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REGULAR MODELS OF CERTAIN SHIMURA VARIETIES* 

MICHAEL HARRISt AND RICHARD TAYLOR* 

0. Introduction. This paper develops a technique for studying the bad reduc- 
tion of Shimura varieties attached to twisted unitary groups. The Shimura varieties we 
consider are the precise analogues in higher dimension of the modular curves Xi (p). 
It turns out that the theory is completely analogous to the well-known theory for 
modular curves, due to Deligne and Rapoport [DR]. 

Our original purpose in investigating these special cases of bad reduction was with 
a view to extending the techniques of Taylor-Wiles [TW] to deformations of mod £ 
Galois representations of dimension > 2. The present article has been extracted from 
an unpublished manuscript, mostly written between 1996 and 1998, which largely 
realized this objective, though undoubtedly not in optimal form [HT1]. Subsequent 
developments, especially an idea of Skinner and Wiles [SW] for bypassing Ribet's 
level-lowering argument, lead us to hope that more complete results may be within 
reach. 

The Taylor-Wiles method requires information about the tame ramification at q 
of the Galois representations associated to modular forms of level Fi (q) for certain 
primes q highly congruent to 1 modulo £. The extension of this method to higher 
dimension is based on the detailed study of the singularities of the special fiber at q 
for level subgroups generalizing Ti(q). In the interim, our work on the local Langlands 
conjecture required a much more comprehensive study of bad reduction of Shimura 
varieties. The results of [HT2] apply in all levels, and yield the Galois-theoretic state- 
ments of the present paper as a special case. 

Nevertheless, we feel the present paper is of independent interest. In the first 
place, the results presented here are somewhat more precise than those of [HT2], in 
the situations to which they apply. In particular, the congruence formula for the 
[/-operator, proved in §4.2, is not stated explicitly as such in [HT2]. (A congruence 
formula in the analogue of level Fo^), valid in considerable generality, is due to T. 
Wedhorn [We2]; we treat the analogue of level Fi (q).) In the second place, our method, 
based on the Tate-Oort classification of group schemes of order p, is relatively elemen- 
tary, and is likely to apply to Shimura varieties whose geometry is not amenable to 
the sort of analysis carried out in [HT2]. 

Finally, the modular curves Xi (p) play a special role in the theory of p-adic 
modular forms, as developed by Hida and Coleman, as well as in the related work of 
Gross [Gr]. We hope the approach to bad reduction developed here will contribute to 
the extension of this theory to modular forms in higher dimension. 
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use the Tate-Oort classification for passing from level FQ to level Ti, as in [DR]. We 
also thank Gabber, Rapoport, and Zink for help in correcting sign errors in an early 
version of the manuscript, and Labesse for numerous conversations regarding base 
change. Finally, we thank Genestier for pointing out some bothersome notational 
inconsistencies, and suggesting a remedy. 

1. Notation for unitary groups. 

1.1. Let E be a totally real number field of degree d over Q and let JC be a 
totally imaginary quadratic extension of E; let c G Gal(lC/E) denote the non-trivial 
automorphism. We assume /C contains an imaginary quadratic field /Co, so that /C = 
/Co • E. We denote by S^ and Hjc the sets of complex embeddings of E and /C. Let 
D be a central simple algebra of dimension n2 over /C, endowed with an involution, 
denoted c, that induces the Galois automorphism c on /C; i.e., c is an involution of the 
second kind. 

We define algebraic groups U(D) = U(D,c) and GU(D) = GU(D,c) over Q such 
that, for any Q-algebra i?, 

U(D)(R) = {ge D*™ ®QR\g- c(g) = 1}; 

GU(D){R) =:{ge Dopp (8)QR\g- c{g) = u(g) for some i/(g) G Rx}. 

Thus GU(D) admits a homomorphism v : GU(D)'-+ Gm with kernel U(D). There 
is an algebraic group UE(D) over E such that U(D) -^> RE/QUE{D), where RE/Q 

denotes Weil's restriction of scalars functor. This isomorphism identifies automorphic 
representations oiU(D) and UE{D). 

The groups U(D) (resp. GU(D)) are all inner forms of the same quasi-split 
unitary group (resp. unitary similitude group), denoted UQ (resp. GUQ). The group UQ 

is of the form U(Do, x(*)o) where DQ is the matrix algebra and x(*)0 is an appropriate 
involution. Then C/o,oo = C/(f, f )[E:Q] if n is even, Uol00 = U(^, n=i )[^Q1 if n is 

odd. 
Let G be a reductive algebraic group over the number field E. If v is a place of 

E we let C?v = G(QV); if ^ is archimedean we let gv — Lie(Gv)c> We let G^ denote 
ridoo ^v? the product taken over all archimedean places of E, and let ^oo = Hvioo $v- 

Let TT be an irreducible automorphic representation of G; i.e., an irreducible 
(goo, i^oo) * G(A^)-module that embeds as a submodule of the space of automorphic 
forms relative to the chosen maximal compact subgroup KOQ . We write TT = TTOQ ® TT/ 

as usual, and say TT is cohomological if TT is cuspidal and if the relative Lie algebra 
cohomology Hm(g00, Koo', ftoo ® V) ^ 0 for some finite dimensional representation V of 
goo- We let Coh(G) denote the set of cohomological cuspidal automorphic representa- 
tions of G, Coh(G, V) C Coh(G) the subset of TT for which Hm(g00, Koo] ^oo ® V) ^ 0, 
with V fixed. If if C G(A^) is a compact open subgroup, let Coh(G,K) denote the 
set of TT G Coh{G) such that nK + {0}, Go/i(G, if, V) = Coh(G, K) n Go/i(G, V). 

Let ^lo(G) denote the space of cusp forms on G. Let Rep(G) denote the set of 
equivalence classes of irreducible (goo,^oo) x G(A^)-modules. If TT G Rep(G), we 
let m(7r) = dimfiom(7r,^lo(G)), where Horn denotes the space of homomorphisms 
of (goo,^oo) x G(A^)-modules. More generally, let S be a finite set of places of £7, 
containing the archimedean places (for simplicity) and let Rep(G)s denote the set of 
equivalence classes of irreducible G(A^5)-modules, where G(A^S) C G(A^) is the 
subgroup with trivial entry at every place in 5. We say TT

8
 G Rep(G)s is automorphic 
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if 

iJomG(A/,5)(7r5,A(G))/0; 

i.e., if TT
5
 can be extended to a cuspidal automorphic representation of G. We say 

TT
S
 is cohomological if it can be extended to a cohomological cuspidal automorphic 

representation of G. 
We now fix a rational prime p that splits in /Co and an archimedean prime SQ 

of E. We choose a central simple algebra D^ over /C, with involution of the second 
kind c#. We write G = GU(D#,c#), G' = U{D#,c#), and view G' alternatively as 
a group over Q or E. We assume that 

(1.1.1) G^ <* U(n - 1,1) x [/(n)^]"1. 

Moreover, if v is a finite prime, we assume that 

(1.1.2) GJ, = f/o,v if v does not split in JC/E. 

In the applications, we will always assume D# to be a division algebra. 
We need another involution c* of the second kind on £>#; c* is a positive involution, 

so that the unitary group U(D,c*) is totally definite at infinity. The existence of such 
involutions is established as in the introduction to [HT2]. 

1.2. Open compact subgroups. Fix an open compact subgroup 
K = llvKvC G(A0, and define 

(1.2.1) 6tf(Q =G(<Q)\G(A)/ZG(R) - K^ . K;    6(C) = lim&K(C); 

the limit taken with respect to inclusion. Then &K is the locally symmetric space 
associated to G and its subgroup K. The structure of the projective limit 6(C) as 
the set of complex points of a Shimura variety will be recalled below. 

We will be working with specific choices of local subgroups Kv. For any rational 
prime q that splits in /Co, we choose a maximal compact subgroup of Gq in the form 

(1.2.2) Z9
X x U Gv, 

v I  q 

the product being taken over divisors v of q in E. Here if w is a divisor of q in /Co 
lying above v and if Dw is isomorphic to GL(a,Bw) for some factorization n = ab 
and some division algebra Bw of degree b2 over /C^, then Gv can be taken in the form 
GL(a, OBW), where OBW is the maximal order of Bw. 

We choose a finite set Q of finite places of E", each dividing a distinct rational 
prime that splits in /Co, and an additional finite place {r} of E, also split in /C. Primes 
q G Q are assumed to have the property that, if q is the rational prime divisible by q, 
then q splits completely in E. We let Q(Q) denote the set of rational primes divisible 
by primes in Q. For q G Q we define 

ro,q = {k G GL(n, Zg) | fc = ( Q
1
    ^ )     (mod ?)} 

r1|q = {fceGL(n,Zg)|k=(j    ^*_J     (modg)} 
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as subgroups of the q-factor of 1.2.2. Then we let 

Ko,q = Z*x    J]   GL(n,a)xro,q; 
v^q,v\q 

Khq = Z*x    H   GLCn.O^xTi.q, 
v^q,v\q 

viewed as subgroups of Gq. 
Let q(v) denote the residue characteristic oft. Let iVo denote the upper triangular 

unipotent subgroup of GL(n) and let 

Ii(x) = {k-n€GL(n,Ox) \k = l    (mod t),n G iVo(0r)}; 

I(t) = Zg
x
(r) x      JJ     GL^ C,-) x Ji(r)- 

We let 

(1.2.3) Kq(t) = It. 

LEMMA 1.3. For q(t) sufficiently large, the locally symmetric variety &K(C) is 
smooth for K = KQ^Q or KI^Q. Moreover, for any s G G(A^) the groups s~1G(Q)s fl 
KQ^Q and s~1G(Q)s fl ^I,Q are trivial 

Proof. The first assertion follows from the second. Let K = KO,Q or i^i,Q. Let 
x G s~1G(Q)s fl K for some 5 G G(A^). The subgroup of G(A) generated by x is 
both discrete and compact, hence finite. The group /r is pro-g(t) and it follows that 
£ is a root of unity of order a power of ^(r), lying in some extension field /C' of /C that 
admits an embedding in D#. The degree of /C' over Q is bounded by n[/C : Q], hence 
for q(x) sufficiently large we must have x = 1. 

1.4. Cohomology. Let V be a finite-dimensional irreducible representation of 
Qoo, and let TT be an automorphic representation in Coh(G, K, V). Let £ be a field of 
definition for V, finite over Q. Fix a rational prime £ and an embedding of £ in Q^, 
and let V^Q^) be the Q^-form of V defined by extension of scalars from £. Let 

(1.4.1) Vt = G(Q)\G(A) x V(Q,)/ZG(R) • Koo • K 

be the £-adic local system over &K associated to V and our chosen embedding of £ 
in Q^. The definition depends on K but the local systems for K' C K are compatible 
with the natural map &K

,
-^&K'> SO we omit K from the notation for Vg. We define 

ff#(6(Q,Vi)=Hnjff(6K(C),Vi). 

Since TT/ occurs in the cohomology of the complex local system associated to V, it 
admits a form, also denoted TT/ over a number field E{TT). Let A be a prime of E(JT) 

dividing £, and let TT/^ = 717 ^(TT) E(7r)\', we apply the same notation to the local 
components of TT/. Let 

(1.4.2) Ml[irf] = H* {&(€), Ve){irf] = Jff0mG(A/)(7r/,A)F'(6(C),^)), 

a finite-dimensional vector space over E(-IT)\. 
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Let TT be an automorphic representation of G. The restriction of TT to the unitary 
group G7, which can be viewed as an algebraic group over E, decomposes as a direct 
sum of irreducible automorphic representations. Any two summands have the same 
local components at any finite place w dividing a rational prime q that splits in /Co, 
since at such places the similitude map splits as a product G{Qq) ~ G'(Qq) x Q^ . For 
such a place w, we say TT is non-monodromic at w if one component (hence every 
component) of the restriction of TT to the unitary group G' corresponds under the local 
Langlands correspondence to a semisimple representation of the Weil-Deligne group of 
Ew (if Gw is split) or corresponds to a supercuspidal representation of GL{n,Ew) by 
the Jacquet-Langlands correspondence (if Gw is the multiplicative group of a division 
algebra). 

PROPOSITION 1.4.3. Let TT be an automorphic representation of G such that 
7rKl'Q ^ 0. Suppose TT/ is cohomological, and occurs only in cohomology in the middle 
degree n — 1. Then iTq is generic for every q that splits in ICQ. For every w E Q, 7rw 

is either (a) unramified; (b) principal series attached to an n-tuple (a,/?i,... ,/?7i-i) 
of characters of E*, with a tamely ramified and each Pi unramified; or (c) the Lang- 
lands sum of a special representation of GL(2) and an unramified representation of 
GL{n — 2). In cases (a) and (c), but not in case (b), TTW has a ToiW-fixed vector. 

