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SYMPLECTIC GENUS, MINIMAL GENUS AND 
DIFFEOMORPHISMS* 

BANG-HE Lit AND TIAN-JUN LI* 

Abstract. In this paper, the symplectic genus for any 2—dimensional class in a 4—manifold 
admitting a symplectic structure is introduced, and its relation with the minimal genus is studied. It 
is used to describe which classes in rational and irrational ruled manifolds are realized by connected 
symplectic surfaces. In particular, we completely determine which classes with square at least —1 in 
such manifolds can be represented by embedded spheres. Moreover, based on a new characterization 
of the action of the diffeomorphism group on the intersection forms of a rational manifold, we are able 
to determine the orbits of the diffeomorphism group on the set of classes represented by embedded 
spheres of square at least — 1 in any 4—manifold admitting a symplectic structure. 

1. Introduction. Let M be a smooth, closed oriented 4—manifold. An orien- 
tation-compatible symplectic form on M is a closed two—form OJ such that LO A w is 
nowhere vanishing and agrees with the orientation. For any oriented 4—manifold M, 
its symplectic cone CM is defined as the set of cohomology classes which are represented 
by orientation-compatible symplectic forms. 

For any class e G H2(M\ Z), its minimal genus m(e) is the minimal genus of a 
smoothly embedded connected surface representing the Poincare dual PD(e). The 
problem of determining the minimal genus has involved many of the important tech- 
niques in 4—manifold topology, and it bears its origin in the older problem of repre- 
senting the Poincare dual to a class by an embedded sphere (See the excellent survey 
papers [Lal-2] and [Krl] on these two problems). 

We are here interested in studying both these problems for 4—manifolds with 
non-empty symplectic cone. We will introduce the notion of the symplectic genus 
77(e) for 4—manifolds with non-empty symplectic cone. Recall that any symplectic 
structure 10 determines a homotopy class of compatible almost complex structures 
on the cotangent bundle, whose first Chern class is called the canonical class of UJ. 

Roughly, the symplectic genus 77(e) of a class e is given by the formula [e2 + K • e]/2 4- 
1, where K has largest pairing against e amongst canonical classes of symplectic 
structures for which the symplectic area of e is positive. 

77(e) has many nice properties, among which are (i) invariance under the action of 
diffeomorphism group and (ii) bounding the minimal genus from below. We speculate 
that, for most class of positive square, the symplectic genus is in fact the minimal 
genus, at least when 6+(M) = 1 (6+(M) is the maximal dimension of a positive 
definite subspace of iJ2(M;R)). The minimal genus, by definition, is non-negative. 
And it is easy to see that the symplectic genus of a sufficiently large multiple of a class 
of positive square is positive. However it is not obvious that the symplectic genus of 
any class of positive square is non-negative. In this paper we prove 

THEOREM A. Let M be a smooth, closed oriented 4—manifold with non-empty 
symplectic cone and 6+(M) = 1. Then the symplectic genus of any class of positive 
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square is non-negative, and it coincides with the minimal genus for any sufficiently 
large multiple of such a class. 

The proof of Theorem A is not very difficult except when the manifold is a non- 
minimal rational or irrational ruled manifold. In fact, for this kind of manifold we are 
able to obtain a much stronger result. Let us explain what such a manifold is. Let 
SM be the set of integral cohomology classes whose Poincare duals are represented 
by smoothly embedded spheres of squares — 1. M is said to be (smoothly) minimal 
if £M is the empty set. Any manifold M can be decomposed as a connected sum of 
a minimal manifold N with some number of CP . Such a decomposition is called a 
(smooth) minimal reduction of M, and iV is a minimal model of M. M is said to be 
rational if one of its minimal models is CP2 or 52 x 52; and irrational ruled if one of 
its minimal models is an 52—bundle over a Riemann surface of positive genus. When 
M has non-empty symplectic cone and is not rational or irrational ruled, M has a 
unique minimal reduction (see [LI] and [Mc3]). Using the invariance of the symplectic 
genus under diffeomorphisms and the Taubes-Seiberg-Witten theory, we are able to 
show 

THEOREM B. Let M be a rational or irrational ruled 4—manifold. If e is a class 
with square at least one, then its symplectic genus is non-negative and computable. 
Furthermore, if e • e > 77(e) — 1, then PD(e) is represented by a connected symplectic 
surface, and therefore its minimal genus coincides with its symplectic genus. 

For classes with square zero and —1 on rational and irrational ruled manifolds, 
we have similar results. 

Observe that if PD(e) is represented by an embedded sphere, then m(e) = 0 
and therefore 77(e) is zero as well.   It turns out that this simple fact enables us to 
completely determine which class of square at least — 1 is represented by a smoothly 
embedded sphere in any symplectic 4—manifold. When M has nonempty CM and is 
not rational or irrational ruled, such a description is known (see [T2], [Mc3] and [LI]). 
Let N#nCP2 be the unique minimal reduction of M, then, if e has square at least -1, 
PD(e) is represented by a smoothly embedded sphere if and only if e is a generator of 

 2 
one of the CP . For rational and ruled manifolds, we have 

THEOREM C. Let M be a rational or irrational ruled manifold and e € H2(M) be 
a class with square at least —1. If 77(e) = 0, then PD(e) is represented by a smoothly 
embedded sphere. Furthermore, if PD(e) is represented by a smoothly embedded 
sphere, then either 77(e) — 0 or e is a non-primitive class of square zero with e = pef 

and 77(6') = 0. 
We would like to remark that the proofs of Theorems A, B and C are built out of 

the work Taubes on Seiberg-Witten invariants realizing symplectic surfaces, the wall 
crossing formula for proving the non-triviality of the Seiberg-Witten invariants, and 
the fact that for minimal manifolds with 6+ = 1 it is easy to force symplectic surfaces 
to be connected. For non-minimal manifolds, we need the additional techinical notion 
of the reduced class. 

Beyond determining the set of classes represented by spheres and with square at 
least —1, we are also able to determine the action of the diffeomorphism group on this 
set. Let us call a class spherically represent able if its Poincare dual is represented by 
a smoothly embedded sphere. Let SVTi(M) be the set of spherically representable 
classes and SVTi>-i be the subset of classes with square at least -1. Obviously 
Diff(M) acts on SVH{M) and preserves SVHy-i. We are able to completely deter- 
mine the orbits of SVH>-i under Diff(M). To state the result we need to introduce 
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more notations. We say a class e is of divisibility p if e = pe with e a primitive class. 
Let SVHs,p{M) be the subset of classes in SVH(M) with square 5 and divisibility p. 
SVTis,p{M) can be further decomposed depending on the type, i.e. whether a class is 
characteristic or ordinary. Recall a class is called characteristic if it is an integral lift of 
the second Stieffel-Whitney class. Such a class v satisfies v-u = u-u (mod 2) for any 
class u. A class is called ordinary if it is not characteristic. Define SVHs,p{M) and 
SV7icSip(M) to be the subsets of ordinary and characteristic classes in SV%s,p{M). 
When the group of diffeomorphisms Diff(M) acts on if2(M), it preserves the square, 
the divisibility and the type. Therefore, Diff(M) acts on SVn0

Sip(M) and SVnc
SiP{M) 

separately. Remarkably this action is transitive if 5 > — 1. 

THEOREM D. Let M be a smooth, closed oriented 4—manifold with CM nonempty. 
Then Difr(M) acts transitively on SVU0s,P{M) and SVU^p when 5 > -1. 

The difficult case in Theorem D is when M is a rational manifold and 5 > 0. The 
proof in this case relies crucially on a new characterization of the action of Diff(M) 
on iJ2(M; Z) in terms of the K—symplectic cones. 

We do not know whether the transitivity continues to hold when s is less than 
— 1. The case s = —2 is particularly interesting and will be the subject of further 
investigation. We remark that Theorem D will be applied in [L2] to prove that the 
fiber sums of relatively minimal Lefschetz fibrations are minimal manifolds. 

CONVENTION. Prom now on, when we say an integral cohomology class is repre- 
sented by a surface, we mean its Poincare dual is represented by a surface. 

