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SINGULARITIES IN CRYSTALLINE CURVATURE FLOWS* 

BEN ANDREWS'
1
' 

Abstract. This paper discusses the behaviour of polygonal convex curves in the plane moving 
under crystalline curvature flows, in which the speed of motion of each edge is determined by a 
function of its length. The behaviour depends on the rate of growth of the speed as the length of the 
edge approaches zero: For slow growth — including the homogeneous case where speed is inversely 
proportional to a power a 6 (0,1) of the length — there are always solutions for which the enclosed 
area approaches zero while the length remains positive. If a > 1, then all solutions are asymptotic 
to homothetically contracting solutions, and if a = 1 then there is a range of different kinds of 
singularity that occur. 

1. Crystalline curvature flows. Several authors have considered crystalline 
curvature flows of polygonal curves in the plane, since their introduction in [T]. We 
refer the reader to [TCH] and [AG] for a discussion of the geometric and physical mo- 
tivation for such flows. For present purposes we consider only convex curves, although 
the flows can be defined much more generally. In this case the flows can be defined in 
the following way: Let 7 be a closed convex AT-sided polygon in the plane, and label 
the edges 70,... ,7N-I in an anticlockwise order. Let di G 51 = R/2irZ be the angle 
of the exterior normal of 7^, and let £{ be the length of ji. Moving 7 by a crystalline 
curvature flow consists of finding a continuous family of polygonal curves j(t) starting 
from 7 so that each edge keeps the same direction but moves in the outward normal 
direction with speed Vi determined by its length: 

(1) Vi(t)=gi(ei). 

Here gi is a smooth function defined on (0,00) which is monotone increasing for each 
i. This paper mostly concerns contraction flows, for which gi < 0, and the condition 
gi(z) -> —00 as z -> 0 will be assumed. The later parts of the paper are concerned 
particularly with the homogeneous case, defined by 

(2) 9i(z) = -hz-a 

where a > 0 and fi is a positive real number for each i. 
A simple geometric calculation shows that the side lengths £i(t) satisfy an au- 

tonomous system of ordinary differential equations: 

/ox d o -    g»+i(l»+i)      ,     _0i-i(Vi) 9i{h) sin(0i+1 - 0i_i) 

dt sin^+i - Qi)     sin(0i - ^_i)      sin(0i+i - Qf) sin(0i - 0;_i) 

where the index i is to be read mod N. The original geometric evolution (1) can now 
be discarded and replaced with the ODE system (3), as long as one bears in mind 
that each of the side lengths U must be non-negative, and that in order to define a 
closed curve the conditions Xli-o ^isin(0i) = X^=o ^cos(0i) = 0 must be satisfied. 
Note that these remain true under (3) if they hold initially. To this end, given a 
collection of angles 0o < #1 < * • * < #iv-i < 0iv = #0 + 27r with 0i+1 — Qi < TT, define 
£ = {(4,...,^v-i):  4>0, Ea

iIo1^sin(0i) = E^o1^cos(0i) = O}. 
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We review some results that have been obtained for these systems: A simple ODE 
and comparison argument shows that for any initial data in L there exists a smooth 
solution on some finite maximal time interval [0, T), and min^ ^(£) -» 0 as t -» T. It is 
known that there are only two possibilities as t -> T (see [GG]): Either max; £;(£) -» 0, 
so the curve shrinks to a point, or there are two parallel edges which have strictly 
positive length as t —> T while all others shrink to zero (the latter behaviour is called 
degenerate pinching). 

A necessary criterion for degenerate pinching was given in [GG] in terms of the 
growth rate of the speed gi{i) as I -> 0. It was shown there that for symmetric flows 
with N = 4 this condition is also sufficient, but it was conjectured that for larger 
N this should not be the case, and in particular in the special case of homogeneous 
flows (2) with Oi = ^, fi = 1, degenerate pinching should occur only when 0 < 
a < ctk = i+2cos(ir/k)' This is suggested by the local stability of the homothetically 
shrinking regular 2A>gon solution of the flow. This conjecture is disproved in Section 
4 of this paper, where it is shown that every crystalline flow which satisfies the growth 
condition of [GG] exhibits degenerate pinching, if there is a pair of edges which are 
parallel (i.e. dj = Oi + TT for some i,j). 

The growth condition from [GG] implies that the homogeneous flows (2) with 
a > 1 do not admit degenerate pinching. Section 6 of this paper provides a stronger 
statement about the asymptotic behaviour for flows with a > 1: The shrinking curve 
in fact has a well-defined limiting shape, a curve which evolves by homothetically 
contracting to some centre. The corresponding result for a = 1 is claimed in [S2], 
but in fact the situation is much more complicated in that case, and singularities of 
various kinds occur — this is discussed in detail in Section 7, where a fairly complete 
description of the asymptotic behaviour is given. In particular, for symmetric flows 
there are two possibilities: Either there exists a symmetric homothetically shrinking 
solution, in which case the results of [SI] imply that all other convex solutions have 
this as asymptotic shape as they contract to points (except in the parallelogram case 
N = 4, where every solution evolves homothetically), or there is no such homothetic 
solution, in which case all solutions contract to points while their isoperimetric ratio 
approaches infinity. In the latter case the minimum edge length £ satisfies either 
£ - y/(T-t)/\log(T -t)\ or £ ~ (T - £)7 for some 7 G (1/2,1). A simple criterion 
distinguishes between these cases and determines the asymptotics of the singularity. 
For non-symmetric flows the situation is more complicated, and some borderline cases 
are left open. An example shows that these borderline cases include examples where 
all solutions converge to homothetically shrinking solutions, as well as examples with 
a variety of other singularities. 