Proof The first assertion follows from the existence and properties of base change 
of TT to G/c0 ~ GL(n)fc x GL{l)Koi [CL, L, cf. HT2, VI.2]. Let n denote the base 
change. Since TT/ occurs only in the middle degree, it follows from the results of [C2] 
that n is cuspidal, hence globally generic by Shalika's theorem. The genericity of TT^ is 
then a consequence of Theorem 4.6.2 of [L]. The remaining assertions then follow easily 
from the Bernstein-Zelevinsky classification of admissible irreducible representations 
of GL(n) and from the theory of the conductor [JPSS]. 

REMARK 1.4.4 The hypothesis that TT/ occurs only in the middle degree is stan- 
dard, and is automatically satisfied, for instance, if TT is obtained by descent [C1,CL] 
from a cuspidal automorphic cohomological representation of GL(n)}c, or if 717 is su- 
percuspidal at one place that splits in IC (cf. [HI]). 

1.5. Notation for unramified Hecke algebras. Let CS(Q) denote the set of 
all primes of Q, and let C<S+ (Q) be the subset of finite primes that split in /Co and are 
unramified in IC. For v E C<S+(Q) of residue characteristic p we choose a place vi of 
/Co above i;, and let E = S(vi) be the set of primes of /C dividing vi. Then we have 

(1.5.1) Gv £ JJ GL(n,/C^)xQ*. 

The Hecke algebra T^ of Gv relative to any maximal compact subgroup (conjugate 
to Ylw€^GL(n,Ofcw)xZy) is isomorphic to a polynomial algebra over Z[^] in the 
variables 

{ri[fll„i = l,...,n,r-i;,ii;GS;roft„T07u
1}. 

Here Z[To}V, T0~^] is the Hecke algebra of the factor Q£ in 1.5.1; by abuse of language 
we refer to the TiiW as the Hecke operators at w, or at the prime of E below w. The 
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Hecke operators at w are normalized so that 

n 

(1.5.2) Pw(q-S) = 1 + £(-1)%^-" 
i=i 

is the local Euler factor at w of the motivically normalized standard L-function of 
GL(n). Here q is the order of the residue field k(w) and the inverse roots of PW{X) 
are the Satake parameters, multiplied by gf(n~1)/2. Up to canonical isomorphism the 
algebra Tv does not depend on the choice of vi above v. 

The global Hecke algebra T is the tensor product over v G C<S+(Q) of the Tv. If 
5 is a finite subset of C<S+(Q), we let Ts C T be the subalgebra generated by the Tv 

for v £ S. 

2. Shimura varieties and Galois representations. 

2.1. Shimura varieties defined by twisted and untwisted unitary 
groups. Let E be a totally real field of degree d, /Co an imaginary quadratic field, 
/C = /Co • E. As in 1.1, we let G be the similitude group of a division algebra £># of 
dimension n2 over /C with involution c# of the second kind (with rational similitude 
factor). We will always assume n > 2. The unitary group G' C G is assumed to 
satisfy (1.1.1) at real places and (1.1.2) at finite places; we let si denote the real place 
of E at which G' has signature (n — 1,1). The field /Co is assumed to be given with 
a fixed complex embedding 1^0, and we let $ be the set of complex embeddings of /C 
inducing l)c0 on /CQ. Then $ is a CM type of /C. Let ti G $ be the complex place 
above si. 

We use $ to identify D# <g>Q E -^ M(n,C)d. In terms of this identification, we 
define 

ft* : Cx ~ Rc/RGm,c->(D#>opp 0Q M)x 

by 

(2.1.1) h9(z) = ((Z'In-1    _),*/n,...,*Jn), 

where the first matrix corresponds to ti. We may view ft* as a homomorphism with 
values in GR. Let X = Xn-i be the GjR-conjugacy class of homomorphisms from 
i?c/RGm)c to GR containing ft*. Then X has a natural GR-invariant complex structure 
which is isomorphic to the unit ball in C™-1. The pair (G,X) is the datum defining 
the Shimura variety 6 introduced in (1.2.1), and considered in [C2,K,H1]. As in [HI], 
we see that the reflex field (Shimura field) E(G,X) is just £i(/C). 

2.1.2. We fix a maximal order O* C £>#, stable under c*, and let O* = 0#(g>zZ. 
Let V = D#, viewed as a 2dn2-dimensional vector space over Q with an embedding 
D#-*End(V). The homomorphism ft* takes values in D#>opp = EndD#(V), and is 
defined over some extension L of /C which splits D#. There is then an L-rational 
decomposition 

(2.1.2.1) V®QL-Z*VO®VU 

where VQ (resp. Vi) is the z- (resp. z)-eigenspace for h(z)\ the subspaces VQ and Vi 
are stable under the left action of D# 0Q L. 
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We restrict our attention to open compact subgroups K C 0#'x, though this 
is only for convenience. Moreover, we always assume K factors as the product of 
subgroups of G(Qp), as p varies over rational primes. We consider the moduli problem 
AK, defined on the category of schemes over Spec E(G,X). For T a scheme over 
Spec E(G, X) = Spec /C, the functor AK(T) consists of equivalence classes (see below) 
of quadruples (A, L, A, (3) consisting of 
(2.1.2.2) An abelian scheme A over T of dimension dn2; 
(2.1.2.3) An embedding L : 0*^EndT(A); 
(2.1.2.4) A polarization A : A -^ A, such that 

A o i(b) ■= i(g*(6)) o A 

forall&e£>#;^ 
(2.1.2.5) An G# -equivariant level K structure 

P:H1(A,Z) = Y[Tq(A)-^6#    (mod K), 
Q 

in the sense of Kottwitz ([K2], pp. 390-391; cf. [HT2]), compatible with A. 
These data are assumed to satisfy the determinant condition of Kottwitz, namely 

(2.1.2.6) detoT(b;LieA) = de*L(&; Vi),        b e O*. 

We consider two quadruples (A,i,\,f}) and (A',*/,A',/3') equivalent if there is an 
isogeny a : A -» A' which takes (A,£,/?) to {t\',L',$'), where t is a positive rational 
number. 

For K sufficiently small the functor AK is represent able by a smooth projective 
variety, also denoted AK, over E(G,X) [K2,§5]. For general K we take a normal 
subgroup of finite index K' C K for which AK

1
 is representable and then let AK 

be the scheme-theoretic quotient of AK> by K/K'. Then the Shimura variety 6^, 
viewed as a scheme over Spec E(G, X), is an open and closed subscheme of AK- More 
precisely, AK is isomorphic to a finite union of Shimura varieties of the form 6^, 
the number of Shimura varieties involved being given by the deviation from the Hasse 
principle for G (cf. [K2,§8; RZ2, pp. 301-302]). In particular, 6^ is projective for all 
K, and is smooth provided K fi (0*)x = {1}. 

Warning 2.1.2.7 Note that the level structure 0 defined here goes in the direction 
opposite to the level structures rj introduced in [HT2,IV.l], as well as in [K2].. This 
convention, which is justified on Hodge-theoretic grounds, leads to a dualization in 
the associated Galois representations. 

2.1.3. The level structures corresponding to the open compact subgroups of the 
form KQ^Q and i^i,Q, defined as in 1.2, deserve special attention. Recall that Q denotes 
a finite set of primes of E dividing rational primes q that split completely in /C, and 
such that D# is split at all primes dividing q. In particular, we may take L = Qg in 
(2.1.2.1); then 

(2.1.3.1) V®QL* 0M(n,/C„)^ 0 MfoQ,)2, 
w I q w | q 

where w runs through primes of E (note: not /C) dividing q and the exponent 2 
corresponds to the quadratic extension 1C/E.  We let Vw = M{n,K,w) in the above 
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decomposition. Recall that we are identifying /C with the subfield E{G,X) of C 
via ti. Then the first coordinate of /i$, in the representation (2.1.1), picks out one 
summand of (2.1.3.1), say the summand Vq corresponding to the prime w = q. Write 
Vq = Vq(i) 0 Vq(2), where q^1) and q(2) are the primes of /C above w. These can be 
numbered so that 

(2.1.3.2) dimQg VQ fl Vqd) = n;    dimQq Vl D V^D = n(n - 1) 

dimQg Vb H Vq(2) = n(n - 1);     dimQq Vi fl Vq<2) = n. 

The corresponding maximal ideals of OJC are denoted mq(o, i = 1,2. 
We let the q chosen in the preceding paragraph be the prime in Q dividing g, 

and we define Koiq and Kiiq as in 1.2 with respect to this choice of w = q. Thus 
KT^Q = iir?j9 x i^, where ? 6 {0,1} and Kq denotes the product of the level subgroups 
at primes away from q. Then the datum /? breaks up into g-primary and prime-to-g 
components, denoted in the obvious notation /3q and 

(2.1.3.3) Pq : Y[ TP{A) ^ {6*)q    (mod Kq), 

respectively. First consider ifo.Q- We let 

T, = GU{0* ®z Zq)x ~l[GL(n,Z.q) x Zg
x, 

w\q 

so that rq/Ko}q is naturally in bijection with Pn_1(A;(q)), where k(q) ~ ¥q is the 
residue field of'q. Let K+ = TqxKq. 

Let w be a uniformizer in Eq. We write t(zu)i for the diagonal matrix with entry 
w-1 as first entry and 1 elsewhere, viewed as an element of G(Qq) C G(A/). Then 

(2.1.3.4) KotQ = K+n tiw^K+tizu)!. 

We thus have two maps /; : 6^0->>6^'+, where fi is defined by the inclusion 
KQ^Q C K+ and /2 is defined by inclusion in tfa)^1 K+t(zD)i, followed by right- 
multiplication by t(zu)^1. Let x — (A^L, A,/?) be a geometric point of &K, and let 
fz^x) = (A'\L'\Xl',13'). Then x is determined by the quintuple (A, A!,i, \,(3q). 

By modifying our definition of /2, we can arrange to have an isogeny A-±Af, and 
then realize S^o.g as (an open and closed subscheme of) the moduli space parametriz- 
ing quintuples as above, with A-tA' an isogeny of a certain type. However, we do 
not need an actual isogeny. Let A be an abelian scheme over T as in (2.1.2.2), and 
let Xg(i4) be the associated g-divisible group. Then X9(^4) inherits an action of 
(9# 02 Z9. Let q^2) be the prime of /C chosen above. Let 62 be an elementary idem- 
potent in Af(n,Z9), which we identify with 0*i2) = 6* fl D*{2y   Then 62 • Xq(A) 

is a g-divisible group of height n, which we denote X(A)2. With our choice of q(2\ 
it follows easily from (2.1.2.6) and (2.1.3.2) that X(A)2 is of dimension 1. Now the 
rational Tate modules Vq(A) = Tq(A) <g) Q^ and Vq(A') can be identified. One sees 
easily that 62 • ^(A') D 62 • Tq(A); hence there is an isogeny 

(2.1.3.5) X(A)2-^X(A,)2 

with kernel OJC isomorphic to Ojc/q^ = Z/qZ. We conclude that 
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2.1.3.6. For Kq sufficiently small, the scheme &KQ,Q is an open and closed 
subscheme of the moduli scheme parametrizing quintuples 

(A^,A,/J9,X(A)2^X(>1,)2), 

where (A,i, A) are as in (2.1.2.2-4), /?9 is a level ii^-stnicture as in (2.1.3.3), and 
X(A)2-^X(A/)2 is a g-isogeny of g-divisible 0q(2)-modules of height n and dimension 
1, the whole assumed to satisfy the determinant condition (2.1.2.6). 

Here is an alternative definition of the moduli problem. Define X(A)i = ei •Xg(A) 
by analogy with X(i4)2 above, where ei is an elementary idempotent in O*{1). We 

choose the pair (ei, 62) in such a way that the polarization A places X(A)i and X(i4)2 
in Cartier duality. We consider diagrams of the form 

A" 
(2.1.4.1) V V 

A A' 

where (^4, L, A,/?9), (A',i', A', (Z?')9) are as above. In particular A : A -^ A, X' : 
A' —t A'', are principal polarizations. We assume cj) and </>' are isogenies of degree qn, 
with the following property. Let </>: A-* A" and 0' : A'-tA" be the dual isogenies to </>, 
0', respectively. Then Ker^') (resp. Ker(4>)) is generated over O^) (resp. O^) by 

a subgroup (72 C X(^/)2 (resp. & C X(i4)i) of order q. WeletCi,C2 C X^) bethe 
Cartier duals of Ci and (72, respectively. Then (f) (resp. 0') induces an isomorphism 
02 : X(A,,)2 -^ X(i4)2 (resp. fa : X(A,,)i -^ X(A,)i) so that ^ o (^s)"1 (resp. 
0o (c^i)-1) defines a g-isogeny r : X(A)2->X(A,)2 (resp. r7 : X(yl,)i-^X(A)i) with 
kernel canonically isomorphic to C2 (resp. Ci). 

