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VERDIER-RIEMANN-ROCH FOR 
CHERN CLASS AND MILNOR CLASS* 

SHOJI YOKURAt 

1. Introduction. In [BFM] Baum, Fulton and MacPherson formulated a sin- 
gular Riemann-Roch, extending the Grothendieck-Riemann-Roch (e.g., see [BoSe]) 
to possibly singular varieties. That is the unique natural transformation from the 
K-theory of coherent sheaves to the rational homology theory 

(BFM) T:KO->#Q 

satisfying the normalization condition that T(OX) = td{TX) fl [X] for a non-singular 
variety X with Ox the structure sheaf and td(TX) the total Todd class of the tangent 
bundle TX. This is a covariant aspect of the two theories KQ and HQ. As to the 
contravariant aspect of these two theories, we have the Verdier-Riemann-Roch, which 
was conjectured in [BFM] and proved affirmatively by J.-L. Verdier [V, Theorem 18.2 
(3), p. 349], i.e., the following commutative diagram for a local complete intersection 
morphism f : X —> Y:       . 

KoOO —^+ H*(Y)Q 

(Verdier) /* td(Tf)nr 

Ko(X)  > H*(X)q 
TX 

where td(Tf) is the total Todd class of the virtual relative tangent bundle T/ of 
the morphism / and /* : H*(Y)Q —)> H*(X)Q is the Gysin homomorphism (see [F, 
Example 19.2.1], [BFM, IV.4] and [FM]). 

In [SGA 6] the original Grothendieck-Riemann-Roch (for a morphism between 
nonsingular varieties) is generalized to the following Riemann-Roch for a local com- 
plete intersection morphism / : X -> Y: 

K0{X) —^_» iJ*(X)Q 

(SGA 6) Mtd(Tf)U 

K0(Y)   ► #*(10Q 
ch 

Here K0 is the K-theory of vector bundles and f\ : H*(X)Q -> H*(Y)Q is the Gysin 
homomorphism (see [F, Example 19.2.1], [BFM, IV.4] and [FM]). 

The above three Riemann-Roch theorems,  i.e.,  Baum-Fulton-MacPherson's 
Riemann-Roch (BFM), Verdier-Riemann-Roch (Verdier) and the Riemann-Roch in 
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[SGA6], follow from the Grothendieck transformation (see [FM,II, §1]) 

r : Kai. -> Ho 

from the bivariant algebraic if-theory to the bivariant homology theory with rational 
coefficients and the bivariant-theoretic "Riemann-Roch formula" ([FM, I, §1.4]) 

T(Of) = td(Tf).UJ 

f f of the canonical orientations Of G IKaig (X —> Y) and Uf E IHI(X —> Y)Q for a local 
complete intersection morphism / : X -» Y (see [FM, II, 0.2]). 

As remarked in [BFM, (0.3)], the motivation of BFM's Riemann-Roch is the 
Chern-Schwartz-MacPherson class theory, i.e., the unique natural transformation from 
the covariant functor F of constructible functions to the covariant homology functor 

c* : F -> H* 

satisfying the normalization condition that c*(lx) = c(TX) fl [X] for a nonsingular 
variety X with lx being the characteristic function on X. The natural transformation 
c* : F —y H* is nothing but "Grothendieck-Riemann-Roch" for the Chern class (cf. 
[G]). It is, therefore, quite natural and reasonable to think of the "contravariant as- 
pect" of the Chern-Schwartz-MacPherson class theory; i.e., "Verdier-Riemann-Roch" 
for Chern class, since the original Verdier-Riemann-Roch is one for Todd class. Thus, 
first of all, a naive or simple-minded question is to ask about the commutativity of 
the following diagram: 

F(Y)  —^ H*{Y;Z) 

(i.i) r| j«P»nr 
F(X)  y H*(X;Z) 