The organization of the paper is as follows. In §2, we study which automorphisms 
of the cohomology lattice of a rational manifold are realized by diffeomorphisms. Based 
on a characterization by Friedman and Morgan in [FM1-2], we give a new character- 
ization in terms of the K—symplectic cones. This new characterization will be used 
in §4 and is one major new theoretical input in this paper. In §3, we systematically 
study the symplectic genus and prove Theorem A and B. Most of this section is a 
series of computational lemmas which give enough case-by-case control to prove the 
theorems. In §4, we study the problem of representing a class by spheres and deter- 
mine the action of diffeomorphism groups on SVH(M). Theorems C and D will be 
proved there. 

The authors would like to thank Janos Kollar, Ronnie Lee, Robert Friedman and 
Gang Tian for helpful discussions. This research is partially supported by NSF. 

2. DifFeomorphism group of rational and if—symplectic cones. On a 
manifold M, each diffeomorphism induces an automorphism of the lattice of the second 
integral cohomology. Hence there is a natural map from Diff (M) to the automorphism 
group of the lattice. Let D(M) be the image of this natural map. In other words, an 
automorphism is in D(M) if it is realized by an orientation-preserving diffeomorphism. 
We will describe D(M) for both rational and irrational ruled manifolds. 

On each irrational ruled manifold M, there is a class (unique up to sign) with 
square zero whose Poincare dual is represented by an embedded sphere. It is proved 
in [FM2] that an automorphism of the cohomology lattice is in D(M) if and only if 
that class is preserved up to sign. In particular, the -Id automorphism is in D(M). 

The case for rational manifolds is rather complicated.   Each rational manifold 
 2 

M is of the form CP2#nCP . When n < 9, a result of Wall states that any auto- 
morphism is realized by a diffeomorphism. The more difficult case n > 10 requires 
the concepts of P—cell and super P—cell introduced by Friedman and Morgan [FM1], 
and a characterization of the diffeomorphism group via these terms. In fact they are 
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not adequate for the purpose of this paper, and we need to consider their partial 
compactifications and relate them to the K—symplectic cones. 

Suppose M is an oriented closed manifold with 6+ = 1, b~ = n and no torsion 
in i?2(M;Z). A basis (a;,ai, ...,an) for iJ2(M;Z) is called standard if x2 = 1, and 
a? = —1 for each 2 = 1, ...,n. Let 

7> = {ee#2(M;R)|e.e>0} 

# = {e€#2(M;R)|e.e = 0} 

V = {e e #2(M;R)|e • e > 0}. 

For each class x € H2(M;Z) with x2 < 0, we define x1- G H2(M;K) to be the 
orthogonal subspace to x with respect to the cup product, and we call (x1-) fl V the 
wall in V defined by x. Let Wi be the set of walls in V defined by integral classes 
with square —1. A chamber for Wi is the closure in V of a connected component of 
V-\Jwew1W. 

Any point x G V with square 1 at which n mutually perpendicular walls of Wi 
meet is called a corner. Any corner is an integral class (see Lemma 2.2 in [FM1]). 
Suppose C is a chamber for Wi. If a; is a corner in C, a standard basis (#, ai,..., an) 
for H2(M', Z) is called a standard basis adapted to C if ai • C > 0 for each i. The 
canonical class of the pair (#, C) is defined to be K{X, C) = 3a; — ^ a-;. Suppose C is 
a chamber for Wi and rr is a corner in C, we define 

P(&, C) = C n {e G V\K{X, C)-e> 0}. 

Any subset of V of the form P(x,C) is called a P—cell. 

NOTATION. For any U C V (similarly #, P), we will use mtp(U) (similarly 
int^(C/), mtp(U)) to denote C/nint(^) (similarly J7nint(B), Unmt(V)). For any V C 
V (respectively V), we will use V (similarly V) to denote its closure in V (similarly 
V). 

The basic properties of P—cells are summarized in the following lemma. 

LEMMA 2.1. 
1. A P-cell is a chamber for the set of walls Wi U {K(X, C)1- fl V}. 
2. If P(x,C) = P(a?,,C,,), then K(X,C) = K(X',C'). Thus for each P-cell P we 

can assign a unique canonical class of the form tt(#, C), which will be written as K(P). 

3. If I/J is an automorphism of the lattice and P is a P—cell with canonical class 
/c, then ^ • P is also a P—cell with canonical class ^(ft). 

4. If P and P' are distinct P—cells, then intp(P) and int^P') are disjoint. 
5. If P and P' are distinct P—cells, then int#(Pni?) and int^(P fl^) are disjoint. 

In other words, the interiors of the B—boundaries of the closure of distinct P—cells 
are also disjoint. 

Proof. The proofs of the first 4 properties can be found in chapter II in [FM 1]. 
Here we prove property 5. Notice that V = V U B. If # is any point in int£(P fl i3), 
then the intersection of V with any sufficiently small neighborhood in V of x is non- 
empty and is contained in intp(P). Thus if int^(P fl B) and int£(P fl B) intersect, 
then mtv{P) and int^P') overlap and hence they are the same P—cells by property 
4. Therefore distinct P—cells have disjoint B—boundaries. 

It turns out that P-cells are closely related to the If-symplectic cone introduced 
in [LLiul]. Let us recall the definition of if-symplectic cone. A class K G H2(M; Z) 
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is called a symplectic canonical class if it is the canonical class of some orientation- 
compatible symplectic structures. Let /C be the set of symplectic canonical classes. 
For any K € /C we introduce the if—symplectic cone: 

CK = {e € CM\ e = [u] for some u E FLK }, 

where fi/^ is the set of orientation-compatible symplectic forms with K as the sym- 
plectic canonical class. It is shown in [LLiu2] that CK is disjoint from CK* ii K ^ K1. 
For a manifold with 6+ = 1 and any K G /C, we can in fact determine CK in terms 
of a certain subset of EM- Recall that EM is the set of integral cohomology classes 
represented by smoothly embedded spheres of square — 1. When there is no confusion 
we will omit the subscript M. Introduce the set of K—exceptional spheres as 

EK = {E£E\K-E = -\}. 

It is proved in Theorem 4 in [LLiul] that 

CK = {e e V\e • E > 0 for any E E ER }. 

Let CK be the closure of CK in V. Then it is not hard to prove 

CK = {eeV\e'E>0 for any E E EK }• 

In order to link the P—cells and the symplectic cones, we also need to consider 
good generic surfaces as in [FM1]. A good generic surface X is an algebraic surface 
such that the anti-canonical divisor is effective and smooth, and that any smooth 
rational curve has square no less than — 1. All such surfaces are rational surfaces and 
can be holomorphically blown down to CP2 (see 1.2 in [FM1]). Let p : X —> CP2 

be a holomorphic blow down with exceptional fibers Fi, ...,Fn, where each Fi is an 
embedded rational curve with square —1. Let Kx be the canonical class of X. Then 
—Kx = 3p*(H) — X^ILi ^> where H is a hyperplane section of CP2. 

The surface X has many Kahler metrics. Associated with each such metric is its 
Kahler form and associated cohomology class in iP(X;R). The Kahler cone A(X) of 
X is then the set of all Kahler cohomology classes. By the Nakai-Moishezon criterion, 
the Kahler cone A(X) consists of all the classes in V which pair positively on any 
holomorphic curve. Let A(X) be the closure of A(X) in V. 

PROPOSITION 2.2. Let X be a good generic surface. Let Po be the P—cell con- 
taining the class p*H. Then Po coincides with A(X)y and K(PO) = -Kx- Moreover, 

Po = {eeCKx\e'(-Kx)>0}. 

Proof. The first statement is proved in II. 3 and II.4 in [FM1]. So we only need to 
show that A(X) consists of all classes in CKX which pair non-negatively with (—Kx). 