It is assumed that 0 and 0' are compatible with the (^-structure, in the sense 
that the induced isomorphisms of rational g-adic Tate modules are assumed to be 
(9#-linear. Finally, the two isogenies are assumed to be dual to each other, in the 
sense that 

(2.1.4.2) 0' o A' o 0' = 0 o A o $ : A" -» A". 

Using these conditions one reconstructs A" and (A1, L', A', (Z?7)9) from (A ^ ^^ ^9) and 
r : X(74)2->X(^4/)2 in such a way that 1' and {fS'Y correspond to 1 and /39 via the 
isogenies.   Indeed, we can define A" to be the quotient of A' by the (9^2) -module 

JL/ 

generated by r(X(A)2[g]). The map ft is defined so that A'^A"-±A' is multiplication 
by g, viewed as an element of 0#

q(2). Then ker(0) is defined to be ker(0/ o A' o 0') D 
A"[^% 

It follows easily from (2.1.4.2) that 

(2.1.4.3) ker(0/) = ker(0) (Cartier duality). 

Indeed, letting / : A"-+A" denote the map in (2.1.4.2), we see that 

ci • ker(/) x 62 • ker(/) = ker(/) n X(A,,)i x ker(/) n X(A,,)2 

= ei • ker(0) x 62 • ker(0/) 

= ci • (A o 0)-1 ker(0,) x 63 • (A' o 0')-1 ker(0) 
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This implies ker(^) ^-> ker((//), which is equivalent to (2.1.4.3). In particular, 

(2.1.4.4) C2 -^ Ci -^ e2 • ker(0),    Ci -^ C2 -^ ei • ker^7), 

where Ci and C2 are defined as above. 
When Kq is not assumed small, we can realize 6KO,Q 

as a quotient of a moduli 
scheme by a finite group, as above. In the same way, we obtain a modular description 
of 6/^: 

2.1.4.5. For Kq sufficiently small, the scheme 6^1,3 is an open and closed 
subscheme of the moduli scheme parametrizing quintuples 

(A,.,A,^,7:^/q(1)^X(^)i), 

where (^4,*,, A) are as in (2.1.2.2-4), (3q is.a level iiT9-structure as in (2.1.3.3), and 
7 is an embedding over T of the constant group scheme Ojc/q^ in the g-divisible 
Oq(i)-module X(i4/)i, compatibly with the Oq(i)-structures, the whole assumed to 
satisfy the determinant condition (2.1.2.6). By Cartier duality, 7 defines an embedding 
7*:^^X(A)2. 

Remark-Definition 2.1.4.6 The subgroup generated by 7 (resp. 7*) is the one 
denoted Ci (resp. C2) above. Thus taking the subgroup generated by 7 and forgetting 
the generator defines a map of functors to 6KO,Q- The quotient group KQ^Q/KI^Q — 
IlweQ k(w)x acts on the data (71^ | q 6 Q), hence as a group of automorphisms of 
6KI,Q, with quotient &KO,Q- However, the datum (2.1.2.5) corresponds, not to 7, but 
rather to 7~1 (a map from a subgroup of X(A,)i to Ojc/q^). Now g G KQ^Q/KI^Q 

acts on the datum (2.1.2.5) by sending /? to gofi. It follows that, for w G Q, a G k(w)x 

acts on 7 by sending b *->- 7(6) to b H> 7(a_16). For a G k(w)x, we thus define the 
diamond operator < a >G AI^(6KI,Q/©KO,Q) 

to be the image of a"1 G KQ^Q/KI^Q. 

Then identifying 7 with the point P = 7(1), the diamond operator < a > takes P to 
a • P. The group of diamond operators is just KQ^Q/KI^Q, most frequently when Q 
consists of a single element. 

2.1.5. Now let p be a prime of /C of residue characteristic p at which D# splits. 
Assume the rational prime p is unramified in /C. Then G(Qp) admits hyperspecial 
maximal compact subgroups. Suppose Kp is a hyperspecial maximal compact. Then 
Kottwitz has shown that <5K extends to a smooth proper scheme over Spec Op, 
representing the functor AK defined as in 2.1.2, but with the additional hypothesis 
that the polarization A of (2.1.2.4) is of degree prime to the residue characteristic (cf. 
[HT2, K2]). In particular, the representation of Gal(Q/IC) on the £-adic cohomology 
is unramified at p, provided £ ^ p. 

As observed by Carayol (cf. [Ca]), the hypothesis that p be unramified in /C is in 
fact unnecessary, but the functor defined by 2.1.2 needs to be modified. Details can 
be found in [HT2,IV.2] 

2.2. Modular definition of Hecke and U operators. 

2.2.1. We define ri>q C GL(n,Zq) as in §1.2. We consider the double coset 
J7q = r^q • ^(^iIYq C GL(n,Qq). Here and in what follows we are identifying 
GL(n,Qg) = U(D*)q with D#{g.   The identification with Dfrf identifies Uq with 
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the double coset F^ • ^(tu)!)-1!^, where r'1)q consists of invertible matrices over 

TLq congruent to I )    (mod q). 
\*      *n—1/ 

One verifies immediately that 

(2.2.1.1) ^=nrM-*(^)i-(j    /^J. 

where b = (&i,... ,6n_i) runs through {ZjqLq)71-1. Write W = <Q£. Let A = Z^ C 
W be the standard lattice, and let A denote the row vector (g""1,1,..., 1), so that 

r1>q = {ge GL(W) I 0(A) = A,^(A) - A    (mod A)}. 

Let A' be the lattice generated by A and A. Then the description (2.2.1.1) shows that, 
in the standard right action on lattices, we have 

(2.2.1.2) (A, A) • J7q = {(A7, A') \q\' = A    (mod A)}. 

Now consider the correspondence Uq on 6^ Q x 6^ Q, defined in terms of the 
data 2.1.4.5 as follows: Let T be a scheme over E(G,X) and let x be a T-valued 
point of SJ^. Then x corresponds to a quintuple {A,i, A,/39,7 : O/c/q^ c-^ X^'Ji). 
Of course 7 is determined by the q^-torsion point P = 7(1). Let A' be the abelian 
variety associated to A and to the isogeny p : X(A)2->X(A/)2 = X(A)2//m(7*), as in 
(2.1.3.6), where 7* : /ig->X(i4)2 is the Cartier dual to 7, as in 2.1.4.5. With respect 
to the Weil pairings defined by A and A', we have 

(2.2.1.3) (P,7*(C)) = CforanyCe/V 

We consider the set G* of homomorphisms (7')* : fjJq-^^(A,)2 such that, for any 

(2.2.1.4) (yr(c) = p(p),«p = 7*(c)- 

Then Uq associates to x the set of quintuples 

(2.2.1.5) {(AV, A', (/?')",7')}- 

where 7' runs through the set of maps OK/^ ^ X(i4/)i such that (7')* G G*. 

LEMMA 2.2.2. The correspondence Uq zs induced by the Heche operator Uq by 
the standard recipe [K2, p. 393]. 

Proof. This is clear from (2.2.1.2). 

2.2.3. For use in §3, we make explicit the diagram (2.1.4.1) associated to the 
image of the point (A', */, A', (/?')9> 7') in ®KO,Q • We have replaced A by A', and then 
A' is replaced by an abelian variety B'', say, so that the diagram is 

(2.2.3.1) V V 
A' B' 

satisfying the analogue of (2.1.4.2). 
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2.3. A-adic representations on the cohomology. We return to the situation 
of §1. Let 5C, Q, r, KI^Q, and V be as in 1.2. The primes in Q are denoted w 
rather than q, and the primes above them in /C are denoted wi and W2- As in §2.2, 
the identification rw ~ GL(n,Qq) for w G Q is made via W2, so that i^o,Q is upper 
triangular parahoric. Let TT E Coh(G, V), in the notation of §1, and assume: 

(2.3.1) TT*
1
'* 7^ 0 

Then M^1-1^/], defined as in (1.4.2), is an n-dimensional Q^-vector space with a 
natural action oiGaMJC/K,), which we henceforth denote GJC* Let E{TT)\ be as in 1.4, 
and write Mx[iTf] for M™"1^/]. We let 

rfW-.Gic+AutiMxfrf]) 

denote the natural action. 
This is not quite the representation we want to associate to TT. In [Hl,p 101] we 

define a Hecke character a(7r) = f o rM. More precisely, in [loc. cit.] we defined a 
Hecke character denoted ^(GTT), which in the present notation should be equal to 

z/(G7r)=a(7r)-1.|.|;2fl; 

but the formula was incorrect; the correct formula is given below. We let a^x denote 
the corresponding A-adic character of GJC - indeed, the field of coefficients of a^) is 
contained in E, so this makes sense - and we let 

(2.3.2) rp(7r)=rf(7r)®(aw)A, 

acting on MADT/]. The correct formula for a(7r) can be found in [H2, Errata to HI]: 

(2.3.2.1) aW(a)=^(^c/x:o(a)), 

where ^ is the central character of TT and GtmXo  is regarded as the subgroup 
^GL(n,A:o) H G of G, the intersection taking place in GL(n,/C). 

Next, we let GE denote Gal(E/E), and define 

p(7r) =Indjc/Erp(7r) 

to be the induced 2n-dimensional representation of GE, acting on the E(7T)X-module 
Indjc/sMx^f], 

For any prime v of Q that splits in JCQ and is unramified in /C, and such that ITV is 
unramified we let 0V)7r : Tv -> Efjr) denote the character by which the local unramified 
Hecke algebra acts on TT^. Let 5(7r) be the set of all such unramified primes, let Ts 

be the corresponding global Hecke algebra, as in §1.5, and let ^ : Ts —> E(7r) be the 
corresponding character; fa gives the natural action of T3^ on 7rK. If w is a prime 
of E dividing some prime in 5(7r), we let 

n 

(2.3.3) fa(Pw)(X) = 1 + ^(-l)VW(T^)^ 
2=1 

in the notation of (1.5.2). 
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THEOREM 2.3.4. Suppose TT contains a fixed vector for a hyperspecial maximal 
compact subgroup ofGq^ (i.e., not only a fixed vector for Kq^, as implied by (2.3.1)). 
Let Sbad be the set of primes of K. dividing primes in Q or of residue characteristic 
I. Then the representation ^(TT) is unramified outside Sbad. Moreover, for all but 
finitely many primes w of E dividing rational primes in S^TT), there is a prime wi of 
/C dividing w and such that the arithmetic Frobenius FrobWl satisfies 

<j)7:(Pw)(FrobWl) = 0. 

REMARK. The choice of wi in the above theorem is determined as in 1.5 by the 
choice of identification of G^ with a general linear group. The base change of TT to 
/C is conjugate self-dual, and one verifies that, if W2 is the other prime dividing w, 
then (})-7T{Pw){qn~1 Frob~l) — 0. Bear in mind also that the natural action on the 
cohomology of the Shimura variety is that of the Galois group of Q over the reflex 
field, and that there is an implicit identification of the reflex field with /C. 

An alternative way of phrasing this theorem is in terms of partial L-functions: 
there is a finite set 5 of finite primes such that we have the equality of Euler products 

(2.3.4.1) Ls{s,rp{-K)) = Ls(s - Z-ZI^CKW). 

Here the right-hand side is the standard L-function with the unitary (Langlands) 
normalization; the superscript s indicates that factors at 5 have been removed. As 
mentioned above, we have normalized fp to make (2.3.4.1) true; cf. the discussion on 
p. 100 ff. of [HI]. 

Proof The proof of this theorem is mainly due to Kottwitz, and is contained in 
[K2]. Specifically, Kottwitz proves there that rp(7r) is unramified outside Sbad, except 
possibly at primes of /C ramified over Q. Moreover, Kottwitz determines the charac- 
teristic polynomial of Frobenius in [Kl] for almost all unramified primes. His original 
formulation includes an exponent for the (unknown) multiplicity. This exponent was 
removed by Taylor a few years later (cf. [HI, pp. 102-103]). 

THEOREM 2.3.5. Let w G Q of residue characteristic q. Let wi be the prime of 
K, above w and let Zw C GE denote a decomposition group. Suppose TTW is in case (b) 
of Proposition 1.4.3. Let (a, Pi,...,/?n-i) be the corresponding n-tuple of characters. 
Then rp(7T)\zxv breaks up as a direct sum 

rp(v)\zw -^ A®B. 

