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CONFORMAL LOWER BOUNDS FOR THE DIRAC OPERATOR OF 
EMBEDDED HYPERSURFACES* 

OUSSAMA HIJAZlt, SEBASTIAN MONTIEL*, AND XIAO ZHANG§ 

Abstract. We find sharp lower bounds for the first nonnegative eigenvalue of the classical 
intrinsic Dirac operator of a compact hypersurface bounding a domain in a Riemannian spin manifold. 
These estimates are given in terms of scalar (spectral) conformal invariants of the enclosed domain 
which are involved in the solution of the Yamabe problem. 

1. Introduction. In [Hijl], the first author used the conformal behavior of the 
nonzero eigenvalues A of the Dirac operator to show that on a closed connected spin 
manifold A2 is, up to a dimensional constant, at least equal to the first eigenvalue of 
the Yamabe operator. 

Using techniques for pseudo-differential operators and Sobolev embeddings, J. 
Lott [Lo] proved the existence of conformal lower bounds for A2. In [Hij2] it is shown 
that the Yamabe number, i.e., the infimum over a conformal class of metrics of the 
normalized total scalar curvatures, gives such a lower bound. 

In [HMZ1], the present authors considered a domain fi with boundary E inside 
a compact (n + l)-dimensional spin manifold M and showed that if M has nonneg- 
ative scalar curvature, then the first nonnegative eigenvalue Ai of the intrinsic Dirac 
operator of E satisfies 

(1.1) Ax > £ MH. 

where H is the mean curvature. The main new ingredient was to use the boundary 
condition of Atiyah-Patodi-Singer (APS) type for Dirac operators. If the ambient 
space has nonnegative Einstein tensor, (1.1) improves Friedrich's inequality for em- 
bedded hyper surf aces. As an application, a spinorial proof of the classical Alexandrov 
Theorem was obtained. 

The present paper is devoted to the conformal aspect of the results obtained in 
[HMZ1]. We improve (1.1) by showing that 

(1.2) Ai >-*!(£) 

where vi (B) is the first eigenvalue of the conformal mean curvature operator B (see 
Theorem 9 for a precise statement). Here we don't need to assume that M has 
nonnegative scalar curvature. Furthermore, the limitting-case of (1.2) is characterized 
by the existence of a parallel spinor on the ambient manifold for a metric in the 
conformal class. We then use the Holder inequality to show that 

(1.3) A^;
2
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where Q(fi, E) is the boundary Yamabe conformal invariant (see Corollary 11). 
For Dirac operators, the APS boundary condition is not conformally invariant, 

while the classical local boundary conditions are indeed conformally invariant but do 
not exist in all dimensions and there are topological obstructions for their existence 
[BW, GLP, HMZ2, Se]. In this paper, we find a new local conformal boundary 
condition which exists in all dimensions (see Section 5). The key point to establish 
(1.2) is to solve a boundary problem for Dirac operators with such boundary condition. 

We point out that if the scalar curvature of the domain is nonnegative, then 
vi(B) > infs H and for the Clifford torus embedded in E3, vi{B) > 0 while infs H < 
0 (see Remark 4). 

Finally, we would like to mention a series of relevant results by Escobar concerning 
the lower bound estimates for the first non-zero Steklov eigenvalue of the Laplacian 
operator [Es2, Es3, Es4], and further estimates for the Steklov problem on minimizing 
metrics for the Sobolev trace quotient by Araujo [Ar]. 

2. Preliminaries on spin manifolds. Let (M, ( , )) be an (n + l)-dimensional 
Riemannian spin manifold and denote by V the Levi-Civita connection on the tangent 
bundle TM. We fix a spin structure on M and denote by Spin(M) the corresponding 
principal bundle with structural group the spinor group Spin(n + 1). The spinor 

bundle SM = Spin(M) x7n+1 §n+1 on M is the associated complex 2l."5"J dimensional 
complex vector bundle. This representation provides a left Clifford multiplication 

(2.1) 7 : Ce(M) —> End(§M) 

which is a fibre preserving algebra morphism. Then SM becomes a bundle of complex 
left modules over the Clifford bundle C£(M) over the manifold M. When n -h 1 is 
even, the spinor bundle has the decomposition 

(2.2) §M = §M+®§M". 

where SM± are the il-eigenspaces of the endomorphism 7n-|_i(a;n+i), with a;n+i = 

2L~2~Jei -62'" e>n+i the complex volume form. 
On the spinor bundle SM, one has (see [LM]) a natural Hermitian metric, de- 

noted as the Riemannian metric by ( , ), and the Spinorial Levi-Civita connection V 
acting on spinor fields. The Hermitian metric and V are compatible with the Clifford 
multiplication (2.1). That is 

(2.3) m^> = (Vx^M + <</>, Vx^) 
(2.4) (7(X)^7W^>-|^|2(^^> 

(2.5) Vx (TTO) = l^xY)^ + 700 VxV>, 

for any spinor fields ^,^6 r(SM) and any tangent vector fields X, Y E T(TM). 
Since Va;n+i = 0, so when n +1 is even, the decomposition (2.2) becomes orthogonal 
and V preserves this decomposition. 