Here, /* : F(Y) -> F(X) is the usual functional pullback of constructible functions, 
i.e., (f*a)(x) = a(f(x)) for a constructible function a E F(Y), c(T/) is the total Chern 
class of the bundle T/ and /* : H*(Y;Z) -> H*(X;Z) is the Gysin homomorphism 
as above with integral coefficients.The above diagram (1.1) is commutative if / is 
smooth ([Yl]), otherwise it is not. Consider the very simple case when / : X -» pt is 
a local complete intersection morphism from a singular variety X to a point, which 
means that the variety X is a singular local complete intersection in a smooth variety. 
Then the problem of the commutativity of the diagram (1.1) is equivalent to that of 
whether the Chern-Schwartz-MacPherson class c*(X) of X and the Fulton-Johnson 
class cFJ(X) of X ([F], [FJ]) are the same or not. Indeed, since Y — pt, let us consider 
the characteristic function 1^. Then the commutativity of (1.1) implies that 

c*(r(M) = c(Tf)nr(c(iPi)). 
The left-hand-side of this equality is c*(/*(lpt)) = c*(lx) = c*(-X"), the Chern- 
Schwartz-MacPherson class of X. On the other hand, as pointed out just above, since 
X is a local complete intersection in a smooth variety, say M, it follows that the right- 
hand-side is c(r/)n/*(c*(lpt) = c(TM\x-NxM)r\[X]), which is the Fulton-Johnson 
class of X ([F], [FJ]). Here NxM is the normal bundle of X in M. If X is singular, 
then these two classes are not the same and the difference of these two classes, which 
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is called Milnor class, has been recently studied well from different motivations (e.g., 
see [A3], [BLSS1,2], [PP3], [Sul], [Y2], etc.). Note that in the case of a singular plane 
curve, it is already implicitly observed in [P, §6, Comparaison des classes] that the 
difference of these two classes is the sum of Milnor numbers of the singularities (cf. 
[F, Example 4.2.6 (b)]). 

From a bivariant-theoretic viewpoint, a more natural question to ask is then 
whether or not there exists a certain constructible function a E F(X) such that the 
following diagram commutes: 

F(Y) —^->  #*(y;Z) 

(1.2) «•/• cCZ/jnr 

F{X)  > H*(X;Z). 

The starting point of the present work is the observations that the constructible 
function functor F itself can be a bivariant theory and furthermore that there are 
several bivariant theories of constructible functions [Y4, 5]. For example, roughly 
speaking, a constructible function a € F(X) making the diagram (1.2) commutative, 
with c(Tf) fl /* replaced by a certain homomorphism 8f : i7*(y;Z) -» H*(X;Z)y is 
also "bivariant" (see Theorem 2.8 below for more details). 

In this paper we show that for a trivial fiber bundle with the fiber being a local 
complete intersection in a smooth variety there does exist a constructible function 
a 6 F(X) such that the diagram (1.2) is commutative, and thus we speculate that 
it would be true even for fiber bundles both in the Zariski topology and in the usual 
topology. We also show that for a blow-up map (which is a non-smooth local complete 
intersection morphism) there does not exist any constructible function a G F(X) such 
that the diagram (1.2) is commutative. 
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author would also like to thank the referee for his/her valuable comments and sug- 
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2. Bivariant Theories of Constructible Functions. First we recall a general 
theory of bivariant theory due to Fulton and MacPherson (see [FM] for full details). A 
bivariant theory B on a category C with values in an abelian category is an assignment 
to each morphism 

x -UY 

in the category C a graded abelian group 

IB(X -A Y) 

which is equipped with the following three basic operations: 
(Product operations):   For morphisms / : X —> Y and g : Y —> Z, the product 
operation 

A Y) (g> B(Y -A Z) -» B(X -^4 Z) 
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is defined. 
(Pushforward operations): For morphisms / : X ->• Y and g : Y ->• Z with / proper, 
the pushforward operation 

/, : M(X ^UZ)-* B(y -A Z) 

is defined. 
(Fullback operations): For a fiber square (which will be sometimes simply denoted by 
X' ^XxyY') 

X' ^-^ X 

Y' —^ y, 

the pullback operation 

2*: B(X JU Y) -> B(X/ -A y') 

is defined. 
And these three operations are required to satisfy the following seven axioms (see 

[FM, Part I, §2.2] for details): 
(B-l) product is associative, 
(B-2) pushforward is functorial, 
(B-3) pullback is functorial, 
(B-4) product and pushforward commute, 
(B-5) product and pullback commute, 
(B-6) pushforward and pullback commute, and 
(B-7) projection formula. 

Let B, B' be two bivariant theories on a category C. Then a Grothendieck trans- 
formation from B to B' 

7 : B -> B' 

is a collection of homomorphisms 

M(X ^y)->B,(x->y) 

for a morphism X --» Y in the category C, which preserves the above three basic 
operations. 

