1.9), X is of stable law with index a and independent of Y. 
D 

We remark that in Case (c), Theorem 3.4 gives more information about the exis- 
tence of a density and its regularity than what we can obtain from Theorem 3.2. 

1 Since the completion of this paper, the author has recently proved in [36] (and in a more general 
setting) that fj, has a density function on (0, oo) whenever EA~e 1{A > 0} < oo for some e > 0. 
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4. Polynomial Tail Behavior of fi G F+. In this section, we consider the case 
where P(0 < Z < x) decays at a polynomial rate as x -* 0+. The main results of 
this section are the following two theorems. We distinguish two cases according as 
OLO = Po = Pi = 0 or not. Recall again that we always assume (1.3) and (1.4). 

THEOREM 4.1. Assume (L5) and a^ = po = pi = 0, and let Z be a non-trivial 
and non-negative solution of (E). Write m = mm{i > 2 : pi > 0}. Then for each 
fixed 0 < a < oo, the following assertions hold: 

(i) Asx-> 0,P(J4 < x) = 0(xa) if and only if P{Z <x) = 0(xma). 
(ii) If for some constants Ci > 0, C2 > 0 and all x > 0 small enough, Cixa < 

P(A < x) < C2Xa, then there are some constants C3 > 0, C4 > 0 such that, 
for all x > 0 small enough, 

C3Xma < P(Z <x)< C4x
ma. 

(Hi) If E(A-a) < 00, then E[Z-ma]  < 00; conversely, if E[Z-ma]  < 00, then 
E(A-b) < 00 for all 0 < b < a. 

(iv) Let 5 > 0 and let I : (0, S] —> (0,00) be a function slowly varying at 0 and 
bounded away from 0 and 00 on each compact subset of (0,5]. If P(A < x) ~ 
xal(x) (x -> 0) , then 

P{Z < x) ~ pmxma[E(Z-a)}m{l{x)]m {x -+ 0). 

REMARK. The converse in part (Hi) cannot be improved to "E[Z~ma] < 00 =$> 
E(A-a) < 00." To see this, let A be such that for some a > 0,6 e K and C > 0, 
PIA < x) - Crra|loga;|-6 (x -> 0). Then by part (iv) of Theorem 4.1, P(Z < x) - 
CmxmaEm(Z-a)\\ogx\-mb (x -+ 0). So for some constants Ci > 0 and C2 > 0, 
E(Z-ma) = ma/0

ooP(Z < l/y)yma-1dy < d+C2S^0y-ma\logy\'mbyma'1dy = 

Ci + C2 ^ y(i0t
Vy)rnb, which is finite if mb > 1. Similarly, for some constant C3 > 0, 

E(A-a) = a/^PCil < iMy-idy > C3 f? ^^ = 00 if 6 < 1. So for 1/m < 
6 < 1, E(Z-ma) < 00 but E1^-0) = 00. 

THEOREM 4.2. ^Isswrae (1.5) and ao+po+Pi > 0; and let Z be a non-trivial and 
non-negative solution of (E). Write pi = (1 — ao)//(ao + (l — Q^o)^)- ThenO < pi < 1, 
and for each fixed 0 < a < 00, the following assertions hold: 

(i) IfpiElA-" \A > 0] < 1, then E[Z-b \Z > 0] < 00 for all 0 < b < a; conversely, 
if E[Z-a \Z > 0] < oo, then pi£p-a \A > 0] < 1; 

(ii) In the case where A < 1 almost surely, piE[A~a \A > 0] < 1 if and only if 
E[Z-a \Z > 0] < 00 . 

Our result gives explicitly the critical value for existence of moments of negative 
orders: 

COROLLARY. Under the assumptions of Theorem 4.2, If piE[A~x | A > 0] = 1 
for some A > 0, then 

when b G (0,A), and 
E{Z-<>\Z>O}{ 

<00 w!;en^f?'A); L        ' J (^ = 00     when b 6 [A, 00) 

Theorems 4.1 and 4.2 show that there are two essentially different cases, according 
to ao = po = Pi — 0 or not. For the Mandelbrot's equation, the fact that the situation 
differs according to P{A = 0) = 0 or not has already been remarked by Barral [3, 4], 



A FUNCTIONAL EQUATION 157 

although his description was not so precise as is given by our results above. For 
the Poincare's equation, the results show that Z has moments of all negative orders 
if p0 = p! = 0, and that there is an critical value for existence of negative orders 
if po + Pi > 0; in fact it is known [8] that as x ->• 0, P(0 < Z < x) decays at 
an exponential rate if po = Pi = 0 (see also Theorem 5.1 in Section 5), and at a 
polynomial rate if po H- Pi > 0. 