Here B is an unramified representation and the inertia subgroup Iw of Zw acts on A 
via the restriction to Iw of the character associated to a via local class field theory. 

One of the main results of [HT2] is the generalization of Theorem 2.3.4 to de- 
termine the restriction of rp(7T) to the decomposition group of an arbitrary prime of 
/C not dividing £, up to semisimplification. In particular, Theorem 2.3.5 is a weak 
version, in a very special case, of what is proved in [HT2]. We give another proof 
in this special case, based on a different analysis of the bad reduction. The proof of 
Theorem 2.3.5 requires a lengthy detour through the theory of moduli of p-divisible 
groups, and is the subject of §3. 

3. Regularity of certain moduli problems. 
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3.0. Conventions. We will now study the Shimura varieties 6^ at certain 
places of bad reduction. The techniques of the present section undoubtedly generalize, 
but for the time being we will make a series of restrictive hypotheses. The notation is 
as at the beginning of 2.1. We fix a level subgroup K C G(Af) that satisfies (1.2.3), 
for g(r) sufficiently large. Let q be a rational prime that splits completely in /C and 
such that K = Kq x Kq, with Kq C G(Qq) a maximal compact subgroup. We assume 
the division algebra JD

#
 to be split at all primes of /C dividing q, and we identify Kq 

as in 2.1.3 with 

(3.0.1) Zg
xxJ]GL(n,a), 

the product being taken over divisors v of q in E. 
We let q be the divisor of q in E chosen in §2.1.3 and let q^ and q(2) be the 

divisors of q in /C, numbered as in (2.1.3.2). We identify £?{, with GL(n,/Cq(2)). Inside 
its compact open subgroup GL(n, Oq(2)), which we identify with GL(n, Zg), we define 
the open subgroups ro,q and F^q as in §1.2. Similarly, we define KQ^ and K^q as 
subgroups of Gq. We let 

tfo(q) = Koiq x K*\    tfi(q) - K^ x K* 

be the corresponding subgroups of K. There is a natural isomorphism 

(3.0.2) F,x   ^  ^o(q)/^i(q)  = A^GKA^I&KM)- 

We denote by < a >£ Aut(&Ki(q)I'&Kofa)) the image of a G F^ under the isomor- 
phism (3.0.2). We will later have occasion to consider subgroups intermediate between 
Ko(q) and K^q). 

On the other hand, we will be studying the reduction of Shimura varieties over 
Oq(i) C /Cq(i). We will identify Oq(i) with Oq, which is isomorphic to Zq, and write 
gq = Spec(Oq). N.B.: the divisors in /C of q used in the geometry and in the group 
theory are conjugate to one another! This is an inevitable consequence of our choice 
of Shimura datum. 

Since the prime q will be fixed throughout this discussion, we will write KQ = 
Ko(q) and Ki = Ki(q) when there is no danger of confusion. We write 6^ and 6/^0 
for the corresponding Shimura varieties over E(G, X). We let Oq = OE 0Z Z9, SO that 

o,sn„ka. 
3.1. Modular interpretations of &K and &Ko' AS indicated in §2.1.5, the 

Shimura variety &K has good reduction at all primes of /C dividing q. Let SK denote 
a smooth model of <5K over Sq and let p = PK • §>K -> Sq be the natural map. Under 
our hypothesis that K satisfies (1.2.4) for q(x) sufficiently large, we have seen in 2.1.5 
that p is a smooth projective morphism [K2, §5]. Moreover, S>K is (an open and closed 
subscheme of) a moduli space for abelian varieties with a certain PEL type. Indeed, 
with our choice of q, the moduli problem (2.1.2.2-6) is well-defined and represent able 
on the category of schemes over 5q, and 8 K is the corresponding moduli scheme. 
Note, however, that Kottwitz' determinant condition (2.1.2.6) must be interpreted as 
an equality of polynomials, cf. [K2,p. 390]. 

Let i : Spec(k(q)) = Spec(¥q) c-> Sq denote the special point of Sq. The following 
proposition is a special case of a theorem of Wedhorn. 
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PROPOSITION 3.1.1 [WEI]. Let i : y -> 5q be a geometric point lying over i, and 
let &Ky = y Xsq §K denote the corresponding geometric special fiber. The ordinary 
locus is open and dense in every irreducible component ofS>Ky 

Here by "ordinary locus" we mean the subscheme whose geometric points corre- 
spond to ordinary abelian varieties with structure (2.1.2.2-6). 

The moduli problem defining &Ko is rather more intricate to describe. Our 
conventions will be those of Rapoport and Zink in [RZ2]. We will first define the 
moduli problem in their notation, then provide a brief translation into more familiar 
language. Let V = R^/^D*, Kq = K <g>Q Qg, Eq = E <g>Q Q^, Vq = V <g>Q lCq. Let qW 
and q^ denote the two primes of /Co dividing g, and let 

(3.1.2) ICq = K 0Q Qq -^ /C9(i) x Kqw 

be the natural decomposition, with /Cg(t) = nu|g(i) ^u) * — 1? 2, the product taken 

over primes of /C. There is a corresponding decomposition Vq -^> Vq{\) x Vq(2), and 
the hermitian form < a, b >= TrD#(ac(b)) (reduced trace) on V induces a duality 
between V^D and Vq{2): 

(3.1.3) 7,(2) -^ HoniE^V^.Eq). 

As in §2, we let q^1) and q(2) be the primes of JC dividing q, with q^1) above g^1) and 
q^2) above q(2\ 

By a lattice in Vq(i), i = 1, 2, we mean a free O^-submodule. The subgroup Kq 

fixes a pair of lattices A; C Vq(i), i = 1,2, that are placed in duality with respect to 
(3.1.3). The subgroup Kotq is the stabilizer in Kq of a unique sublattice Ai C Ai of 
index g; we let A2 D A2 denote its dual in Vq{2). In general, if A C Vq{i) is a lattice, 
we write A1- for its dual in Vq(2). Let C denote the collection of all pairs of lattices 
(A, A-1), with A C Vq(i), A1 C V^), such that A is fixed by Kotq. Then C is an 
example of what Rapoport and Zink call a multichain of (9g-lattices in Vq [RZ2, Def. 
3.10]. More precisely, the set A 0 A1- C Vq is the multichain, in the sense of [RZ2], 
but in the present case the two notions are equivalent. 

For future reference, we let Ci denote the pair of lattices A2 C A2 in Vq{2). 
We will work in the category AV of abelian varieties up to prime-to-g isogeny. 

This is the category obtained from the category of abelian varieties by formally ad- 
joining the inverses of all isogenies with kernel of order prime to q. It is a category 
whose sets of morphisms are naturally modules over the localization Z(g) of Z at q. If 
A is an abelian variety we let A(q) denote the corresponding object in AV. If A, A1 

are abelian varieties, an isogeny p : A^ —V M^ is a morphism such that np is an 
isogeny from A to A' for some integer n > 0 prime to q. The g-part of the kernel 
of p is well-defined and independent, up to canonical isomorphism, of the choice of 
representatives A and A' in the category of abelian varieties; we call it the q-kernel of 

P- 
A quasi-isogeny p : A(q) -tA', ^ is a diagram of the form 

A ,rl       Aft        r2v     A' 
A(Q) <— A(q) —► A(q) 

where the two arrows are isogenies. We define 

height(p) = height^)  —  height(ri). 
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Let AV0# denote the category whose objects are abelian varieties A^ up to 
prime-to-^ isogeny, given with an embedding 

Of = 0#®Z{q)<-> EndA{q). 

The morphisms in AV0# are those morphisms in AV that respect the 0^-action. The 

g-divisible group Xg (^4) of A G AV0# depends only on A(qy We define the g-divisible 

Oq(i)-module X(A)i = a • X9(J4), i - 1,2, as in 2.1.3. Recall that X(i4)2 is of height 
n and dimension 1. 

An C-set of abelian varieties is a covariant functor from the category C (maps 
given by inclusions) to the category AV0# satisfying several periodicity hypotheses 

[RZ2, Def. 6.5]. In the present situation, it corresponds to a pair (A, A') of abelian 
varieties in the same isogeny class, determined up to prime-to-g isogeny, with PEL 
structures (2.1.2.2-4) and a ifMevel structure. We are also given a pair of isogenies 
p : X(^4)2 -> X(i4/)2, pi : X(^4/)i -> X(J4)I, in each case with kernels isomorphic 
over OJC to (9q(i)/qW-modules C;, respectively, each of rank 1. It is assumed that 
Ker(p2) is the Cartier dual of Ker(pi) with respect to the polarization (cf. 2.1.3.6). 
We can express this by saying that there is a quasiisogeny A i^- A" -^-» A' with ri 
and r2 both isogenies of height n of O^-modules, such that ri (resp. r2) induces an 
isomorphism on X(»)i (resp. on X(«)2). In particular, A' is uniquely determined by 
C2, or equivalently by p, and by the condition that A and A' both admit actions by 
the same maximal order in O^ ®Zq. Thus we occasionally drop A' from the notation. 

Rapoport and Zink [RZ2, Def. 6.9] define a functor AK<I(£), a point of which 
over the 5q-scheme T is given by a quintuple as in (2.1.3.6). In the language of [RZ2], 
this consists of 

3.1.4.1. AnC-set(A)A
,,p:X(A)2 -> X(A,)2) of objects ofAV0#(T), as above; 

3.1.4.2. A Q'homogeneous principal polarization XA of A; 
3.1.4.3. An 0)cy(q)~equivariant Kq-level structure 

f3q : #1 (A, Ap ~ V 0 A}    (mod Kq) 

that respects the bilinear forms on both sides up to a constant in (Al)*. 
We also use the term £-set to refer to the triple (X(^4)2,X(^4/)2,p). The above 

data have to satisfy the determinant condition (2.1.2.6), which is adequate because q 
is assumed unramified in /C. As remarked in [RZ2, p. 279], we then have 

PROPOSITION 3.1.5. The functor AK<I{£) is representable by a protective scheme 
over Sq, which we also denote AK<I(£>)' The generic fiber AK^i^ic^ of AK<I(£) con- 
tains (&Ko))Cq as an open and closed subscheme. 

The second statement is as in §2.1. 
In particular, we can define S^ to be the scheme-theoretic closure of (©KO)^ in 

AKI (£)> It is again an open and closed subscheme and the local properties of AK? {£) 
determine those of S^o- 

3.2. Local models of 6KO' For any A € AV let 'X.(A) denote its associated 
^-divisible group, and define X(A)2 as above. The determinant condition (2.1.2.6) 
translates into the condition that 

3.2.1. (a) The connected part X(A)2 of X(^4)2 is a rank-one formal O^^)- 
module. In particular, X.{A)^ (2) is a one-dimensional formal group. 
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(b) Let q' / q be a prime of E dividing q, and let q''^ be the divisor of q' in 
K, dividing q(%\ i = 1,2. Then the localization X(>l)q/,(») of X(A) at 0^jq/,(i) is 0/ 
multiplicative type (resp. etale) for i — 1 (resp. i = 2J. 

Let §S
KQ denote the special fiber of S^. Let re be a geometric point of Ss

Ko; i.e., 
a morphism Spec(K) -+ S^o of 5q-schemes, where 7^ is the algebraic closure of the 
residue field A;(q) of (9q(i), which we identify with Oq. Rapoport and Zink have shown 
that the infinitesimal structure of the moduli space AK* (£)» and hence of the open 
and closed subscheme S^0, is determined in a neighborhood of x by the deformation 
theory of the ^-divisible 0^)(g)-module(s) attached to x. 

We follow the discussion in [RZ2,6.12], to which we refer for a discussion of the 
crystalline data. The point x corresponds to a quintuple 

{Ax,Lx,\x,l3lpx :X(^)2 -» X(.4'J2) 

of data (2.1.3.6). Let KQ be the field of fractions of the Witt ring W(7c), with canonical 
Frobenius operator <J, and write Sq = Spec(W(jZ)). Let N be the isocrystal associated 
to Ax by the covariant Dieudonne functor. There is an isomorphism of polarized 
/C 0 i^o-niodules 

(3.2.2) N^V®KQ 

The crystalline Frobenius operator 0 on N corresponds under this isomorphism to 
the operator b ® a for a (unique) b E G(KQ). TO these data we can then associate a 
(crystalline) PEL type 

(3.2.3) (*,^)((?),y, 6, //,£), 

where // is the minuscule cocharacter of G corresponding to the Hodge decomposition 
(2.1.2.1). The data (3.2.3) determine a formal scheme M which is a moduli space, on 
the category Nilpsq of 5q schemes on which q is nilpotent, for £-sets (X,X') of q- 
divisible C^^-modulets) with PEL structure analogous to (2.1.2.2-4), endowed with 
quasi-isogenies 

(3.2.4) />:(X,X')—►(X(4B)>X(4!)). 