Fulton and MacPherson also introduced the notion of operational bivariant theory 
associated to a homology theory ([FM, Part I, §8]). Let T* be a covariant functor 
(or sometimes called a homology theory) on the category C. Then the associated 
operational bivariant theory OT of T* is defined as follows. For a morphism / : X —> y, 

an element c E OT(X —> Y) is defined to be a collection of homomorphisms 

cWiT^-tT^X') 

for all g : Y' ->> Y and the fiber square X' — X xy Y'. And these homomorphisms 
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c(^) are required to be compatible with proper pushforward, i.e., for a fiber diagram 

X" - 

[/" 
Y" - 

ti 
* X' -> X 

f 

-+ y -^ y, 

the following diagram must commute: 

T^Y') 

c(goh) 

c(9) 

>  T*(X") 

-> n(x'). 

If C has a final object pt and T*(pt) has a distinguished element 1, then the 
homomorphism ev : OT(X -> pt) -> r*(X) defined by ev(c) := (c(idpt))(l) is called 
the evaluation homomorphism. 

Let IB be a bivariant theory. Then the associated operational bivariant theory Bop 

of B is defined to be the operational bivariant theory constructed from the covariant 
functor B*(X) = M(X -¥ pt). Then we have the following canonical Grothendieck 
transformation 

op : B -> Bop 

defined by, for each a G M(X -* y), 

op(a) := {(g*a)m : M(Y' -> pt) -> B(X' -^ ^)|p : y7 -> y} 

where X' = X Xy Y' is the fiber square. 
Now we discuss some bivariant theories of constructible functions. First, the 

abelian group F(X) of a given analytic variety X consists of all the constructible 
functions on X. The association X \—)■ F(X) becomes a contravariant functor with 
the usual pullback and at the same time a covariant functor with the pushforward 
/* which takes the topological Euler-Poincare characteristic of the fibers weighted by 
constructible functions. 

The constructible function functor F itself can be a bivariant theory without any 
geometric or topological requirement on constructible functions as follows: 

PROPOSITION (2.1). ([Y5, Proposition (3.1)]) For any morphism f : X -> Y the 
group s¥(X ->Y) is defined by 

s¥(X -UY) :=F(X). 

Then this is a bivariant theory with the following operations of product, pushforward 
and pullback, i.e., they satisfy the seven axioms of the bivariant theory, 
(i): the product operation 

is defined by: 

: sW(X -Ay)® sF(y -^ Z) -> sW(X 9fx Z) 
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(ii): the pushforward operation 

is the pushforward 

(Hi): For a fiber square 

/♦ : s¥(X ^UZ)^- sF(y -^. 

f. : F(X) -»• F(Y). 

Z) 

X' -)■ X 

f 

Y' -> Y, 

the pullback operation 

is the pullback 

g* : s¥{X -U Y) -> sF(X' ^U r') 

ff'* : F{X) -> F(X'). 

T/iz5 bivariant group is called the simple bivariant group of constructible functions. 
It is clear that Axioms (B-2) and (B-3) hold, and to see that these three oper- 

ations satisfy the other five axioms, we use the following three properties: 
(2.2) for the above fiber square in (iii) the following diagram commutes (e.g., see 

[Er, Proposition 3.5], [FM, Axiom (A23)]) 

/'* 

r 

* FiX') 

9* 

F(Y') 

9* 

F(Y) 

(2.3) for a morphism / : X —»► Y and constructible functions a,f3 € F(Y) 

/*(a • 0) = fa ■ /*/?, 

(2.4) (projection formula): for a morphism / : X —» y and constructible 
functions a G F(y) and /? G ^(X) 

/*(/*«•/?) = a-/*/3. 

Let H be the Fulton-MacPherson's bivariant homology theory, constructed from 
the cohomology theory. For a morphism / : X —> Y, choose a morphism (f) : X —> W1 

such that $:=(/, 0) : X —> Y x En is a closed embedding. Then the i-th bivariant 

homology group W(X —> Y) is defined by 

w{x -Ay) :=iji+n(y xEn,y xir \x4>), 

where X^ is defined to be the image of the morphism $ = (/, 0).  The definition is 
independent of the choice of 0. See [FM, §3.1] for more details of EL 

A key feature of the simple bivariant group sF is the following result, which gives 
a counterexample to [FM, I, §8.2, pp.90-91]: 
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THEOREM 2.5. ([Y5, Remark 3.3]) LetW^ be the operational bivariant homology 
theory associated to the homology theory H*. There does not exist a Grothendieck 
transformation 