We proceed towards the proof of Theorems 4.1 and 4.2 by a series of lemmas and 
propositions. In the following, we always assume (1.5) and let Z be a non-trivial and 
non-negative solution of (E). 

LEMMA 4.3. [33] Let X > 0 be a positive random variable. For each fixed 
0 < a < oo, consider the following statements: (i) E[X~a] < oo; (ii) E[e~tx] = 
0(ra) (t -+ oo); (Hi) P[X <x] = 0(xa) (x -> 0); (iv) V6 e {0,a),E[X-b] < oo. 
Then the following implications hold: (i) => (ii) <$ (in) =$> (iv). 

PROPOSITION 4.4. Assume ao = Po = 0 and write m = mm{i > 1 : pi > 0}. 
Let 0 < a < oo be a positive number. (i) If Ee~zt = 0(t~a) (t —>• oo), then 
Ee-At = 0(£-a/m) (t -► oo). (ii) If EZ'" < oo, then EA-a < oo when m = 1, and 
EA-b/m < QQ ^en 5 € ^o,a) and m > 1. 

Proof Write (j)A(t) = E[e-At]. Let 0 < c < oo be such that P(Z < c) > 0. Then 
by (E), for all t > 0, 

oo 

= ^PilEfaiZt)]' > pm[E<l>A(Zt)}m>pm[P(Z < c)<t>A(ct)]m. 
i=m 

Therefore E[e-tz] = 0(t-a) implies ^A(t) = 0(t-alm) (t -> oo), which ends the 
proof of (i). To prove (ii), we assume EZ~a < oo and write Z' = A\Z\ 4-... + A^Z^. 
Then we have consecutively, 

Z* < max{Ai,..., AN}(Z1 H-... + Zjv), 

(Zf)-a > (max{i4i, ....^^^(Zi + ... + Z*)"0, 

EZ"0 = E(Z,)-a > E[(max{Au ..., Aiv})"a(Zi + ... + ZN)~al{iV = m}] 

= E[max{Al9..., ^^"^(Zx + ... + Zm)-apm. 

Therefore E(max{Ai,..., Am})~a < oo. If m = 1, this just says EA~a < oo; if m > 1, 
then as z -^ 0, P[max{Ai,...,Am} < x] = 0(a:a), so that P[A < x] = 0(xa/m) 
(x -> 0) and EA-b/m < oo for all 0 < b < a by Lemma 4.3.     D 

PROPOSITION 4.5. Assume ao = Po = Pi = 0 and write m = mm{i > 1 : pi > 0}. 
Let 0 < a < oo be a positive number. If either (i) pi = 0 and P(A < x) = 0(xa) as 
x -> 0, or (ii) pi > 0 and piEA'01 < 1, tten Ee-^ = 0(^-ma) as t -^ oo. 

Proo/. The same as in the proof of Theorem 4.2, using the Laplace transform 
instead of the characteristic function, together with the remark (2) following the 
proof of Theorem 2.1.     □ 

LEMMA 4.6. Assume p0 = 0 and put m = min{fc > 1 : pk > 0}. Then for all 
fixed K > 0 and all x > 0, P(Z < x) > pm[P(Z < K)}m[P(A < ^)]m. 

Proof. It suffices to use (E) and the fact that 

P(AiZi + ... + ANZN <x) >P(N = m,Zi <K and AiK < x/m for alii = 1, ...,ra). 
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D 

LEMMA 4.7.   Let n > 2 be an integer and let Xi,...,Xn be a sequence of i.i.d. 
positive random variables.  Then for all a > 0, E^Xx + ... + Xn)-na] < n[E(X^a)]n. 

Proof If E(Xia) = oo, there is nothing to prove. Assume that E(X^a) < oo. 
Then 

/•OO POO 

E(Xia) = /    P(Xra > x)dx = a /    PiXx < \ly)ya-xdy. 
Jo Jo 

Similarly, £[(*! + ... + Xn)-na] = na^P{Xl + ... + Xn < \ly)yna-1dy < 
naj^PiX! < l/y^y^dy. Since P(X1 < l/y) = P(Xra > ya) < y-aE(X-a), 
it follows that 

poo 

EKX! + ... + Xn)-™} < na /    ^EiX^)]^1^^ < l/yW^dy 
Jo 

poo 

= nlEiXrW-'a /    P(Xi < l/yW^dy = n[E(Xra)]n. 
Jo 

n 
PROPOSITION 4.8. Assume ao = po = Pi = 0 and write m = mm{i > 2 : 

Pi > 0}. Let 0 < a < oo be a positive number. Then: (i) If E(A~a) < oo, then 
E(Z~ma) < oo; (ii) Let to > 0 and let I : [to^oo) -» (0, oo) be a function slowly 
varying at oo and bounded away from 0 and oo on every compact subset of [to, oo). If 
Ee-At - t-al(t) (t -> oo), then 

Ee-Zt - pm*-ma[£(Z-a)n/(*)]m,        * -» oo. 

