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A PRODUCT FORMULA FOR THE SEIBERG-WITTEN INVARIANT 
ALONG CERTAIN SEIFERT FIBERED MANIFOLDS* 

B. DOUG PARKt 

1. Introduction. Arguably the most important smooth invariant of 4-manifolds 
known to date is the monopole invariant introduced by Seiberg and Witten. For the 
definition and basic properties of the Seiberg-Witten invariant we refer the reader to 
[KM1], [M] and [W]. The most general method of computing the SVF-invariant is to 
cut up the 4-manifold in question into manageable pieces, compute the relative SW- 
invariants of the individual pieces and then deduce the 5W/r-invariant of the original 
4-manifold using some kind of a product formula along the common boundary 3- 
manifold. This involves solving the 3-dimensional analogue of the Seiberg-Witten 
equations on the boundary and studying the qualitative behavior of the solutions on 
an infinite cylinder. This approach fits the general framework of "topological quantum 
field theory" (TQFT) as outlined in [At]. 

There has been a flurry of research activities along this line, most notably [FS2], 
[KM2], [MMS], [MST], [MOY], [OS1] and [OS2]. A horde of new results were ob- 
tained as byproducts of the knowledge gained by computing the SPF-invariant in 
this fashion. To give the reader some flavor of these recent applications, we cite 
the works on the geography problem (e.g. [PS]), the existence of exotic smooth struc- 
tures (e.g.[FS3], [PI], [P2], [Sz]), and the complete positive resolution of the symplectic 
Thorn conjecture ([OS1]). 

In this paper we give a product formula for the Seiberg-Witten invariant of the 
4-manifolds that can be gotten by gluing along certain 3-dimensional Seifert fibered 
spaces. This new product formula will then be used to derive some interesting appli- 
cations. 

2. Solutions over the 3-manifold. For the sake of concreteness, we begin by 
selecting a particularly 'nice' 3-manifold and analyzing what happens in this special 
case. Later on we shall indicate how to generalize the results to other 3-manifolds. The 
3-manifold Y we study is a Seifert fibered space. We keep the notational conventions 
in the paper [MOY]. Let E be the 2-dimensional orbifold of genus 0, with four marked 
points, each of which has multiplicity 2. Y is the unit circle bundle of the canonical 
orbifold bundle K^ over E. Note that the Seifert invariant of K^ is (—2; 1,1,1,1) and 
deg(XE) = 0. We have H^Y) S! Z and H2(Y) s Z © Z/2 0 Z/2. We choose a free 
generator 7 of Hi(Y), i.e. 7 generates .Hi (V)/Tor = Z . 

Choose a constant curvature connection on the unit circle bundle Y and let i( 
denote the corresponding connection form. Let g^ be a constant curvature metric on 
the orbifold E, normalized so that the area of E is equal to one. We endow Y with 
the metric 

fcy=C2+ir*(0E), 
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where TT : Y -> E is the bundle projection map. Note that the tangent bundle TY 
has an orthogonal splitting 

TY ^Ee7r*(TE). 

Hence the global 1-form C allows a reduction in the structure group of TY to 50(2), 
and the Levi-Civita connection on E induces a reducible connection on Y which 
respects this splitting. We study the moduli space of solutions to the Seiberg-Witten 
equations over Y, using the above metric and connection on TY. 

We consider the following perturbed Seiberg-Witten equations on Y correspond- 
ing to a Spinc(3) structure W: 

(2.1) 

where r G M is a fixed real parameter, //£ is the volume form on E, and TT : Y —> E is 
the projection map. Here, r : T(Y,W) -* n2(y,zE) is the quadratic map adjoint to 
the Clifford multiplication. 

As in [MOY] (§5.5-5.7), we identify the Seiberg-Witten moduli space with the 
moduli space of Kahler vortices on E. (Contrary to the hypothesis in [MOY], Y has 
degree zero but the identification is still valid.) In the notation of [MOY], the vortex 
equations read 

2FBo - FKi: = i(r + \ao\2 - |/?o|2)^ , 

(2.2) 9^0^0 = 0     and     WBOPQ = 0, 

ao = 0     or     /So = 0. 

Here, I?o is a connection on a Hermitian orbifold line bundle i^o over E. ao and /?o 
are orbifold sections in r(E, JSQ) and F^^K^1 <S> EQ), respectively. 

For generic r, we immediately see that there is no reducible solution to the per- 
turbed SW-equations above. For generic negative values of r with |r| very small, 
there is only one Spinc(3) structure on Y for which the corresponding £W-moduli 
space of irreducible solutions is not empty. This is because we must have, by virtue 
of vortex equations, deg(i?o) = 0, /?o = 0, and ao = constant. Thus the canonical 
Spinc(3) structure, C © i^1' is ^e on^y Spinc(3) structure that has nonempty SW 
solution space. We denote this Spinc(3) structure by CQ. The connections in this 
solution space correspond to constant sections of the trivial line bundle over 52, and 
hence M(Y) = Msw(Y,Co,r>K*w) = Sym0(E) = {point} . 

LEMMA 2.1. The single point set .M(Y) is smooth {non-degenerate), in the sense 
that it is transversally cut out by the Seiberg-Witten equations (2.1) modulo gauge. 

Proof, TT* induces a natural identification between the kernels of the lineariza- 
tions of the Seiberg-Witten equations on Y and the Kahler vortex equations on E 
(cf. [MOY], §5.6). As shown in [B] and [JT], the moduli space of vortices is always 
a smooth manifold. The argument is algebro-geometric in nature. Namely, one first 
identifies the moduli space of vortices with the moduli space of "holomorphic divisors", 
which consist of pairs { (BQJ^O) I dso^o =0} modulo the action of maps r(E,C*). 
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One then observes that the obstruction cokernel in the linearization (being the first 
sheaf cohomology group over a zero-dimensional divisor) must vanish, and hence the 
moduli space of divisors is always cut out transversally.     □ 

For generic small positive values of r, we similarly have deg(Eo) = 0, ao = 0, and 
Po = constant. As in the negative case, the SW-moduli space M(Y) consists of a 
single smooth point. 

Now suppose that Y is the boundary of some smooth 4-manifold M. Then we get 
a distinguished subgroup of the gauge group Go(M) C Q(Y) which consists of maps u 
that can be extended to u : M ->> C/(l). Dividing out by the action of Go(M) instead 
of the full gauge group, we obtain another moduli space A4(Y). Of course this moduli 
space depends on M. Note that dividing by G(Y) gives a coverings : M(Y) —> M(Y). 
The fiber of p is H1(Y\Z)/i*(H1(M]Z)), where i : Y <-> M is the inclusion map. 