7 : sF -> HPP 

such that for each morphism X —t pt the associated homomorphism followed by the 
evaluation homomorphism 

ev o7 : F(X) = s¥{X -> pt) -> IHPP (X -> pt) -> iJ*(X) 

Z5 tAe Chern-Schwartz-MacPherson class homomorphism c*. 
And similarly we can show the following: 

THEOREM 2.6. ([Y5, Theorem 3.2]) There does not exist a Grothendieck trans- 
formation 

7s : sF -» H 

swcA ttat 7s(l7r) = c(TX) fl [X] /or X smooth, where n : X -^ pt and lw = lx- 
The proof of these theorems tells us that the simple bivariant group, i.e., the con- 

structible function group is certainly too large for the possible existence of a Grothen- 
dieck transformation from this bivariant theory of constructible functions to the bi- 
variant homology theory. And there are more finer bivariant theories of constructible 
functions (see Theorem 2.7) below and also see [Y5]}, but the most interesting bivariant 
theory of constructible functions, which is conjecturally best-fit, for the possible exis- 
tence of a Grothendieck transformation, as supported by the Brasselet's theorem [Bl], 

f 
is Fulton-MacPherson's bivariant theory of constructible functions, i.e., F(X —> Y) 
consists of all the constructible functions on X which satisfy the local Euler condition 
with respect to / (see [Bl], [FM], [Sa], [Z]). Here a constructible function a G F(X) 
is said to satisfy the local Euler condition with respect to f if for any point x € X and 
for any local embedding (X,x) —> (0^,0) the following equality holds 

a(x)=x{Benf-1(z);a), 

where Be is a sufficiently small open ball of the origin 0 with radius e and z is any 
point close to f(x) (cf. [Bl], [Sa]). The three operations on F are the same as above 
in sF and it is known that these three operations are well-defined for F (e.g., see 

[BY], [Sa], [Z]). Note that ¥{X —$> X) consists of all locally constant functions and 
F{X ->pt) = F(X). 

Suppose that there exists a Grothendieck transformation 

7:F^IH[ 

satisfying the normalization condition that 7(1^) = c(TX) fl [X] for X smooth, where 
TT : X —> pt and l^ = lx- In [Bl], J.-P. Brasselet constructed such a Grothen- 
dieck transformation 7Br : F —> M in the category whose objects are complex analytic 
varieties and whose morphisms are cellular. Then, since Grothendieck transforma- 
tions preserve product, pushforward and pullback, and since the Chern-Schwartz- 
MacPherson class transformation is unique, it follows that for any bivariant con- 
structible function a e F(X -> Y) we get the following commutative diagram (Verdier- 
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Riemann-Roch for Chern classes associated to the bivariant constructible function a): 

F(Y) —^-> jy*(y;Z) 

a* 7(Q;)# 

F{X)  > H^X-Z). 

Here we emphasize that of means a • /* for / : X -4 Y. 
Note that no matter which bivariant theory of constructible functions we consider, 

as long as we assume the existence of a Grothendieck transformation from that to 
the homology theory satisfying the above normalization condition, we get the above 
commutative diagram. 

Such a commutative diagram as above, without requiring a € ¥{X —Y Y) and 
with 7(a)• replaced simply by a certain homomorphism, already requires some strong 
condition on the constructible function a 6 F(X), as observed below. 

OBSERVATION 2.7. Suppose that for a morphism f : X -> Y we have the following 
commutative diagram: 

(2.7.1) 

F(Y)  - -^   Hm(Y;Z) 

c-fl I"' 
F(X) -  > H.(X\Z). 

f 
with a constructible function a G F(X) (not necessarily a G ¥(X —> Y)) and a 
homomorphism Of : i7*(y;Z) —> H*(X]Z). Then we can see that this commutative 
diagram always implies the following things: 

(i) If f : X —¥ Y is not surjective, then a = 0. 
(ii) The Chern-Schwartz-MacPherson classes c*(/~1(y);a) := ^(a^-i^)) of the 

fiber weighted by the constructible function a are locally constant, considered as the 
homology classes in the total variety X. In particular, the pushforward f*a G F(Y) 
is locally constant, or equivalently, the Euler-Poincare characteristics x{f~1{y)\OL) '-— 
x(o(\f-i(y\) of the fiber weighted by the constructible function a are locally constant. 

(in) If f : X —> X is a blow-up of X along a subvariety V C X and let E be the 
exceptional divisor, then a is constant on X \E = f~1(X \ V). 