Since a Kahler form is a symplectic form, the Kahler cone A(X) is certainly a 
subset of the Kx—symplectic cone CKX • Therefore A(X) is a subset of CKX • To prove 
the inclusion in the other direction, we need the following result: 

A(X) = {e E V\e • (-K) > 0 and e • E > 0 for any E E £hol(X) }, 
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which is Proposition 3.4 in [FM1]. Here £hol(X) is the set of embedded rational curves 
with square —1. With this characterization of A{X) we just have to show that, on a 
good generic surface, any class e G CKX w^h e ' {—Kx) > 0 is .non-negative on any 
class in £hol{X). This follows from the obvious inclusion £hol(X) C £KX- The proof 
is complete. 

REMARK 2.3. Prom Proposition 2.2, we find 

P0 = {e e V\e • (-Kx) > 0 and e • E > 0 for any E e £hol{X) }. 

Since PQ coincides with A(X), it is possible that the two sets £hol(X) and £KX 
are 

the same. 

LEMMA 2.4. Let M be a rational 4-manifold. For each K e /C, there exists a 
P-cell PK such that K(PK) = — K and 

PK = {eeCK\e-(-K)>0}. 

Proof. Suppose X is a good generic surface and M is the underlying rational 
4—manifold. By the result in [LLiul] that Diff(M) acts transitively on /C, there is 
a diffeomorphism 0 of 'M such that ^(Kx) = K. Since 0*0; € ^^(Kx) ^or any 
u G FIKX > we have C^ = 0*C^X. Thus by Proposition 2.2 we have 

</>*(Po) = {eeCK\e-(-K)>0}. 

Let P/c = </>*Po. By Lemma 2.1(2-3), PK is still a P—cell with canonical class K. The 
proof is complete. 

Now we introduce super P—cell, which is defined via a reflection group associ- 
ated to a P—cell. Suppose 7 is a class with square -1 or —2. We can define an 
automorphism of the lattice as follows, 

*(7>/» = /> + 7P^ 

This automorphism R(y) is called the reflection along 7. For a P—cell P define Qp to 
be the set 

{a\a2 = — 1, a ^ K(P) and a defines a wall of V}. 

Let TZ(P) be the group generated by reflections along classes in Qp. 
The super P—cell of P is defined as 

S(P)=U^(p)^(P). 

We will need the following simple fact on reflections. 

LEMMA 2.5. Suppose F = ip(Fo) for some Po G GP. Then R(F) = ^oR(Fo)o^-i. 
In particular, R(F) 6K(P). 

Proof. For any class x, we have 

R(F) o ^(x) = </>(*) + 2(P • tl>(x))F = ^(x) -I- 2(^(Po) • i){x))^{FQ) 

tl> o R(Fo)(x) = ^{x + 2(Po • x)Fo) = ^{x) + 2(^(Po) • ^{x)^{Fo). 
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So R(F) o if) = tf) o iJ(Fo), and the statements follow. 

PROPOSITION 2.6. Let M be a rational 4—manifold. Any good generic surface 
X with M as the underlying manifold gives rise to a P—cell of M, denoted by PQ. 

1. If 0 is an automorphism, then 0(£(P)) is also a super P—cell. In particular, 
—S(P) is a super P—cell. 

2. An automorphism is in D(M) if and only if it preserves the distinguished 
super P—cell 5(Po) up to sign. Consequently, D(M) is generated by -Id, 7Z(Po) and 
the isotropy subgroup of PQ. 

3. If intp(5(P))n intp(5(P/)) is not empty, then 5(P) = S(P'). 
4. If intg(5(P)ng) and mtB(S(P') HB) intersect, then 5(P) = 5(P/). 
5. If int^((/)(5(P))) and mt^MSiP'))) intersect, then 5(P) = 5(P/). 

Proof. The first three properties are in chapter II in [FM1]. The proof of property 
4 goes exactly along the line of the proof of the analogous property for the P—cells in 
Lemma 2.1. If x is any point in int^(5(P) fl #), then the intersection of V with any 
sufficiently small neighborhood in V of x is non-empty and is contained in intp(5(P)). 
Thus if intB(S(P) D B) and intBiSiP') fl B) intersect, then S(P) and ^(P') have 
overlapping interiors and hence they are the same super P—cells by property 3. 

Notice that 

intp(0(5(P))) = int7>(S(P)) U intB(5(P) fl B). 

The last statement follows immediately from the properties 3 and 4.   The proof is 
complete. 

In the next proposition we are going to relate the super P—cells ±S(Po) to the 
K—symplectic cones. 

PROPOSITION 2.7. Define M and X as in Proposition 2.5. Let KQ be the canon- 
ical class of PQ. Then every K £ /C is of the form dzi/^i^o), where ip G TZ(Po). 
Consequently, 

5(Po) U -S(Po) = UKGICPK 

5(Po) U -S(Po) H B = UKeicPK n B. 

Proof. This is a consequence of the result in [LLiul] which states that D(M) 
acts transitively on /C. The positive cone V has two connected components. Let 
K be a symplectic canonical class such that CK and CKQ are in the same connected 
component of P. Since D(M) acts transitively on /C, there exists ip' GD(M) such 
that il){Ko) = K. By Proposition 2.6(2), ^/(5(Po)) = ±5(Po). Since ^'(Po) is still in 
the same component of Po, '0/(5(Po)) = 5(Po). Therefore ^'{PQ) is a P—cell within 
S(Po). By the definition of a super P-cell, ^'(Po) = ^{PQ) for some V € ft(P). 
Therefore K = ^(KQ). By Lemma 2.1, IP(PK0) and PK have the same canonical class 
and therefore they are identical. Notice we have shown that 

UK€;CPKCS(PO)U-S(PO). 

To prove the inclusion in the other direction, we just need to show that, for any 
tp G 7^(P), ^(Po) = PK for some K G /C. This is obvious since K = ip{Ko) is certainly 
a symplectic canonical class. The proof is finished. 

It is mentioned in [FM2] that super P—cells are chambers for the walls given by 
primitive characteristic classes with square 9 — n. We can in fact show that the set of 
walls for 5(Po) and — 5(Po) is just the set of the symplectic canonical classes. 
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Now we are able to present the main result of this section, a characterization of 
D(M) in terms of K—symplectic cones. 

THEOREM 2.8. Let M be a rational 4-manifold. An automorphism </> is in D(M) 
if and only if there are K and K' in /C and 

1. either there are classes e €: CK and e' 6 CK
1
 with e-(—K) > 0 and e'^-K') > 0, 

such that e is mapped to e' by 0, 
2. or there are classes e G CK H # and e' E C^/ fl # with e • (-if) > 0 and 

e' • (—K') > 0, such that e is mapped to e' by 0. 

Proof. Due to Proposition 2.7, in the first case, we just have to show that e and 
e' are in the interior of 5(Po) U — S(Po). The arguments for e and e' are exactly the 
same, so we will only argue for e. By Lemma 2.4, e G PK- If e is in the interior of PK, 

then e is in the interior of S(Po) U —5(Po) by Proposition 2.7. e may fail to be in the 
interior of PK only when e • E = 0 for some E e SK- Suppose ffc = ±^(Po) for some 
^ G ^(Po), then £7 = ^(jEfo) for some EQ G £p0. By Lemma 2.5, the P-cell obtained 
by reflecting PK along E is still in S(Po) U — S(Po). Thus we see that e must be in 
the interior of S(Po) U -S(Po). 

The proof in the second case is similar. We just have to show that e and e' 
are in int#(S(Po) U —5(Po) fl B) and we only have to argue for e. By Lemma 2.4, 
e G PK H B. e may fail to be in the interior of PK H # only when eE = 0 for some 
E G £K. However by Lemma 2.5, the reflection of PK^B along i? is still in S(Po)nB. 
Thus we see that e must be in the interior of 5(Po) U — 5(Po) fl B. The theorem is 
proved. 

3. Symplectic genus. We first give the formal definition of the symplectic 
genus for manifolds with non-empty symplectic cone. For any integral class e G P, we 
first define a subset of /C, 

/Ce = {K G /C|there exists a class r G CK such that r • e > 0}. 

We further define a subset of /Ce, 

/C(e) = {# G /Ccl-K" • e > A7 ■ e for any K' G /Ce}. 

DEFINITION 3.1. Let K be any class in /C(e). The symplectic genus of e is defined 
to be 

We now list some simple properties of symplectic genus. 