Proo/. (i) Assume £(,4-a) < oo. Then P(A < x) = 0(rra) (rr -+ 0). So by 
Lemma 4.3 and Proposition 4.5, P(Z < x) = 0(xma) (x -> 0) and E\z-mb) < oo for 
all 0 < b < a. In particular, E[(AZ)-a] = E[A-a]E[Z-a] < oo. So by the equation 
(E) and Lemma 4.7, 

E[Z-ma) = EftAxZx + ... + ANZN)-ma} 

< EPiZi + ... + AmZm)-ma} < m(E[(AZ)-a])m < oo. 

(ii) Write (j)(t) = Ee~tZ and 0,4 (£) = Ee~tA. For simplicity we can assume £o = 0; 
otherwise we consider [ instead of /, where l(t) = 1 if 0 < t < to and l(t) = l(t) if 
t>to. 

Let 0 < e < a. So EZ'^^ < oo by part (i). By Potter's theorem [10, p.25, 
Theorem 1.5.6(ii)], there exists Ci = Ci(e) > 0 such that for all x > 0 and y > 0, 

%)//(*) < Ci maxKy/o;)6, (x/y)6}. 

Since 0^(0 ~ t~al(t), we can suppose that there is some constant C2 > 0 such that, 
for all t > 0, (t)A{t)tall(t) < C2- As (j)A{Zt)tall{t) -> Z"0 (* -> 00) and 

^(^)^ = ^(^)(^)fl/(^)z-a 
/(*) i(Zt)        Z(*) 

< C2Cimax(Ze,Z-e)Z-a < C2Ci(Z-(a-e) + Z-(a+e)), 
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by the dominated convergence theorem we obtain lim^oo   ^?t)       = EZ~a. So 
E<f>(At) = E(j)A{Zt) ~ t-aE(Z-a)l(t). Therefore, by the equation (E'), as t -> oo, 

#t) ~pm[E<KAt)]m ~pmr
a™[E(Z-a)r[l(t)r. 

U 

PROPOSITION 4.9. Assume ao = po = 0 and pi > 0. Let 0 < a < oo be a 
positive number. Then: (i) If piE(A~a) < 1, then for all 0 < b < a, EZ~b < oo; 
if additionally A < 1 a.s., then EZ~a < oo. (it) Conversely, if E(Z~a) < oo, then 
PIE(J4-

0
) < 1. 

Proof, (i) If piE(A-a) < 1, then Ee-tz = 0(ra) (* -^ oo) by Lemma 3.5. 
So for all 0 < 6 < a, EZ~b < oo. This gives the first conclusion. Now assume 
P(A < 1) = 1. Then for all 0 < b < a, EiAiZ^ < oo, Ee-W^1***^ = 0(r26), 
so that ^[(AiZi + ^2^2)"°] < oo by Lemma 4.3. Now for all T > 0, 

N N 

EZ-al{Z >T} = E(J2AiZi)l{^2AiZi > T} 
2=1 2=1 

< JB[(i4iZi)-0l{i4iZi > r)}l{JV = 1}] + EPiZi + ,42Z2)-a]P(iV > 1). 

Because a. s. Ai < 1, 1{AIZI > T)} < 1{Z1 > T)}, it follows that 

(1 -p1EA-a)E[Z-al{Z > T}] < (l-p1)E[{A1Z1+A2Z2)-
a}. 

Since T > 0 is arbitrary, this gives EZ~a < (l-p1)E[(AiZ1+A2Z2)-a]/(l-piEA-a). 
(ii) Conversely, if E(Z~a) < oo, then by the equation (E), 

E[Z-a] = E[{AlZ1 -I-... + ANZN)-a] > EPiZi)-al{JV = 1}] = piJ5[A-fl]E[Z-0]. 

Therefore piE[A-a] < 1.     D 

We now give a principle of reduction, which says that the case where ao > 0 or 
po > 0 can be reduced to the case where ao = Po = 0. 

PROPOSITION 4.10. Let A (resp. Z) be a random variable whose distribution is 
that of A (resp. Z) conditional on A > 0 (resp. Z > 0). Let 4> be the characteristic 
function of Z and put 

f7,s _ f(q + (l-q)t)-q 
nt)~ 1-q 

where q == P(Z = 0) zs the unique fixed point in [0,1) of f(t) = /(ao -f (1 — ao)t). 
Then the functional equation (E') reduces to 

(4.1) fa) = ttEi(At)),        t e E, 

with P(A = 0) = /(0) = 0.  Moreover, 7(0) = (1 - ao)//(ao + (1 - ao)q), so that 
/'(0) = 0 if and only if ao = po = pi = 0. 