Finally we note the following theorem: 

THEOREM 2.8.  ([Y5, Theorem 3.6]) For a morphism f : X -> Y, we define 

vW(X —> Y) to be the set of all constructible functions a G F(X) satisfying the 
following condition: for any morphism g : Y' —> Y and fiber square 

X' 

(2.8.1) /' 

r 

-^ x 

-> Y, 
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we have the following commutative diagram 

FiX1)  -^  H*X';Z) 

(2.8.2) 

F(X') H*(X'',Z). 

with a certain homomorphism Of : H^(Y,;Z) -> H^{X']rL). Then we have 
(i) vW becomes a bivariant theory with the same operations of product, pushforward 

and pullback as in sF, 

(ii) vW(X —-^ X) consists of all locally constant functions, and 
(iii)vF(X -+pt) =F(X). 

REMARK 2.9. In general v¥(X -> y) ^ ¥(X -> y). Indeed, consider a blow- 
up TT : X -> X of X (dimX > 1) along a nonsingular subvariety V C X whose 
codimension is > 1 and let E be the exceptional divisor. Let i>o be a point in V and 
let x and y be two distinct points in the fiber TT

-1
 (VQ). Note that dim TT

-1
 (VQ) > 1. And 

we set a = lx-ly £ F(X). Then it is clear that we have the following commutative 
diagram with 9^ being the zero homomorphism 

F(X) ^-^  H*(Xi%) 

F(X)  > H*(X;Z). 
Ct, 

In fact, we can see that for any morphism g : X' —> X and the fiber square 

X' 

X' 

-»• X 

I- 
-> x. 

we have the following commutative diagram with O^i being the zero homomorphism 

FiX') ^^ H.{X'\Z) 

-> ^(X';Z). FiX') 

Hence a G vW(X -^ X). On the other hand a £ ¥(X -^ X), because a does not 
satisfy the local Euler condition with respect to the blow-up TT exactly at these two 
points x and y. 

REMARK 2.10. One might be tempted to think or guess that even if in the 
definition of v¥ we just require the constructible function a e F(X) to satisfy the 
commutativity of the diagram (2.7.1) instead of considering all the fiber squares as 
above we would get a bivariant theory, but it is not clear or obvious at all whether 
the pullback is well-defined or not. Certainly, the product and pushforward are both 
well-defined.   Indeed, for morphisms / : X -> Y and g : Y -> Z, let us suppose 
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that for constructible functions a G F(X) and /? 6 F(Y) there exist homomorphisms 
0f : jff*(y;Z) -» H*(X;Z) and ^ : H*(Z;Z) -+ Ht{Y;Z) such that the following 
diagrams commute: 

■+   /r,(Z;Z) 

-»•   ^.(^Z) 

-»• iI»(X;Z). 

F(Z) 

0-9' 

F(Y) 

a-fl 

F(X) 
C* 

This diagram implies the following commutative diagram 

F(Z)  ^^   #*(Z;Z) 

F{X)  > H*{X\%). 

Noticing that it follows from (2.3) that a •/*(/?• g*) = a •(/*/? • f*g*) = (a • /?) • (^/)*, 
one can see that the product a • /? is well-defined. To see the well-definedness of 
the pushforward, let us suppose that for a G F(X) there exists a homomorphism 
Ogf : H*{Z; Z) —>• H*(X', Z) such that the following diagram commutes: 

F(Z) -> H*(Z;Z) 

<*•(<?/)* 

->• H.(X;Z) F(X) - 

Then this diagram together with MacPherson's theorem, i.e., c*/* = /*c*, implies the 
following commutative diagram 

F(Z) 

M<x-(9fy)[ 

F{Y) 

-> tf*(Z;Z) 

Noticing that it follows from the projection formula (2.4) that /*(a • (#/)*) = /*(^ • 
f*g*) = /^a • p*, one can see that the pushforward is well-defined. However, as to 
the pullback operation, it is not clear at all whether for the fiber square (2.8.1) a con- 
structible function a 6 F(X) making the diagram (2.7.1) commutative with a certain 
homomorphism 9f : H*(Y;Z) -» i7*(X;Z) automatically implies that the pullback 
g*a(— g'*OL) makes the diagram (2.8.2) commutative with a certain homomorphism 
6fi : H*(Y'', Z) ->> H*(Xfi Z). The well-definedness of the pullback operation is there- 
fore left as an open problem. 