2. Preliminary results. Given a collection of angles 0 = (#0, • • • ,0w-i) with 
0i < 0i+i < Oi + TT for each i, and any iV-tuple / = (/o,..., /w-i), denote by £(£) = 
(4(i), • • -JN-IU)) the N-tuple defined by 

(4)        £iW =   .    /«+* + *-i * sin(^1 " !M 
sin(0;+i - Oi)     sm(0i - Oi-i)     sin(0i+i - Oi) sin(0i - Oi-i)' 

This is linear in the components of £, and in particular the variation in £{(£) induced 
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by a variation in / is given by 

The reason for the notation comes from the following special case: The support func- 
tion of an admissible curve is the iV-tuple s defined by taking si to be the perpendic- 
ular distance in the outward normal direction of the ith edge from the origin. Then 
ii{3)=£i. 

It is immediately clear from the definition of the support function that the en- 
closed area A of the curve has the expression 

iV-l 

(6) A = - £ aili. 
Z  i=0 

If fii and 0,2 are two regions in the plane bounded by admissible convex curves, 
with support functions s^ and s^ respectively, the Minkowski sum is given by Hi + 
0,2 = {x + y : x € Hi, y G O2}. This is again a convex region with boundary an 
admissible curve, and the support function is given by s^ + s^. 

It follows that the area A behaves as a quadratic function under Minkowski ad- 
dition of admissible sets, and the mixed volumes of Oi and f^ are defined as the 
coefficients of this quadratic function: 

v(ni,n2) = ~A(n1+tn2)|<=0. 

This can be expressed in terms of the support function as 

(7) v(4
(i),i(a))=i;-i1)^Cft(a))- 

i 

In particular V(fi,fi) = 2A(0), and V(0,B) is the total length of the edges of the 
boundary curve of O if B is the polygonal curve with the same set of edge directions 
with si = 1 for every i (equivalently, JB is excribed on the unit circle). It is also 
convenient to define 

(8) E(ii) = Y^ei = v(n,B). 
i 

V(fii,fi2) is clearly independent of the order of the arguments. This implies a 
useful summation formula: 

(9) £PA(4) = X>^£)- 
i i 

The Brunn-Minkowski theorem states that the square root of the enclosed area 
A is a concave function under Minkowski addition: 

(10) A(ni + fi2)1/2 > AiO^2 + A(ft2)1/2, 

and equality holds for convex Oi and ^2 if and only if f^ is a scaled translate of Oi. 
In the special situation of Minkowksi addition of admissible regions, this amounts to 
the inequality 

(ii) v&DZ^jrf- 
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for any function /. Furthermore, if equality holds in (11), then equality holds in 
(10) with 5(^1) = 5 and 5(172) = 1 + ejf, for e sufficiently small. Therefore fa — 
Csi + AsinOi + BcosOi for some A, B and C, since fii and ^2 are scaled translates. 
Equivalently, equality holds if and only if ti{£) = C£i. 

The support function is particularly convenient in working with the evolution 
equation (1), since this can be written as the ODE system 

(1') ^=9i(ii(M))- 

A comparison principle applies for solutions of Eq. (!'): If s^(t) and s^(t) are 
two solutions with s^ '(0) > s\ '(0) for every i, then s\ '(t) > s\ (t) for every i and 
every t > 0 in the common interval of existence. 

It follows from (!') that the rate of change of A under Eq. (1) is given by 

(12) ^ = I>*(4)- 

(13) 4n&i) = 5>wa)- 

Also, if X is any fixed function, then 

d_ 
dt 

The later sections of this paper will be concerned with the situation where there 
are a pair of parallel directions, (labelled 0 and k for convenience), with #0 = 0 and 
Qk = TT. In this situation it is convenient to make the following definition: 

- k-l N-l 

(14)        w = v(nj) = -J2ti\s™0i\ = ^2iiSinei = - Yl ^sin^ 
i i=l i=k+l 

where / is the degenerate curve with £0 = £k = 1 and £{ = 0 for i ^ 0, k. Geometrically, 
w represents the width of fi in the direction perpendicular to the edges 0 and fc. The 
variation formula (13) gives a simple evolution equation for w under (1): 

(15) ^ = <7o(4) + <?fc(4). 

It is also convenient to define L = (£0 + ^/c)/2. An alternative expression for A is 
the following, which involves only the lengths £ and not the support function 5: 

(16) A = Lw+^    ^    liij siniOj - OJ + |     ^T     iitj sin(^ - ^). 
0<i<j<k k<i<j<N 

The following estimates will be useful in the case where L is large compared to w: 
The expression (14) for w implies that 

(17) liKCw 

for i^Q,k. Then the expression (16) for A implies that 

(18) \L - A/w\ < Cw 

and the definition (8) of E implies 

(19) E - Cw < L < E. 
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The identity 

(20) 0 = ^ii cosOi = £o - 4 + ]r li cosOi 
i i^0,k 

implies that 

(21) \£o -L\< Cw,        |4 -L\< Cw. 

A simple version of the maximum principle applies for systems of the type (1): 

PROPOSITION 2.1. Suppose £ : {0,..., N - 1} x [0, T) -* E satisfies an equation 
of the form 

dfi(t) 
dt =9i(m) 

where gi is locally Lipschitz in each argument, and #i(<£) < 0 whenever fa = maxj fyj — 
0. // /i(0) < 0 for every i, then fi{t) < 0 for every i and every t G [0,T). 

3. A gradient estimate. The main result of this section is a gradient estimate 
for solutions of crystalline curvature flows. This result does not require that the flow 
be a contraction flow — the estimate applies for any solution of a flow of the form (1) 
with gi non-decreasing for each i. 

DEFINITION 3.1. If ipi € E for i = 0,..., N - 1, we denote by <p the Lipschitz 
function on S1 defined by 

m = ^sin^-^ + ^sin^-g^        for Qt < £ < ^ 
sin(c/i+i - Vi) 

The geometric content of this definition is indicated by the following: If Y is an 
admissible convex polygon with support function 5, then 5 satisfies 

s{6) = supjzcosfl + ysin0 :  (x,y) G F}. 

The main estimate of this section is the following surprising gradient bound for 
the extension of the speed function: 

PROPOSITION 3.2. Let £ : [0,T) -> C be a solution of Eq. (3). Then for t G [0,T) 

max{s(M)2 +MM)2} < max(   max   {^^,)2})m^{^,0)2 +^(M)2}1 • 

Here the derivative go is to be interpreted as multi-valued at the points 6i, taking 
all values between the left and right-hand derivatives. The result is a direct generali- 
sation of an estimate proved for curvature flows of smooth curves in [A3]. 