Proof. It suffices to remark that E(/){At) = E(j)(At)l{A > 0} + E<l>(At)l{A = 
0} = ao + (1 - ao)E(t>(At), that ^(t) = q + (1 - q)<l>(t), and that /'(ao + (1 - ao)q) = 
0 & /'(0) = 0 and ao + (1 - ao)q = 0.     Q 
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For the Mandelbrot's equation (JV is constant), the idea to consider the distribu- 
tion of A conditional on A > 0 has been used by Barral [3]; for the Poincare's equation 
(A is constant), the principle reduces to the famous transformation of Harris [20]. 

Proof of Theorem 4-1- Part (i) is a combination of Lemma 4.3, Proposition 4.5(i) 
and Lemma 4.6; part (ii) is a sequence of part (i) and Lemma 4.6; part (iii) comes 
from Propositions 4.5 and 4.8(i), together with Lemma 4.3; part (iv) follows from 
Proposition 4.8(ii) and a classical Tauberian theorem [10, Theorem 1.7.1].     □ 

Proof of Theorem 4-^ By the principle of reduction (Proposition 4.10), we can 
assume p0 = ao = 0; the theorem is then Proposition 4.9.     D 

It will be interesting to compare the left tail behavior with the right tail behavior; 
to this end let us state a theorem about the right tail behavior. The problem is called 
lattice if for some h > 0, log A is almost surely an integer multiple of h whenever 
A > 0; otherwise, it is called non-lattice. The following result is a direct consequence 
of Theorems 1 and 2 of Liu [35]: 

PROPOSITION 4.11.   Assume (1.6) and let Z be a non-trivial and non-negative 
solution of (E). 

(i) For each fixed p > 1, E[ZP] < oo if and only if E[NV] < oo and ENE[AV] < 1. 
(ii) Suppose that for some x>^, ENE[A^} = 1, E[Ax\og+ A] < oo and E[m} < 

oo.   If the  problem  is  non-lattice,   then lim^^oo   xxP{Z   >   x)   exists 
and is strictly positive  and finite;   if the problem is lattice,   then 0   < 
liminfz-^+oo xxP(Z > x) < lim supa,_^+00 xxP(Z > x) < oo. 

The result shows that if P(A < 1) = 1, then the right tail of Z behaves like that 
of N: for all p > 1, E[Z*] < oo if and only if E[NP] < oo; if P(A < 1) < 1, then 
there is a critical value x > 1 determined by the equation ENE[AX] = 1 such that 
the right tail of Z behaves like x~x as x —> oo.  Theorems 4.1 and 4.2 tell us that 
there is a similar phenomenon for the left tail of Z: if ao +po +pi =0, then the left 
tail of Z behaves like that of A; if ao +po +Pi > 0 then there is a critical value A > 0 
determined by piE[A~~x\A > 0] = 1, such that the left tail of Z behaves like xx as 
x-*0. 

5. Exponential Tail Behavior of ^ € F+. This section deals with the case 
where P(Z < x) decays exponentially when x —> 0+. As usual, we always assume 
(1.3) and (1.4). 

THEOREM 5.1. Suppose that 

(5.1) m := essinf N > 1 and a := essinf A > 0, 

and put 7 = — log m/ log a. Then the following assertions hold: 
(i) Assume (1.5) and that either N or A is not a. s. constant, and let Z be a 

non-trivial and non-negative solution of (E). Then 0 < 7 < 1 and, for all e > 0, there 
are some constants Ci > 0 and C2 > 0 such that for all x > 0 small enough, 

(5.2) exp{-Cix-(^7+e)} < P(Z <x)< expi^x^^}; 

moreover, the conclusion is also valid for e = 0 if additionally P(A = md-oo) > 0. 
(ii) Assume (1.8) and let Z be any non-trivial solution of (E). Then for some 

constant K > 0 and all t € M with \t\ > 1, 

\Eeitz\<e-KW\ 
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The theorem can be applied to the study of exact packing measures of some 
random Cantor- like sets [34]. In the context of Galton-Watson process (thus A is 
constant), part (ii) is due to Harris (1948), and part (i) was deduced from a result of 
Harris (1948) by Bingham (1988), using Tauberian theorems. For the proof, we need 
the following proposition. 

PROPOSITION 5.2. Assume (1.5) and (5.1), and let Z be a non-trivial and non- 
negative solution of (E). Then the following assertions hold: 

(i) For some constant Ki > 0 and allt>l, Ee~tz < e~Kltl. 
(ii) For all e > 0; there exists some constant K2 > 0 such that for all t > 1, 

Ee~tz > e~K2trt "; the conclusion also holds for e = 0 if P(A = a) > 0. 