3. Moduli space for a cylindrical end manifold. First we consider the case 
of the cylinder Y x R. Given a Spin0 structure on Y x M, let W+ and W~ be the 
associated Spin0 bundles. Clifford multiplication defines a linear map 

p : iA2 -> EndcO^+), 

whose kernel is zA". Here A~ C A2 is the subbundle of anti-self-dual (ASD) 2-forms 
with respect to the metric hy 4- dt2. We denote L = det(VF+) and write A(L) for 
the affine space of connections on L. We pull back the perturbing form on Y of the 
previous section and get the following 4-dimensional Seiberg-Witten equations for a 
pair (A,<l>) eA(L) x r(W+): 

(3.1) &0 = O, 

(3.2) p(i;A-tr7r1*7r>E) = (z(0)=0*®0-M-Id, 

where TTI : Y x E -> Y is the projection map. We identify L = LQ X E, where LQ 

is a complex line bundle over Y. Similarly, VF+ = Wo x M, where Wo is the Spin0 

bundle over Y with respect to the Spin0 structure inherited from Y x E. As shown 
in [KM1], the Equations (3.1) and (3.2) then become the gradient flow equation for 
the Chern-Simons-Dirac functional C : A(Lo) x r(Wo) -> E, given by 

C (A, </>)=[ (FAo+OAa+i / aAda+   f (<l>,flA<l>)dvol, 

where ^ = —irnl'K*^, Ao is a fixed connection on LQ, and a = A — Ao. Note that 
there is an ambiguity up to a constant, made necessary by the fact that A{Lo) has 
no preferred base point in general. 

Let X be a compact smooth 4-manifold whose boundary is Y. Assume that the 
2-form irTr*//^ on Y extends to a closed 2-form on X. Then C descends to a real- 
valued function on the space B := (A(Lo) x T(Wo))IGo(X), where Go{X) C G{Y) is 
as in the previous section. From now on we shall always viewjC as a functional on 
B. Note that the set of critical points of C is the moduli space M(Y) of the previous 
section. 

Now we further perturb Equation (3.2) using a method due to Fr0yshov. We 
briefly recall the necessary definitions from [Fr].   Let /i : E —> [0,oo) be a smooth 
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function supported in the interval [-1,1] and satisfying f fa = I. Let /2 : E -> R 
be a smooth function with compact support such that f2(t) = t on some interval 
containing all critical values of C. If A is any connection on L and </> a section of W+, 
we let 5 = (A, (/)) and define a smooth function hs : M -> M by 

^(T) = / /!(«! - T)/2( / Mh - tMS^dt^dh, 
JR JR 

where St = S(t) is the restriction of S to Y x {£}. 
We choose a compactly supported 2-form u G ti2(Y x E) such that ||a;|| is very 

small. We require the support of UJ to lie in a set Y x S, where S is the result of 
removing from E a small open interval around each critical value of C. Let h*s(uj) 
denote the pull-back of u by the map (idy x hs) : Y x R -^ Y x R. We study the 
following translation invariant equations for 5 = (A, 0): 

(3.3) &0 = O, 

(3.4) p(FA - ^TTVE + ^(A,0)M) = ?(</>)• 

LEMMA 3.1. ([Fr]) Let S = (A,(f)) be any smooth solution to the Equations (3.3) 
and (3.4) satisfying a pointwise bound \<f>\ < B for some constant B.  Then 

(i) Either ^C(St) > 0 for all t, or [St] = x for some critical point x. 
(ii) If C{St) is bounded in t, then there are critical points x+,x- of C such that 

the gauge equivalence class [St] converges to x± as t —>• ±oo. 

Proof Here [5^] denotes the image of the restriction S(t) in the configuration 
space B. Although Pr0yshov only concentrates on the case when the 3-manifold Y 
is an oriented rational homology sphere, the proof in [Fr] (Appendix A) still goes 
through with very little modification. Note that our Chern-Simons-Dirac functional 
C is the negative of the one used by Fr0yshov.     □ 

Now we choose our Sobolev spaces and let B = L\ {Y x E^A1 0 W+) and 

g = {u:rxR->E/(i)|tie£§il0C}. 

Let x,y G M{Y) be critical points of C, i.e. solutions to (2.1), the perturbed Seiberg- 
Witten equations on Y. We define the space of "flowlines" on the cylinder between x 
and y to be the set 

Tuix^y) = {S G B satisfying (3.3) and (3.4) |   lim [St] = x ; lim [St] = y}IG • 
t—)• — CXD t->00 

Note that the elements of Jij(x,y) satisfy the gradient flow equation for C outside 
a compact subset of Y x E. We show that there are no nontrivial flowlines in the 
following 

LEMMA 3.2. For generic small u G Ck, ^(x^x) consists of a single smooth 
point, and ^{x^y) is empty when x ^ y. 

Proof. The first statement follows immediately from Lemma 3.1. Let fi| denote 
the space of Ck 2-forms on Y x E with compact support contained in Y x H. As in 
[Fr] (Proposition 5), one can show that the linearization of Equations (3.3) and (3.4) 
at a point (CJ, A, <£), 

F = F^AJ) : ill x B —> Ll{Y x E, iA0 0 zA+ 0W), 
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is Fredholm on the slices {u} x i3, and surjective whenever (to, A,(j)) is a solution to 
Equations (3.3) and (3.4). Thus Smale-Sard theorem implies that J^(a;, y) is a smooth 
manifold for generic cu. 

Now we let V = 7^(0, cu) to be the space of Lf maps, 

i/: [0,1] —> Ll (Y xE,A2), 

satisfying u(0) = 0 and z/(l) = LO. We define a map 

G : B x P(0,a;) x [0,1] —> L^ (y x M, zA+ 0 W") 

by 

G(a,0,i/,*) = (F+o+a+ fj(*)+-r(0), &o+fl(0)), 

where ^(t) = zft/^ +a (7!,)(z/(^)) — irTrlir*^. One can show that the differential .DG 
is surjective at every point (a, 0, z/, £) for which G vanishes. Let M denote the zero 
set G~1(0) modulo the Lg gauge transformations. Let F be a generic fiber of the 
projection, M -* V, onto the second factor. Note that the boundary of F consists 
of two ends, one of which is cut out by the gradient of the Chern-Simons-Dirac func- 
tional G (whose linearization always has index zero on the critical set). Thus the 
corresponding boundary components have expected dimension zero. It follows that 
F is a 1-dimensional smooth manifold with boundary. Consequently the expected 
dimension of the space of "flowlines" modulo the L5 gauge transformations has to be 
zero. But recall from [Fr] that the solutions to Equations (3.3) and (3.4) are trans- 
lation invariant in the M-direction. Hence we conclude that the expected (or virtual) 
dimension of Jij(x,y) is (—1), which implies that ^(a;,y) is empty for generic u.     D 

Now suppose that M is a smooth oriented 4-manifold, and that the end of M is 
diffeomorphic to Y x [0, 00). Assume that the intersection form of M is not negative 
definite, and that the end perturbation £ = —irirlTr*^ extends to a closed 2-form 
£ over the whole manifold M. Fix a Riemannian metric h on Y as in the previous 
section, and a Riemannian metric g on M such that g is equal to h H- dt2 at the 
cylindrical end of M. We look at the perturbed SW-equations: 

0^ = 0, 

(3.5) P(JA+17)-=<Z(0), 

where / : M -> [0,1] is a suitable cut-off function that vanishes away from the 
cylindrical end of M. Note that the perturbing 2-form rj depends on the unknowns 
(A,<j)). We shall write 77 = rj[r] or \rj~\ — r to emphasize the dependence on the 
parameter r. Similarly, we write £r and £r to accentuate the parameter r . 