LEMMA 3.2. 
1. The symplectic genus is no bigger than the minimal genus. Furthermore, if 

a class is represented by a connected symplectic surface, then its symplectic genus is 
equal to its minimal genus. 

2. n(-e) = 77(e). 
3. For any positive integer p, 

rj(pe) = pT](e) - (p - 1) +  P 2 
P e • e. 

In particular, 77(pe) 7^ 0 when e • e = 0 and p > 2. 
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4. The symplectic genus is invariant under the action of the group of orientation- 
preserving diffeomorphisms. 

5. The symplectic genus of any class of a sufficiently large multiple of any class 
of positive square is positive. 

Proof. Property 1 is a consequence of the adjunction inequalities. When &+ > 1 
the adjunction inequality in [KM], [MST], [OS] and [T2] asserts that the genus g of 
any embedded surface representing e satisfies 

2g-2> \K-e\ + e-e (3.1) 

for any symplectic canonical class K. 
When b+ = 1 and e has non-negative square, the adjunction inequality in [LLiu2] 

asserts that 
2#-2>iir-e-fe-e (3.2) 

for any symplectic canonical class K e lCe. 
When e has negative square, inequality (3.2) still holds and is basically proved 

in §3 in [OS]. We explain here briefly. Suppose UJ is a symplectic form whose class r 
pairs positively with e, and let K(UJ) be its symplectical canonical class. Let so be 
the canonical Spinc structure with ci(so) = —K((jj). The class e determines another 
Spinc structure, denoted by so — e. Suppose e is represented by an embedded surface 
of genus h such that 

2h-2< K(UJ) -e + e-e. 

Then, by Theorem 1.3 in [OS] and the corresponding result in [FS], in a common 
chamber for both so and so - e which is perpendicular to e, the Seiberg-Witten in- 
variant of so being nontrivial implies that the invariant of so — e is nontrivial as well. 
The u—symplectic chamber is such a chamber. Moreover, according to Taubes ([Tl]), 
in this chamber, the Seiberg-Witten invariant of So is nontrivial. Therefore, in the 
UJ—symplectic chamber, the Seiberg-Witten invariant of so — e is nontrivial as well. 
By another result of Taubes ([T2]), r • (—e) > 0. This contradicts our assumption, so 
inequality (3.2) still holds in this case. Therefore, in any case, we have m(e) > r)(e). 

Suppose that e is represented by a genus h symplectic surface with respect to 
a symplectic form to. Then co is positive on this surface. If K((JO) is the symplectic 
canonical class of a;, then K(u) £ Ke and 2h — 2 = K(u)) • e + e • e. Together with 
inequalities (3.1) and (3.2), we see that h = m(e) = 77(e). 

If K is the symplectic canonical class of a symplectic form a;, then — K is the 
symplectic canonical class of the symplectic form -co. Therefore, 

/C_e = {-K\K e Ke) and /C(-e) = {-K\K € /C(e)} (3.3). 

And 77(—e) = 77(e) is an immediate consequence of equation (3.3). 
For any positive integer p, we have 

/Ce = /Cpe and /C(e) = /C(pe) (3.4). 

The formula for 77(e) then follows from equation (3.4) with a straightforward calcula- 
tion. When e-e^O, 77(^6) is therefore given by p{r}(e) — 1) 4-1. Evidently it is not 
divisible by p and concequently cannot be zero if p > 2. 



132 BANG-HE LI AND TIAN-JUN LI 

It is shown in Proposition 4.1 in [LLiul] that, if (j> is an orientation-preserving 
diffeomorphism, then (J)*CK — C^K- It follows that 

<£*/Ce = K^e    and   0*/C(e) = /C(0*e) (3.5). 

Property 4, then, is an immediate consequence of equation (3.5). 
The last property follows directly from the definition. Let e be a class with 

positive square. When N is large, Ne • iVe dominates iVe • K for any K 6 /C(e), and 
therefore iVe has positive symplectic genus. Lemma 3.2 is proved. 

Now we set out to prove Theorem B. The proof requires the notion of reduced 
classes for non-minimal rational and irrational ruled manifolds (for rational manifolds, 
it is introduced in [Ki] and [G]). A nice property of this notion is that every class 
with positive square can be transformed in an explicit way to a reduced class via 
diffeomorphisms. Thus by Lemma 3.2(4) we only have to show that Theorem B holds 
for any reduced class e. 

To introduce the reduced class let us review the minimal reductions of a rational or 
irrational ruled manifold. The only minimal rational manifolds are CP2 and S2 x S2. 
And a non-minimal rational manifold has two kinds of decomposition- it is either 
decomposed as CP2#nCP or as 52 x 52#(n - 1)CP . We will always use the 
first decomposition and call it a standard decomposition. The picture for irrational 
ruled manifolds is similar. 52—bundles over a Riemann surface of positive genus are 
the only minimal irrational ruled manifolds. Fix the base surface Ep, there are two 
S2—bundles over it, the trivial one 52 x E^ and the unique non-trivial one 52xEp. A 
non-minimal irrational ruled manifold also has two types of decomposition, either as 

 2 ~  2 
S2 x Ep#nCP or as S2xYlg#nCP . We will use the first decomposition and call it 
a standard decomposition. 

Let H be a generator of H2{CP2\Z) and Ei,...,En be the generators of the 

CP .  Let U and T be classes in S2 x E^ represented by {pt} x E^ and S2 x {pt} 
 2 

respectively. H,Ei,.. .,En are naturally considered as classes in H2(CP2#nCP ; Z) 
and form a basis. We will call such a basis a standard basis. Similarly, [/, T, Ei,..., En 

 2 
are naturally considered as classes in iif2(52 x T,g#nCP ; Z) and form a basis. Such 
a basis is also called a standard basis. Given such a basis, according to Wall ([W]), 
an automorphism is called trivial if either it permutes the Ei or it is a reflection along 
an Ei. It was shown in [W] that trivial automorphisms are in D(M). 

On CP2#nCrP2, let Ko = -3H + £.£*; and on S2 x T.g^nCP2\ let KQ = 
-2U 4- (2g - 2)T + Y^iEi' By tlie blow UP construction (see e.g. [Mel]) KQ is a 
symplectic canonical class. 

DEFINITION 3.3. For a non-minimal rational manifold with a standard decompo- 
sition CP2#nCP and a standard basis {if, Ei,..., En}, a class £ = aH — Y^i=i biEi 
is called reduced if 

f 6i > 62 > • • • > bn > 0 
1 a> 61+62 + 63. 

For a non-minimal irrational ruled manifold with a standard decomposition S2 x 

Eg#nCP2 and a 
called reduced if 

 2 
E^#nCP   and a standard basis {[/, T, Ei,..., En}, a class e = all + bT — ^ ^%Ei is 

« > 0? ci > C2 > • • • > cn > 0 
a > Ci for any i. 
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Reduced classes have the following properties: 

LEMMA 3.4. Let M be a non-minimal rational or irrational ruled manifold with 
a standard decomposition and a standard basis. 

1. Any class of non-negative square is equivalent to a reduced class under the 
action of orientation-preserving diffeomorphisms. Moreover we can find such a diffeo- 
morphism by a simple algorithm. 

2. For a class with square — 1, when b~(M) ^ 2, it either has reduced form 
or is equivalent to the class Ei\ when b~(M) = 2, another possibility is that it is 
characteristic, and equivalent to H — Ei — E2 in the rational case and to T — Ex 
in the ruled case. Similarly, for a class with square —2, when b~(M) ^ 3, it either 
has reduced form or is equivalent to the class Ei + E2', when b~(M) = 3, another 
possibility is that it is characteristic, and equivalent to H — Ei — E2 — E3 in the 
rational case and to T — Ei — E2 in the irrational ruled case. 

3. If e is reduced, then e • F > 0 for any F E £KO- 

4. If e is reduced, then KQ G /Ce. 
5. If e is a reduced class with non-negative square, then KQ £ £(e), and conse- 

quently 77(e) is given by (Xo • e + e • e)/2 + 1. 