Proof. It suffices to prove g(6,t)2 + ge{0^t)2 is non-increasing in t at t = to 
whenever g{0,to)2 +ge(0,tQ)2 = max0{<K0,£o)2 + <70(Mo)2} > max^OMo)2}. First 
observe the following: 

LEMMA 3.3. For any <p : {0,..., N - 1} ->► E, 

m>+MO?=yf+yf+i:yf+ic;f+i"gi),   e, < e < 9i+1 
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The Lemma follows by a direct calculation from the definition of (p. It follows 
that 

Suppose this maximum is achieved for some value of z, and 

V sin(0i+i - 0i) )       ees1 

In particular this implies that gi+i(t) — gi(t)cos(9i+i — 6i) ^ 0, and similarly 
gi(t) - gi+i(t) cos(9i+1 - ^) ^ 0 since 

/^2 + f9i+i(t)-gi(t) cos(9i+1 - ^)\ 2
= 2 + /gift)- gj+ift) cos(gi+i - ^)\ 2 

LEMMA 3.4. The quantities gi+i(t) —gi(t) cos^+i —0i) and ti(g(t)) do not have 
opposite signs, and the quantities gi(t) — gi+i(t) cos(^+i — 0i) and £i+i(g(t)) do not 
have opposite signs. 

Proof. By maximality, 

„ {A2 ,  ^t+ift) - 9i(t) cos(6i+1 - gj) ^ 2^        2     ^-ift) - gift) cos(fli - 0i-i)\ 2 

^W   + V sin(^+1 -ft) J " *W   + V sin(ft - 9^) ) 

and therefore 

gi+ift) - gift) cos((9i+i - ft)        gj-ift) - gift) cos(ft - ft-i) 
sin(ft+i - ft) ~ sin(ft - ft_i) 

It follows that 

p M = gi+lft) - gift) COS(ft+i - ft)       gj-lft) - gift) cos(ft - ft-i) 
m sin(ft+1-ft) ^ si^ft-ft-x) 

is either zero or has the same sign as gi+ift) — gift) cos(ft+i — ft). Similarly, 

/jv2 +  /gift) "gi+ift) COs(ft+i-ft)\ ^ 2 + /gi+2(0-gi+lft) COS(ft+2 -ft+l) f 
\ sin(ft+i-ft) /~ \ sin(ft+2-ft+i) / 

so that 

p       (   v        gi+2ft) ~ gi+lft) COs(ft+2 - ft+l)        gift) - gi+lft) COS(ft+i - ft) 
"+1 {9) sin(ft+2 - ft+1) + sin(ft+1 - ft) 

either zero or has the same sign as gift) - gi+ift) cos(ft+i — ft). D 

LEMMA 3.5. The signs of the two quantities gi+ift) — gift)cos(ft+i — ft) and 
ii(t) — gi+ift) cos(ft+i - ft) are opposite. 

Proof. The function g(ft£) on the interval [ft,ft+i] satisfies 

- m *\      "^W cos(^+i -0)+ gi+i (0 cos((9 - ft) 
sin(ft+i - Vi) 

is 

^ 



and therefore 

and 
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go(Vi,t) = — 

ge{0i^i,t) = - 

sin(i9i+i - Oi) 

gi(t) - gi+i(t) cos{0i+i - Oi) 
sin((9i+i - Oi) 

If the Lemma does not hold, then ge changes sign on the interval [0i,0i+i], and there- 
fore there exists 0 G (0i,02+i) such that ge{9,t) = 0. Then 

§(0, t)2 = 5(0, t)2 + £,(0, *)2 = max{5(0, t)2 + &(0, f)2}, 

by Lemma 3.3. This contradicts the hypotheses of Proposition 3.2. D 
The time derivative of g2 4- QQ at a maximum point may be computed as follows: 

d (9i(t)2 -I- gi+i(t)2 - 2gi(t)gi+1(t) cos(0i+i - 0^ 

dt V sm2(fli+i-«i) 
_ 2g,

i(t)£i{g(t)) (g^t) - gi+1(t) cos{9i+1 - 0*) 
sin(0;+i - 0i) V sin(0i+i - Oi) 

2g,
i+1(t)£i+1(g(t)) f gi+1(t) - gi{t)cos{0i+1 - Oi) + 

sin(0i+i - Oi)     V sin(0i+i - Oi) 

Now observe that g^t) and ^+1(£) are non-negative since gi is non-decreasing. Lem- 
mas 3.4 and 3.5 imply that £i(g(t)) and gi(t) — gi+i(t) cos(0i_l_i — 0^) have opposite 
signs, and that ti+i(g{t)) and gi+i{t) — gi(t) cos(0i+i -Oi) have opposite signs. There- 
fore the time derivative is non-positive, and Proposition 3.2 follows by an application 
of the maximum principle (Proposition 2.1). □ 

4. Degenerate pinching. This section addresses the phenomenon of degenerate 
pinching in crystalline curvature flows. The speed functions gi in Equation (3) are 
assumed to be negative, locally Lipschitz continuous, and increasing on (0, oo) for each 
i, with lim^-^o gi(z) — —oo for all i. It was shown in [GG] that if 

/   9i(* 
Jo 

(22) /   gi(z)dz = -<x> 
Jo 

for every z, then degenerate pinching does not occur. The main result of this section 
is almost converse to that statement: 

PROPOSITION 4.1.  Suppose that there exists a pair of parallel edges, so that OQ = 0 
and 0^ = TT, and assume the growth restriction 

/   9i(* 
Jo 

(23) /   gi(z)dz>-oo 
Jo 

except possibly for i = 0, k.  Then for any LQ > 0 there exists a constant Wi(Lo,0,£) 
such that for any (^ 6 C with L = LQ and w < Wi, the solution of (3) with initial 
data IQ has a degenerate pinching singularity at the final time T: Yrnit^TZi(t) — 0 
for i T^ 0, k, while lim^T to{t) = lim^T 4(£) > 0. 