We require our configuration (A, 0) to lie in A^^detC) x L^M, W+(£)), where 
A^idetC) denotes the space of L4 unitary connections on the line bundle det>C, 
and W+ (C) is the positive spinor bundle for the Spin0 structure £. The energy 
of a solution (A, </>) is defined to be the total variation of the Chern-Simons-Dirac 
functional C over the cylindrical end Y x [0,00). The cylindrical end moduli space 
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MM{C",g,vi) is defined by dividing the space of finite energy solutions by the action 
of the I/5 loc gauge group Q{M). Note that every solution to (3.5) is irreducible, i.e. 
0^0. We say that a solution (A 0) is 5-confined if 

/        FA A (-mrjy/AE)   < 5. 
./Yx[0,oo) 

Let MlfiC^g^rj) denote the space of J-confined finite energy solutions modulo the 
action of Q(M). Note that M^C^g^rj) is an open subspace of .MMOC,*?,^) (since 
JFAA £ is a continuous function on Mui^^g^)), and that    lim A^^(C,g,r]) = 

MM(£ig,v) • We shall only be interested in the cases when S > 0. 

LEMMA 3.3. //£ does not restrict to Co on the slice Y, then MM{C>,g>>vi) is 
empty. If C\Y — Co, then -MM(£>#>?7) is a smooth oriented manifold of dimension 

d = d(C) = J(ci(det>C)2 - 2e(M) - 3sign(M)). 

Moreover, by taking limits at the open non-compact end of the infinite cylinder Y x 
[0, oo), we have a continuous map 

For each point x G M(Y), the preimage d^(x) is compact. There is a constant vr > 0 
such that every solution [(A^cj))] G d^(x) decays exponentially to x with exponent at 
least vr, i.e. the I/4 distance between x and the restriction (A(t), <j)(t)) is less than 
exp(—vrt) for all t large. 

Proof Suppose that [(-4,0)] G .MMCC,*?,??). Since (A,0) has finite energy, it 
follows from [KM1] (Proposition 8) that M(Y,C\Y) is not empty. Now the results 
from Section 2 imply that C\Y = Co- The smoothness of MM(C,g,r]) for a small 
generic 2-form uo follows from what is now a 'standard' argument which we choose to 
omit. As in the closed case, the homology orientation of the pair (M,dM) induces 
an orientation of MM(C,g,rj). The existence of the continuous map <9oo follows from 
the arguments in [MMR] (pp. 63-70), which rely on the basic analytic results in [Si]. 
Given a point x G M.(Y), we can calculate the formal dimension of d^fe), and hence 
of MM{Cig,r}), by the index formula of [APS], which gives 

dim^"1^)) = dim.MM(£, <7,7?) = ^(detC)2 - 2e(M) - 3sign(M)). 

Note that the eta invariant (or rho invariant) of the linearization of (2.1) on Y is zero. 
(This is because Y admits an orientation reversing self-diffeomorphism and eta(—Y) = 
—eta(y).) Lemma 3.2 implies that every finite energy flowline over the cylinder Y x E 
is static, i.e. pulls back from Y. Hence the arguments in [KM1] (Lemma 4) imply 
that the preimage d^(x) is compact. The statement about exponential decay can be 
proved as in [MMR] (Chapter 5).     D 

We introduce the notation N = Y x [0,00) and for any £ > 0 we let A^ = Y x [0, £]. 
We let YQ = Y x {0} and Yi = Y x {£}. 

LEMMA 3.4.  There is a constant K > 0 depending only on M, g and rj such that 

K-2t tiAFA   <   [   FAAFA  < K 
JNf JN, 
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holds for all £ sufficiently large and every [(A,<j))] G MM{^I9^V) for any Spin0 struc- 
ture C. 

Proof. From the dimension formula in Lemma 3.3, -MM(A 9, v) IS no^ empty only 
if 

didetC)2 > 2e(M) + 3sign(M). 

For every [A,<j>] 6 MM(£,g,v)i we have 

II^AII
2
-|I^II

2
 = -/     FA A FA = 47r2c1(det/:)2 + / FA A FA, 

JM-N JN 

where || • || denotes the L2-norm on the compact manifold M — N. As in the closed 
case, we have 

sup \(f)\2 < sup UV2\r)\ - s) 

where 5 denotes the scalar curvature. Therefore there is an upper bound on \\FJ[||2 

independent of the Spinc structure. Since 

f FAAFA   <   ||F+||2-47r2c1(det£)2 

JN 

we get an upper bound on J^ FA A FA- 

Next let St denote the restriction of {A, (j)) to the slice Y x {i}. By Stokes' theorem 
we have 

C(St) - C{So) = \ I   FAAFA+ j   ZAFA+ f (<A, ?)A4>} - f {</>, @A4>). 
z JNt JNe JYZ JYQ 

From Lemma 3.1 (i), we can assume that 

C(S^)-C(So)>0. 

Moreover, there is a universal bound depending only on the Riemannian manifold M 
and the perturbation rj to both 

/  ((/>, $A<i>)        and /   ((£, @A(j)) , 
JYt JYo 

which is gotten from the usual a priori pointwise bound on \(f>\ and the L2-bound on 
V^. Our claim now follows easily.     □ 

REMARK 3.5. Note that the above lemma also gives a lower bound on the integral 
JN £ A FA , namely (—if), that is independent of the Spinc structure. 

4. Relative 5W-invariant. Let X be a smooth oriented compact 4-manifold 
with boundary, and suppose that dX is diffeomorphic to Y. Recall that there is a 
well-defined bilinear pairing H2(X; Z)(g>H2(X, dX; Z) -* Z . The associated quadratic 
form, which is given by the composition with the inclusion-induced homomorphism 
iJ2(X,aX;Z) -> H2(X;Z), is the intersection form on H2(X,dX;Z). Let 6+(X) = 
dimii>0(X, dX] E), i.e. the dimension of the maximal subspace of ii2(X, 9X; E) on 



44 B. D. PARK 

which the intersection form is positive semi-definite. (A more standard notation would 
be 62 (X), but for future applications we want to synchronize our notation with the 
closed case.) Let 1C(X) denote the set of isomorphism classes of Spin0 structures on 
X that restrict to Co on dX. We define the corresponding non-compact cylindrical 
end manifold M := X Uy Y x [0,oo), and choose a cylindrical end metric g on M. 
(Sometimes we shall denote such M by X.) The goal of this section is to define the 
relative Seiberg-Witten invariant 

SWx : IC(X) x M(dX) —> Z 

using moduli spaces over M. Given C G 1C(X), we continue to denote the corre- 
sponding Spin0 structure on M by C -> M. Let MM{C,g,rj) be the cylindrical end 
moduli space of the previous section. Now suppose that d(C) = 0 (mod 2). We take 
a geometric representative D of fJ>(pt)d/2, and define 

Nx(£,x,g,u,D):=MM{£,g,ri)nDnd^1(x). 

Note that D is a generic d-codimensional stratified set in the space of configurations, 
where we can choose D to be supported in a small neighborhood of the base fibration 
point. For the definition and properties of the /x map, we refer the reader to the last 
section of [OS2]. 

DEFINITION 4.1. Let X, M, C, g, rj be as above. Then for a generic D, 
«A/x(£,a;,#,u;,-D) ^ a compact oriented ^-dimensional manifold, and by counting its 
points with signs, we define 

SWx{C,x) :=#(./fx(£,x,g,u,D)). 

If d(C) = 1 (mod 2), then we define SWx{£,x) = 0. ^45 in the closed case, we say 
that X is of simple type when SWx (£,x) ^ 0 only if d{C) = 0. 

DEFINITION 4.2. Similarly, we can define the 5-confined relative Seiberg-Witten 
invariant 

SW5x : K{X) x M(dX) —> Z 

by substituting the 5-confined cylindrical end moduli space M^iC^g^rj) in the place 
of -MMCC,^

7
?) in the definitions above. 