Proof. We divide the proof into two cases. 
(i). First consider a non-minimal rational manifold with a standard decomposi- 

tion CP2#nCP and a standard basis. When n < 9, all the properties have been 
established (for 1 and 4 see [Lil], for 2 see [LiL2]). So we assume that n > 10. 

Property 1. In fact, it was also proved in [Lil]. Since we will use the similar 
arguments to prove property 2, we provide some details here. Suppose e = aH — 
Y^i biEi is a class with non-negative square. First of all, by the trivial automorphisms, 
we can arrange so that a > 0 and bi > 62 > ... > bn > 0. When n > 3, the 
class H — Ei — E2 — E3 is represented by an embedded sphere with square —2. So 
the reflection along H — Ei - E2 — E3 is an automorphism in D(M). Under this 
reflection, a is mapped to a' = 2a — (bi -f 62 + bs). If e is not already reduced and 
2a - (bi + 62 + bs) > 0, then 0 < a' < a. From this we see the process can be repeated 
either to lead to a reduced class or to a class with 2d - (bi -h 62 + 63) < 0. However, 
if 2a < (bi + 62 -h 63), then from 

a2>]r^    and   (6i+62 + &3)2<3(62 + &2 + 52)? 

i 

we have 
(bi + bi + bi)<^<(i/A)(bi + 'q + P3). 

This is an obvious contradiction. 

Property 2. Suppose we have a class e of square —1. The same argument as above 
proves that e is either equivalent to a reduced class or a class with 

(8? + bl + 6§) - 1 < ^ < (3/4)(6? + 62 + 6§). 

In the latter case (bl + &2 + 63) < 4 and we easily deduce that, up to trivial auto- 
morphisms, the only such class is Ei. For a class with square —2, the same argument 
again proves that e is either equivalent to a reduced class or a class with 

$ + ~b2 + 62) _ 2 < -a2 < (3/4)02 + ~62 + -62)_ 
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In the latter case we easily find that there are only two possibilities up to trivial 
automorphisms: H—E1—E2—E3 and E1+E2. However H—Ei — E2—E3 is equivalent 
to Ei + E2 under the reflection along H — E2 — E3 — E4 and trivial automorphisms. 

Property 3. Assume that F = tH - ]£ SiEi. Then 

KQ - F = -St + ^^ si = ~1 and e-F = at — ^2 5A- 

It was shown in [LLiu2] that F,Ei,...,En and H are all represented by connected 
smooth J—holomorphic spheres for some almost complex structure J. By the positiv- 
ity of intersection of distinct J—holomorphic curves, t > 0, and Si > 0 unless F = Ei. 
If F = Ei for some i, clearly we have e • F > 0. If F ^ Ei, then t > 0 and t > Si > 0. 
We can divide the bi into t groups, each consisting of no more than three bi. Since 
Si is no bigger than £, the division can be made such that the bi in each group have 
distinct indices. The condition of e being reduced implies that a — 6* — 67 — 6& > 0 for 
any 2,7, k which are mutually distinct. The property follows. 

Property 4- Notice that for any sufficiently small e, u;e = H-J^eEi is a symplectic 
form with canonical class KQ. Since uje ♦ e > 0 for e small, we have KQ 6 /Ce. 

Property 5. Since a reduced class e with non-negative square has a positive H 
term, by the light cone lemma in [LLiu2], the class of a symplectic form is positive 
on e only when it has a positive H term as well. Therefore, if K is any symplectic 
canonical class in /Ce, then it has a negative H term. By Proposition 2.5, any K G /Ce 

is of the form ip(Ko) for some I/J G 'JZ(PO)^ We claim that if • e < iiTo * e for any if of 
the form K € lCe> Once this is established it is clear that KQ G /C(e) and property 4 
follows. Now we proceed to prove the above claim. Write ip as R(Fk) o ... o R(Fi)(Ko) 
where F; G £KO- Since ifo • Fi = — 1, we have 

R(Fi)(Ko) = Ko + 2(iro • Fi)Fi = #<, - 2Fi 

i?(^)(if0 - Fi) = [ifo - Fi] + 2p:o - Fi) • F2]F2 = ifo - F1 - (1 + Fi • F2)F2. 

This, together with the fact Fi • Fj > 0 due to positivity of intersection, we have 

k 

K = Ko- 2Fi -^22ciFu    a > 1. 
2=2 

Now the claim follows from property 3. 
(ii). Now consider a non-minimal irrational ruled manifold with a standard de- 

composition and a standard basis. Suppose e = all + bT — £V CfF^ is a class. 

Properties 1 and 2. We will prove the first two properties together. As we have 
mentioned, the -Id automorphism is realized by an orientation-preserving diffeomor- 
phism. Therefore we can assume that a > 0. 

The easier case is when a = 0. In this case, e • e = — J2i cl • ^ e ^as non-negative 
square, then Ci = 0 for each i and e is simply the class bT, which is certainly reduced. 
If e has square —1. then a = ±1 for some i and Cj = 0 for any j ^ i. Consider the 
reflection along [b/2]T — Ei which maps e to Ei or T + Ei. When n > 1, the reflection 
along T+Fi -F2 maps T+F; to the class F2. If e has square -2, we have Ci — cj = 1 
for some i ^ j and Ck — 0 for any A; different from z and j- 
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When a is strictly positive, we will show that under an orientation-preserving 
diffeomorphism which is a composition of reflections along classes represented by em- 
bedded spheres with square — 1, e is equivalent to a class e = all + b - ^ CiEi with 
a>Ci for each i. For any r; > 0 and e* = ±1 to be determined, it is easy to see, via 
the tube construction, that /ii = riT + eiEi is represented by an embedded sphere with 
square —1. Therefore, the reflection along /i; is realized by an orientation-preserving 
diffeomorphism. Since e • /i; = ari + e^Ci, under the reflection, 

Ci —> c'i = Ci — 2ariei - 2ci = —ci - 2ariei 

and a is invariant. We first assume that a is positive. In order for |cj| < a^, we find 
that n and ci should satisfy 

2     2aSri€iS2     2a' 

Clearly, such a pair (r^ei) exists, and there is a unique solution when c/a is not an 
odd integer, and there are two solutions when c/(2a) is an odd integer. By applying 
this process for each i, we obtain a desired class e. Notice that e is equivalent to a 
reduced class under trivial automorphisms. So we have proved that e is equivalent to 
a reduced class if a > 0. 

Property 3. It is a immediate consequence of the fact (see [Bi] or [LLiul]) that 

£K0 = {Si,...,£7n,T — Ei,...,T — En}. 

Indeed, e • Ei = c; and e - (U — Ei) = a — Ci, both of which are positive because e is 
reduced. 

Property 4- Consider symplectic forms uje = U + T-^2€^- Their canonical class 
is KQ = — 2U + {2g — 2)T 4- Y^i Ei, and for e small, a;e • e > 0 for any reduced class 
e = at/ + bT - £. c^. Therefore, ifo is in /Cc. 

Property 5. Suppose now e = all + bT — Yli ci^ ^s a reduced class with non- 
negative square. Let r be the class of a symplectic form which is positive on e. Since 
both a and b are non-negative and one of them is positive, by the light cone lemma, r 
must have a positive U term as well. Therefore any symplectic canonical class in /Ce 
is of the form K = -217 + bT + ■£ SiEi with s* being odd. Since K2 = S - 8g - n, 
b = 2g-2- [(£ • cf - n)/4]. Thus we have Ko - K = [(Ei 5? - n)/4]T + (1 - *)£<, 
and consequently 

(/To - K) ■ e = a £>? - l)/4 + £(1 - Si) 
i i 

= E(i-*o[(3~Si) + (14~
a)(1+Si)]- 

Let 5* = (l-5i)[(3 - s^ + (1 - a)(l + «»)]. We will show that S< > 0 for each i. When 
5i > 3, the two factors of 5; are both non-positive, so Si is non-negative. When Si = 1, 
5i = 0. Finally, when Si < —1, the two factors are both non-negative, and therefore 
Si is non-negative. We have finished the proof of property 5 for a non-minimal ruled 
manifold and hence the proof of Lemma 3.4. 
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We will now prove a rather general result relating the symplectic genus and the 
minimal genus of a reduced class, using Taubes' equivalence between Seiberg-Witten 
invariants and Gromov-Taubes invariants ([T2]). Let us first provide some background 
of this equivalence (see e.g. [LLiul] and [T2]). 