3. Results. In this section we show positive results on Verdier-Riemann-Roch 
for Chern classes in the case of trivial fiber bundles and negative results in the case of 
blow-ups. 
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Let X be a possibly singular variety embeddable into a nonsingular variety M. 
Then the Fulton's canonical class cF(X) of X ([F, Example 4.2.6]) is defined by 

cF(X):=c(TM\x)ns(X,M), 

where s(X, M) is the relative Segre class of X in M ([F, §4.2]). If X is a local complete 
intersection in a smooth variety M, then the Fulton-Johnson class cFJ{X) of X ([FJ]) 
and the Fulton's canonical class of X ([F, Example 4.2.6]) are the same: 

cFJ{X) = cF(X) = c(TM|x)c(^xM)-1 H [X]. 

Since the Chern-Schwartz-MacPherson class homomorphism c* : F(W) -> i4*(VF) is 
always surjective for any variety W, any polynomial or power series of Chern classes 
of vector bundles acts on the Chow homology group and the action commutes with 
the cycle map (see [F, Remark 3.2.2, Proposition 19.1.2]), there exists a constructible 
function £FJ G F(X) (which shall be called a Fulton-Johns on constructible function) 
such that 

cFj{x)=c*{ej). 

Note that there are of course infinitely many such constructible functions. To obtain 
the constructible function f;FJ in a canonical form, we note that the difference between 
the two classes cFJ{X) and c*(X) is supported on the singular locus (e.g., see [Sul] 
for a rigorous proof of this). Hence a reasonable canonical constructible function £FJ 

is of the form 

with a constructible function £xsing supported on the singular locus Xsing of X, and 
up to sign, the Chern-Schwartz-MacPherson class of the extra constructible function 
£Xsing5 considered as the homology class of the ambient variety X, is the so-called 
Milnor class of X and usually denoted by M(X). More precisely, 

M{X) = {-l)^xc,{eXs.lJ. 

See [A3], [BLSS1, 2], [PP3], [Sul], etc., for some fundamental results and formulas of 
the Milnor class. (See [PP3, §5] for a formula for £FJ'.) With this definition we have 

LEMMA 3.1. Let X be a singular local complete intersection in a smooth variety 
M, Y any possibly singular variety and X <— X x Y —> Y the projections to each 
factor.  Then the following diagram commutes: 

F(Y)      —^->      #*(y;Z) 

a-p" c(Tp)np* 

F(X x Y)  > H*{X x Y;Z), 

where a = q*(;FJ. 
Proof The relative tangent bundle Tp is g*Tx and the homology pullback p* : 

H*(Y) -> H*(X x Y) is given by p*(b) = [X] x 6, the homology cross product. Hence 
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for any homology class b G H*(Y) we have 

(3.5.1) c(Tp)np*(b) = c(q*Tx)n{[X]xb) 

= q*c(Tx)n([X]xb) 

= (c(Tx) x 1) n ([X] x b) 

= (c(Tx)n[X])xb 

= cFJ{X)xb. 

Therefore, for any constructible function ft G F(Y) we have 

c(Tp)np*(c*(^))-c*(^J)xc*(/?). 

The cross product to x ( of two constructible functions OJ G F(W) and C G F(Z) is 
defined to be (CJ x C)(^, '2:) :r= W(U')C(2:)- Then, the Kwiecihski's cross product formula 
[Kl, Theoreme 1] (cf. [KY, Theorem 4]) says that C*(UJ x Q = C*(UJ) x c*(C)-' Therefore 
we have 

c(Tp)np*(c.m=c{ej x p) = c*(q*ej-p*p), 
which is nothing but the commutativity of the above diagram. □ 

LEMMA 3.2. Let X and Y be any varieties and let X ^— X x Y -^ Y be 
the projections to each factor. Let 7 : F —)• M be any Grothendieck transformation 
satisfying the normalization condition that 7(1^) = c(TX) fl [X] for X smooth, where 
TT : X —> pt and 1^ = TLx- Then for any constructible function a G F(X) = F(X -> 
p^) an^ 6 G i7*(^;^) t^e Aave 

c,(a) x6-7(g*a)*6Gi7*(XxF;Z). 

Proof. Since g*a is a bivariant constructible function, i.e., q*a G ¥(X x y -^ y), 
we get the following commutative diagram (the Verdier-Riemann-Roch for Chern class 
associated to the bivariant constructible function q*a) from the given Grothendieck 
transformation 7 : F -¥ H: 

F(Y)     ^->     tf*(y;; 

(«*«)• *)• 

F(X x Y)  > H*(X x y;Z), 

which implies that for any constructible function /3 G ^(y) we have 

c*((g*cO*/?) = 7(?**W*(/?). 