For any such >C-set (XjX') of g-divisible 0}c,(q)-modules, there is a decomposition 

(3.2.5) X -^ Xi x X2 

and a quasi-isogeny 

(3.2.6) A2 : X2->Xl 

corresponding to (3.1.2) and (3.1.3), respectively, with compatible decomposition and 
quasi-isogeny for the primed ^-divisible group. The map A2 identifies the action of 
Ofc^) on the left-hand side with that of O^^D on the right, via the isomorphism 
(complex conjugation) c : 1Cq{2) ->/Cq(i). Moreover, these structures, together with the 
O/c,(5)-action and the pair of quasi-isogenies 

pi : Xi-^X^Ji;    P2 : X2->X(Aa:)2, 

deduced from (3.2.4), determine the object (XjX7) uniquely. Here X(Aa;)i is defined 
as in 2.1.3 and X(Aa;)2 is defined analogously. 
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We state a weak version of the Rapoport-Zink theorem on p-adic uniformization 
[RZ2, Theorem 6.23]. 

THEOREM 3.2.7. Let x be a geometric point of 8s
Ko. There is a locally closed 

connected subscheme T(x) C SKQ containing the image of x, and a connected formal 
subscheme M0 C M, admitting an etale morphism 

0 : jfto _+ f(x) 

of formal schemes over Spf(W(K)). Here T(x) is the formal completion of§Ko along 
T(x). 

The statement in [RZ2] concerns the whole isogeny class containing x, which is 
a union, generally infinite, of closures of subschemes of the form T(x). We are only 
concerned with the etale local structure of 8K0 in a neighborhood of x, hence the 
above formulation suffices for our purposes. 

It follows that the nature of the singularities of of Sf^, if any, is encoded by 

the singularities of the connected components of the formal scheme M. Let X*(G) 
denote the group of Qp-rational characters of G. Rapoport and Zink construct a 
natural morphism x : M-tA of formal schemes over Spf(W(K)) where A is the 
constant group scheme over 5p/(W(7c)) [RZ2,3.52] associated to the discrete group 
Hom(X* (G), Z) (homomorphisms of abelian groups). By construction x is a fibration. 
It can be defined by replacing the group G by its abelianization Gab and by replacing 
the data (6,/i) in (3.2.3) by their images in Gab, cf. the proof of Prop. 1.21 in [RZ2]; 
however, we will not use this fact. 

Now we return to the decomposition (3.2.5). The map 

(3.2.8) (X)X';p)^(X2)X^;p2) 

defines a morphism 

where Mi is the moduli space of EL type, in the terminology of [RZ2,§3] (see below), 
parametrizing >Ci-sets (Xi,Xi) of g-divisible O^^D-modules of height n and dimen- 
sion 1, rigidified by a quasi-isogeny pi to the fixed £i-set (X2(Ac)5X2(^4^)). Here 
by £i-set we just mean a pair (X2,X2) as above connected by an isogeny X2 -> X2 
of degree q (cf. the definitions following (3.1.3)). By the discussion preceding Theo- 
rem 3.2.7, we see that this morphism is just the forgetful map "forget A2". The set 
of possible A2's is a principal homogeneous space under Q^ /Z*, thus the map fi is 

etale. Moreover, if M0 C M is a connected component, / induces an isomorphism 
M0 -^ f(M0). Thus we have 

COROLLARY 3.2.9. In Theorem 3.2.7 M can be replaced by Mi. 
Now we are reduced to studying the singularities of Mi. We begin by recalling the 

definition of the EL data defining Mi. We are given the Qp-algebra lCq(2), its maximal 
order O/c,^), the free rank n JCq(2) -module V^), and its rank one submodule V0tq(2). 
To these data is associated the group G2 = GL(n)/ICq{2). We are also given the 
crystalline Probenius 02 = 01^(2) 0 KQ with respect to the isomorphism (3.2.5), and 
hence the image 62 of the element b e G(KQ) under the natural map G-+G2 (forget 
the similitude factor). 
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However, the structure of possible singularities is independent of 62- More pre- 
cisely, Rapoport and Zink define a local model M/oc, a projective formal scheme over 
Spf(W(K)) depending only on the data (/Cg(i),(9/^(2),Vq(2),Vlyq(2)), for which the 
following proposition holds: 

PROPOSITION 3.2.10. ([RZ2,Prop. 3.33]) Let x e Mi be a closed point. Then 
x has a pointed etale neighborhood (U,y)-±(Mi,x) which is formally etale overM.100. 

The construction underlying this proposition will be outlined in the course of 
the proof of Lemma 3.3.2. We copy the definition of the functor MZoc from [RZ2, 
Definition 3.27]. Recall that we identify C^a) with Oq. 

DEFINITION 3.2.11. A point ofM.loc with values in an Oq-scheme T is given by 
(a) an Ci-set of locally free rank one Or-modules £A2 —>• t^  and 
(b) a morphism of Ci-sets 

0' : A'a ®zq Or -> *Ai;    0 • A2 ®zg Or -+ tA2, 

Both (f)' and 0 are surjective, and the obvious diagram is assumed commutative. 
We let M/oc denote the g-adic completion of M/oc xsq 5pec(W(7c)). 

PROPOSITION 3.2.12. Let s be a closed point ofMloc, and let Ml
s
oc denote the 

formal completion ofM.100 along s. Suppose M/oc is singular at s. Then there are a 
complete local smooth W(~K,)-algebra S and an isomorphism 

M'oc   _^   Spf(S{[u,v]}/(uv-q)) 

of formal schemes over Spf(W(K,)). 
In particular, M/oc is regular and flat over SpfCWfi)), and its special fiber has 

only singularities of the form (smooth) x (ordinary double point). 

Proof. The proof proceeds by making the local equations for M/oc explicit. Our 
approach is similar to that of de Jong in [dJ]. We work over W(K). If T is a W(lt)- 
scheme, the points of M/oc with values in T are given by the data (a) and (b) of 
Definition 3.2.11. In particular, if T is in characteristic zero then the homomorphism 
£A2 ~^ ^ is necessarily an isomorphism. 

We choose bases {e, ei,..., en_i} and {/, fi,..., /n-i} of A2 and A2, respectively, 
so that 

e = qf, ei = fi,    i = l,...,n-1. 

These bases identify the projectivizations ^(A^) and P(A2) with projective space F^T1. 
Let {X,XL,. . .,Xn_i} and {YiYi,... ,^-1} be the corresponding sets of homoge- 
neous coordinates. The quotients £A' of ^2 0Zq Or defines a T-valued point of F(A/

2); 
likewise ^2 defines a T-valued point of P(A2). The compatibility condition is that 
these two points are identified to the same point in F^"1. Assume T = Spec(R) to 
be affine and let (a;, #1,..., xn-i) and (y, yi,..., t/n-i) be their expressions in the ho- 
mogeneous coordinates defined above, with the x's and y's in R; then the condition 
is that (qx,xi,... ,#n_i) and (y,yi,... ,yn-i) are proportional. In other words, the 
matrix 

(3.2.12.1) (qX    Xl    '"    Xn-1 

.\y   yi   >••   Vn-i 

is of rank one. 
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The 2-by-2 minors of (3.2.12.1) provide a set of homogeneous equations for the 
scheme M/oc. The assertions of the proposition follow easily from the form of these 
equations, as we will see in a moment. We note for future reference the following fact: 

REMARK 3.2.12.2. The open subscheme Mloc^ C M/oc, defined by the condition 
that the homomorphism t\2 —► t^ be an isomorphism, is non-singular. 

It suffices to consider a geometric point z of M.loc,i in characteristic q. Let R be 
a complete local ring with residue field K and let the x's and y's be local homogeneous 
coordinates near z, as above; we may assume the Vs and y's lie in R. The condition 
z e M/oc'e' corresponds to the condition that the rows of (3.2.12.1) be proportional with 
a factor of proportionality a invertible in R. Consider the inhomogeneous coordinates. 
There are essentially three possibilities: 

(a) xi is a unit, yi is a unit. Let 

J      xi     J      yi yi xx 

The inhomogeneous equations are 

y' = xt; x'j =y'jJ > 1, 

and these are always smooth. 
(b) yi is a unit for some i > 1. Without loss of generality we may assume i = 1. 

Then the invertibility of a implies xi is also a unit, and we are reduced to case (a). 
(c) 2/ is a unit. This is impossible because y = aqx with a invertible and x G R. 
It is case (c) that gives rise to the singularities of M/ac outside M.loCii. 
The following theorem appears to be the natural generalization to higher dimen- 

sions of the well-known theorem of Deligne and Rapoport on the local structure of the 
modular curve Xo(q). 

THEOREM 3.2.13. The moduli scheme §>Ko is regular and flat over Sq, and its 
special fiber is a union of smooth divisors with normal crossings. Moreover, if x is a 
singular point of the special fiber then the formal completion SKO,X is isomorphic to a 
formal scheme of the form Spf(S[[u,v]]/(uv — q)), where S is a complete local smooth 
Oq-algebra. 

Proof The properties in question are local in the etale topology. Thus it suffices 
to verify the theorem after base change to W(K). The Theorem is thus a consequence 
of Theorem 3.2.7, Corollary 3.2.9, Proposition 3.2.10, and Proposition 3.2.12. 

The following proposition is a strengthening of Proposition 3.1.1.: 

PROPOSITION 3.2.14. Let i : y -> Sq be a geometric point lying over i, and let 
^Ko.y = y Xsq §>Ko denote the corresponding geometric special fiber. The ordinary 
locus is open and dense in every irreducible component ofS^o^- 

Proof First note that the forgetful morphism §Ko,2/ ~> §>K,y is finite, i.e. has finite 
fibers. Indeed, let # be a geometric point of Si^)2/, corresponding to an abelian variety 
Ax; then the points of §Ko,y above x correspond to the rank 1 (9q(2)/q(2)-subgroup 
schemes C2 C ^[q^]. But the connected part of the finite flat group scheme ^[qt1)] 
is of dimension one. It follows easily that the set of possible C2's is finite. 

On the other hand, it follows from Theorem 3.2.13 that every irreducible compo- 
nent §#0,2/ is of dimension n - 1. Combining these two facts with Proposition 3.1.1, 
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we see that no irreducible component of SKo,y lies entirely over the complement of the 
ordinary locus in S/^y. The assertion now follows from Proposition 3.1.1. 

REMARKS. The results of this section were obtained in 1996. Analogous results 
for Iwahori level were known to Rapoport previously (cf. [R] which, however, only 
treats places where the division algebra is ramified). General parahoric levels and 
general signatures have since been treated by Gortz [G], and Theorem 3.2.13 is now 
regarded as the trivial case. 

Counterexamples due to Stamm show that the analogue of Proposition 3.2.14 is 
not valid in the generality of [Wei]. However, the present case has also been considered 
in [We2], where Wedhorn obtains a congruence formula related to the one proved in 
section 4.2, below. 

3.3. Local models of 6^. 

3.3.1. Let (Auniv,A'>univ,puniv : X(Auniv)2->X(A,>univ)2) denote the universal 
£-set (3.1.4.1) of abelian varieties over the moduli scheme AK«{£)' Then the kernel 
of puniv is a finite flat group scheme Cg71™ of order q, isomorphic over OJC to an 
(9q(2)/q(2)-module of rank 1 (3.1.4). We use the same notation to denote the pullback 
of C^72™ to SKQ via the natural inclusion. Similarly, we let Ciniv denote the kernel 
of the homomorphism p^univ : X(^/'un^)i->X(A7xn^)i described in 2.1.3.6, so that 
C?niv and C%niv are canonically Cartier dual (2.1.4.4). 

The property "C2 is etale" is relatively representable over the functor AKI(£) 

and defines an open subscheme AK<I(C>)
0

£ [cf. [DR,§V.l]. Likewise, the property "Ci is 
etale", equivalent to the property "C2 is locally isomorphic to nq in the etale topology", 
defines an open subscheme AK<i{£>)m of AKiiQ- It follows from Proposition 3.2.14 
that 

3.3.1.1.  The union AK<I(£>)
0
 = Ax^iQe U AK«{£>)m Z5 0Pen an^ dense in 

AK*(C). 
We let S^o, S

0
Ko i, and §Xo,m denote the corresponding subschemes of §x0. Note 

that S0
Ko contains the ordinary locus but is in general larger. 