Proof A first step is to prove the following more restricted result: 
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PROPOSITION 4.2. Under the conditions of Proposition 4-1, there exists for any 
LQ > 0 a constant Wo(Lo,0,g) such that for any CQ G £ with L = LQ and w < WQ 

and satisfying 

sup {m2+geio)2} = sup m\ 
ees1 ees1 

the solution of (3) with initial data (^ has a degenerate pinching singularity with 
Yimt-+T£o{t) = limt->Th(t) > Lo/2 while limt^TU(t) = 0 for i ^ 0,k. 

Proof. By Proposition 3.2, for any t £ [0, T) 

sup {g(0,t)2 +go(0,t)2} =      sup      g(0,t')2. 
ees1 0es1

1o<t,<t 

Given any t > 0 for which L > Lo/4, let t € [0, t] such that 

supg(e,i)2=      sup      g(0,t!)2. 
ees1 ees1

1o<t,<t 

In particular at t = F, 

(24) sup{s(»)2+^(fl)2}=8upp(fl)2. 
6'651 ^GS1 

LEMMA 4.3. There exists W2 > 0 and C2, C3 > 0 depending only on LQ, g and 
0 such that for any £EC satisfying L(£) > LQ/S, W(£) < W2 and (24), 

max|^(^)| < C2 max \gj(C3w(£))\. 

Proof. First note that \go{£o)\ < \go(Lo/4)\ and |^(4)| < |^(-Lo/4)| since 4 > 
L — Cw > I/o/4 and £k > I/o/4 for W2 small enough. Let 0 be such that sup^ \g(0)\ = 
\g(0)\. Then \g(0)\ > max^ \gi{£i)\ > max^o.fc \gi(Cw)l since 

y^.-^n u £i I sin 0j I 
4 <     ^'V', < Cw < CW2 

I sin 0i I 

for i y£Q,k. 
The identity (24) implies 

(25) |0(0)|>|5(0)|cos(0-0) 

for all 0. The cases 0 = 0, TT imply that 

(26) I cos0-| < max{|ffo(Lo/4)l MLo/4)|} 
max^o.fcMCWb)! 

Now choose 1^2 sufficiently small that 

max{|^o(l/4)M^(l/4)|} 

maxi^o,* \gi(CW2)\ 
<sin (-mm{0U7r - 0k-u0k+1 - n^n - 0N-i} j . 

Suppose that 0 G (0, TT) (the other possibility can be treated similarly). The estimate 
(26) yields 

\0 - *r/2| < o min {^i' ^ - ^-1 > ^+1 - ^ 27r " ^-1} ' 
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Then (25) with d = 0i,l<i<k-l yields 

lft(<t)l>l9(«)|cos(«i-fl) 

>|^)|sin(^-(^-7r/2)) 

> \g(0) | sin ( - min {0i, TT - ^_i, 0k+1 - TT, 27r - ^-i} J 

for 1 < i < fe — 1. But 1113X1=1,...^-i £i > Cw, since ^^^sin^ = w. Therefore 
\g(8\ < Cmax^o,A; \9i(Cw)\. Since |^i(^)| < \g{0)\ for every i, the proof of the Lemma 
is complete. D 

COROLLARY 4.4. Ift>0 is such that L > Lo/3, then (for Wo sufficiently small) 

max\gi(£i(t))\ < C2 max \gj(C3w(t))\. 

Proof. By the choice of f, 

max\gi(£i(t))\ < max|^(^(f))| < C2 max |ft(C3^(F))| < C2 max \9j(Csw(t))\ 

where the fact that w(t) is decreasing in i was used to obtain the last inequality. D 
The proof of Proposition 4.2 can now be completed: Equation (15) gives 

^ = flbtfb) + 9k{tk) < -|flo(2Lo) + fljfe(2Lo)| 

since 4 < i + C^ < 2Lo for Wo sufficiently small (by (21)), and 

dE_ 
dt (27) ^ = Y,Ci9i(Zi) 

by (13), where 

_ f ,-v _ sin(<9i - ^-1) + sin(<9i+i - gj) - sin(<9i+i - ^-1) 
Ci     tiUJ - sin(^ _ ^ sin(^+i _ ^j 

For any £ such that L > Lo/4, Corollary 4.4 implies 

dE 
-77 > -co\go{Lo/4:)\ - ck\gk(Lo/4:)\ - C max ^(Caw)! > -C max |^(C3^)| 
Civ J^P\J,K J^yJjK 

if Wo is small enough, w is decreasing in time, so a new time variable may be defined 
by r = — w(t). Then 

dE 
dr "    w j^olk ' 

and 
/T rWo/C3 

\gj(-C3s)\ds >Lo- CWQ - C max / Ms)|ds, 
-vyo ^0'/c Jo 

as long as L > Lo/3 (by (19)). In particular, for Wo sufficiently small 

L(t) > E{t) - Cw(t) > Lo/2 

for all t such that r < 0.   But this implies that L(£) > Lo/2 while w(t) -> 0, so 
degenerate pinching occurs.  Note also that E is nonincreasing, and \£o — E\ < Cw 

— >-C max |#(-C3T)|, 
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and \£k — E\ < Cw, so the limits of ^{t) and £&(£) exist as t —> T and are at least 
Lo/2. □ 

It has not yet been demonstrated that the hypotheses of Proposition 4.2 can be 
achieved. However explicit examples of initial data satisfying these conditions will be 
provided in the course of the proof of Proposition 4.1, which follows. 

If Proposition 4.1 does not hold, then for any W > 0 there exists some initial 
condition £ 6 C with w < W and L = LQ, for which degenerate pinching does not 
occur. 