THEOREM 4.3. Ifb^iX) > 1, then SWx is independent of g and D. We have 
SWx(£, ') = 0 for all but finitely many £ G IC(X). Furthermore, for any orientation 
preserving self-diffeomorphism f : X -> X, we have 

SWx(C,x) = (-iySWx(r(£),r(x)), 

where e € Z/2 is the sign of the action of f* on the cohomology orientation of the 
Pair(X,dX). 

Proof. Prom the dimension formula in Lemma 3.3, MM(£, g, rj) is not empty only 
if 

ci(det£)2 > 2e(M) + 3sign(M). 

For every [A,<j>\ G Mlf(C,g,rj), we have 

ll^ll2 - \\FX\\2 = - I FA A FA = iir^detC)2 + f FA A FA , 
JX JN 
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where || • || denotes the L2-norm on the compact manifold X. It follows that there is a 
universal constant, KQ = K -\-25 — 47r2(2e(M) ■+ 3sign(M)), independent of the Spin0 

structure such that 

ii^ii2-iimi2<^o. 
Here K is the constant found in Lemma 3.4. As before, we have an estimate 

\\FX\\2 < K 

for a suitable constant Ki, and we can conclude that 

\\FA\\2<Ko + 2K1. 

Hence there are only finitely many values of ci(det£) G H2(X;Z) for which the 
corresponding (5-confined 5W-moduli space is nonempty. Since for any c G H2(X; Z) 
there are only finitely many Spinc structures C with ci (det C) = c, the function SW^ 
has finite support in the first factor IC(X). The rest of the statements can also be 
proved exactly the same way as in the closed case.     D 

As in the closed case, one has to worry about the chamber structures in the 
auxiliary space of parameters when b^iX) = 1. Let 9PT denote the space of Riemannian 
metrics on X, and DJIQ the subspace of metrics on X that restrict to hy on the 
boundary Y. Note that SPTQ is of infinite codimension in 9Jt. Let H>o denote the 
image of the relative cohomology H>0(X, dX;R) in the absolute cohomology group 
i72(X; E). We have H>o = R, since we are always assuming that the intersection form 
of X is not negative definite. Let p+ : H2{X\ E) -» i7>o be the projection map. Let 
Wg be the unique ^-harmonic L2 real 2-form on M — X\Jy Fx [0, oo) that has L2 norm 
1 and corresponds to a generator of iJ>o with the chosen orientation (cf. Proposition 
(4.9) in [APS]). Given £ G /C(X), we define a function ec : 971 x zft2>+(M) ^ E by 

/      \ ( ,-        \ i    i      ^  ci(det£) 
^cig.V) = - /   \i'n,vjg)dvolg - 27r—=—-— 

JM VVg\ 

where p+(ci(det£)) = a\pjg\, and a — (ci(det£)/[ti7p]). 
Using the standard cobordism argument (cf. [Sa]), one can show that for any pair 

of triples (^,cj,r), (g',u'.r') G OToxn|xE with |M|, ||u/||, |r| and Ir'l all sufficiently 
small and non-zero, 

#{Mx(C,x,g9u>,D)) = #(Arx(C,x,g',u>',D)) 

holds whenever ££(g,£r) and ec(gf,€rf) have the same sign. Thus we can define the 
function SW^i^.x) to be the number #(J\fx(C,x,g,u,D)) for any generic triple 
(g,Lu,r) G OToxfilxE for which ||a;||, |r| are extremely small and €c(g^r) > 0. 
Similarly, we define SW^(C,x) using any generic triple of parameters (g,u,r) G 
9JtoX^|x^ for which ||a;||, |r| are small and £/:(#,£r) < 0. As a convention, we shall 
henceforth let SWx = SW^ when 6j(X) = 1, for both closed and non-closed cases. 

REMARK 4.4. As a consequence of the wall-crossing formula, the function SWx 
may well have infinite support in the variable £ when b^iX) = 1. We shall see later 
that SWx actually depends on the sign of the parameter r in the perturbation. 
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5. Orientation. In this short section we establish the orientation and sign con- 
ventions that will be used throughout the next section and beyond. Let X be as in 
the previous section. Instead of attaching Y x [0,oo) to X and forming the cylin- 
drical end manifold X, we can attach Yx (—oo,0] and form another cylindrical end 
manifold X := Y x (—oo,0] Uy X. Consider the moduli space M^ of solutions to 
the perturbed Seiberg-Witten equations (3.5) on X. This is easily seen to be dif- 
feomorphic to the SW-moduli space for X corresponding to the perturbation r][~r]. 
In other words, M<x{r)[r]) = M^ij]^^). In what follows we shall be looking at a 
smooth closed 4-manifold M that can be decomposed as M — Mj^J M2 such that 
Mi fl M2 = Y. We will compare the SW-moduli spaces over M, Mi and M 2 • Just 
as in (3.5) we perturb the standard 5VF-equations on M by a 2-form that depends 
on a real parameter r. Let ri,r2 denote the parameters in the perturbing 2-forms 
rji, rj2 over Mi and M2 respectively. We shall always choose ri — r^ — r . This means 
that when we actually evaluate SWM2 , we are computing with moduli spaces over 
M2 corresponding to the parameter — r2 . 

Now suppose M2 = Mi. Once we choose orientations for M and Y, we obtain the 
induced orientations on Mj and we have 9M2 = — 9Mi. Let £ be a Spin0 structure 
on Mi that restricts to Co on Y. Then SWM1(JC,X) ^ 0 implies that 

SWM2(-£,tx) = ±SWM1(Cix) ^ 0 , 

where the sign e = ±1 depends on the action of the actual identification of the bound- 
aries. Here — C denotes the Spinc structure on M2 that is the "reflection" of C along 
y. Finally, we refer the reader to §9.1 of [MST] for the way in which the (co)homology 
orientations of M, (Mi,<9Mi) and (M2,<9M2) fit together in general. 

6. The product formula. Let Mj (j = 1,2) be a smooth compact oriented 4- 
manifold with boundary dMj = Y. For any orientation reversing self-diffeomorphism 
cp : Y —>• y, we define a closed oriented 4-manifold M((p) = Mi U^ M2. Let 
(ij)* : -ffi(y) -^ Hi(Mj) be the homomorphism induced by the inclusion map. From 
this moment on, we assume that 7 £ Ker(ij)* for j = 1,2. This assumption implies, 
via the Mayer-Vietoris sequence, that (ij)* : iJ^Mj) -> i^1(y) is the zero homo- 
morphism. (For emphasis and future reference we shall say that such M(ip) and Mj 
satisfy Condition (A).) Under such assumption, we can choose bj G H2{Mj,dMj) 
such that dbi = 7 and <9&2 = ^(7)- Let E^ C Mj be a smoothly embedded surface 
with boundary, representing bj. Let bj denote the dual element in H2(Mj). 

Let /i G H2{M((p)\ Z) denote the cohomology class Poincare dual to the homology 
class represented by the smooth surface (Ei U7 E2) in M((p). We have (LJ)*(IJ>) — bj, 
where Lj : Mj <-> M(</?) is the inclusion map. Note that i*(/i) = /7r*([Ais]) inside the 
group H2(Y; Z), where i : Y «-> M((p) denotes the inclusion map and [fj,^] G iJ2(E; Z) 
is the integral cohomology class represented by the volume form of the orbifold E as 
in Section 2. In what follows, we shall abuse the notation somewhat and use [/is] to 
denote the cohomology class // G H2{M{(p)\Z). 