The Dirac operator JD on SM is the first order elliptic differential operator locally 
given by 

71+1 

^ = E^ei)v^' 
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where {ei,... ,en+i} is a local orthonormal frame of TM. When n + 1 is even, the 
Dirac operator interchanges positive and negative spinor fields, that is, 

(2.6) D : IXSM*) *—> r(SMT). 

3. Hypersurfaces and induced structures. In this section, we compare the 
restriction of the spinor bundle of a spin manifold M to an orientable hypersurface S C 
M and its Dirac-type operator to the intrinsic spinor bundle of E and its fundamental 
Dirac operator. These facts are well-known (see for example [Bu, Tr, Bal, BFGK]). 
For completeness, we introduce the key facts. 

We have an induced Riemannian metric on E and let V be its Levi-Civita con- 
nection. The Gauss formula says that 

(3.1) VxY = VxY-(AX,Y)N, 

where X,Y are vector fields tangent to the hypersurface E, the vector field N is a 
global unit field normal to E and A stands for the shape operator corresponding to 
TV, that is, 

(3.2) VXN = -AX,     vxer(rE). 

Recall that the spin structure of M induces on E in the following way By the map 
(ei,..., en) i—> (ei,..., en, iV) it is possible to identify the principal SO(n)-bundle of 
oriented orthonormal frames on the hypersurface E with a subbundle of the restriction 
to E of the bundle of oriented orthonormal frames on M. Pulling back the bundle 
Spin(M)|2 via this map, one obtains a spin structure Spin(E) on E. In fact the group 
Spin(n) C 0° acts on the restricted bundle Spin(M)|S via the identification 

a : cen = ce0
n e ai   —>  «°+1 c cen+1 

rj0 + rj1 i—>    rf + r}1 • TV 

between the n-dimensional Clifford algebra and the even part Q^+1. Hence we have 
that the restriction 

(3.3) SE:=§M|S-Spin(E)x7n+l0a§nH_1 

is a left module over C£(E) with Clifford multiplication 

7s : a(E) —> End(SE) 

given by 7s = 7 o a. That is, 

(3.4) 7£(X)^ = 7(X)7(W 

for every ^ E r(SE) and X 6 r(TE). Consider on SE the Hermitian metric ( , ) 
induced from that of SM. This metric immediately satisfies the compatibility condi- 
tion (2.4) if one puts on E the Riemannian metric induced from M and the Clifford 
multiplication 7s defined in (3.4). Now the Gauss formula (3.1) implies that the spin 
connection V on SE is given by the following spinorial Gauss formula 

(3.5) Vx</> = VxV> - )pv(AX)^ = Vx^P - ^(AX^iN)^ 
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for every ip € r(SE) and X E r(TE). Note that the compability conditions (2.3), 
(2.4) and (2.5) are satisfied for (SE,7s, (, ), V). 

Denote by D : r(SS) -> r(SE) the Dirac operator associated with the Dirac 
bundle SE over the hypersurface. It is a well known fact that D is a first order 
elliptic differential operator which is formally I/2-selfadjoint. By (3.5), for any spinor 
field ip e r(SE), we have 

n n 

(3.6) D^ = ^7E(e,)Ve,^ = ^-7(tf)£7(e;)Vei^ 
3=1 3=1 

where {ei,..., en} is a local orthonormal frame of TE and H = ^trace A is the mean 
curvature of E corresponding to the orientation N. From (3.6), if ip G r(SM) is a 
spinor field on the ambient manifold M, it follows 

on     

(3.7) D^ - -HI/J - 7{N)D<iP - VTVV^, 

(note that a spinor field on the ambient manifold M and its restriction to the hyper- 
surface E are denoted by the same symbol). 

LEMMA 1. For any spinor field tp e r(SS) and any tangent vector field X € 
r(TE); the following relations hold 

Vx(7(A0</>)=7(A0Vx</s 

D(7(A0V>) = -7(N)D^. 