Let 8Ko denote the special fiber of §K0, X^ = 8Ko n §^m X? = SKo n S^, 

and let Xm and X4 denote the closures in §Ko of X^ and X|, respectively. It follows 
from (3.3.1.1) that 

(3.3.1.2) §Ko=*mUXe'. 

We will need the following strengthening of Theorem 3.2.13: 

LEMMA 3.3.2. Let x be a singular point of the special fiber O/SKQ, and let 

(Ax,A'x,px:X(Ax)2^X(A'x)2) 

be the corresponding C-set of objects of AV0#.   Then Ker px is isomorphic to the 
unipotent group scheme aq. 

Proof. First, suppose Ker px is of multiplicative type. Since ^[qt2)] is one- 
dimensional, it follows that x is in the ordinary locus and Ker px is the full g-torsion 
subgroup X(i4)2[g] of the formal group X(i4)§ (cf. 3.2.4). Let (§K)

0
, resp. (§0° 

denote the ordinary locus of §/<-, resp.    §Ko-    The former is an open and closed 
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subscheme of the moduli space AK for triples (A, A,/?) as in 3.1.4, and the func- 
tor "forget p : X(^4)2->X(^4/)2" from AK<I{£) to AK restricts to the canonical map 
/ : X^-^SK)

0
. Then the map / admits a section: 

where p : Xi-^^/X^)^] is the tautological map and A' is determined by A and 
Ker(p) as in the discussion preceding 3.1.4.1. Since S>K is smooth, it follows that X^ 
is smooth, hence £ is a smooth point. 

To treat the etale case we need to recall briefly how Proposition 3.2.10 is proved. 
Let (X2,X/2;1p2) be the universal rigidifiedXi-set of (/-divisible Ojcq(2)-modules over 

.Mi, in the notation of (3.2.8). Let Nilpw^ be the category of Wfe) schemes on 
which q is locally nilpotent. Let Af be the functor on Nilpw^ such that, for 5 G 
Nilpwot), J^(S) is given by triples ((X2,X£);p2; (72,72))- Here (P^X'a);^) £ 
Mi(S) and 

(72,72) : (M(X2),M(X^)) ^ (A2,A,2)®zqOs 

is an isomorphism of >Ci-sets of (9s-modules, where M(«) denotes the crystal associated 
to the ^-divisible Ofc^w -module •. Then M is representable by a formal scheme. The 

forgetful functor defines a formally smooth morphism N-^Mi. 
Consider the morphism ^ of functors that to the triple ((X2,X2);p2i (72,72)) 

associates the composite morphism of £i-sets: 

(3.3.2.1) (A2, M2) ®Zq Os -^ (M(X2), M(Xi)) -> (Lie(X2), L»e(3^)). 

Here the first arrow is given by (72572)~1> while the second morphism is given by the 
theory of Grothendieck and Messing [Me]. Then ^ defines a morphism ij) : J\f->M.loc 

(cf. [RZ2], p. 90). 
Let x G Mi be a closed geometric point, and assume the corresponding morphism 

X2,a;->X2 3. is etale. We need to show that a: is a smooth point of Mx. Rapoport and 

Zink consider a certain class of sections 5 of Af—>Mi on pointed etale neighborhoods 
(U^y) of (.Mi,a;), which are called rigid of the first order [RZ2,p. 91]. They show 
that if 5 : (W, y)-^Mi is rigid of the first order, then ^05: U^Mloc is formally etale 
in a Zariski open neighborhood of y ([RZ2, Prop. 3.33]). On the other hand, it is 
immediate from the definitions that if X2lx^^2ix ^s etale, then s(y) G M/oc'e', defined 
as the g-adic completion of M/oc'e' Xspec(oq) W(K). But Remark 3.2.12.2 implies that 

M'oc'e' is smooth. This implies that x is a smooth point, and completes the proof of 
Lemma 3.3.2. 

PROPOSITION 3.3.3.  The subschemes Xm and X4 are smooth divisors on SKQ- 

Proof. Let a; be a singular point of SK0 contained in Xm. We replace SK0 by an 
appropriate etale neighborhood of x, which we may take to be isomorphic to Spec(R), 
R = 5[W,V]/(TXI; - g), with notation as in Theorem 3.2.13. It follows from Theorem 
3.2.13 that x lies on the intersection of two smooth irreducible components of the 
inverse image in Spec(R) of Xm, say Di and D2. Following a suggestion of de Jong, 
we use the Tate-Oort theory [TO] to describe the group scheme of prime order Ciniv 

in a neighborhood of x. We may assume u to be a local parameter for Di and v a 
local parameter for D2.   Let C denote the pullback of Cinw to Spec(R).   Since R 
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is affine it follows from the main theorem of [TO] that C is determined by a pair of 
elements z, y € R with xy — q, and that C is etale on the subset of Spec(R) where x 
is invertible. But our hypothesis is that C^71™ is multiplicative, hence Cinw is etale, 
on the non-singular locus of Di U D2. Since SKQ is regular, the subvariety defined by 
the vanishing of x is purely of codimension one. Thus x is invertible in R, and C is 
etale on Spec(R). But then it follows from Lemma 3.3.2 that x is not a singular point. 
The argument for X4 is analogous. 

REMARK 3.3.4. Let R be a Zq algebra. The Tate-Oort theory actually classifies 
group schemes of order q over Spec(R) by elements a and b in R such that that 
ab = wq, where wq = vq for a certain explicit unit v in Zg. Our parameters above 
are x = i/~1ay y — b. The distinction is important for the group structure but not for 
the local geometry. Thus we let Gnix^y) denote the group over Spec(R) associated 
to (a = vx, b = y) in the Tate-Oort classification. Then 

GR(x^y) — GR(
X

'iV') tf and only if x/x' is the (q — l)st power of a unit in R. 
The proof yields the following Corollary: 

COROLLARY 3.3.5. Let s be a singular point o/§x0 and let Spf(S[[u,v]]/(uv—q)) 
be a local model for the formal completion ofSK0 along s, in the notation of Theorem 
3.2.13. Then s lies in the intersection Xm fl Xi, and, up to interchanging u and 
v, u is a local equation for X4 and v is a local equation for Xm. Moreover, in the 
Tate-Oort classification for the pullback C of Cintv to Spf(S[[u,v]\/(uv — q)), we 
have C ~ GR{x,y), with R = S[[u,v]]/(uv — q), x = au, y = a~1v, for some 
a e (S[[u,v]]/(uv-q))x. 

Proof. Only the last statement needs justification. But in the Tate-Oort theory, 
x (resp. y) vanishes precisely where Ciniv is not etale (resp. multiplicative). Thus 
the variety defined by x is the subset X4 where C^mu is not multiplicative, so x = au 
for some a G (S[[u, v]]/(uv — g))x, and we conclude by recalling that xy — q = uv. 

We now turn to the moduli scheme &Ki- Let C+ denote the complement of 
the zero section of Cinw over the generic fiber (&Ko);cq- Then C+ tautologically 
represents the functor 

fT-valued point/:T^(6Kokq 1 
(3.3.5.1) T H+ I ^ a generator of f+ip?™) over TJ 

On the other hand, just as in the elliptic modular case (3.3.5.1) is represented 
by ©Ki over ^Cq (cf. 2.1.4.5). Thus in order to obtain a regular model for ©^ over 
5q it will be enough to find a regular model for C+. We do this explicitly using the 
Tate-Oort equations. 

PROPOSITION 3.3.6. (a) The moduli scheme &Ki has a flat model S^ over 5q 

which is a regular scheme, and whose special fiber is a divisor with normal crossings, 
each of whose components has multiplicity prime to q. More precisely, there is a finite 
flat morphism pi : SKI -* ^KQ- 

(b) The inverse image Ym = p^1(Xm) is a reduced divisor on S^, while Y4 = 
p^1(X^) is a divisor with multiplicity q — 1, and the map pi : Y^red—^e is an iso- 
morphism. 

(c) Let YSing denote the singular locus o/Sj^. Then Ysing.red is smooth and all 
its components are of codimension 1 in the special fiber. 
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Proof. We define S^! to be the normalization of S^o in C+- All assertions are 
local on §/r0, so we can work over a neighborhood of a geometric point s of the special 
fiber SKQ- There are three cases to consider. 

Case 1: s G X^. Then C+ is etale over §K0 in a neighborhood of s, and the 
claims follow immediately from Theorem 3.2.13. 

Case 2: s G Xj. Then C+ is of multiplicative type, hence is isomorphic to iiq on 
an etale neighborhood of s. The statement about multiplicities is then obvious, as is 
the assertion that pi : Y^red-^-Xe' is an isomorphism. 

Case 3: s G Xi fl Xm. We use the notation of Corollary 3.3.5. Let a be the 
unit introduced in the statement of Corollary 3.3.5. By the remark preceding that 
corollary, C ~ GR(U,V) if and only if the unit a is a {q — l)st power in Sflu, v]]/(m; —g). 
Now the extension (5[[w, v]]/(m; — q))[{oL)^] is finite and etale over 5[[i/, i>]]/(m; -q). 
Since our theorem is local in the etale topology, we may assume C ~ GR{U,V). 

Now we recall the Tate-Oort local equations for GR(U,V). On p. 13 of [TO] are 
introduced parameters U and y such that, setting Xi = wqU

1~q, X2 = C/9-1, and 
Y = U^y, and working on the formal completion of Spec S[u,v]/(uv — q), we have 

(3.3.7) GR(u,v) = Spf(S[Y][[XuX2]]/(X1X2-wq,Y<*-X1Yyi    X1 = vu, X2 = v. 

Now the factorization Yq — XiY = Y(Yq~1 — Xi) defines an injective map from the 
ring on the right-hand side of (3.3.7) to the direct product of two rings RQ and i?*, 
where 

Ro = S[[X1,X2]]/(X1X2 - wq);    R* = S[[X2t Y]]/(Y''-1X2 - wq). 

Dually, we have a surjective morphism 

Spf(Ro) I] SpW)    ->    GR(u,v). 

The image of Spf(Ro) corresponds to the zero section, while the image of Spf(R*) is 
the scheme-theoretic closure of C+. It follows that Spf(R*) is a local model for C+ 

over a neighborhood of the singular point s. Obviously Spf(R*) has the properties 
required, and the construction shows that pi : Yeired->X6 is an isomorphism near s. 
Moreover, Spf(R*) is normal, and it follows just as in [DR,§V.2] that Spf(R*) is a 
formal local model for S^ near 5. 

This completes the proof. 
The analogy with [DR] becomes clearer if we extend scalars to 0q[CgL where Q 

denotes a primitive q-th root of 1. Let 5q = Spec(Oq[(q]). 

PROPOSITION 3.3.8. (a) The moduli scheme &Ki xjcq ^q(Cg) has a flat model 
SKI over Sq which is a regular scheme, and whose special fiber is a reduced divisor 
with normal crossings. More precisely, there is a finite flat morphism pi : S^i —> 
§KoXsqSq. 

(b) The inverse images Y4 = pj~1(Xe') and Ym = p5"1(Xm) are reduced divisors on 
SK!- Moreover, Ym 2^ Ym and Y° = pj"1(XJ>) is etale over (Y?)red ~ X? with Galois 
group isomorphic to the group of diamond operators (cf. Remark-Definition 2.1.4-6). 

(c) The model S/^i can be defined as the normalization of §KQ Xsq Sq in the 
scheme 

IsomsKQxSqSvec{K:q(c>q)){
r^l(l^Ci). 
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(d) Over the complement ofYm (resp. Y4) SKI represents the functor 
Isom{iAq,Ci) (resp. Isom(Z/qIj,Ci)), and these two are canonically isomorphic over 
the generic fiber. 

Proof. The first part of the proof of Proposition 3.3.6 showed that we can take 
the universal group scheme C over SKO to be etale locally isomorphic to GR(U, V). Let 
i?o = 'Lq[u^v}l{uv — q). Then GR(U,V) is the base change from RQ to R of GRQ{U,V), 

and it suffices to work over the base i?o, a local curve over Spec(Zq) = Sq. Then the 
proof of [DR,Lemma V.2.8] applies word for word to yield the result. Parts (c) and 
(d) are the analogues of [DR, Theorem 2.7] and [DR, Prop. 2.3], respectively, and the 
proofs are identical. 

We write down the explicit local equations since we will need them for the fol- 
lowing lemma. The formal completion of S^i at a singular point is isomorphic to 

(3.3.8.1) Spf{S[[Cq,x,y]]/(xy-w)), 

where w is a uniformizing parameter in Zg[£g]. 
Let LJ : (Z/gZ)x -> Z£ be the Teichmiiller character. 