Recall that Seiberg-Witten invariants are defined on Spinc structures. For mani- 
folds without torsion-free homology group, like rational and irrational ruled manifolds, 
the Spincstructures correspond to characteristic classes. For this reason, we will sim- 
ply speak of the Seiberg-Witten invariants of the characteristic classes. Suppose K is 
a symplectic canonical class, then any class of the form — K 4- 2e is a characteristic 
class. The Seiberg-Witten invariant of —K + 2e is defined when its Seiberg-Witten 
dimension -iiT-e+e-e is non-negative. For manifolds with 6+ = 1, the Seiberg-Witten 
invariants also depend on the chambers. In the presence of a symplectic form u, there 
is an u—symplectic chamber. On such a manifold, the Gromov-Taubes invariant of a 
class e is a suitable count of u—symplectic surfaces representing e. The surface is not 
required to be connected, but is required to be embedded and any component with 
negative square is a UJ—symplectic sphere with square — 1. 

When K is the symplectic canonical class of a;, a fundamental theorem of Taubes 
states that, if the Seiberg-Witten invariant of —K + 2e in the UJ—symplectic chamber 
is nontrivial, then (i) e is represented by a J—holomorphic curve (possibly singular) 
for any UJ—compatible almost complex structure J; (ii) the Seiberg-Witten invariant 
is the same as the Gromov-Taubes invariant of e provided e • E > 0 for any E G £K- 

PROPOSITION 3.5. Let M be a non-minimal rational or irrational ruled manifold 
with a standard decomposition and a standard basis. Suppose e is a reduced class. If 
e - e is no less than 77(e) — 1, then e • e > 0 and e is represented by a symplectic surface. 
Moreover, if e is either a class of positive square or a primitive class with square 0, e 
is represented by a connected symplectic surface, and therefore its minimal genus is 
given by its symplectic genus. 

Proof. We will first prove that e is represented by a symplectic surface. By the 
definition of the symplectic genus and Lemma 3.4(4) 

Ko • e + e • e < 2rj(e) - 2. 

Therefore, under our assumption, the Seiberg-Witten dimension of the class —Ko + 2e 
satisfies 

-Ko -e + e-ey 2(6-6 + 1- 77(e)) > 0. 

Now we divide the proof into two cases. 
In the case of rational manifold, for a symplectic from UJ with — Ko = 3H — Yli E* 

as its canonical class, it is shown in [LLiu2] that H is represented by an embedded 
J—holomorphic sphere for a generic almost complex structure J compatible with u. 
Since the reduced class e = aH - J2 biEi has a positive a term, (Ko — e) has a 
negative a term and so (Ko — e) • H < 0. Therefore, Ko — e is not represented by a 
J—holomorphic curve, because the intersection number of two distinct J—holomorphic 
curves is non-negative. So the Seiberg-Witten invariant of -i^o + 2(Ko - e) = Ko - 2e 
is trivial by the result of Taubes. By the symmetry of Seiberg-Witten invariants (see 
Lemma 2.3 in [LLiul]), the Seiberg-Witten invariant of -Ko+2e in the non-symplectic 
chamber is trivial. By the wall crossing formula of Seiberg-Witten invariants (see 
[KM] and Lemma 3.3 in [LLiul]), the Seiberg-Witten invariant SWu(-Ko + 2e) in the 
a;—symplectic chamber is non-trivial. Since e is reduced, by Lemma 2.3(3), we have 
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e • E > 0 for any E G EKQ- Thus, e is represented by an embedded symplectic surface 
by the result of Taubes. 

In the case of irrational ruled manifold, by [LLiu2], for any symplectic form u with 
KQ as its canonical class, T is represented by a J—holomorphic sphere for a generic 
u—compatible almost complex structure J. Since a reduced class has a positive U 
term and U • T = 1, we can show that KQ — e has trivial Seiberg-Witten invariant in 
the uj—symplectic chamber. Applying Lemma 2.3 and Lemma 3.3 in [LLiul] as above, 
and notice that -KQ 4- 2e has a positive U term and that the class 7 in Lemma 3.3 in 
[LLiul] is just the class T here, we find that the Seiberg-Witten invariant of — KQ + 2e 
is nontrivial. Taubes's result and Lemma 2.3(3) then can be applied to show that e is 
represented by an embedded symplectic surface. 

We have shown that e is represented by a symplectic surface. This surface may 
have many components. Any component with negative square is a symplectic sphere 
with square — 1. However, since e • E > 0 for any E € SKQ, no such component 
exists. Thus, e is represented by a symplectic surface the components of which all 
have non-negative square, and therefore e • e is non-negative. If e • e > 0, there can 
only be one component by the light cone lemma. If e • e = 0, again by the light cone 
lemma, there might be several components, all of which are multiples of the same 
class. All the multiplicities have to be one because of the adjunction formula. Thus, 
if e is primitive, there is only one component. The proof is complete. 

Notice that, as an immediate consequence of Proposition 3.5, the symplectic genus 
of certain reduced class is non-negative. In fact, this weaker assertion holds in much 
greater generality. 

LEMMA 3.6. Let M be a non-minimal rational or irrational ruled manifold with 
a standard decomposition and a standard basis. 

1. The symplectic genus of any class with positive square or a primitive class 
with square 0 is non-negative. 

2. Any class with square -1 or —2 has non-negative symplectic genus. In addition, 
the classes which are equivalent to reduced classes have positive symplectic genus, and 
those which are not equivalent to reduced classes have symplectic genus 0. 

Proof. Let e be a class with square at least 0 and equivalent to a reduced class 
e'. Due to Lemma 3.2(1), e and e' have the same symplectic genus. Suppose that the 
symplectic genus of e is negative, then e • e > — 1 > 77(e) — 1. By Proposition 3.5, e' 
is represented by a symplectic surface and hence the connected symplectic genus is 
non-negative. This is a contradiction. 

When e • e = — 1, by Lemma 3.4(2), e is either equivalent to a reduced class, or 
equivalent to Ei,H - Ei - E2 or T - Ex. It is easy to see that Ei,H - Ei — E2 
or T — Ei are all spherically representable and have symplectic genus zero. Suppose 
e is a reduced class and 77(e) < 0. Since e • e = —1, it satisfies the assumption 
of Proposition 3.5, and we can conclude that e • e > 0. This contradicts with our 
assumption. Therefore, by Lemma 3.2(1), any class equivalent to a reduced class has 
positive symplectic genus. 

For the case of a class of square —2, the same argument as in the previous para- 
graph proves that the symplectic genus can not be smaller than zero. What we still 
need to show is that there does not exist any reduced class e with symplectic genus 
0. Suppose e is such a class. Then by definition there is a K G /C such that K - e = 0. 
In light of Lemma 3.4(4), it is also necessary that KQ • e < 0. We first exclude the 
case KQ • e < 0. Let K' be a symplectic canonical class such that CK

1
 and CKQ are in 
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the same component of the positive cone V. Notice that the argument in the proof 
of Lemma 3.4(5) actually proves that K' - e < KQ • e for any reduced class e. There- 
fore all such Kf satisfies Kf • e < 0. It is clear that any symplectic canonical class 
is either a K' or a —K'. Thus, there is no symplectic canonical class K satisfying 
K -6 = 0. This contradiction leaves the case KQ • e = 0 as the only possibility. In this 
case, the reflection Re along e preserves SKQ since it preserves KQ. SO, if F G SKQ, 

then F' = Re(F) e £KQ, and F' = F + (e • F)e. By [LLiu2], for any symplectic form 
^ G C/fo 5 ^ and -F7 are both represented by smooth J—holomorphic spheres for some 
generic a;—compatible almost complex structure J, we have F • F1 > 0 by the posi- 
tivity of intersection. This fact, together with Lemma 3.4(3), leads to the following 
contradiction 

-1 = F' - F' = F • F' + (e • F)e • F' > 0. 