We define a family of metrics on M(y?) as follows. First we have the decomposition 

M(<p) ^ Mi u y x [-1,1] U M2 . 

Suppose we are given a metric g on M(ip) that is of the form h 4- dt2 on the neck 
y x [—1,1], where h is a metric on Y as in Section 2. For each I > 1, let \£(t) be a 
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positive smooth function on [—1,1] which is identically equal to one on [— 1, —1/2] U 
[1/2,1] and satisfies 

/: 
\e{t)dt = 2t. 

We define a metric gi to be g on the two ends X = Mi UM2 , and h + \i{t)2dt2 along 
the neck Y x [-1,1]. One should think of the family {gi} as stretching out the neck 
Y x [—1,1] isometrically into Tt — Y x [—£,£]. We denote the Riemannian manifold 
(M(p),#)byAf(<p)/. 

Next we construct a family of perturbing 2-forms that are supported on the neck 
Ti. As in Section 3, we choose a compactly supported 2-form co G Cl2(Y x E) such 
that ||a;||L2 is very small. Let kt : Ti c-^ Y x E be the inclusion map. Let WQ 

denote the Spinc bundle over Y corresponding to Co and let LQ = det£o = det WQ. 

As in Section 3, we let W* — WQ X E and L = detW+. Suppose £ is a Spinc 

structure on M((p) that restricts to Co on Y and W±(C) are the associated Spinc 

bundles. Given a pair (A, (j)) G ^4(det£) x T(W+(C)), we define the "push-forward" 
(ki)*(Ay4>) € >A(L) x r(W+) as follows. We extend the restriction (A, 0)|T£ over the 
whole infinite cylinder Y x E by constants, i.e. 

f  0M)|yx{-*}    if t<-e, 

(kiUA,(j))\YX{t} = <   (A,(j))\YX{t}      il-e<t<£, 

[    (A,0)|yxW ift>£. 

Using the same notation as before, we define 

m = ft ' (hYfaikMA,*)^) - irnZn*li.v) , 

where fa : M((p) —> [0,1] is a suitable cut-off function that vanishes away from the 
interior of the neck Ti . 

Now we consider the following perturbed Seiberg-Witten equations on the closed 
manifold M(<p)i: 

(6.1) 
#4^ = 0, 

p{FA + r)i) = g(0) . 

The corresponding moduli space, or the set of solutions divided by the action of the 
gauge group, will be denoted MM(cp)(C,gi,r]i). 

LEMMA 6.1.   There is a constant K > 0 depending only on M((p), g and 77 such 
that 

JTi 
FA/\FA > -K - 47rr [/jE] • ci(det C) 
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holds for all £ sufficiently large and every [A,(j>] € MM((P)(£I9£,V£) for any Spinc 

structure C on M (</?). 

Proof. Let St denote the restriction of (A, 0) to the slice Yt = Y x {t}. By Stokes' 
theorem we have 

(6.2) C(St) - C(S-i) = 

I I FA AFA + [ £ AFA + [ (0, ^0> - /   (0, ^A0). 
Z JTt JTt JYi JY-i 

From Lemma 3.1 (i), we can assume that 

C{Si)-C{S-i) > 0. 

Over M(<p)e we have 

/   ZAFA + .[ ZAFA+ [   ZAFA = 27rr[w]'C1(det£). 
JMi JTi J M2 

From the compactness of Mj and a priori pointwise bound on |0|, we obtain a universal 
bound on the integrals 

f   ZAFA        and f   £ A FA , 
J Mi J M2 

that is independent of the neck-length £ and the Spinc structure £. Thus there is a 
constant Ki > 0 such that 

(6.3) /  ZAFA - 27rr[/iE]-Ci(det£) < Kx 
JTe 

holds for all £. Moreover, there is a universal bound depending only on the Riemannian 
manifolds Mj and the perturbation rjt to both 

/ (</>, ^0>        and /    (0, @A<f>) , 

which is gotten from the usual a priori pointwise bound on |</>| and the L2-bound on 
V</>. Our claim now follows easily.     D 

LEMMA 6.2.  There is a constant K' > 0 independent of the neck-length £ and the 
Spin0 structures such that 

0 < C(Si)-C(S-i) < Kf + 27rr[fiE]-ci(det£) 

holds for any solution S = (A,(f)) to the perturbed Seiberg-Witten equations on M((p)t 
corresponding to the Spinc structure C. 

Proof. First we observe that 

ij /      iFA A tJU = (c^detr)2, [MM]) • 
47r2 JM(V). 

It follows that 

(6-4) \\Fi\\h(x)-m\\%{x)+ f iFAMFA = 47r2{c1(detZ:)2,[M(^)]). 
JTi 
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Now there is a uniform pointwise bound for |<^| and hence for \F^\ independent of £ 
and C. Thus there is a universal constant K2 > 0 such that 

(6-5) WFZWhm < Ki- 

From the dimension formula, M.M((p)(£'i9ii'm) is riot empty only if 

(dtdetr)2, [Af (V)]> > 2e(M(^)) + 3sign(M(^)). 

From Equation (6.4) we see that 

FA A FA < ||F+||i2(x) - 4^2(c1(det/:)2,[M(^)]) 

(6.6) < K2 - 47r2(2e(M(</>)) + 3sign(M(^))). 

From Equation (6.2) and Inequalities (6.3) and (6.6) we conclude that the difference 
C(S£) — C{S-i) is also bounded from above by a constant that doesn't depend on I. 
D 

REMARK 6.3.   From Lemma 6.1 we get the following inequality 

(6.7) /  IFA MFA < K + 47rr [//E] • ci(det C). 

It follows from Equation (6.4) and Inequalities (6.5) and (6.7) that H^Allism ^s 

bounded from above by a constant 

#3 = K2 + K + 47rr[^E]-ci(det£) - 47r2(2e(M(^)) + 3sign(M(^))) 

that doesn't depend on I. Now both ||FJ||22,X\ are bounded by constants indepen- 
dent of the neck-length and hence Equation (6.4) tells us that 

X IFA A IFA 

is also bounded by a constant that depends only on the Riemannian manifolds Mj, rj 
and the Spinc structure. 

COROLLARY 6.4. If [//E] • ci(det£) ^> 0 and r < 0, then there is no solution 
to the perturbed Seiberg-Witten equations (6.1) on M(ip) corresponding to the Spin0 

structure C. Similarly for the case when  [/is] * ci(det£) < 0 and r > 0 .      □ 

COROLLARY 6.5. There is a constant KQ > 0 independent of the neck-length £ 
(but depending on C) such that for any solution (A, 0) to the perturbed SW-equations 
(6.1), the L\ distance between the restriction (A(t), (j)(t)) and a static solution is less 
than 

KQ • exp (—vr ■ mm{t + £, £ - t}) 

for every t E [—■£,■£], where vr is the constant in Lemma 3.3. 

Proof We can argue exactly the same way as in the proof of Corollary 7.5 in 
[MST] (p.762).     D 



50 B. D. PARK 

As before, let Mj(Y) denote the 5VF-modiili space of Y that is gotten by dividing 
out the SW-solution space by the action of the restricted gauge group Go(Mj). Note 

that Mj(Y) is a Z-affine space, i.e. there is a set-theoretic one-to-one correspondence 

between Mj(Y) and H1^) = Z. Let IC(Mj) denote the set of isomorphism classes 
of Spinc structures on the compact manifold Mj that restrict to Co on dMj . For £ € 
IC^Mj), note that ci(det£) G ^(Mj) can be lifted to an element of H2(Mj^dMj ;M). 
Now one can show that there is a natural one-to-one correspondence between Mj{Y) 
and the set 

S(Af7-) := {cG M|c= (ci(det£),bj) for some £ G/C(Mi)}. 