LEMMA 3.3.9. The diamond operators < a > e >l^(6xi(q)/6Ko(cl)) extend to 
automorphisms ofSxi (resp. BKI) that act trivially on (Y^red (resp. on ym CiYe). 

Proof. The action of the diamond operators < a > on S^ (q), in terms of (3.3.6), 
is deduced from the action on C+ taking a section c to [a]c, where [a] denotes mul- 
tiplication by a (cf. 2.1.4.6). In the model GR{U,V), with equations (3.3.8) [a] takes 
Y to u(a)Y [TO, p. 13]. The assertion of the lemma follows when S^i is replaced by 
its local model Spec(R*), in the notation of the proof of Proposition 3.3.7, and this 
implies the result for § Ki- 

ln the local model 3.3.8.1 near a singular point of S^, [a] acts by taking x to 
a;(a)a;, y to uj~1(a)y (cf. [DR, V.2.15]). This shows that [a] extends to an automor- 
phism that fixes Ym DYi. 

4. Vanishing cycles and cohomology. 

4.1 Calculations of vanishing cycles. Let rj = 5pec(/Cq(i)) be the generic 
point of Sq, rj the spectrum of the algebraic closure of /Cq(i), j : rj; -> 5q the natural 
map. We write Gal(rj/rj) for Ga/(/Cq(i)//Cq(i)), and let I C GaUjj/rj) denote the 
inertia subgroup and P C I the wild inertia subgroup. The next step is to study 
the £-adic cohomology of ©/^(q)^ = ©^(q) x^ rj as a module for Gal(rj/r}), by 
comparing it to the £-adic cohomology of the special fiber. It follows from Proposition 
3.3.7 that the model SKI satisfies hypotheses (i)-(iv) of [RZ1,(2.2)], and that each 
irreducible component of the special fiber occurs with multiplicity prime to q. Then 
Grothendieck's purity conjecture [SGA 7, I, §3] follows from [RZ1, (2.21)]. It follows 
that the calculation in [SGA 7,1, 3.3] of the sheaves of tame vanishing cycles is valid. 

4.1.1. We follow the notation of [RZ1] and let RtyqQt denote the qth vanishing 
cycle sheaf. By [RZ1, (2.23)], the vanishing cycle sheaves and the tame vanishing cycle 
sheaves coincide under our present hypotheses. We recall the calculation of R^tQe in 
the case at hand, which we will treat abstractly. 

Consider a regular scheme X, flat and of finite type over 5q, with smooth generic 
fiber Xv and special fiber Xs. The special fiber is assumed to be etale locally of one 
of the following types: 
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4.1.1.1. Xs is smooth. This corresponds to a neighborhood of a point in Ym not 
in Yi. Then the regularity of X implies that X is smooth. In this case R^qQi. = 0 
for <7>0, R^0Qi =<&. 

4.1.1.2. X is of the form Spec'I^X^Y-1)/^-^ - q). This corresponds to 
a neighborhood of a point in Yi not in Ym. Let X' = Spec Zq[x,y,y~1]/(xq~1 - q), 
and define a map TT :  X'-tX via the embedding 

Zq[X,Y,Y-1]l{X*-1Y -q) ^ZfcMy-1]!^-1 -q)-, Y^y"'1, X^xy'1. 

The morphism TT is etale with Galois group F£ = /ig_i, the group of (q — l)st roots 
of unity. Here ( G A^-i acts by multiplying both x and y by ^. The special fiber Xs 

is a non-reduced divisor with multiplicity q — 1; the associated reduced divisor X5)red 
is defined by the equation X = 0 and is smooth; it is isomorphic to Spec ¥q [Y, Y-1], 
which we view as (Gm)Fq. 

We first compute the vanishing cycle sheaves R^qQ£ in the etale neighborhood 
X' of X. Let 0 = Zq[Cq] = Zq[x]l(xq-1 - q). Then we may write 

(4.1.1.2.1) X' = Spec O xspec zq Y, 

where Y = Spec Zq[y,y~1]. The second factor is smooth over Zg, hence (<R^qQi)x, is 
the pullback from R^q for the finite flat morphism Spec O-^Spec Zg. The morphism 
is of relative dimension zero, hence R^q = 0 for # > 0, and it is elementary to see 
that i?^0 is the group algebra Qg[/i9-i], with the inertia group of O over Zg acting 
as jlq-l. 

It follows that RWQi = 0 for q > 0, and that i^Qg is a lisse £-adic sheaf of 
rank q — 1 on XSyre(i that becomes constant over X^ red. Moreover, since Gal{X'/X) 
acts as the inertia group on the first factor of (4.1.1.2.1), one sees easily that the 
canonical action of Gal(X'/X) on {R^0Qi)x' identifies the latter with the group 
algebra Q^Ga/pT/X)]. It follows that 

(4.1.1.2.2) mOQi-^n+Qt. 

The inertia group /xg_i still acts on i?^0, and we have seen that the lift of this 
action to X's red coincides with the action of Gal{X'/X). We write 

(4.1.1.2.3) R^Qz = exi?*0Q,[x], 

the decomposition with respect to characters of the inertia group. We write L[x] for 
the rank one local system R^Qelx]- Let xo denote the trivial character. Consider 
the embedding 

.j:Xatred  =  {Gm)¥q   <-» A1   -  Spec¥q{Y} 

as the complement of the origin Y = 0. The morphism TT is totally ramified along 
Y = 0. It follows that 

(4.1.1.2.4) R0j*L[x] = jiL[x}; Rqj*L[x] = 0, q > 0    (x ^ Xo); 

(4.1.1.2.5) R0j*L[xo] = Qi\ Rqj*L[xo] = 0, q > 0. 
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More generally, suppose X = Spec R[X, Y, Y~1]/(Xq~1Y — q), where i? is a 
smooth Zg-algebra of finite type. Then X is the fiber product 

X = Spec R XsPec zq Spec Z^Y.Y'^/iX^Y - q), 

where the first factor is smooth. We define 

jx = 1 x j : XSired = Spec R xspec zq (Gm)¥q-^Spec R Xspec Zq Spec ¥q[Y]. 

Letting X2 denote the second factor above and letting P2 denote the projection X-J-X^, 
we see that 

(4.1.1.2.6) RVqQt=tiRVq
X2Qi, 

where R^X2 denotes the vanishing cycle sheaves for the map from X2 to Spec 7Lq. 
In particular, R^QQe vanishes for q > 0, while R^Qe breaks up under the action 
of the inertia subgroup of Ga^Qq/Qq) as the sum of rank one local systems L[x]: 
L[xo] = Qe, whereas L[x] for non-trivial x satisfies the analogue of (4.1.1.2.4): 

(4.1.1.2.7) R0jx,*L[x} =jx,\L\x\\ RqJx,*L[x} = 0, q > 0    (x ± Xo). 

In other words, jx,!£[x] is the intersection complex (pure perverse sheaf) on 
Spec Rxspec zqSpec ¥q [Y] associated to the local system L[x] on the open subscheme 

4.1.1.3. X is of the form Spec R[X,Y]/(Xq-1Y - q), where R is a smooth Zq- 
algebra of finite type. This corresponds to a neighborhood of a point in Y4 fl Ym. We 
want to calculate the stalks of R^qQe at a geometric point x of the singular locus Xsing 
of the special fiber, defined by X = Y = 0. In this case we simply quote the result 
from [SGA 7, loc. cit]: RWQi = 0,q > 1; (R^0Qih = Qi^R^Qih = ^(-1), 
with trivial action of the inertia group on Qg, the (—1) denoting Tate twist. 

We now apply the above calculations to the cohomology of S^. We write Ya = 
Y4 fl Ym. Let im : Ym-tSKv ie • 5^->SKI) and ia : Ya-^/Ci be the natural maps. 
Let Y? denote the complement of Ya in Y^, and let je : (Yg)red-±(Y4)red be the open 
immersion. Then 

PROPOSITION 4.1.1.4. The vanishing cycle sheaves R^qQe are calculated as fol- 
lows. Let I denote the inertia subgroup o/GaZ(Qg/Q^). Then the action of I on 
R^qQi factors through the map to fiq-i given by the action on Q[Cg]- For a charac- 
ter x 0f fJ'q-ij let [x] denote the x-isotypic component, and let xo denote the trivial 
character.  Then 

(i)RV0Qi\Xo] = Qi. 
(ii) R^Qe = i?^1^^] is a rank one local system supported on Ya, locally 

isomorphic at any point ofYa to Qe(—1). 
(Hi) For x 7^ XO; R^^h[x\ is the extension by zero of a rank one lisse sheaf 

L[x] supported on Y?. Moreover, the natural map je,\R^0Qi[x]~^Rje^R^0Qe[x] is a 

quasi-isomorphism. 
(iv) Finally, R^qQe =0forq>l. 

Proof. Everything follows immediately from (4.1.1.1-3) except the global triviality 
of Rty0Q£[xo]- But there is always an injection Qe^R^Qeixo], so (i) follows from 
the fact that all stalks of i?^0^ [xo] are one-dimensional. 
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Since the tame vanishing cycle sheaves are concentrated in two degrees, the van- 
ishing cycle spectral sequence degenerates to a long exact sequence 

->ffi-1(S^1,B,ii*1Q{)->ffi+1(Siri,B,ie*0Q8)->.... 

Using (4.1.1.4.ii), we rewrite this 
(4.1.2) 

... ->ff<(Sjf1,K,iJ*0Qt)->fr(6K1(q)ir,Q8)-^^i-1((n)red,^1Q«[Xo])-»- 

We deduce from (i) and (iii) of (4.1.1.4) that the first term in turn is calculated 
by a long exact sequence 

(4.1.3)    ...W-'dYaU^Qe^WiSK^R^Qt) 

^Hi(Ym,Qe)®Hi((Y,)red,Qe)® © Hi(YP,L[x})^.... 

Here and in (4.1.2) we have replaced Y4 and Ya by the associated reduced schemes, 
since the etale cohomology is insensitive to nilpotents. 

The diamond operators act on 6/^ (q)^ as well as on Y4 and Ym, and thus induce 
compatible actions on the spaces in the exact sequences (4.1.2) and (4.1.3). These are 
determined as follows: 

LEMMA 4.1.4. The diamond operators < a > act on the outer terms of the exact 
sequence (4-1-3) as follows: The action is trivial on H%{(Y4)red')

(Qz), ^{(Y^red,^), 
and on H%~1{{ya)re(i^R^1(^,[xo]) and acts via x on L[x]. 

Proof. By Lemma 3.3.10 the diamond operators act trivially on (Y^)red and 
(Ya)red> so it suffices to determine their action on R^Qe and on R^Qt. 

We first determine the action on i?^0^. By the calculation in (4.1.1.2), we 
see it suffices to determine the action of the diamond operators on H0(Spec(Qq (&Qq 

Qq[Cq]iQi), via the identification of Qg[Cg] with the generic fiber of fiq and the latter 
with Ciniv in (4.1.1.1-2). But the diamond operators on /i9 are tautologically given 
by the cyclotomic character. 

As for the action on R^Qt, this is again local. But locally the calculation in 
(4.1.1.3) shows that R^Qt is a constant sheaf, so the triviality of the action of the 
diamond operators is clear. 

COROLLARY 4.1.5. Suppose x 7^ Xo; and denote by <>=:x the x-isotypic compo- 
nent for the action of the diamond operators. Then for any i, there is a canonical 
isomorphism of Gal(jj/rj) -modules 

^(^,Q£)<>=x©^((n0U^M) "^ ^(^(qk, \<>=x 

Proof. Indeed,  in  (4.1.3),  the diamond operators act trivially on the term 
^p-i((YajrediQt) and coincide with inertia on L[x]> inducing an isomorphism 

iji(§K1^^
0Q£)<>=x ^ iJi(ym,Q£)<>=xe^(^0,^M). 

Similarly, the diamond operators act trivially on the H1'1{{Ya)^^R^^hlxo]) term 

in (4.1.3). 
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Over 5q = Spec(Oq[Cq]) the special fiber of §Ki is a reduced divisor with normal 
crossings (Prop. 3.3.8). Let R^qQe denote the corresponding vanishing cycle sheaves. 
It follows that there is a canonical isomorphism 

(4.1.6) m0Qz "Qi. 

The following lemma is immediate from the above calculation. 

LEMMA 4.1.7. We identify (Y?)re(i ~ X| via the morphism pi. Then the mor- 
phism pi : Y°—y(YP)red of Proposition 3.3.8 defines a canonical isomorphism 

Moreover, this isomorphism is equivariant with respect to the diamond operators. 