It will be shown that there is some time t* E [0,T) such that the conditions of 
Proposition 4.2 are satisfied (with a smaller LQ). First, a bound on the speed may be 
obtained at some positive time by constructing a barrier (^Q, ..., ^v_i).' Choose 

9i(Q = -asinOi,    i = 1,..., k - 1; 

Y, ii\sm0i\ = Y iilsmOil =w. 
i^0,k i^:0,k 

Here a and /? are determined by w, since Yji=i 9i 1(—asinfljsin^   =  w and 
— Yji=k+i g^iPsinQ^sinQi = w'   ^n each 0f these equations the left-hand side is 
monotone decreasing, defined and positive for a or ft sufficiently large respectively, 
and approaches zero as a or ft approaches infinity. Thus a and (3 are uniquely deter- 
mined for w sufficiently small, and so £[ is determined for each i ^ 0, k. Also, £$ and 
C'k are determined by the identity (20). In particular, £f

Q and i^ are positive provided A 
el iff 

is sufficiently small. One can then choose   Q
2 

k > LQ — Cw and obtain a curve which 
can be placed inside our original curve. Denote by ^(t) the solution of Eq. (3) with 
this initial data. 

LEMMA 4.5. If w is sufficiently small, then 

sup{~g>(9)2 + 9'e(6f}=Sup~g'(6f, 
ees1 ees1 

where gf is defined by Definition 3.1 from g^). 

Proof. A direct computation gives 

6i < 9 < 8k-i; 

Ok-i <0<7r; 

TT < 0 < 0k+l] 

0k+l  <0< 0N-1] 

0N-1 < 0 < 27r. 

9f(0) = { 

— LX OillL 
sin 0i j 

-a 81110, 

a sin 0 4- 
gk(£'k)sin(0-0k- -i) 

sin^-i 5 

psm0- 
^(^^sin^+i - 0) 

sin 0k+1 
) 

13 sin 0, 

I3sm0- 
go(£'o)sm(0-0N- -l) 

sm0N-i 
5 
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This is minus the support function of a convex figure (with at most six sides), provided 

M^lCQSfl!        |^(ffc)| COSflfe-j 
a>maxs , 

smvi smVk-i 

and 
\gk(tk)\ cos ek+1 ^maxl-1^^1^08^-1,- 

sin(9/c+i 

If w approches zero, then a and /? approach infinity, while £f
0 and £f

k approach 1, 
and so these conditions can be realized. Thus for w sufficiently small (compare the 
comments after Definition 3.1), 

sup^^+^Wn^supf^)2}. 
9GS1 9ZS1 

D 
Proposition 4.2 applies to show that ^(t) evolves to a degenerate pinching with 

^(i) and £$(1) approaching a limit no less than Lo/2 as w' approaches zero. Consider 
the time to at which i//(£) = /w/2. 

From the proof of Proposition 4.2 we have to > Cw (from Equation (15)) and 
rw 

E{£!{to)) > E^(0)) - Cmax /     \gj(C3s)\ds > LQ - CW - Cwmax \gj(C^w)\. 
^O.fc Jw/2 izt0>k 

Then by the comparison principle, 

E{£(to)) > E(i!(to)) >Lo-Cw max \gj(C4w)\ > E{£{0)) - Cw max \gAC^w)\. 

On the other hand 

E(£{to)) - £(£(0)) = [ 0 YtCigiiiWds, 
Jo 

so it follows that there exists £i E [(Mo] such that 

y>l<7(^i))l < Cmax|(7i(C4ii;)|. 
i 

By Lemma 3.3 it follows that 

sup {ff(0,ti)2+&(0,ti)2} <Cmax|^(C4it;)|. 
eeSi i^0,k 

Now consider the time £2 at which L reaches Lo/2. Such a time exists since 
degenerate pinching is assumed not to occur, and £2 > £0 in view of the estimates 
above on E(£(to)). However, t2 < Cw using the evolution equation (15) for w. On 
the time interval [0,^], 

cw - Lo/2 > E(£(t2)) - £(£(0)) = f * YsCi9^i{t))dt 
Jo     i 

and therefore for some £3 G (£07 £2)? 

CLQ 
m3x.\gi{lifo))\ > 

w 
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LEMMA 4.6. For any e > 0 there is a constant Ws(e) such that for any z < Ws, 

Proof. Otherwise, there exists a sequence Zj -» 0 such that 

Zj P}ax Igiizj)] >£. 

Without loss of generality, Zk+i  < Zk/2.   Then on the interval z G [zk/2,Zk] the 
monotonicity of gi implies 

Therefore 

max \gi(z)\> max \gi(zk)\. 

rZl A fZj e 
max /       \gi(z)\dz > >    /      - dz > me log 2 

Taking m -> oo contradicts the growth restriction (23). D 
It follows that CLQ/W is larger than Cmax^o,*; \gi(C4w)\ for it; sufficiently small, 

and so by Proposition 3.2, 

sup {g(0,t2)
2 +g0(9,t2)

2} = sup g(0,t2)
2. 

ees1 ees1 

Also, L{l(t2)) > LQ/2 and w(£(t2)) < WQ. Therefore the conditions of Proposition 
4.2 are satisfied for the initial condition ifo) provided WQ < Wi(Lo/2). Proposition 
4.2 implies that a degenerate pinching singularity occurs at the final time. This is a 
contradiction which completes the proof. □ 

5. Entropy. In this section the entropy associated with the homogeneous crys- 
talline flow (2) is defined and proved to be nondecreasing in time. 

For the flow (2) the associated entropy Z : £ —> M is defined by 
i 

SN-l \  i-<* 

(rm      ifQ=i- 
In the case a = 1 these functionals were defined in [S2]. For other a the above 

definitions are natural generalisations of those that work in the smooth case (see [Al] 
and [A3]). The basic result concerning entropy is the following: 

PROPOSITION 5.1. For any solution of Eq. (2), 

with equality only for homothetically contracting solutions. 