The proof is straightforward using (3.5) and (3.2). As we have mentioned, the 
aim in this section is to relate the induced Dirac bundle SE over the hypersurface 
and its Dirac operator D to the intrinsic spinor bundle 

§E = Spin(E) x7nSn 

over E and its Dirac operator D. For this purpose, we gather in the following propo- 
sition, well-known results that we will need later. 

PROPOSITION 2. Let M be an (n + 1)-dimensional Riemannian spin manifold 
and (§M, 7) its (complex) spinor bundle, where 7 : C£(M) —> End(§M) denotes the 
corresponding Clifford multiplication. Consider an orientable hypersurface E of M 
and let (SE,7s) and (SE,7) be respectively the induced Dirac bundle and the spinor 
bundle of the induced spin structure on E. Denote by D and D the corresponding 
Dirac operators. 

a) When the dimension n o/E is even we have (SE,7s,D) = (§E,7,D) and the 
decomposition SE = SE+eSE-, given by SE* := {77 G SE : i^(N)r] = ±77}, 
corresponds, up to the above identification, to the chirality decomposition of 
the spinor bundle §E. Hence D interchanges SE"1" and SE-. 

b) When n is odd, the decomposition ofSM into positive and negative spinors 
induces an orthogonal and 7E, D-invariant decomposition SE = SE+ 0 SE_, 
with SE-fc := SMT^, in such a way that (SE±,7E,D|SS±) = (§£,±7,±.D). 
Moreover, we have the following isomorphisms: 7(iV) : SE± 1—y SET. 

Furthermore, if E is compact without boundary, then 
c) SpecD is symmetric with respect to zero. 
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d) //dimE is even, we have VA G SpecD: SpecD = SpecJ9, and multD(A) = 
mult£)(A). 

e) //dimE is odd, we have SpecD = SpecD U (-SpecD). Moreover, 

A G SpecD and— A ^ SpecD => multD(A) = mult^(A), 

±A € SpecD => multD(A) = mult^CA) + mult^f-A). 

4. Conformal covariance. Consider a positive function h on the Riemannian 
spin manifold M and the corresponding conformal metric ( , )* = h2{ , ). This yields 
to a bundle isometry between the associated spinor bundles SM and §*M. For this 
reason, the two spinor bundles will be denoted by the same symbol SM. On the other 
hand, for the corresponding Clifford multiplications and spin connections, one has: 

(4.1) 7* = />7,        V*-V = -^7(-)7(Vft)-^(-,V/l). 

Now the conformal change of the metric on M produces another conformal change 
of the induced metric on the hypersurface E corresponding to the same conformal 
factor h2. We then obtain the following identities relating the Clifford multiplications 
and the covariant derivatives of SE corresponding to the two conformal metrics on 
the hypersurface: 

(4.2) 7E = fc7£,        7*(W*)=7(W) 

V* - V = -i-^-hstV/i) - i-(., V/z), 

where N* = (l/h)N is a unit vector field normal to E with respect to ( , )*. If 
we use the symbols D and D* to denote the Dirac operators on SE relative to the 
two conformal metrics on E, we can easily show from (4.2), that for any spinor field 
if) e r(SE), the following identity: 

(4.3) B*(h-2^1il))=h-'I^1D^. 

This property is analogous to the conformal covariance of the classical Dirac operator 
of a spinor bundle discovered by Hit chin (see [Hit]). Now it is easy to check [Esl] that 

(4.4) lf = r^Lf,       H* = r^Bf, 

where for n > 2, the conformal factor h has been taken as 

(4.5) h = f&, 

for a positive function / defined on fi. Here L is the Conformal Laplacian and B the 
Conformal mean curvature operator given by 

4n         _ 2       
(4.6) Lu= -Au + Ru,        Bu = -(Vu,N)+Hu, 

n — 1 n — 1 

where V and A are respectively the gradient and Laplace operators of the original 
metric on Q and iV is the inward unit normal field along E corresponding to the 
original metric. 
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In [HMZ1], we proved a spinorial Reilly type inequality: For all ip 6 r(§fi), one 
has 

(4.7) jf f(Dtf,tf) - ^M2) dE > 

and equality occurs if and only if -0 is a twistor-spinor.   Now given a spinor field 
tp G r(§0) on the domain H, we put 

(4.8) rl>* = r1il>. 