Proof. It is easy to see that the etale covering X1 of X used in the calculation 
of 4.1.1.2 is represented by Isomx(p>q,Ci). It follows from Prop. 3.3.8 (d) that the 
calculation globalizes to give the indicated isomorphism. The diamond operators act 
as Aut(fj,q) ~ fj,q-i on X', and the final assertion follows from the discussion in 4.1.1.2. 

COROLLARY 4.1.8. Let x ^ Xo be a non-trivial character of the diamond opera- 
tors. Then the canonical maps 

Hi((YP)red,L[x}) -> Hi(Ye°,Qe)<>=x -» Jff
i(ye-,Q,)<>=^ 

are isomorphisms. 

Proof The first isomorphism is a consequence of the preceding lemma. The 
second isomorphism follows from the fact that the diamond operators act trivially on 
the complement Ym n Y^ of Y° inYs. 

4.2. The congruence formula and proof of Theorem 2.3.5. As explained 
in §2.2, the double coset Uq defines a correspondence Uq on &K1((\)rfX^Ki{^rf' Its 
modular interpretation in characteristic zero has been described in §2.2. An alterna- 
tive description will be useful in defining its reduction (mod q). Consider the finite 
flat group scheme X(A)2[q2] over 6KI,Q, and let mq : X(A)2[q2]^~K(A)2[q] denote 
multiplication by q. Let P^ = 7*(C)> C £ Vgi as m the discussion in 2.2. The in- 
verse image m~l(P^) C X(A)2[g2] defines an etale covering of ©/^(cj)^, whose image 
under p, p(m^1(P^)) C X^'^ftf] is a well-defined etale covering of ©^(q)^. Over 
&K1(q)rf'x<3K1(q)rf, Uq is in one-to-one correspondence with the set of 

(4.2.1) {{A,i1X,0'',P;A',i',X',(fiy,P')} 

with notation as in (2.2.2). Here P = 7(1) € X(A')1[q], P1 = Y(l) G X((A'Y)i[q], 
where (A1)' bears the same relation to A' and /m((7/)*) € X(J4')2 that A' bears to 
A and Jm(7*). Recall that P and P' determine Pc = 7*(C) and P^ = (7')*(C) as in 
(2.2.1.3), and (Pc.^c) c X(^)2M x ~X-(A'h[<i\ is defined by the closed relation 

(4.2.2) PI e pim-HPc)). 

This subset is independent of the choice of £ and defines a closed relation on the set 
of(P,P')€X(J4')iMxX((A')')iM. 

Let 5 : &KiiQ-*'X.(A,)i[q] denote the canonical section sending (A, t, A,/?9,P) to 
P. Then (4.2.1) is contained in 5(6^(q)^) x s(&Ki((\)rf)' We use the same notation 
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Uq to denote the scheme-theoretic closure of (4.2.1) in S(SK1)^S(SK1)- Let pi : 
Uq -> Sid i = 1)2, denote projections on the ith factor. 

Over the open subset Y?, defined to be the complement of Ya in Yg-, the morphisms 
Pi and P2 are both etale. Moreover, it is straightforward to see that P2(Pi1 (^7)) C Yg. 
In particular, the modular description (4.2.1) holds without change over Yf. We let 
Ue' denote the restriction of Uq to Y?xY?. 

The situation is more interesting over Y^. First, suppose (A,L, A,/^,P) is a 
(T-valued) point of Y^. Then the etale group Ci generated by P corresponds (by 
Cartier duality) to a subgroup C2,p of X.(A)2 isomorphic to /xg. The isogeny F2 : 
X(A)2->X(^4/)2 = X(A)2/Cp is just the geometric Frobenius map. Indeed, one veri- 
fies that A' is nearly isomorphic to the transform A^ of A under Frobenius. In fact, 
this is true at the level of q-divisible groups: writing 

X(A') = [X(^')i©X(J4
,)2r, 

we have canonical isomorphisms 

(4.2.3) X(A')2 -^ X(A^h; mq ■ X(^)i ^ X^i/r^X^'JiM) "^ M^i 

where the first isomorphism is given by F2, the second is obtained by factorizing 
mq : X(A,)i^X(A,)i via the morphism r' : X^Ji-^X^Ji of 2.1.4, and the third 
is a consequence of our choice of F2. Moreover, the point P' of (4.2.1) satisfies the 
relation 

P'em^r')-1^) 

derived from (4.2.2), as one verifies by looking at the multiplicative formal group. 
Here the isogeny r' : X((yl/)/)i->X(A/)i is again as in 2.1.4, but this time relative to 
A'\ We note that, identifying mq • X(i4/)i with X(^4/)i, P' can be identified with the 
image of P under the Frobenius map 

X(i4)i   x X(A)2 -> X(i4<*))i   x  X(A<*>)2. 

It follows that 

(4.2.4) {A,L,\,P\P) -+ {{A^\,fi'i,P;A',L\\\m\P')} 

is the graph of a morphism U^ : Y^-^Y^ that defines a section of pi over Y^. Here 
the quadruple {A',i', A', (Z?')9) is defined by A and the isogeny F2 : X(^)2^X(A/)2 
as in 2.1.4. 

Next, let U" = p^l{Y^)^p~l{Y?). Then we have 

(4.2.5). pr1(^) = uS;uu-. 

In particular, U^ (resp. U~) is the graph of a correspondence on Y^ x Y^ (resp. 
Y^n x Yg). We denote their closures in the special fiber of S^IXSKI by the same 
notation. 

The morphism U+ is not quite equal to geometric Frobenius on Y^. Recall from 
3.2.1(b) that the g-divisible (9jc,g-module X(J4) breaks up over the divisors of q in /C. 
The components corresponding to divisors of q^ (resp. q^) other than qt1) (resp. 
q(2)) are of multiplicative type (resp. etale). Thus geometric Frobenius on Y^ acts as 
multiplication by q on the g^-factors of X(J4) (other than q^) and as the identity 
on the (/^-factors (other than q(2)).   Moreover, the maximal connected subgroup 
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X(A)? is purely of multiplicative type. Thus geometric Probenius replaces X(A)i by 
X(A)i/X(A)%[q]. But it follows easily from (2.1.4.2) that 

X(i4)1/X(^)Sb]=X(A//)/X(^)M. 
We combine these observations as follows. Let [g-1]! denote the image of q"1 in 

GL(n,/Co)9(i)), which we embed diagonally in GI/(n,/Cg(i)). This is a central element 
of G(A/), hence induces automorphisms of all Shimura varieties at finite level that 
extend trivially to &Ki(q)r)- Bearing in mind that inclusions of lattices induce maps 
of abelian varieties in the opposite direction, we conclude that 

PROPOSITION 4.2.6 (CONGRUENCE FORMULA).  We have the identity 

[q-1}1-V+l = Frob, 

the geometric Frobenius map on the scheme Y^ over ^(qW). 

4.2.7. We need to explain how to relate the cohomological correspondence defined 
by Uq in characteristic zero to the finite correspondences calculated above over Y? and 
y^. This is somewhat delicate, since the base scheme §Ki has a singular special fiber 
and we have not determined the structure of Uq over the singular locus. Fortunately, 
we are only interested in the action on R^0. It is convenient to write 

(4.2.7.1) m0Qe = Qe 0 0 jm<L[x). 
X#Xo 

We consider the first map of (4.1.2): 

bi : WiSK^R^Qe) -> #•(©*!(q)tr,Q*). 

We need to find a cohomological correspondence Uq on R^0Qe such that 

(4.2.7.2) biolJ0
q = Vqobi. 

We define U^ on the separate summands on the right-hand side of (4.2.7.1). On 
the summand Q^ one just takes the natural cohomological correspondence (pullback 
followed by push-forward) defined by the proper correspondence Uq. Recall from 
Corollary 4.1.5 that, if x ¥" Xoi then 

(4.2.7.3) iJi(§^,«,Q£)<>=x = IP(ym,Q,)<>=*. 

Now Uq commutes with the diamond operators, hence fixes the x-eigenspace. We have 
seen that Uq restricts to a sum of two correspondences U+ + U~ on Ym, and the 
restriction of U° to ilP(Ym, Q^)<>=x is evidently the sum of the induced cohomological 
correspondences, say U+ [%] and U~ [x]. 

It remains to define U^ on the L[x]. In fact, it is enough to define U^j on 

Hl((YP)red,L[x]). Extending scalars to 5q, we can use the model S^, and define 
a correspondence Uq on S^ x S^i as above. We have seen that ii^Q^ = Q^ (4.1.6), 
hence we can define Uq again as the natural cohomological correspondence on i?^0^ . 
This commutes with the action of the diamond operators, hence for each x defines an 
operator on iJ2(§K1,KiQi)<>=x• Since the diamond operators act trivially on Y^nYm, 
it follows as before that, for x 7^ Xo> this breaks up as 
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by Proposition 3.3.8 (b) and Corollary 4.1.8. It is clear that U° induces U+ [x]©U~ [x] 
on the first factor. On the second factor it suffices to know that Uq fixes Y4. By proper 
base change, U° satisfies (4.2.7.2). Hence 

LEMMA 4.2.8. Fix an integer i. Let x ¥" Xo he a non-trivial character of the 
diamond operators. The correspondence Uq acts on 

Wi&KMh^)^* = Hi{Ym,%)<>=^®Hi
c{Yi,L[X}) 

via the matrix 
' [q-1]^1 ■ Frob       0 

0 D{x), 

where [#~1]i is the automorphism defined above, Frob is geometric Frobenius, lifted 
to /Cq[C*], and D(x) £ i4tit(ff*(y*,<&)<>=*). 

Proof. Everything is clear except the 0 in the upper right-hand corner. But it 
follows from Lemma 4.1.4 and Proposition 4.1.1 that the inertia group / acts triv- 
ially on Hl(Ym,Q£) and coincides with the diamond operators on fP(y/,I/[x]). The 
correspondence Uq is defined over 5q, hence commutes with inertia. The Proposition 
follows. 

4.2.9. 

Proof of Theorem 2.3.5. We can now complete the proof of Theorem 2.3.5. We are 
given an automorphic representation TT that contributes to iJ71-1 (©^i (q)rfi Qte) but has 
no Ko(q)-Gxed vector; i.e., we are in case (b) of Proposition 1.4. Let {a, /?i,..., /?n-i} 
be the characters defined there, so that a is tamely ramified and the /?; are unramified. 
Let x denote the restriction of a to the inertia subgroup; thus x coincides with the ac- 
tion of Ko(q)/Ki(q) on the .ZiTi(q)-fixed vectors in TT. In particular, and bearing in mind 

the discussion in 2.1.4.6, TT contributes to Hn~1(&K1(^)rf^)<>=x • Define MA [TT/] 

as in §2.3. The two components ym and Y4 are invariant under prime-to-g isogenies, 
hence M\[7r/] breaks up as above as the sum of A# = Hn~1(Ym^Q£)<>=x [717] and 
B# = jff^~1(y/,L[x~1])|)r/]. Inertia at q acts on the first factor trivially and on the 
second factor by the character x-1- Then 

But 

On the one hand 

rp(7r) -^ A* <g> a(ir) © B* 0 a(7r) = A 0 B. 

i 

On the other hand, the restriction to inertia of ^ is the same as that of a, namely x- 
It follows from Lemma 4.2.8 that 

4.2.9.1. Geometric Frobenius coincides with Uq on A. Moreover, inertia acts as 
X on A. 

4.2.9.2. The representation at q^1^ on B is unramified. 
These two assertions complete the proof of Theorem 2.3.5. 
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4.2.10. In particular, inertia at q^1) acts on the determinant of rp(7r) by '^dimA, 
But the determinant of rp(7r) is given by ^ at all unramified places, hence at qW by 
Chebotarev density. It follows that 

(4.2.10.1) XdlmA-l=Xo. 

Now suppose 

(4.2.10.2) q = 1    (mod £), £ > n, XIA, ^ 1, 

where Aq denotes the £-Sylow subgroup of F£.    It follows from (4.2.10.1) that 
£|(dim A - 1). Under hypotheses (4.2.10.2), this is only possible if dirndl = 1. Thus 

COROLLARY 4.2.10.3. Under the hypotheses (4-2.10.2), the spaces A and B in 
the statement of Theorem 2.3.5 are of dimension 1 and n — 1, respectively. 

[AC 

[BZ; 

[Ca] 

[Cl 

[02 

[CL; 

[dJ 

[DR] 

[G: 

[Grl 

[HI 

[H2; 

[HL; 

[HTl 

[HT2 

[He; 

[HH 

[JPSS; 
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