The lemma is proved. 
We are ready to prove Theorem B. In fact, we will prove the following more 

general result. 

THEOREM B'. Let M be a rational or irrational ruled four—manifold. Suppose e 
is a class with square at least — 1, and in the case that e has square one, we further 
assume that e is a primitive class. Then its symplectic genus is non-negative and there 
is an algorithm to calculate its symplectic genus. Furthermore, if e -e > 77(e) — 1, then 
e is represented by a connected symplectic surface, and therefore its minimal genus 
coincides with its symplectic genus. 

Proof. When M is minimal, M is either CP2,S2 x 52 or an 52-bundle over a 
Riemann surface. The minimal genus problem for these manifolds has been completely 
solved in [LiL3-4]. 

When M is non-minimal, with a choice of a standard decomposition and a stan- 
dard basis, we can define reduced classes. Suppose e is a class satisfying the conditions 
of Theorem B\ By Lemma 3.4, under an algorithm, e can be transformed to a reduced 
class e or a class e' which can be represented by a symplectic sphere. 

Since e • e = e • e, and 77(e) = 77(e) by Lemma 3.2(4), we see that e satisfies the 
conditions of Proposition 3.5 and Lemma 3.6(1). By Lemma 3.4(4), the symplectic 
genus of e can be calculated with a simple formula. And by Lemma 3.6(1), the 
symplectic genus of e is non-negative. Finally, by Proposition 3.5, e is represented by 
a connected symplectic surface. The proof of Theorem B' is complete. 

THEOREM A. Let M be a smooth, closed oriented 4-manifold with non-empty 
symplectic cone and &+(M) = 1. Then the symplectic genus of any class of positive 
square is non-negative, and it coincides with the minimal genus for any sufficiently 
large multiple of such a class. 

Proof. In the rational and irrational ruled cases, by Theorem B', every class with 
positive square has positive symplectic genus. If M is neither rational nor irrational 
ruled, we examine the minimal case first.  Given a class e with positive square and 
a symplectic form a;, by the light cone lemma, either UJ • e > 0 or -u • e > 0.  Let 
us assume that we are in the first situation.  By a result in [Liu], K{u) • u > 0 if 
K is the canonical class of a symplectic form u.   Then, by the light cone lemma, 
K(u) • e > 0. Thus it follows directly from inequality (3.2) that the symplectic genus 
of e is positive. For the non-minimal case, we claim that one can find K 6 lCe such 
that iiT-e>0ife-e>0.  The positivity of 77(e) then follows immediately from it. 

    2 
Suppose M = N#nCP   is the (unique) minimal reduction of M. Let Ei,...,En be 
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the generators of H2 of the n CP . Write e = em — riEi — ... — rnEn, where em 

is the pull back of a class in H2(N\ Z) also denoted by em. Pick a symplectic form 
(jjm on N such that ujm • em > 0. Let Km be a symplectic canonical class of u;m. 
Then, as above, we have em • Km > 0. By the blow up construction, for sufficiently 
small e, the class [u)m] - eEi - ... - eEn is realized by a symplectic form on M with 
symplectic canonical class Km + Ei + ... + En. Applying the reflections along the Ef, 
we see that [cjm] ± eEi ± ... ± eEn are realized by symplectic forms with symplectic 
canonical classes Km =F Ei T ...,:F-^n- For possibly smaller e, the pairing between e 
and [ujm] ± eEi ±... ± eEn is positive. Therefore, any symplectic canonical class of the 
form K = Krn ±Ei± ... ± En is in /Cg. Since Km • em > 0, by choosing ^ or —Ei 
appropriately, we can easily find a K € /Ce such that if • e > 0. 

The last statement of the theorem (for a class e satisfying e • E ^ 0 for any E € £) 
is a direct consequence of the following two results, together with Lemma 3.2(1). One 
result is in [LLiul] that 

CM = {e G V\0 < \e • Ej for all £ € £M }. 

The other is due to Donaldson (see [D]). It states that, for any sufficiently large integer 
iV, N[LJ] can be represented by connected symplectic submanifolds. Now suppose that 
e - E = 0 for some E G £. By the result in [LI], there exists a symplectic form u; 
such that E is represented by an u;—symplectic sphere. Blowing down that sphere, 
we obtain a new symplectic manifold Mf. There is a class e' in M' which is pulled 
back to e. It is easy to see that ra(Ze') > ra(Ze) and rj^e') = rj(le) for any integer /. 
If e' • E' ^ 0 for any E' G £M', then ^(Ze') = m(le') for sufficiently large /. Therefore 
r)(le) = ^(Ze') = m(lef) > m(le). Together with Lemma 3.2(1) we arrive at the 
conclusion that rj(le) = ra(Ze). If there is still a class Ef G £M' such that e' - E' = 0, 
we can continue the process above. However, this process can only be repeated finitely 
many times. The proof of Theorem A is complete. 

We remark that, using some of the arguments in [LLiul], in fact we are able to 
get an effective estimate on how large a multiple N is allowed in the last statement of 
Theorem A. Here we just mention, in the case of a minimal manifold with b+ = 1 which 
is neither rational nor irrational ruled, it suffices to take N = 2\e-K\/e2

) where ±K are 
the only two symplectic canonical classes. In particular, when a manifold with 6+ = 1 
has a torsion symplectic canonical class, we are able to conclude that the minimal 
genus of every class e with positive square coincides with its symplectic genus (which 
is simply (e • e)/2 + 1). Such manifolds include the Enriques surface, hyperelliptic 
surfaces, any torus bundle over torus which has 6+ = 1. In addition, from the results 
in [LiL4], [Lil] and [Kr2], manifolds with the property that two genera coincide for any 
class of positive square include minimal irrational ruled manifold, rational manifold 
with b~ < 9 and the product of a circle with a fibered 3—manifold Y with bi(Y) = 1. 

We close this section with another remark. There are classes of positive square, 
which do not satisfy the conditions of Theorem B but still have the same symplectic 
genus and minimal genus. Some of them are actually represented by connected sym- 
plectic surfaces. For any positive integer a bigger than 4, consider the reduced class 

aH — 52^-7 Ei. Its square is 1 and symplectic genus (a2 — 3a)/2. If we blow up a2 — 1 
points on a smooth curve of degree a, then the proper transform is a smooth curve 
in this given class. Others, including some classes in the non-trivial S2— bundles over 
Riemann surfaces are not known to be represented by connected symplectic surfaces. 
To deal with such classes, we may need to find more constructive techniques as in 
[LiL3-4] and [Lil]. 
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4. The classes represented by spheres. In this section we determine the set 
of classes represented by spheres and the orbits of Diff(M) on this set. We start with 

THEOREM C. Let M be a rational or irrational ruled manifold and e £ H2(M) be 
a class with square at least —1. If 77(e) = 0, then PD(e) is represented by a smoothly 
embedded sphere. Furthermore, if PD(e) is represented by a smoothly embedded 
sphere, then either 77(e) = 0 or e is a non-primitive class of square zero with e = pe' 
and 77(6') = 0. 

Proof. Suppose a standard decomposition and a standard basis are given. Let us 
first deal with the case e • e > 0. Now suppose m(e) = 0. Then by Lemma 3.2(1), 
77(e) < 0. By Lemma 3.6(1), 77(e) = 0 unless e is a divisible class with square zero, 
ie. e = pef for some p > 2 and some e' with e' • e' = 0. Since 77(pe/) = 77(e) < 0, by 
Lemma 3.2(3), r)(ef) can not be positive. In this case, by Lemmas 3.2(4) and 3.4(1), 
there is a reduced primitive class e' with the same square, the same symplectic genus 
and the same symplectic minimal genus as e'. Since e' is primitive and reduced with 
e' • e' = 0 > 77(6') — 1, we can apply Proposition 3.5 to conclude that 77(6') coincides 
with m(e'). Since r)(ef) < 0, and m(e/) > 0 by definition, both of them are equal to 
zero. Therefore, in this case, e' has symplectic genus zero as well. 