From this definition, (4.3) and (4.5) it follows 

which with inequality (4.7) written w.r.t the metric ( , )*, after using (4.4), (4.6) and 
the facts 

we deduce the following conformally spinorial Reilly type inequality 

(4.9) / (<D^> - ^M2/-1*/) dE > 

kfMr'w-^J D if)* dtt*, 

valid for any spinor field ip € r(Sn) and any positive function / S C0O(fi). Moreover, 
the equality holds if and only if the spinor field ip* = f~lip is a twistor-spinor with 

4 

respect to the conformal metric ( , )* = f71-1 ( , ). 

5. A local elliptic boundary condition for the Dirac operator. As before, 
E is a hypersurface of an (n + 1)-dimensional Riemannian spin manifold M bounding 
a compact domain 0. We define two pointwise projections 

P± : SE —> SE 

on the induced Dirac bundle over the hypersurface, as follows 

(5.1) P± = |(I<isE±i7(iV)). 

Note that, from Proposition 2, when n is even, these are nothing but the projections 
on the ±-chirality subbundles SE^. It is immediate to see that P+ and P_ are 
self adjoint and orthogonal to each other on every SEp, with p G E. Moreover, as a 
consequence of (4.2), P± are conformally invariant. We now show that these operators 
provide good boundary conditions to solve equations for the Dirac operator D of M. 

PROPOSITION 3. Let ft be a compact Riemannian spin manifold with boundary 
a hypersurface dQ, = E. Then the zero order differential operators P± acting on 
SE; defined in (5.1) are (local) elliptic boundary conditions, that is, they satisfy the 
condition of Lopatinsky-Shapiro, for the Dirac operator D of ft. 
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Proof. The fact that these operators are (local) elliptic boundary conditions 
([BW], Chapter 18) or, in other words, they satisfy the so called condition of 
Lopatinsky-Shapiro ([Ho]), can be checked by local calculations with the principal 
symbols of the Dirac operator D and the boundary operators P±. The symbol cr(D) 
of D is given by 

av(D)rj = i'y(v)rj,        veTpil,    p G fi,    77 E SOp. 

Then, if the point p is taken to be on the boundary 9ft = E, we have 

au+sN(D)7] = i(y(u) + sj(N))r),        u G Tp£,    5 G R. 

Fix the point p G £ and the vector u G T^E and replace the parameter s by the 
partial derivative —id/dt. We have to look for solutions 

w : [0, +oo[—► §ftp = SEp, 

of the corresponding first order equation 

7(u)-n(A0^W)=0, 

with asymptotic behaviour 

lim  w(t) = 0. 

One can easily see that those solutions are of the form 

w(t) = e^(iV)7(tx)77,        77 G SEP 

where K;(0) =77 has to be an eigenvector of ry(iV)7(tfc) corresponding to a negative 
eigenvalue, that is, 

27(^)7(^)77 = — \u\rj. 

The ellipticity condition of Lopatinsky-Shapiro requires that the symbol 

<ru(P±) = P± : SEP -> SEP 

of the considered boundary operator to be an isomorphism from the subspace of initial 
conditions of those solutions, i.e., 

{77 G SEp : ii(N)i(u)r) = -\u\rj) C SEp 

onto the subspace range(P±), for each p G E and each nontrivial u G TpE. Since these 
two subspaces have the same dimension, 

-dim SEp, 

it is sufficient to prove that this linear map is injective. But, if 77 G SEp is one of these 
initial conditions and P±r) = 0, we have that 7(^)77 = ^l^. As 7(u)2 = -|n|2Id, 
this implies 77 = 0, hence the operators P± provide elliptic boundary conditions for 
the Dirac operator D of ft.     D 
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REMARK 1. The classical local boundary condition ensures that the Dirac oper- 
ator D is selfadjoint, but it doesn't exist in all dimensions and there are topological 
obstructions for its existence when the dimension of O is odd [BW, GLP, HMZ2, Se]. 
Our new local boundary condition exists in all dimension without any obstruction. 
But the following formula 

(5.2) hDil>,<p)dn- [ (il>,D<p)dn= ( {^{N)ip)dL, 
Jn JQ JE 

shows that the conditions provided by P± do not imply that D is selfadjoint. 