Proof We first remark that a < 1 by (1.5). Write>(*) = Ee'*2. By (E'), we 
have 

(j)(t) < [<j>{at))m  for all t > 0. 

So for b = 1/a and t > 0, (f>(bt) < [^{t)]m and, by iteration, for all k = 0,1,..., 

(t){bk) < [<Kl)]mfc. Since m = a"7 = 67, it shows that, for all jfe = 0,1,..., 

-log0(6*) > K(bkr,   where K = -log</>(!) > 0. 

For alU > 1, let k € {0,1,...} be such that bk <x < bk+1. Then by the monotonicity 
of & 

-log0(0 > -log^(6*) > K{bky > Ka^(bk+1y > Ka1?1. 

This ends the proof of part (i). We now come to the proof of part (ii). Let e > 0 be 
such that a -f- e < 1. Again by the equation (E'), we have 

m > Pm(E[^At)]r > pm(E[0(^)l{A < a + e}])m 

>Pm(P{A<a + c})n0((a + C)t)r. 

Therefore, for b = be := l/(a + e) > 1, p = pe := pm(P{A < a + e}))m G (0,1) and all 
t > 0, <l>(bt) > p[0(t)]m. Iterating, we obtain 

<Kbk) > [(!>{l)]mkp^<i<» m\    k = 0,1,... 

(where the empty sum is taken to be 0). It follows that for all k — 0,1,..., 

-log^(6*)<m*[-log^(l) + (-logp)m-*  ^T m*] 
l<z</c 

= m*[- log0(1) + (-logp)m-&m(mA: - l)/(m - 1)] < (bk)^Ke, 

where7e :=logm/log^ and Ke := -log0(l)-f(-logp)m/(m-l). As in the proof 
of part (i), together with the monotonicity of 0, this implies that, for all t > 1, 

-log0(0 KKzor1*^. 

As e > 0 is arbitrary, this gives the first assertion in part (ii) of the theorem. If 
additionally P{A = a) > 0, it is easily seen that the preceding argument also holds 
for e = 0, giving the second assertion in part (ii). So the proof is finished. D 
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In the context of Mandelbrot's cascades (thus iV is constant), part (i) was estab- 
lished by Holley and Waymire [21]; in the context of Galton-Watson process (thus A 
is constant), both parts are due to Harris [20]. 

Proof of Theorem 5.1. By (1.5) and the condition that either iV or A is not a. 
s. constant, we know that 7 < 1. So part (i) follows from Tauberian theorems of 
exponential type [28, Theorem 3 (ii) & (hi)]. Part (ii) can be shown in a similar way 
as in the proof of part (i) of Proposition 5.2 by considering ^(t) = sup|5|>t \EeisZ\ 
instead of (j){t). 

The following results are consequences of Theorem 5.1, again by Tauberian the- 
orems [30]. 

COROLLARY. Assume (1.5), (5.1) and that either N or A is not a. s. constant, 
and let Z be a non-trivial and non-negative solution of (E). Then: 

(i) For all e > 0, there exist some constants Ci > 0 (i = 3,4) such that for 

all k > 1, Csk1^-6 < WZ-1^ < Ctk^f1, where HZ"1^ = (^-/c])1//c. 
Consequently, lim^oo log HZ-1!!*;/ log k = (1 - 7)/7- 

(ii) If 7 > 1/2, then for all e > 0, there are some constants C5 > 0 and CQ > 0 
such that, for all £ > 0 large enough, Cs*5^1"-6 < log.Be^"1 < CQt^=^ (so 
that Z"1 has an entire characteristic function of order ^^ > 1). 

(hi) Eexp(Z-q) < 00 if q < ^, and Eexp(Z~q) = 00 if q > j^. 
(iv) If P(A = a) > 0, then the conclusions in (i) and (ii) also hold for e = 0, 

and the assertion (iii) can be improved to the following: for some but not all 
r > 0, EexpirZ-t^1-^) < 00. 

Again it is interesting to compare exponential left tail with exponential right tail. 
The corresponding results for the right tail are the following: 

PROPOSITION 5.3. Assume (1.6) and let Z be a non-trivial and non-negative 
solution of (E). Suppose that either N or A is not almost surely constant, and that 
fh := esssupiV < 00 and a := esssupA < 1. Write 7 = —logm/loga. Then 7 > 1 
and for any e > 0, there exist some constants Ci > 0 (1 < i < 6) such that the 
following assertions hold: 

(i) For all t>lj Cit^+e < logEetz < C2F (therefore Z has an entire charac- 
teristic function of regular growth with order *y). 