Proof By Equation (12), 
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and (for a ^ 1) 

dt^-   *   Lit*1* 

Therefore 

by the Brunn-Minkowksi theorem (inequality (11)), and equality holds only if 

(28) ti {£) = cti 

for some c > 0.  But a curve satisfying (28) evolves homothetically under (3), with 
solution given explicitly by li{t) = (1 - c(l 4- a)t)l:^4(0). D 

6. The homogeneous case a > 1. In the case a > 1 of Eq. (2) considerations of 
entropy allow a complete description of the asymptotic behaviour of convex solutions 
of crystalline curvature flows: These always shrink to points while asymptotically 
approaching a homothetically shrinking solution. 

6.1 Isoperimetric ratio bound. Let £(t) be a solution of Eq. (2). Then the 
entropy ratio ZA~1//2 is bounded below by its initial value. This provides an isoperi- 
metric ratio bound, since 

and so £min > CA1/2. Since A > C£min£mg,x by (16), this implies £m2ilc < C£min. It 
follows that the solution continues to exist and remains smooth while the maximum 
edge length remains positive, and therefore the solution converges to a point p G M2. 

It follows that 
^ — _ V f.P1-" 
dt "    ^hti 

--CA1^ 

and therefore A ~ (T - t)^ and £i(t) ~ (T - t)^ for every i. 

6.2 Convergence. Now consider any sequence of times tk approaching the final 
time T at which the solution contracts to p G E2. Then consider the rescaled solutions 
£w(t) defined by £\k\t) = (T - t/,)"^^^ + t(T - tk)). For each jfe this defines a 

solution of Eq. (2) for t £ [0,1), with Ci(l -1)^ < £\k)(t) < C2O. - t)^, d and 
C2 independent of fc. 

It follows that there is a subsequence on which these rescaled solutions converge 
(uniformly on compact subintervals) to a limit ^(t) which is again a solution. Propo- 
sition 3.1 guarantees that ZA"1/2 is non-decreasing on the limit ^(t). It is in fact 
constant, for the following reason: If not, then ZA~1/2\eoo,l/2) > ZA~1/2\ioo(0) + e 

for some e > 0. But for k large, Iz^-1^^ _ ZA"1/2^ J < f for 0 < t < 1/2. 
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Therefore on the sequence of times tk, ZA"1!2 is at most ZA~1/2\ioo(0) + |, and on 

the sequence tk + l/2(r - tk), ZA'1/2 is at least ZA-1/2^.^ + ^.  But both of 

these sequences approach T as k -> oo, so i^"1/2 cannot be nondecreasing. This 
contradicts Proposition 6.1. 

It follows from the second part of Proposition 5.1 that the limit solution is ho- 
mothetically contracting. Finally, subsequential convergence can be improved to give 
uniform convergence of the rescaled solutions to the homothetic limit (this uses the 
Lojasiewicz inequality, via an adaptation of the argument in [A2]). 

In the case of a symmetric flow, there is a unique homothetic solution, which 
attracts all other convex solutions. This follows from the result just proved (which 
gives existence of a symmetric homothetic solution), together with a slight modification 
of the argument in [SI]. 

7. The homogeneous case a = 1. This last section deals with the homoge- 
neous case a = 1, which turns out to allow a remarkable range of different singularity 
behaviour. The main result is the following: 

PROPOSITION 7.1.  Under equation (2) with a = 1: 
(1) // there are no parallel pairs of edges, or if every pair of parallel edges (i.e. 

i^j such that 6j = 9i -f TT) satisfies fi -f fj < Ylm^ij f™>> ^en for any zm^a^ data in 
L, the solution is asymptotic to a homothetically contracting solution. In particular, 
if the flow is symmetric (i.e. di+k = Oi+ir and fi+k = fi for every i) then there exists 
a unique homothetically contracting solution, and all solutions are asymptotic to this. 
In this case 

min£m(£) ~ max£m(£) ~ \/T — t 
m 7n 

(2) // there exist edges i,j such that 8j = 0i + TT, and fi -I- fj > Ylm^u f™>> ^en 

there exist solutions for which the isoperimetric ratio becomes unbounded as the final 
time is approached, in such a way that 

u+fj 1_ fi+fj 
mm£m(t) - (T-^Sr^,        maxem(t) ~ (T-t)    Er*- . 

m m 

If the flow is symmetric then this occurs for all solutions. 
(3) // the flow is symmetric with N > 4 and there is a pair of parallel edges i,j 

such that fi + fj = J2m^ij f™>> then for every solution the isoperimetric ratio becomes 
unbounded as t —> T, in such a way that 

T-t 
mm£m(t) ~ W|log(T_t)|,        maxUO - >/(r-t)|k>g(r-i)|. 

// the flow is symmetric with N = 4 and fi = f2, then every solution is homothetically 
contracting. 

This result does not cover the case of non-symmetric flows in the critical case 
where there is a pair of parallel edges carrying half the total of the weights fj. 
Examples of this kind will be provided below where all solutions are aymptotic to 
homothetic solutions, as well as others showing divergent behaviour of the same 
kind as part (3) of the Proposition, and others showing divergent behaviour where 
^min ~ (T — i)1/2/|log(T — t)]1/4. It seems probable that for any positive integer k 
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there should be examples where £min ~ (T-t)1/2/| log^-t)!1/2*0, but the criteria dis- 
tinguishing these possibilities in terms of the weights fj and the angles Oj are probably 
very complicated. 

Proof. In the case where there are no parallel edges, there is an automatic isoperi- 
metric ratio bound, so the argument of Section 6 shows that the solution is asymptotic 
to a homothetic solution. For symmetric flows it suffices to start with symmetric initial 
data and deduce convergence to a symmetric homothetic solution, since the globally 
attracting nature of symmetric homothetic solutions was established in [SI]. 

The proof of part (1) of the Proposition can now be completed by establishing 
an isoperimetric ratio bound under the assumption that every pair of parallel edges 
carries less than half the total of the weights fj. Take any such pair of parallel edges, 
and parametrise such that these are in directions #0 = 0 and 0k = ir. For simplicity 
one can also reparametrise time to make ^2i fi — \. 