COROLLARY 4. The following inhomogeneous problem for the Dirac operator D of 
a compact domain fi in a Riemannian spin manifold M, with boundary a hypersurface 
E 

,. «v f ^ = tt on n [b'6) vp^ = 0     on s 

has a unique smooth solution for any $ € r(§fi). 
Proof. The two realizations of D associated with the two boundary conditions 

P± are the two bounded operators 

D± : domD± = {^ E ff^Sfi) : P±^|s = 0} —■> L2(Sn) 

where H1 stands for the Sobolev space of L2-spinors with weak L2 covariant deriva- 
tives (recall that such spinors have a well defined L2 trace on E). From (5.2), it follows 
that D± = Dzf. Moreover, if ^ G domD± belongs to ker D±, by taking ip = iip in 
(5.2) (note that this formula is valid even for weak spinor fields), and recalling that 
the metric on Sfi is Hermitian, we have 

0 = 2 [ (Dip, iip) dn= [ (ip, i<y(N)ijj) dS = ^ f \ip\2 dS. 
Jn JT, Jx 

Then one gets a weak harmonic spinor by extending ip by zero to a compact manifold 
containing ft and so, regularity for the Dirac operator on compact manifolds and the 
unique continuation property (cf. Theorem 8.2 in [BW]) say that ip vanishes on all of 
ft. Then 

kerZ}± = {0}        and       coker]D± = ker DT = {0}. 

Then the two realizations D± are invertible operators, hence if \I> G r(Sft) is a smooth 
spinor field on ft, there exists a unique solution ip G iJ1(Sft) of (5.3). Now, the 
ellipticity proved in Proposition 3 implies (cf. Chapter 19 in [BW]) the required 
smoothness for the solution ip.     D 

REMARK 2. When the dimension n + 1 of the manifold M is odd, Proposition 2 
and Corollary 4 give the existence, uniqueness and regularity to the problem 

f Dip = *      on ft 
I %eSE* 

When n + 1 is even, if we decompose the spinor fields ip and ^ according to the 
decomposition (2.2) of ft, Corollary 4 solves the following boundary first order system 

( Dip± = *± on ft 
\ i>y(N)ip±    = T^i      on E, 
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where now all the involved fields have a fixed chirality. 

COROLLARY 5. Let fi a compact Riemannian spin manifold with boundary a 
hypersurface E. // ip G r(SE) is a smooth spinor field in the induced Dirac bundle 
and ^ € r(§fi); then the system 

Dip     =1$ on ft 
P±^    = P±V on E 

has a unique smooth solution tp G r(Sfi). 
Proof. Extend (p to a spinor field <p G r(Sn) and put ip = ip — fi. Then solve 

f Dip     = -^(^ on ft 
[ P±ip    =0 onE 

using Corollary 4.     D 

6. Extrinsic conformal lower bounds for the Dirac operator. Now, we 
will use the Reilly type inequality (4.9) for a compact Riemannian spin manifold 
with boundary ft in order to deduce lower bounds for the eigenvalues of the classical 
Dirac operator D of the boundary hypersurface 9ft = E. We will start by taking 
an eigenspinor field ip G r(SE) for the Dirac operator D of the induced bundle on 
the hypersurface corresponding to the first eigenvalue Ai >.. 0. (Recall that, from 
Proposition 2, Ai is also the smallest nonnegative eigenvalue of the intrinsic Dirac 
operator D of the hypersurface.) Let / be any positive smooth function defined on ft. 
We will consider the conformal metric ( , )* defined in (4.5) and pose the following 
boundary problem 

(fiU ( D i/;*    =0 
[     j \ P*iP*    =P* 

on ft 
CTV) on S 

for the conformally modified Dirac operator D and the associated boundary condition 
P.£. Corollary 5 asserts that this problem has a unique smooth solution ip* G r(Sft). 
Recall that inequality (4.9) is valid for spinor fields xp and ip* on ft such that ip = fip* 
(see 4.8) for any positive function on ft. Putting the smooth solution of the boundary 
value problem (6.1) in inequality (4.9), yields to the following key inequality 

(6.2) f (W, VO - f IVfr'i?/) rfS > | J Wff-iLfdSl. 

The main result of this paper will rely on inequality (6.2). For this, we need some 
elementary lemmas. 

LEMMA 6. For every smooth field ip G r(SE) we have 

f (Dip, ip) dS = 25? f (DP+ip, P-ip) d£. 

Proof. We have the orthogonal decomposition ip — P+ip + P-ip. Moreover, from 
definition (5.1) and Lemma 1, one immediately shows that 

(6.3) DP± = PTD. 
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Hence 

We conclude by noting that E is compact and the operator D is formally selfadjoint. 
D 

LEMMA 7. Letcp £ r(SS) be an eigenspinor field for D associated with a nonzero 
eigenvalue.  Then 

[ |P+^|2dE= / |P_^|2dE. 