Let Supp(5VFMJ) denote the support of the function SWMJ • Consider the real-valued 
function 9j : Supp(S'W/rMi) -^ ^(Mj) defined by 

6j{C,x) = (ci(det/;),6j>. 

Let Im(^) denote the image of the map 6j in S(Mj). 

LEMMA 6.6. For a negative parameter r, the sets Im(#j) are bounded from below. 

Proof. We shall often drop the subscript j to simplify our notation. Suppose 
(A, (j)) is a solution to the perturbed 5VF-equations on the cylindrical end manifold 
M Uy Y x [0, oo). We have to find a lower bound on the integral 

Prom the universal pointwise bound on \F^|, we see that 

(6.8) |X/F+ <   area(Ei)-sup|FJ"|   <   K" 

for some positive constant K" independent of the Spin0 structure. 
Next we let Mi = M Uy (Y x [0, £]). Let b denote a closed 2-form on Mi whose 

de Rham cohomology class is dual to [E^]. Without loss of generality, we can assume 
that (A, </>) is in a temporal gauge, i.e. the dt component of A vanishes along the neck 
Ni = Y x [0,£]. Then we have 

■A ii > 'if FA- I (^iV>s)A*i^ <  |<26,i^> J  < ||»6||-||i^ 

where || • || denotes the L2-norm on the imaginary valued 2-forms on Mi . If \\F^ \\ < 1, 

if FX > -WiH-lf ^FI- 
Jz< rJN, 

Prom Inequality (6.8) we easily obtain a universal bound on [J^ ^ A F^\. Thus 
Remark 3.5 now gives a universal lower bound (independent of the Spinc structure) 
to the integral JN £ A F^ . In the case when ||-F^|| > 1, we get 

if n > -wftw-wpxtf -\f t*n 
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Now recall that 

II^III2 = ll^ll2 - 47r2c1(det£)2 - [       FAAFA 

< (constant) +   2 /        f A FA , 

where C is the corresponding Spinc structure on the cylindrical end manifold M Uy 
Y x [0, oo). It follows that 

il FA   >   (constant) - 2 || ib \\ • /        f A FA   - - /  ^ A F^ . 

Since |r| is very small, we can choose £ large enough such that the right side of the 
above inequality is dominated by the last term, which is indeed bounded from below 
independent of the Spinc structure.     □ 

Now consider the non-compact surface Sj := EjU(7X [0, oo)) inside the cylindrical 

end manifold Mj = Mj Uy Y x [0, oo). We define a map i5^ : M^XC,gj,r)j) -* E by 

4M) = iJtFA. 

l,oo) 

Note that the above integral makes sense since we have exponential decay along the 
cylinder. There is a natural one-to-one correspondence between Im^) and the image 

COROLLARY 6.7. For a negative parameter r, the sets Im(t!£?) are bounded from 
below independent of the Spinc structure C . 

Proof. From the previous lemma and Remark 3.5, we get a lower bound on 

4(A,cj>) = ^-[ FA + ±-[ FA 

= i-[ FA - ^-[    ZAFA ITTJX. 2nrJYx[0iOo) 

independent of the Spinc structure.     □ 

REMARK 6.8. By modifying some of the signs in the above proofs, one can easily 
show that for small positive values of r the sets Im(^) and Im(^) are bounded from 
above (independent of the Spinc structure). 

The gluing map cp induces an identification map, tp* : M2(Y) -> Mi(Y). More 
precisely we fix, once and for all, a particular Spinc structure £ on the closed manifold 
M(<p) that restricts to CQ onY. This choice specifies a base point on each Z-affine set 
Mj(Y) via the evaluation on bj of the first Chern class of the restriction of the Spinc 

structure to Mj , and hence an identification M.j(Y) = iJ1(y). Now we can use the 
induced automorphism on the cohomology </?* : H1^) -> iJ1(y). Hence using the 
map y?*, we can define the 'graph' set 

Gcfr) := { (x,y) e M^Y) x .M2(Y) | x = <p*(y) }. 
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Let lC(M((p)) denote the set of Spinc structures on M(<p) that restrict to Co on Y. 
There is the obvious gluing map 

P : /C(Afi) x /C(M2) —> IC(M(ip)). 

For every (£i,£2) ^ P""1(£),'we have d(Ci) + ^(£2) = d(£), where 

d(C) = i(ci(det/:)2 - 2e(M(^)) - 3sign(M(^))). 

THEOREM 6.9 (Product Formula I). Let Mj, tp and M(ip) be as above. Suppose 
that 63"(Mj) > 1 and that 7 G Ker(2j)*. T/ien /or e^eri/ Spinc structure C E /C(M(</?)), 
we Aave 

where the outer sum on the right side is taken over all pairs (£i,£2) in the preimage 
P~l(C), and the inner sum is taken over all points (x,y) E Gc{ip)- 

Proof. First we form the cylindrical end manifolds Mj = Mj Uy Y x [0, 00). Given 
Cj E /C(Mj), let Nj(Cj) — M^XCj,gj,rij), where, [T/I] = — [772]. From Lemma 3.3, 

we have maps d^ : Mj{Cj) -)• wMj(y). Define J\f{Ci,£2) to be the set 

{ ([^,01],[A2,fc]) E M(A) x ^(£2) I d^Auti] = ^*a^[A2,02] } • 

Applying the estimates in previous lemmas to the standard gluing results and limiting 
arguments as in [MM], [Tl] or [T2] shows that there is a diffeomorphism 

(6.9) MMM(C,gi,m) -^    H   N(CUC2), 

for all £ sufficiently large, where the right side is the disjoint union taken over all pairs 
(A,£2) in the preimage P-1^). 

Next we show that the moduli space MMi^i^^i^Vi) can be used to calculate 
the Seiberg-Witten invariant of M((p)£ . Let V be as in the proof of Lemma 3.2. We 
consider the map 

H : AL2(detC) x Ll(W+(C)) x V x [0,1] —> LJ (M(ip)i, iA+0 W'(C)) 

defined by 

tf04,0,1/,*) = (p(FA +m(s)) - q{<t)) , ^0) , 

where 77^(5) is the imaginary valued 2-form gotten by replacing UJ in the definition of 
r)i with 1/(5) E V. Note that 7^(0) = ft • &!£ is a constant 2-form. Now let M denote 
the zero set il_1(0) modulo the L\ gauge transformations. Let F denote the generic 
fiber of the projection, M —> P, onto the third factor. One can easily show that F is 
a smooth compact manifold with boundary 

dF = MM(<p)(Ci9z,r)i($)) U MMM(£,gt,m) • 

Thus we have the desired cobordism between moduli spaces. 
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Finally let 0 be the first Chern class of the based moduli space over 
•M'MW&iQii'ni) when d{C) = 2n > 0. Prom the diffeomorphism (6.9), we see easily 
that the Chern class 0 on MM^i^-idtiVt) can be decomposed as ©i + 02 on the 
component j\fx := (d^ x d^)^1 ((f*(x),x) C NiCi,^), from which the contribution 
to SWM{<P)(£) is 

Qd(£i)/2 

^x) 1 /. (%)    (*) 
0d(£2)/2 

Now each moduli space (d^0)~
1(x) is compact and every configuration (-4,0) in it 

is asymptotic at infinity to the same irreducible solution x on Y. This implies that 
the base point fibration over (d^0)~

1(x) is trivial. Hence there will be a non-zero 
contribution only when d(Ci) = ^(£2) = 0 • Note that by Lemma 6.6, Corollary 6.7, 
Remark 6.8 and the orientation conventions in Section 5, the sums occuring in the 
product formula are actually finite (cf. Figure 6.2).     D 

REMARK 6.10. The above proof and Lemma 3.3 imply that SWM(#)(£) = 0 
unless £ G lC(M(<p)). Also note that M((p) and Mj are of simple type. 