Define w = J2^ ^sin0i = EiLfc+i ^1 sin6M- Then observe that |4 - A/w\ < 
Cw and \£k — A/w\ < Cw, so that 

k-l N-l 

zA-1'2 = A-1'2efoef
k
k]le{i JJ e} 

i=l j=zk+l 

<A-^2(^\ 
w } /    2=1 i=fc+l 

The two products can be estimated as follows: 

Jfc-l (k-\ \ 

2=1 V 2=1 

fc-1 

= n h w E£i fi 

and similarly 

iV-l iV-l     / . \ fi 

It follows that 
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where 

In particular, since the entropy ratio is bounded below, a lower bound on r = w2/A 
follows (the exponent Y^i^kf* " fo — fk is positive by hypothesis). Part (1) of 
Proposition 7.1 now follows as in Section 6. 

The proof of part (2) of Proposition 7.1 proceeds as follows: The same argument 
as above gives an upper bound for w2/A in terms of the entropy ratio, and in particular 
solutions with large entropy must have small w2/A as long as they exist. The following 
initial data will give arbitrarily large values for the entropy ratio: Take 

to + 4 _ 1 

2 ' 
ft ■y = asinfli,    i = 1,..., k — 1; 

f29) f 
V    ) f = -PwiOu    i = * + !,...,iV-1; 

k-1 N-l 

y^ ^ sin 6i = —  ^2 ti s^n Oi = ^• 
2=1 2=^+1 

Thus a = A-1 X)i=i /i and P = ^~1 Si=jfe+i /*• ^o and 4 are determined by these 
conditions using the identity (20). With this choice, \A — A| < CA2, \£o - 1| < CA, 
14 -1| <CAand 

^yl"1/2 > dX^^kfi-fo-f^i _ CA). 

Therefore the entropy ratio can be made arbitrarily large by taking A small, and w2/A 
can be made to remain as small as desired as long as the solution exists, by choosing 
this initial data with A small. 

Now compute the evolution of A using (12): 

dt      ^^ 
i 

so that A(t) = Yi fi(T — t). Equation (15) gives the evolution of w: 

dt to     4"    "U,JKJA\ AJ-      EiMT-t)' 

for any e > 0, provided A is sufficiently small. This inequality integrates to give 

fO + fk-e 

w (t)<C(T-t)^i^ 

The exponent here is greater than 1/2 for e small. Substituting this estimate for w 
back in the evolution equation for w gives 

d log w 
dt 

< _fo±A (     1      _ C       \ 
-   Eifi \(T-t)   (T-ty-'J- 



SINGULARITIES IN CRYSTALLINE CURVATURE FLOWS 117 

for some a > 0, and therefore 

fo+fk 
w(t) <C(T-t)tt. 

This provides an example of initial conditions where the isoperimetric ratio becomes 
unbounded in the way claimed in the Proposition. 

In the case of symmetric flows, a different proof applies, and this also gives the 
result of part (3): The methods of section 6 imply that any solution either has isoperi- 
metric ratio approaching infinity, or converges to a homothetically shrinking solution 
(if there is any sequence of times approaching the final time for which the isoperimetric 
ratio remains bounded, the methods of Section 6 imply convergence to a homothet- 
ically shrinking limit). The latter possibility will be excluded by showing that there 
do not exist homothetically shrinking solutions: 

Suppose £ is a homothetically shrinking solution. Then iiSi = A/i, which means 
geometrically that the area subtended by the ith. edge is proportional to the weight 
fi. By scaling the curve, one can assume that the area subtended by the ith edge is 
equal to /;, and without loss of generality one can assume ]r\ fi = 1. The hypotheses 
of the Proposition imply /o > 1/4 in case (2) and /o = 1/4 in case (3). 

Consider the area subtended by the edges 0 and k: These are each equal to /Q. 

It follows that the perpendicular distance of edge 0 from the origin is equal to 2fo/£o, 
and the perpendicular distance of edge k from the origin is equal to 2fo/£k. Therefore 
the width w of the curve is equal to 2fo(l/£o + 1/4)- By identity (16), the total area 
satisfies 

A>Lw = f0^±^>4f0>l, 

where the last inequality is strict in case (2), and the first inequality is strict in case 
(3) unless N = 4. This contradicts the fact that the total area is equal to ^ /* = 1. 

It remains to show that the singularity is always of the type claimed. The next 
results will show that the solutions asymptotically approach curves similar to those 
defined in Equation (29). 

LEMMA 7.2. For any solution of Eq. (2), 

'<(£)+!^ 
for every i and every 0 < t < T. 

This result also holds for other flows of the form (2) with a > 0, if the last term 
is replaced by a£i/(l + a)t. 

Proof. This is true for small times. Consider the evolution equation for £i(f/£): 

U - -/• (f-\ 
so that 

± (k) - lie. (I) 
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and 

d (fX\ ff    ff . [L 11— p. I jLp l L 
dtV\e r l\e2 \e 

fi+iii+i^) fi-i(i-i(i) Mi (|) sin(^+1 - tfi-j) 

^+1 sin(^+1- ej     ^_1 sin^ -Oi-i)     % sin(^+1-^) sin(^-9^ 

If Ci(f/C) + £i/2t first reaches zero at some positive time t then 

Mf/Q > -U+il2t 

and 

ei-i(f/t)>-ei-i/2t. 

It follows that 

d(t(f\\ei\> fi+1 /f-1 

<ft V ' \^/     2ty -    2^+i sin^i+i - tfi)     2^-! sin(^ - ^-j) 

+ /isin(^+i -Sj-i) 

2«isin(<9i+1 - Oi) sin(<9i - 0^) 

2f2 2^^) 

tnW   2t2 

^ -K*a + 
2^ 

= 0. 