Since (g*a) • /? = (gf*a) • p*^ = a x /?, we have 

c*(a) x c*(^) = 7(0*a) • c*(/3). 

The lemma claims that in this equality any algebraic homology class of y, i.e., the 
Chern-Schwartz-MacPherson class c*(/?) of any constructible function 0, can be re- 
placed by any homology class of Y. 

To show this, first we should note that it follows from the definition of bivariant 
product of the bivariant homology theory that the right-hand-side of the above equality 
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actually means 
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AxM-rtfod'AfQ,)), 

where Az • H* (N, N\Z) -^ H* (Z) is the Alexander duality isomorphism for a variety 
Z embedded in a (in fact, any) smooth variety N. Also note that the Alexander 
duality isomorphisms commute with homology and cohomology cross products and 
furthermore for a morphism X -> pt, c* = Ax 07, due to the normalization condition 
imposed on 7 (see [BS]). Next, we recall the bivariant cross products ([FM, 2.4, p.24]): 
For morphisms f : Xi -* X2 and g : Y1-^ Y2, the bivariant-theoretic cross product x 

x : BCYx -A X2) ® B(yi -^ Y2) -¥ Y1 ^ x2 x y2) 

is defined by 

(3.2.1) axp:=h*a»s*P, 

where h : Xi x Y\ ->• X2 and s : X^ x y2 ->• 1^ are the projections.  Thus we are 
dealing with the following two fiber squares 

Yx <- 

•I 
^2   <- 

-   X2 X Y1 

-> Xi 

-»■   Xo 

I idx2 xg 

x2xy2 

In our case we set X\ = X,X2 = pt,li = Y and 1^ = pi, which means that we 
consider the following two fiber squares: 

Y   <r 
idy 

pt   <- 
5=idp 

XxY 

p 

Y 

I 
Pt 

-» X 

-> p^ 

Then the lemma can be seen as follows: first, as observed above, since the Alexan- 
der duality isomorphisms commute with homology cross products, we have 

■c*(a).x b = AxxY(Ax1 Ma)) x ^ly1^)). 
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Which continues as follows 

= AxxY (7(a) x -^y1 W)     (since c* = Ax o 7) 

= AxxY(ft*7(Q:) • ^ly1(6))    (by the bivariant cross product (3.2.1)) 

= AxxY (7(/i*a) • ^ly1(6))    (since 7 commutes with pullbacks) 

= ^txxy (7(g*ce) • .Ay1 (6))    (^*^ := q*(x by definition) 

= 7(g*a)*6. 

D 
Now it is easy to see the following 

COROLLARY   3.3. Let   the   situation   be   as   in   Lemma   3.1.       If  we   let 
p*  := 7(1XXY)

#
 • H*(Y]1J) -> H*(X x Y]Z) for any Grothendieck transforma- 

tion 7 : F —> H satisfying the normalization condition, then for any homology class 
b G H*(Y]Z) we have 

or equivalently 

p*(&) - c(Tp) np*(6) - (-l)dimA>l(X) x 6, 

p*(&) - c(rp) np*(6) - 7(exsin« x ly) • 6- 

D 
Note that Corollary 3.3 is a solution to [Yl, Problem (3.4)] or [BY, Problem (4.5)] 

in the case of trivial fiber bundles. 
Now, motivated or hinted by the well-known fact (e.g., see the recent articles [Cr, 

§1.3] and [Go, Remark 4.1]) that if / : Z —>• Y is a Zariski locally trivial fiber bundle 
with fiber F, then 

[Z] = [Y)[F} 

in the Grothendieck ring of complex algebraic (or analytic) varieties, we speculate that 
just like in the case of Z = Y x F the following conjecture would be correct: 

CONJECTURE 3.4. Let X be a local complete intersection in a smooth variety M 
and p : XxY —> Y be a Zariski locally trivial fiber bundle over a possibly singular 
variety Y with fiber X. Furthermore we assume that XxY -^ Y is a subbundle of 
a Zariski locally trivial fiber bundle MxY —> Y with fiber M. Then we have the 
following commutative diagram 

F{Y)     —^->      ff*(y;Z) 

oc-p c(Tp)np* 

F(XxY)  > H^XxY;!.), 
c* 

where a = 1X~Y +£Xsing><ly and (^Xsi„g><ly)(x,2/) :=exSing(aO. 
In the earlie version of the paper, the above conjecture was stated as a theorem, 

but Jorg Schiirmann pointed out an error in its proof. Here, however, the earlier 
"proof is given as a reference for the reader, who might be able to come up with a 
correct and slick proof. 