Now for every Spin0 structure £ on M((p) that restricts to Co on Y, we define a 
subset K(£) C /C(Afi) x /C(M2) as follows: (A,£2) 6 #(£) if and only if 

<ci(det£),6i +62) = (ci(det£i),6i) + (^(det^),^)- 

Note that the definition of K(£) doesn't depend on the choice of bj. 

THEOREM 6.11 (Product Formula 11). Let Mj , <p and M((p) be as above. Suppose 
that 62"(Mj) > 1 and that 7 E Ker^-)*. Then for every Spin0 structure £ -> M(cp) 
that restricts to £Q on Y, we have 

Y,SWMM^) = E  £ SWM1(Cux)'SWM2(C29y)9 
{C'laW^aiC)} K{C) GC,M 

where the sum on the left side is taken over all the elements of /C(M(<p)) whose 
determinant line bundle has Ci (det £) as its first Chern class, and the outer sum on 
the right side is taken over all pairs (£1, £2) in K(£). 
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Proof. Define a map Q : /C(Af(v>)) -> Z by Q(C') = (ci(det£'),&i + 62). We also 
define R : £(Mi) x IC(M2) -4 Z by 

RiCuiCi) = (ciidetCi^h) + (c1(det£2),62). 

Note that R — QoP. If K denotes the constant Q(£) = (ci(det £), 61 + 62), then we 
easily get a diffeomorphism 

H ( H WIM) A nwi,^), 

where if (£) = i?~1(^) and Af(Ci,C2) are as in the previous proof.     □ 

DEFINITION 6.12. Given a smooth compact oriented A-manifold M with a possibly 
nonempty boundary, let C(M) denote the set of characteristic cohomology classes, 

{Le#2(M,<9M;Z)| L = W2(M,dM)    (mod 2)}. 

When M is closed, Seiberg- Witten invariant defines, in the usual manner, a function 
SWM : C(M) -> Z by 

SWM (L) :=      Y,     SW
M (£) ' 

{/:|C1(£)=L} 

For tAe case when DM is not empty, we define SWM • C(M) x ^(SM) -> Z by 

SWM(L,X) :=     ^     5WM(>C,a;). 
{£|c1(£)=L} 

W^e 5/ia// say ^/lai an element L G H2(M,dM]Z) is a (relative) SW-basic class if 
SWM(L,.)j:0. 

DEFINITION 6.13. Suppose M is a closed smooth oriented A-manifold with 
62"(Af) > 0 and the SW-basic classes {Li}ieI C #2(M;Z). We then define the 
formal series 

SWM := 2 SWif (ii) • exp(2Li). 

Similarly, given a smooth compact oriented i-manifold X with boundary OX = Y 
such that 7 = db for some b S.H2(X,dX), we define 

M(Y) ieJ 

where the first sum is taken over the boundary values x G M(dX) and the second sum 
runs over the relative SW-basic classes {Kj}jej of X. 

COROLLARY 6.14 (Product Formula HI). When M{ip) and Mj satisfy Condition 
(A), we have the following equality of formal series: 

(6.10) SWMM = SWM, ' SWM2 . 

Here, sums in the exponents are given by Poincare duality and the Mayer-Vietoris 
sequence. 
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FlG. 7.1. Plumbing graph for E(1/2). 

7. Examples and computations. First we check our product formula against 
the well-known examples of elliptic surfaces. Recall that E^n) is a simply-connected 
elliptic surface with no multiple fibers and with geometric genus pg = n — 1. Let F 
denote the Poincare dual of the regular fiber in E(ri). We simplify the notation by 
letting t := exp(F). We look at the case when r < 0. 

Y embeds inside E(n) in the following way. First we recall the half-Kummer 
surface description of E(l). Let L = Z2 C C be a lattice and form the quo- 
tient of C/L x CP1 by the involution (z,x) H* (—z,— x), where z G C/L and 
x e CP1 = C U {oo} is an inhomogeneous coordinate. This quotient space has eight 
singular points corresponding to the fixed points of the involution. One can resolve 
the singularities by replacing each singular point by a nonsingular rational curve with 
self-intersection number (—2). The resulting nonsingular surface is diffeomorphic to 

the rational elliptic surface E(l) = CP2#9CP . The projection onto the second fac- 
tor, C/L x CP1 -+ CP1, induces a fibration p : E(l) -> CP1/(^ ~ -x) = CP1. This 
fibration has exactly two singular fibers, p~1(0) and p_1(oo), and each singular fiber 
is the union of five nonsingular rational curves of self-intersection (—2). See Figure 7.1 
for the linking diagram for these rational curves in each singular fiber. 

Now choose two disjoint open disks DQ and DQQ in CP1 centered at points 0 and 
oo, respectively. Suppose we have the hemisphere decomposition CP1 = DQ U DOQ. 

We let £7(1/2) to be a regular neighborhood of the singular fiber, i.e. 

E(l/2):=p-1(Do)=p-1(D00). 

We see easily that our Seifert fibered space Y occurs as the boundary of E(l/2), i.e. 

Y=p-1(dDo)=p-1(dD00). 

Consequently we have the following decomposition of the rational elliptic surface along 
Y 

E(1)=E{1/2)UYE(1/2). 

Note that Y is a T2 bundle over 51, with monodromy given by the matrix 

-1       0 
0    -1 

We can choose the generator 7 to be a section of this torus bundle Y. For more details 
on £7(1/2) we refer the reader to [HKK]. 

Since the elliptic surface E(ri) is the fiber sum of £7(n - 1) and £7(1), we im- 
mediately get n embeddings of Y into E(ri). See Figure 7.2 for some possible de- 
compositions of £7(n) along Y. The dotted lines in the figure indicate the fiber sum 
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£(1/2) 

£•(1/2) 

£(1/2) 

Y £(3/2) 

£(3/2) y £(3/2) 

FIG. 7.2. Decomposition of £7(1), £7(2) and £7(3). 

operation. We will let E((2m +1)/2) denote the fiber sum, E(m)#FE(l/2), of jB(m) 
and E(l/2). To compute the relative Seiberg-Witten invariant of E((2m + l)/2), we 
shall need the following 

LEMMA 7.1 (Adjunction Inequality). Le^ X be a smooth compact oriented 4- 
manifold with boundary OX = Y. Let EQ M- X be a smoothly embedded surface with 
boundary 9Eo = 7. Suppose V is a smoothly embedded surface inside X of genus 
g(V) > 0, whose regular neighborhood lies in the interior of X and is disjoint from 
So • If L is a relative SW-basic class of X, then 

\(L,V)\ + V-V < 20(10-2. 