Proof. From Y>(p = Xcp for a certain A G R and the anticommutativity relation 
(6.3) we obtain DP±<p = APq: <p, and so (DP±<^, Pq:^) = A (Pipy?!2 . Now it suffices to 
integrate and use again that D is formally selfadjoint.     D 

LEMMA 8. Let (p G r(SE) be an eigenspinor field for D associated with the first 
nonzero eigenvalue Ai G R and ij)* the unique solution of the boundary value problem 
(6.1). Set ip = fij)* as in (4.8). Then 

(6.4)       x, I M
2
 ds-'^J m'r'Bf *z>\j w'r'Lf dfl, 

Moreover, equality holds if and only if the spinor -0* is a (harmonic) twistor-spinor, 
i.e., parallel, with respect to the modified metric and either Ai = 0 or ijj = tp along the 
boundary hypersurface E. 

Proof. By (6.1), we have P_£^;* = P^ (/-V). By conformal invariance of the 
zero order operators PjjL, it follows P+ (Z-1^) = P+ {f~1(p), and so 

(6.5) P+ijj = P+tp. 

Using this fact with Lemma 6, we get 

/ (DV>, ip) dY, = 23? [ <DP+^, P_^) dS. 

As in Lemma 7, we have DP+y? = AiP_<p, hence 

/ (D^, ^> dE = 23ftAi / (P_<p, P_^) dE. 

We now observe that, since Ai > 0, one has 

(6.6) 2Ai5ft(P_<p, P-^> < Ai (|P-</f + |^-^|2) 

and equality occurs if and only if either Ai = 0 or P_</? = P-ifj. By integrating (6.6) 
and using Lemma 7, it follows that 

2A15R f (P-<p, P-ip) dE < Ai ( / \P+<p\2 dE + f |P_^|2 dE J , 

which together with the boundary condition (6.5), implies 

(6.7) /(DV>,V}dE<Ai f h/fdE. 
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Finally, the combination of inequalities (6.7) and (6.2) yield to (6.4). The last 
statement is straightforward.     □ 

Now a suitable choice of the function / will lead to one of the main results of this 
paper, which could be thought of as an analogue for embedded hypersurfaces of the 
so called Hijazi inequality [Hijl]. 

THEOREM 9. Let E be a compact hypersurface of dimension n > 2 of a Rie- 
mannian spin manifold M bounding a compact domain Vt. The lowest nonnegative 
eigenvalue Ai of the Dirac operator on E satisfies 

(6.8) A: >%!(£), 

where vi (B) is the first eigenvalue of the boundary linear operator B acting on func- 
tions f defined on ft with Lf = 0, where L is the conformal Laplacian of M (see 
(4-6)). Moreover, if equality holds, then fi is conformally equivalent to a Riemannian 
spin manifold with nontrivial parallel spinors (hence Ricci flat) and the eigenspace 
corresponding to Ai is isomorphic to the space of restrictions to E of parallel spinors. 

Proof. First, recall that the eigenvalue problem 

J Lu    — 0 on Q, 
\ Bu    = vu on E = 30, 

appearing in the statement of this theorem, was introduced by Escobar in [Esl] in 
the context of the Yamabe problem for manifolds with boundary and that L and B 
are the operators defined in (4.6). The corresponding first eigenvalue ^i(S), whose 
variational characterization is given by 

z/i(B)= inf 
/o(^rlv/l2 + ^/a)dn + /E^dE 

is not necessarily finite (see Addendum to [Esl]), although reasonable geometric as- 
sumptions on fi (for example, nonnegative scalar curvature), immediately imply its 
finiteness. Obviously, if vi(B) = —oo, the theorem is true. Hence we will suppose 
that vi(B) is a finite real number. 

In this case, Escobar proved that the sign of vi is invariant under conformal change 
of the metric on fi and an associated eigenfunction / has to be positive (Proposition 
1.3 in [Esl]). Moreover, Escobar proved that vi is positive (resp. zero or negative) if 
and only if there exists a conformally related metric on 0 with zero scalar curvature 
and such that the boundary E has positive (resp. identically zero or negative) mean 
curvature, or equivalently, there is a conformal metric on H with positive (resp. iden- 
tically zero or negative) scalar curvature and minimal boundary. In many cases, the 
mean curvature turns out to be constant. 

Now we choose the function / in (6.4) to be a positive eigenfunction associated 
with vi(B). Hence, 

(\i-\vi{B))jty\2dZ>Q, 

which is precisely the desired inequality (note that ^ cannot vanish identically on E 
since P+ij) is an eigenspinor field). 