(ii) For  all x   >   0   large   enough,   expl—Csx^^71^}   <   P(Z   >   x)    < 

expj-C^^}. 
(iii) For all k > 1, Csk^1-6 < \\Z\\k < C^k^, where \\Z\\k = (^[Z*])1/*. 

Consequently, 
lim/^oologllZlU/logA;^ (7-l)/7. 

(iv) Eexp(Zq) < 00 if q < ^-, and Eexp(ZQ) = 00 if q > ^y. 
(v) If additionally P(Z = a) > 0, then the conclusions in (i), (ii) and (iii) also 

hold for 6 = 0, and the conclusions in (iv) can be improved to the following: 
for some but not all r > 0, EexpfrZ^/^"1)) < 00. 

Part (i) can be obtained in a similar way as in the proof of Proposition 5.2 by 
considering Eetz (which can be shown finite) instead of Ee~tZ', t > 0; other parts are 
consequences of Part (i) by Tauberian Theorems [30]. In fact, by [30, Corollary 1.2], 
the condition P(Z = a) > 0 in (v) can be relaxed to the following: for some constants 
c > 0, a > 0 and all x > 0 small enough, 

(5.3) P(A/a> 1-x) >cxa. 
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Because the proof in [30] is not easy, the new approach seems to be of interest. 

6. Martingales in Self-similar Cascades. Fix an integer r > 2, and write 
T = U!^L0{1, ...,r}n for the set of finite sequences of integers between 1 and r. Let 
{AU}U£T be a family of independent random variables, each distributed as A > 0 
with EA = 1/r. Put 

(6.1) Yn =     ^2     Xu, where Xu - AUl...AUl...Un iiu = ui...un,n > 1 
ueT,\u\=n 

(\u\ being the length of the sequence u). Then {Yn} is a non-negative martingale 
(associated with the natural cr-algebra), which converges (when n -t oo) almost surely 
to a random variable YQQ > 0 satisfying the equation (E) with N = r (we shall always 
assume this in this section) and EYOQ < 1. The study of the limit variable Y^ and the 
equation (E) plays an essential role in the investigation of the Mandelbrot's cascade 
[39, 40, 27, 19]. It has been known [27] that EY^ = 1 if 

(6.2) EAlogA<0, 

and YQO = 0 a.s. otherwise. It has also been known that [35] if 

(6.3) £Mlog,4 = 0 and EA1*6 < oo for some e > 0, 

then 

(6-4) Y*=      £     Xulog±- 
u€T,\u\=n U 

is a martingale, and converges to a a solution Y^ > 0 of (E) with limt_).o+ ^fw^00 = 
1, so that EY^ = oo. Since both YQQ and Y^ are non-negative solutions of (E), our 
theorems can be applied to get new results on them; as examples, let us deduce 
some of these results in the following. Remark that by our notations, we have: (i) 
pi = (1 - ao)r(z/[ao 4- (1 - ao)<z] where ao = P(A = 0), q = P(Z = 0) is the unique 
fixed point in [0,1) of f(t) = [ao + (1 — a:o)£]r; (ii) m = r if ao = 0 and m = 1 if 
ao > 0. 

THEOREM 6.1. 
We assume (6.2) ifY^ is concerned and (6.3) ifY^ is concerned, 

(i) Let ^oo be the characteristic function of YQO, and let 0^ be its derivative.  Then 
^(t)  = Od^l-1)   (\t\  -¥ oo) and J^'^t^dt < oo7 so that the distri- 
bution of YQO has a continuous density function on (0, oo), given by x \-> 
2nlx JR^OOW

6
"^*

6
^' Iffor some a>0, either (a) ao = 0 and EA~a < oo or 

(b) ao > 0 andp^A-^A > 0] < 1, then fiit) = 0(|^-(ma+1))  (\t\ -> oo) 
and /R l^'oo^)! |^|ma^ < oo; so that the density function given above is of 
class C^mal 

(ii) If for some a > 0 either (a) or (b) of (i) holds, then E[eitY™ |Y^  > 0] = 
0(\t\-ma)   (\t\ -> oo; and /^l^fe^-IY^ > ^Wt^^dt < oo, so that the 
distribution of Y^ has a square integrable density function on (0, oo) if a > 
l/(2m), and has a density function of class C^ma^~l if a > l/m. 

Notice that the assertion (ii) also holds for Yoo instead of Y^. The results follow 
from Theorems 3.2, 3.4, 3.5 and the principle of reduction (Proposition 4.10).  The 



164 Q. LIU 

fact that YQQ has always a continuous density function on (0, oo) is also a consequence 
of a result of Biggins and Grey [6]. 