Proof The argument for the closed case goes through with very little change, 
once we substitute the cylindrical end moduli space M^{C^g^r]) in the place of the 
ordinary Seiberg-Witten moduli space over a closed manifold. We just have to observe 
that the boundary map 9^ on M.^{C^g,77) takes values in the perturbed SW-moduli 
space over Y, which is everywhere both nondegenerate and irreducible. Prom the 
hypothesis we can assume that the support of £ (and hence 77) is disjoint from V. This 
means that we are allowed to freely modify the metric around a small neighborhood 
of V without effecting the perturbation of the Seiberg-Witten equations (3.5) nor the 
corresponding moduli spaces over the cylindrical end. For the proof in the closed case, 
we refer the reader to [FS1], [KM1], [MST], [OS1] and [Sa].     □ 

Now suppose L = ci(det£) is a SW-basic class of E((2m + l)/2). From the 
above lemma and the complete knowledge of the embedded surfaces representing the 
generators of H2(E(n)), we easily deduce that L is a multiple of F. The assumption in 
the beginning of Section 6 is readily seen to be satisfied. Note that [/is] G H2(E(n)) 
is the class Poincare dual to the section of the elliptic fibration. Similarly, bj G 
H2(E((2m H-1)/2), Y) is represented by the "half-section". We start out by looking 
at the "doubling" decomposition E(3) = £(3/2) Uy £7(3/2). Since E(3) has only 
finitely many SW-basic classes, the moduli space ME(3)(^^9£^V£) is empty for all 
but finitely many Spinc structures C, provided that \\U)\\L2 is sufficiently small. (This 
follows from a cobordism argument as in the proof of Theorem 6.9. Otherwise, there 
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would be a sequence of 2-forms, Ui -> 0, such that the corresponding solutions to (6.1) 
in turn converge to a solution corresponding to the constant perturbation.) Hence 
JB(3) possesses a uniform energy bound on the solutions along the neck (namely, 
Kf — 2nr; see Lemma 6.2), so we can choose to work with ^-confined moduli spaces 
for some 5 ^> 0. That is, we can change for SW = SW5 in the product formulae. 
Just how large of a S is needed for such substitution depends on the choice of the 
metric gj on the end manifold E(3/2). 

It follows that all the terms appearing in Equation (6.10) for E(3) are finite sums. 
Keeping in mind the orientation conventions set down in Section 5, we can express 
the right side of Equation (6.10) as 

(7.1) SWE{3/2y SWE{3/2) =      ^ akt
k ]•[   Z, ±a-nt 

where k = n = I (mod 2). Since this has to equal SWE(3) = t 2 —t2, we must have 
m — — I + 2 and a^ = ±1 for all k. Hence (7.1) becomes (up to sign) 

(7.2) {r1 + et-l+2) - {t1'2 - etl) , 

where e = ±1.   Since SWE{2) = 1, .we conclude from the decomposition E{2) 
£(1/2) Uy £(3/2) that 

r-l /./-9 .l\-l swE{ll2) = swEw2) = (tl-2-6t1)- 

= t2-l(l + tt2 + tA + ttQ + --). 

Now both £7(1) and £(1/2) admit metrics of positive scalar curvature. We choose a 
metric g of positive scalar curvature on £(1) such that the corresponding self-dual 
harmonic 2-form Wg is the Kahler form with respect to which CP1 has area 1. We 
can further arrange metric g so that ec(g,() = — 27r[zz75] • L (cf. Section 4). It follows 
that for odd k > 0, SW~{l){kF) = 0 = SWE{1)(-kF). (This is because g has 
positive scalar curvature.) Prom the wall crossing formula in [LL], we conclude that 
SWE(i)(kF) = 1. Analogous argument for £(1/2) shows that |/| has to be small. 
Indeed we easily see that I = 0 or 2, depending on a suitable choice of the homology 
orientation. (Note that the case / = 1 violates our orientation convention in Section 5 
considering (7.2).) 

We summarize our computations so far: For the decomposition £(3) = £(3/2) Uy 
£(3/2), Equation (6.10) reads (up to sign) 

r2 -12 = (r2 +1) • (i -12). 

For the decomposition £(2) = £(1/2) Uy £(3/2), Equation (6.10) reads 

l = (l + t2 + t* + t6 + "')(l-t2). 

For the decomposition £(1) = £(1/2) Uy £(1/2), Equation (6.10) reads 

oo 
y^2(2i+i)        i 1 

1 -12   1 + t-2 

(i + i2 + *4 +16 +. •. )(i - r2 + r4 - r6 + • • •) 
2=0 

.-4 
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Since we already know from [FS2] the Seiberg-Witten invariants of E(n), we can 
inductively calculate the relative Seiberg-Witten invariants of the halves i5((2ra+l)/2) 
for all non-negative integers m. 

THEOREM 7.2. If t — exp(jF), then for any m > 0 we have (up to sign) 

SWE((2m+l)/2)   =   \ ! 
(r2-*2)ro_1(l-*2)        ifr>0. 

Proof. We recall that SWEin) = (r2 - t2)n 2. It follows that 

sWE{2m)= (r2 -1*)™-1 (i +1-2) ■ (i -13) (r2 -12)"1"2 

= 5'WrS((2m+l)/2)  '  SWE((2m-l)/2) 

holds up to a prescribed sign convention.     D 

8. Adjunction inequality for manifolds with boundary Y. Using the re- 
sults of previous sections, we can come up with a new adjunction inequality valid for 
a smoothly embedded surface V inside an open 4-manifold X with dV C dX = Y. 
More precisely, we have the following 

THEOREM 8.1 (Adjunction Inequality E). Let X be a smooth compact oriented 4- 
manifold with boundary dX = Y. Suppose that b^iX) > 1 and V <-* X is a smoothly 
embedded surface with boundary dV <-¥ dX such that dV = 7. If L is a relative 
SW-basic class for X, then we have 

\(L,V)\ + 2V'V < 4g(V). 

Proof Form the closed manifold Z = X Uy E(3/2). Then there is a SW-b&sic 
class L of Z such that L\x = L and £1^(3/2) = ^F. Let V = V U7 SQ , where EQ is 
the half-section of E(3/2). From the adjunction inequality for Z, we have 

\(L,V)\ + V-V < 2g(V)-2. 

But note that 

\(L,V)\ = l\(L,V) +2|  >  l\(L,V)\ - 1, 

t/ • V = V - V - 1, and g(V) = ^(V).     D 

9. Extension to other 3-nianifolds. It is easy to extend our results to other 
Seifert fibered 3-manifolds of degree zero, e.g. E(2,3,6). In fact, let Y be the unit 
circle bundle corresponding to an orbifold complex line bundle N over a 2-dimensional 
orbifold E. Then the following two properties 

(i)    deg(iV) = 0 

(ii)    b1(Y) = l 

are all that we need in order to formally extend our arguments of the previous sections 
to Y. In particular, all the statements and formulae in Section 6 continue to be valid 
for this special class of Seifert fibered 3-manifolds. 
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We shall give more applications and further generalizations of the product formula 
for other 3-mamfolds with 61 = 1 in the future work [P3]. There, we plan to take 
a more refined approach and define our relative SW-invariant to take values in an 
infinitely generated Floer-type homology. The corresponding product formulae will 
then take place inside a suitably defined Novikov ring. We also study an analogous 
product formula for the three-torus in [P4]. 
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