It only remains to examine the equality case. If Ai = (n/2) vi(B), then equality 
occurs in (6.4) and so the nontrivial spinor field -0* is parallel w.r.t ( , )* and either 
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Ai = vi(B) = 0 or ^is = (P- But, if the first possibility holds, by (6.3) we conclude 
that 'DP±(p = 0. Then, if we repeat the same argument for P±(p instead of ip (when we 
have the — sign, we must address the corresponding boundary problem with boundary 
condition P*), we also obtain ^^ = </?. 

Conversely, let ip* be a nontrivial parallel spinor with respect to the metric ( , )*. 
Applying (3.7) to this conformal metric, we get 
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Now we define ip by the relation tp = fip* and take into account (4.3), (4.4) and (4.6). 
Then, 

D^=^(r1B/)^ 

which by the choice of /, could be written as 

Tl 

D 

REMARK 3. Note that if equality is achieved in (9), there exists a nontrivial 
parallel spinor on (fi, ( , )*). 

COROLLARY 10. // the boundary of a compact Riemannian spin manifold admits 
a nontrivial harmonic spinor, then there exists a metric in the conformal class with 
negative or zero scalar curvature and the boundary has to be minimal 

REMARK 4. It is clear that, if R > 0, then iyi(B) > infsi?. Equality occurs 
if and only if the conformal factor / is constant, R = 0, and H is constant. As a 
consequence, we get Theorem 6 in [HMZ1]. On the other hand, there are examples 
where only (6.8) is significant. In fact, if S is a 2-dimensional torus embedded in 
R , the Gauss-Bonnet theorem implies that infs R < 0. But, in the case of a torus 
of revolution in R , obtained by rotating a circle of radius r whose center is at 
distance a > r of the axis of rotation, we have that H > 0 if (and only if) a > 2r. 
These tori of revolution provide examples for which Theorem 6 in [HMZ1] gives no 
information, while inequality (6.8) is still significant. If a = \/2r the corresponding 
torus of revolution is the stereographic projection of a minimal torus in the three- 
sphere (the Clifford torus). Hence, for the Clifford torus ^i(B) > 0 while infs H < 0. 

It was also Escobar (see, for example [Esl] and references therein) who introduced 
the following Sobolev quotient, called the boundary Yamabe conformal invariant 

t        /n(^TlV/|2 + ^/2) dn + J^HpdS 
Q(n, S) = inf         ^ i—^ . 

He proved that Q(ft,E) has the same sign as ui(B) and it is invariant with respect 
to conformal changes of the metric on fi. The Holder inequality applied to an eigen- 
function / associated with z/i gives 

„l(B) > «24 
u   ' - vol(E)* 
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and equality implies that / is constant. Thus, from Theorem 9 one has a conformal 
lower bound for the product Aivo^E)1/71. 

COROLLARY 11. Let E be a compact hypersurface of dimension n > 2 of a 
Riemannian spin manifold M bounding a compact domain 0. Then the lowest non- 
negative eigenvalue Ai of the Dirac operator on E satisfies 
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Aivol(E)» >-Q(fJ,E), 

where 2(0, E) is the boundary Yamabe conformal invariant. Moreover, if equality 
holds, then the eigenspace associated with Ai consists of restrictions of parallel spinors 
on fi. 

REMARK 5. For compact (immersed) surfaces in the Euclidean space, it is known 
(see [An, Bm, Ba2] and [AF] for generalizations) that 

A: 2area(E) < f H2 dE. 

Then, for embedded surfaces in M , one has 

g2(ft, E) < Xj area(E) < f H2 dS, 

where fi is the enclosed domain. That is, the scale free quantity X2 area(E) is between 
two extrinsic conformal invariants: the Yamabe number and the Willmore functional. 

REFERENCES 

[AF] I. AGRICOLA, T. FRIEDRICH, Upper bounds for the first eigenvalue of the Dirac operator 
on surfaces, Journ. Geom. Phys., 30 1 (1999), pp. 1-22. 

[AI] A.D. ALEXANDROV, A characteristic property of spheres, Ann. Mat. Pura AppL, 58 
(1962), pp. 303-315. 

[An] N. ANGHEL, Extrinsic upper bounds for eigenvalues of Dirac-type operators, Proc. AMS, 
117 (1993), pp. 501-509. 

[Ar] H. ARAUJO, Critical points of the total scalar curvature plus total mean curvature, thesis, 
Cornell University, May 2001. 