THEOREM 6.2.  Assume (6.2) if YQQ is concerned and (6.3) ifY^ is concerned, 
and let Z be either Y^ or Y^. If ao = 0, then for each fixed 0 < a < oo, the following 
assertions hold: 

(i) As x -> 0, P(A <x)= 0(xa) if and only if P(Z < x) = 0(xra). 
(ii) If for some constants Ci > 0, C2 > 0 and all x > 0 small enough, Cixa < 

P(A < x) < C2Xa, then there are some constants C3 > 0, C4 > 0 such that, 
for all x > 0 small enough, 

C3x
ra < P(Z <x)< CAx

ra. 

(in) If E(A-a)  < 00, then E[Z-ra]  < 00; conversely,  if E[Z-ra]  < 00,  then 
E(A-b) < 00 for all 0 < b < a. 

(iv) Let 6 > 0 and let I : (0, S] -4 (0,00) be a function slowly varying at 0 and 
bounded away from 0 and 00 on each compact subset of (0,6]. If P(A < x) ~ 
xal(x) (x -> 0) , then 

P(Z <x)~ xra[E(Z-a)}r[l(x)]r (x -4 0). 

The results follow from Theorem 4.1. By the remark following Theorem 4.1, the 
converse in (iii) cannot be improved to "EZ~ra < 00 =>- EA~a < 00". In (i), the 
"only if" part was shown independently by Kahane [26], Molchan [41] and Barral 
[3, 4], and the "if" part can be deduced from the proof of Theorem II.A' of Barral [4]; 
in (iii), the first conclusion was due to Molchan [41, Theorem 4] and the second due 
to Barral [3, 4]; other results are new. 

THEOREM 6.3. Assume (6.2) ifY^ is concerned, and (6.3) ifY^ is concerned. 
Let Z be either Yoo or Y^. If OIQ > 0, then 0 < pi < 1, and for each fixed 0 < a < 00, 
the following assertions hold: 

(i) Ifp1E[A-a \A > 0] < 1, then E[Z-b \Z > 0] < 00 for all0<b< a; conversely, 
if E[Z-a \Z > 0] < oo; then piE[^-a \A > 0] < 1; 

(ii) In the case where A < 1 almost surely, piE[A~a \A > 0] < 1 if and only if 
E[Z-a |Z>0]<oo 

The results follow from Theorem 4.2.  Barral [3, 4] showed that when ao > 0, 
^[yj^^lYoo > 0] = 00 if b is sufficiently large. Our result gives explicitly the critical 
value for existence of moments of negative orders: 

COROLLARY. Under the hypotheses of Theorem 6.3, If piE[A~x \ A > 0] = 1 for 
some A > 0, then 

when b E (0, A), and E{z-b\z>o}{ <00  w!!en^r
(?'A); L        ' J (^ = 00     when 0 G [A, 00). 

Notice that this result is useful in the study of multi-fractal structure of Mandel- 
brot's measures [3, 4, 41]. 

7. Applications to age-dependent processes . An age-dependent branching 
process - the Bellman-Harris process - can be described as follows. A particle existing 
at time 0 is assumed to have a life-length, L, with values in [0,00) and probability 
distribution G(x) — P(L < x). At the end of its life, it is transformed into N 
particles according as a probability law {pn : n > 0} on N = {0,1,...}:  P(N = 
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n) — Pm'EngNPn = 1- These new particles are taken to have the same life-length 
distribution and transformation probabilities as the original one. We assume that 
the life-length distribution and the transformation probabilities for each particle is 
independent of its time of birth and the number of other particles existing at the 
time. Let Z(t) be the number of particles existing at time t > 0. As usual, we assume 

(7.1) po + Pi < 1,1< EN < oo and P(L = 0) < 1. 

It is well-known that the limit 

(7.2) W = lim Z(t)/EZ{t) 

exists a.s., and its Laplace transform </>(s) = Ee~sW satisfies the functional equation 

(7.3) Ma) = /    mse-fi*))dG(x),        s > 0, 

where f(x) = Yl^LoPn^71 is the probability generating function of AT, and /? is the 
Malthus parameter defined by (EN) /Q00

 e~^xdG(x) = 1. Notice that this equation 
also reads 

(7.4) m=smAt)), 

with A = e~/3L (so that ENEA = 1); this corresponds to the equation (E) with all 
the coefficients Ai replaced by A. It is known that EW = 1 if EWlog* N < oo, and 
W = 0 almost surely otherwise; when jEiVlog+ N = oo, there are positive constants 
{C(t)} such that 

(7.5) lim Z(t)/C(t) = W'     almost surely 
t—too 

for some non-degenerate random variable W whose Laplace transform (j) satisfies 
(7.4)(Cf. [13] or [43]). The equations (E') and (7.4) are closely related. In fact, if 
cj) is a solution of (7.4), then fa = /(fat)) is a solution of (E'); conversely, if fa is a 
solution of (7.4), then fat) = Efa(At) is a solution of (E). So properties of solutions 
of (E) can be transfered to solutions of (7.4). Let us give an example to explain this. 