The Lemma follows by the maximum principle (Proposition 2.1). D 

LEMMA 7.3. For any solution of a symmetric flow of the form (2) with a = 1, 
there exists t* < T and C > 0 such that for all t* < t < T, 

wfi 

for i = 1,... ,fc — 1, and 

for i = k 4-1, •.., N — 1, while 

smfliELi/i 

w/» 
|sm0t|£jLjfe+i/i 

""     A 

-     A 

<C 
i/r 

where 

c.=    E 

A' 

/j/jsin(gj-flj) 

4 + Ciw; ^T 

+    E 
fifj sin(gj - gj) 

2 0<;<j<Jfc (Er=l /^)2 Sin ei Sin ei        2 ^<i<3<N (Er=Jfe+l ^)2 Sin ^ Sin ^ 
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Lemma 7.3 has the following nice interpretation: As the solutions contract to 
points, they become very long and thin, and their asymptotic shape at each of the 
two ends is that of a curve that evolves purely by translation. 

Proof. To deduce estimates on £i for 1 < i < k — 1, the estimates from Lemma 
7.2 are applied: First note that for t > T/2, 

_ /2 /o /isinfl2 h 
£2 sin(02 - 6>i)     £0 sin 01     ^ sin(02 - 0i) sin 61     2t' 

Rearranging this and applying the estimate for £0 and the bound £1 < Cw, one obtains 
(if necessary choosing £* sufficiently large to make w2 /A small for t > t*, and noting 
A approaches zero near the final time) 

/2    >    *    -c-w 
£2 sin 62      £1 sin 0i A' 

Next an induction argument will be given to show that 

/i+i        >      fj      _ c™ 
£j+ism0j+i ~ £jsm0j        A 

for j = 1,..., k - 2. The case j; = 1 is proved above. Suppose it holds for j = 1,..., m 
for some m < k — 2. Then Lemma 7.2 with i = m gives 

/m+i > /m /cos(flm+i -gm)      cos(0m - 0m_i) sin(6>m+i - 0m) 
^m+isini9m+1 - £m \      sin0m+i sin(<9m - 0m_i)sini9m+i 

 fm-l Sin(0m4-l — 0m) lmSin(flm+l ~ 0m) 
£m-i sm(0m - 0m_i)sin(9m+i 2tsm0m+1 

> /m /sin(gm+i - 0m-i) sin(9m - sin(gm+i - 0m) singm-i \ _cw 
~ £m\ sm0m sm(0m - 0m-i) sin0m+i /       A 

fm cw 
£msm0m        A' 

where the induction hypothesis for j = m was applied to get the second inequality, 
and the identity 

sin B sin(C - A) = sin A sin(C - B) + sin C sin(B - A) 

was used to get the last equality. This completes the induction. The same argument 
starting with % = k — 1 and decreasing shows that 

for i = 2,..., k ■ 

li 
/i-i 

_i sin#j_ 
— > 
-i 

h 
tj sin 

r1" 

1. It follows that 

~^ 

fj 
sin 0^ ^CA 

for 1 < i, j < fc — 1. A similar argument applies for k + 1 < z, j < iV — 1. The first 
two identities of the Lemma now follow from the expressions (14) for w. 
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The last two identities of the Lemma can now be deduced: Identity (16) gives 
(using the estimates already proved) 

^-A/w + CM <C{w^lA). 

Then the identity (20) gives (since fk+i = fi and Ok+i = 0* + TT) 

Ko~4| = y^ ij cos Oj 
yk-1 EK — i   £ 
r=l Jr 

k-1 

E 
2=1 

fi cos Oj     fj cos(9i + TT) 

sinOi \sm(0i + 7r)\ + o^ 

and the terms in the bracket cancel. The last two identities of Lemma 7.3 fol- 
low. □ 

In the case (2), the previous argument applies starting from the time t*. 
Finally, the proof of part (3) of the Proposition can be completed: It has been 

shown that all solutions must have isoperimetric ratio becoming unbounded as t -* T. 
Lemma 7.3 implies that for t close to T, 

1      w     „ w3      _ fw6 

and similarly for l/£k. Therefore if q = w2/A then 

dq 
dt 

= £(l>-2(/» + A>)+^ + o(£) 

-«$+<>$ 
and so (since A = ^ fi(T — t)) 

w 

2t/<Yci|iog(r-t)| 

->1 

as t -> T. Asymptotics for each of the lengths £i(t) follow from Lemma 7.3. D 
The following example illustrates that those cases omitted from Proposition 7.1 

can still be quite complicated. 
Consider the case N = 4, with 6o = 0, 0i = 0, 82 = TT and #3 = 27r - 0. The cases 

omitted from the theorem are then 9 ^ 7r/2, with fo + f2 = fi + fs- Take /o = a, 
fi = /?, /2 = 1 — a and /s = 1 — /?. The geometric constraints imply that ^ = £3 
and £2 = £0 + 2^1 cos 0, so there are two independent variables £0 and £1. These evolve 
according to the equations 

d£o      2a cos 6 1 
It £0 sin 0      £1 sin 0' 

dt 
1 a + 1-a 

sin6 \£0     £0 + 2£i cos6 

The ratio r = fe evolves according to 

2 

€1 

dr 

dt      r^sintf (1 + ^251) 
(2a-l)cos0 + 

2a cos2 0 
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This gives the following types of behaviour: If cos# = 0, then dr/dt — 0 for any 
value of r, reflecting the fact that every solution is homothetically shrinking in this 
case. If cos0 > 0, then dr/dt < 0 for large r when a > 1/2, so in this case all solutions 
converge to the homothetic solution with r = 2a cos 6/{2a — 1). However if a < 1/2, 
then dr/dt > 0 for large r, so in this case r approaches infinity as the final time is 
approached, and 4 ~ <>/(T-t)\log(T-T)\ and h - y/(T-t)/\log(T-t)\. If a = 
1/2, then dr/dt > 0 for large r (for any cos 9 ^ 0), so r approaches infinity as the final 
time is approached, and £o - y/T=i\log(T - £)|1/4 and 4 - y/T^l/\ log(T - t)]1^. 

Examples can be constructed with six edges at equal angles, such that A/w2 

approaches infinity as the final time is approached, with w ~ y/T - t/\ log(T - £)|1//6. 
It seems unlikely that a simple criterion can be found in terms of the angles 8i and 
the weights fc which distinguish these more and more extreme cases of 'slow blow-up' 
from the case where all solutions are asymptotic to homothetically shrinking solutions. 
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