[Bal] C. BAR, Metrics with Harmonic Spinors, Geometric And Functional Analysis, 6 (1996), 
pp. 899-942. 

[Ba2] C. BAR, Extrinsic bounds of the Dirac operator, Ann. Glob. Anal. Geom., 16 (1998), pp. 
573-596. 

[Bm] H. BAUM, An upper bound for the first eigenvalue of the Dirac operator on compact spin 
manifolds, Math. Z., 206 (1991), pp. 409-422. 

[BFGK]      H. BAUM, T. FRIEDRICH, R. GRUNEWALD, I. KATH,  Twistor and Killing Spinors on 
Riemannian Manifolds, Seminarbericht, Humboldt-Universitat zu Berlin, 108 (1990). 

[BW] B. BOOSS-BAVNBEK, K.P. WOJCIECHOWSKI, Elliptic Boundary Problems for the Dirac 
Operator, Birkhauser, Basel, 1993. 

[BHMM]    J.P. BOURGUIGNON, O. HIJAZI, J.-L. MILHORAT, A. MOROIANU, A Spinorial Approach 
to Riemannian and Conformal Geometry, Monograph (In Preparation). 

[Bu] J. BURES, Dirac operators on hypersurfaces, Comment. Math. Univ. Carolin., 34 (1993), 
No. 2, pp. 313-322. 

[Esl] J.F. ESCOBAR, Conformal deformation of a Riemannian metric to a scalar flat metric 
with constant mean curvature on the boundary, Ann. of Math., 136 (1992), pp. 1-50. 
(Addendum in 139 (1994), pp. 749-750.) 

[Es2] J.F. ESCOBAR, The geometry of the first non-zero Stekloff eigenvalue, J. Funct. Anal, 150 
(1997), No. 2, pp. 544-556. 

[Es3] J.F. ESCOBAR,  An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. 
Anal, 165 (1999), No. 1, pp. 101-116. 



36 O. HIJAZI, S. MONTIEL AND X. ZHANG 

[Es4] J.F. ESCOBAR, A comparison theorem for the first non-zero Steklov eigenvalue, J. Punct. 
Anal, 178 (2000), No. 1, pp. 143-155. 

[Fr] T. FRIEDRICH, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen 
Mannifaltigkeit nicht negativer Skalarkriimmung, Math. Nach., 97 (1980), pp. 117- 
146. 

[GLP] P.B. GILKEY, J.V. LEAHY, J. PARK, Spectral Geometry, Riemannian Submersions and 
the Gromov-Lawson  Conjecture, Studies in Advanced Mathematics,  Chapman & 
Hall/Crc, Boca Raton, 1999. 

[Hijl] O. HIJAZI, A conformal lower bound for the smallest eigenvalue of the Dirac operator 
and Killing spinors, Commun. Math. Phys., 104 (1986), pp. 151-162. 

[Hij2] O. HIJAZI, Premiere valeur propre de I'operateur de Dirac et nombre de Yamabe, C. R. 
Acad. Sci. Paris, 313 (1991), pp. 865-868. 

[HMZ1]      O. HIJAZI, S. MONTIEL, X. ZHANG, Dirac operator on embedded hyper surf aces, Math. 
Res. Lett., 8 (2001), pp. 195-208. 

[HMZ2]      O. HIJAZI, S. MONTIEL, X. ZHANG, Eigenvalues of the Dirac Operator on Manifolds with 
Boundary, Commun. Math. Phys., 221 (2001), pp. 255-265. 

[Hit] N. HITCHIN, Harmonic spinors, Adv. in Math., 14 (1974), pp. 1-55. 
[Ho] L.  HORMANDER,   The Analysis of Linear Partial Differential Operators III, Springer, 

Berlin, 1985. 
[LM] H.B.  LAWSON,  M.L.  MICHELSOHN,  Spin  Geometry, Princeton Math. Series, vol. 38 

Princeton University Press, 1989. 
[Li] A. LICHNEROWICZ, Spineurs harmoniques, C.R. Acad. Sci. Paris, 257 (1963), Serie I, pp. 

7-9. 
[Lo] J. LOTT, Eigenvalue Bounds for the Dirac operator, Pacific J. Math., 125 (1986), pp. 

117-126. 
[Se] R. SEELEY, Singular integrals and boundary problems, Amer. J. Math., 88 (1966), pp 

781-809. 
[Tr] A. TRAUTMAN, The Dirac Operator on Hyper surf aces, Acta Phys. Plon., B 26 (1995), 

pp. 1283-1310. 