Suppose the symplectic genus 77(e) is zero. Again, there is a reduced class e 
with the same square, the same divisibility, the same symplectic genus and the same 
symplectic minimal genus. Applying Proposition 3.5 to e, together with Lemma 3.2(3), 
which excludes the case when e is a divisible class with square zero, we conclude that 
m(e) = 0. Therefore, m(e) is zero as well. 

Finally we deal with the case that e • e = — 1. By Lemma 3.6(2), either e has 
positive symplectic genus, or 77(e) = 0 and e is spherically representable. When 
77(e) > 0, e is not spherically representable by a sphere due to Lemma 3.2(1). Thus, e 
is spherically representable if and only if 77(e) = 0. The proof is finished. 

For the convenience of the proof of Theorem D, we state the following corollary. 

COROLLARY 4.1. Let M be a rational or irrational ruled 4—manifold. Suppose 
e is a class with positive square or a primitive class with square zero, the following 
statements are equivalent: 

1. e is represented by a smoothly embedded sphere. 
2. 77(e) is zero. 
3. e is represented by a symplectically embedded sphere with respect to some 

symplectic form. 

Proof. The equivalence of the first two statements follows from Theorem C. The 
equivalence of last two statements follows directly from Proposition 3.5 and Lemma 
3.4(1). 

We remark that Corollary 4.1 holds for classes with square —1 and —2 as well. 
Having determined the set SVTi>-i(M)^ we are going to classify the orbits of 

Diff(M) on this set. We begin with the difficult case when M is rational. 

THEOREM 4.2. Let M be a rational manifold with a standard decomposition and 
a standard basis. Then the following classes are spherically representable: 

1. 2H, 
2. (k + l)H-kEu k>0, 
3. (k + l)H-kE1-E21 *>!, 
4. kH-kEly k>l. 
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Moreover, up to diffeomorphisms, any spherically representable class with non- 
negative squares is equivalent to one of the above. 

Proof. The first claim is well known. We just give a sketch here. H and the 
Ei are all spherically representable. Moreover, the spheres representing them can be 
chosen to be pairwisely disjoint. The first claim now follows from the elementary fact: 
if Ai and A2 are represented by two spheres which intersect at most at one point, 
then Ai -f A2 is spherically representable. 

To prove the last claim, we need the following two results. 

PROPOSITION 4.3. Up to automorphisms of H2, the set of spherically repre- 
sentable classes with non-negative square are given as above. 

LEMMA 4.4. Let u be a symplectic form with symplectic canonical class K. 
1. Any class R with positive square and represented by an UJ—symplectic sphere 

is in CK and satisfies R • (—K) > 0. 
2. Any R with square 0 and represented by an u—symplectic sphere is in CK H B 

and satisfies i? • (—K) > 0. 

Proof of Proposition 4.3. The classes in the first three cases have positive square. 
In this case, the claim was proved by Kikuchi in [Kl]. For classes of square 0, this was 
implicitly shown in [Li2]. In fact, it was shown in [Li2] that if y is a primitive class 
represented by an embedded sphere, then there exists x, zi,..., Zn-i such that 

ff2(M;Z)=(J   ))e(n-l)(-l) 

with respect to the basis < y,x,zi,.. .,zn-i >. If t is odd, let x = x — [(t — l)/2]y, 
Zi = zi for i = l,...,n — 1; if t is even, let x = x — [(£ —2)/2]y H-zi, zi = z\ +y, zi = zi 
for i — 2, ...,n — 1. Then, with respect to the new basis < y,x,zi, ...,Zn-i >, 

^(M;Z)=(5    J)©(n-1)(-1). 

Since   if2(M;Z)   has   the   same   decomposition   with   respect   to   the   basis 
< H — Ei,H, E2,..., En >, there is an automorphism of #2(M; Z) sending y to H-Ei. 
The non-primitive case follows immediately. 

Proof of Lemma 4-4- For any CJ—compatible almost complex structure J, the 
CJ—symplectic sphere representing R can be taken J—holomorphic. Moreover, for a 
generic a;—compatible almost complex structure J, any E • £K is represented by a 
smooth J—holomorphic sphere. Then R • E > 0 for any E E £K by the positivity of 
intersection of pseudo-holomorphic curves. Thus, when R has positive square, it is 
CK, and when R has square zero, it is in the CK^B. In either case, by the adjunction 
formula, R • (—K) = 2 + R • R > 2. The lemma is proved. 

We now continue the proof of Theorem 4.2. Suppose R is a class with non- 
negative square and represented by a sphere. Let R' be a class in the list of Theorem 
4.2 with the same square and the same divisibility. By Proposition 4.3, there exists 
an automorphism cf) such that 0*(.R) = R'. By Corollary 4.1, both R and R' are 
represented by symplectic spheres (possibly with respect to different symplectic forms). 
By Lemma 4.4 and Theorem 2.8, we see that 0 is realized by an orientation-preserving 
diffeomorphism. The proof of Theorem 4.2 is complete. 
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We remark that, for a rational manifold with 6~ < 9, Theorem 4.2 has been proved 
in [K] and [Lil-2]. In fact, in this case, it follows immediately from the fact that every 
automorphism is realized by an orientation-preserving diffeomorphism. Kikuchi ([K2]) 
also conjectured that Theorem 4.2 would hold in general. 

Now we are ready to prove Theorem D. 

Proof of Theorem D. When M is neither rational nor irrational ruled, M has a 

unique minimal reduction M = N#nCP . Let Ei,..., En be the generators of the CP . 
The only spherically representable classes with square at least —1 are ±Ei,..., ±En. 
They are carried to each other by trivial automorphisms. 

On a minimal irrational ruled manifold M, among all classes with square at least 
— 1, up to sign, there is a unique primitive class which is spherically representable (see 
[LiL4]). Since —Id is in D(M), again there is a unique orbit when the square and the 
divisibility are fixed. 

A minimal rational manifold is either CP2 or S2 x S2. Let H be a generator 
of H2(CP2;Z). ±H and ±2i? are the only spherically representable classes, with 
square 1 and 4 respectively (see [KM]). Since -IdE D(CP2), there is only one orbit 
when the square is fixed. Let x be the class represented by S2 x {pt} and y be the 
class represented by {pt} x 52. For each even number 21, there are four spherically 
representable classes with square 21: ±(x + ly) and ±(lx + y) (see [Ku]). Since —Id 
and the automorphism switching the two factors are in D(M), the uniqueness of the 
orbits for fixed square is obvious. 

Finally, let us consider the non-minimal manifolds. In the rational case, suppose 
M is given a minimal reduction M = CP2#nCP and a standard basis; and in the 
irrational case, suppose M is given a minimal reduction of the form 52 x E/l#(n — 
 2 

1)CP   and a standard basis. We first treat the case of negative square. 

PROPOSITION 4.5. Diff(M) has one orbit on SVH-iiM) when n = 1 and n > 3, 
in the exceptional case n = 2, Diff(M) has two orbits, one ordinary and one character- 
istic. Diff(M) has one orbit on SV/H-2{M) when n = 2 and n > 4, in the exceptional 
case n = 3, Diff(M) has two orbits, one ordinary and one characteristic. 

Proof This follows from Lemma 3.4(2) and Lemma 3.6(2). 

For an irrational ruled manifold, the only spherically representable classes with 
non-negative square are ±kT. 

From Theorem C we can list all the possible orbits with non-negative square. 
For a given square, when there are more than one orbit, they are distinguished by 
divisibility. 

5 = 0: Diff(M) has infinitely many orbits on SVHsiM), represented by k(H—Ei), 

s > 1 and odd: Diff(M) has one orbit on SVUs^M), represented by [(s + l)/2]#- 
[{s-l)l2)Eu 

s = 2 or s > 6 and even: Diff(M) has one orbit on SVHsiM) if / > 2, represented 
by[{s + 2)l2}H-{[sl2)]El-E2, 

5 = 4:  Diff(M) has one orbit on SVHsiM) if / < 1, represented by 2H; two 
orbits if I > 2, represented by 2H and 3H - 2Ei - E2. 

Theorem D is thus proved for all cases. 
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