THEOREM 7.1.   Assume po = pi = 0 and let Z = W if EN log N < oo and 
Z = W if EN log N = oo.   Then for each fixed 0 < a < oo, the following assertions 
hold: 

(i) As x -> 0,P(A < x) = 0(xa) if and only if P(Z < x) = 0(xa). 
(ii) Let 5 > 0 and let I : (0,5] —> (0, oo)  be a function slowly varying at 0 and 

bounded away from 0 and oo on each compact subset of (0,5]. If P(A < x) ~ 
xal(x) (x -» 0) , then 

P(Z <x) ~cxal(x)(x-+0), 

where 0 < c = E(Zi -f ... + Zjv)~a < oo, Z^ being independent copies of Z 
and independent of N. 

Proof. Write m = min{i > 2 : Pi > 0} and let 0 be the Laplace transform of 
Z. Since Z' = Z\ + ... -4- Z/v is a solution of (E) with Laplace transform f(fat)) ~ 
pm(</>(£))m as t -> oo, the results follow from Theorem 4.1 and Tauberian theorems. 
D 

Part (i) was established in [33]; part (ii) is new. Some other known results on W 
and W7 can also be obtained from our results on the equation (E). The equation (7.4) 
can also be considered for any given random variable A > 0 [33]. 
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8. Applications to branching random walks. An i.i.d. branching random 
walk can be described as follows. Let N* = {1,2, • • •} be the set of positive integers 
and let U = {0} U U^=1(N*)/c be the set of all finite sequences including the null 
sequence 0. Let (fi,F,P) be a probability space and let {A^ : u 6 U} and {Lu : u E 
U} be two independent families of independent random variables defined on (fi, F, P), 
the N'us are distributed as N = NQ and with values on {0,1,...}, and the L^s are 
distributed as L = LQ) and with values on E = (—00,00). (L is now not necessarily 
non-negative. ) Let T = T(a;) be the Galton -Watson tree with defining elements 
{Nu} - we have 0 G T and, if u € T and i 6 N, then ui G T if and only if 1 < i < Nu 

-. The initial particle 0 G T is placed at 50 = 0 of the real line M = (—00,00). It 
gives birth to NQ new particles i (1 < i < NQ) with displacements Z^, 1 < i < N. In 
general, if u = ui...un G T is a particle in n-th generation (u = 0 if n = 0), then its 
position is given by 

&U  ^ ^Ui  "r ••• + ■L'Ui...Un' 

Assume (7.1) and let /? G K be such that m(f)) := ENEe-^L < 00. Then the 
sequence 

U=Ul...Un€:T 

is a martingale, so that the limit 

(8.1) Z := lim Yn 
n—too 

exists almost surely. By considering the sub-trees beginning at i G {1,..., iV}, we see 
easily that Z satisfies the distributional equation (E) with Ai = e~aLi /ra(a). In the 
following, we always write A = e~/3Z//m(/?), so ENEA = 1. 

Let Z be the random variable defined by (8.1). It is known (see for example [31]) 
that the distribution of Z is the unique non-negative solution of (E) with mean 1 if 

(8.2) EN log+ N < 00 and EA log+ A < 00 with EA log A<0, 

and Z = 0 a. s. otherwise. In the case where (8.2) fails, (E) has no non-negative and 
non-trivial solution with finite mean, but it does have non-negative and non-trivial 
solutions with infinite mean by Theorem 1.1. In fact, if 

(8.3) EN log* N = 00 and EA log+ A < 00 with EA log A < 0, 

then there is a sequence of constants {cn} such that Yn/cn converges in probability 
to a solution Z' > 0 of (E) with EZ' = 00 [7]; if 

(8.4) E(N1+S) + EiA1*6) < 00 for some 6 > 0 and EAlogA = 0, 

then 

(8.5) yn* := Yl        Xu log -U where Xu = m(a)-ne-aS», 
u=ui...Un£T(u;) 

u 

is a martingale, and converges to a solution Z*   >  0 of (E) with lim^oQ - 
Ee-tz*)/\tlogt\ = 1, so that EZ* = 00 [35]. 
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Since Z, Z' and Z* are all solutions of (E) with ao = P(A = 0) = 0, our Theorems 
3.2, 3.4, 3.5, 4.1,4.2, 5.1 show asymptotic properties of their distributional functions or 
characteristic functions, and prove the existence of a density function and its regularity 
under simple moment conditions. To my knowledge all these results are new, except 
for the absolute continuity of Z (defined by (8.1)) which was shown by Biggins and 
Grey [6]. 
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