"Proof". Since p : XxY -^Y is a, Zariski locally trivial fiber bundle, there exists 
a stratification {Yj} of Y by constructible sets Y^'s such that the restriction of p to 
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each stratum Yi 

Pi '=p\p-^Yi) :X xYi-^Yi 
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is a trivial bundle. Note that F(Y) = @F(Yi), i.e., any constructible function of Y 
can be expressed as a direct sum of constructible functions of the constructible sets 
Yi. Let rji : Yi -> Y and pi : X x Yi -> XxY be the inclusions. Let ca G F(Yi). Then 
it follows from Lemma 3.1 that the following diagram is commutative 

«FJxiy.).p: 

F(Yi)      -±-+      H*(Yi-Z) 

\c(TPi)np* 

F(X x Y^ —> JT^X x y^jZ), 

i.e., for any constructible function ft G -FO^) 

c(rw) nP:(c.(ft)) = cMPJ x lyJ -p*(A))- 

Now, let /? € ^(i^)- Then we can express ^ as follows: 

/? = 53^*^'    ft € i;,(yi)- 

Consider the following fiber square 

X xYi      pi   ) XxY 

Yi -»■   r. 

Since p is flat, it follows from [F, Proposition 1.7] that the following diagram is com- 
mutative 

Pi, H,(X x Yi) ^^ H*(XxY) 

^(Yi) 
Vi* 

->    H*(Y). 

(Here is an error; since rji is not necessarily proper !) 
Here it should be noted that the "constructible function" version of this commu- 

tative diagram always holds for any fiber square, namely the formula (2.2) given in 
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§2; thus we do not require the flatness of p. Therefore we get 

X>,(c(TPi)np*Mft))) 
i 

i 

i 

= ^c(T,)np*i/i.(c(J9<)) 
i 

= 5]c(rp)np*(c(»7t,ft)) 
i 

= c{Tp)r\p*lc*{Y^mJi)\ 

= c(Tp)np*(c*m. 

On the other hand, we get that 

i 

i 

i 

= yEc*((eJxlY).p*r,iJi) 
i 

=cA{ejx\Y)-p*{YJmji)\ 

Hence, for any constructible function /? 6 JFO
7
), we have 

c{Tp) np*(c*m = C. ((^Xly) .p*G8)) , 

thus the theorem holds. D 
Let p* = 7(lxxy)# : ^r*(^;^) -> i^*(^:xy;Z) for any Grothendieck trans- 

formation 7 : F -)> H satisfying the normalization condition. Then for any homology 
class b G H*(Y) determined by an algebraic or analytic cycle, i.e., the Chern-Schwartz- 
MacPherson class of a constructible function of y, we have 

p*(b) = c{Tv)np*{b) - 7(^singxly) • 6, 

which is just another way of putting Conjecture 3.4. Furthermore we speculate that 

(3.5) p* = c(Tp) n p* - 7(^Sins xly) . . 

Now it is furthermore reasonable to make the following 
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CONJECTURE 3.6. Even if the Zariski topology is replaced by the usual topology 
in Conjecture 3.4, ft) the diagram in Conjecture 3.4 is commutative and fti) (3.5) also 
holds. 

We hope to address ourselves to these conjectures in a different paper later. 
Note that by the induction on dimensions of subvarieties of Y we can see that 

the statement (i) of the above conjecture holds if and only if for the above bundle 
XxY-+Y 

c*(^Jxiy)-c(Tp)np*(c*(y)). 

Furthermore we note that 

c*(^JxlLy)=7(eFJxly)*c*(y). 

REMARK 3.7. Since c(Tp) rip*(6) = c(Tp) • Up • 6, we speculate that 

1^
FJxlY)=c(Tp).Up. 

Otherwise this simple example would show the non-uniqueness of the Grothendieck 
transformation 7 : F -> El satisfying the normalization condition. 

Now we recall that a local complete intersection morphism / : X —> Y is the 
composite / = p o r of a regular embedding r : X -» M (i.e., X is a local complete 
intersection in M) and a smooth morphism p : M —> Y. Local complete intersection 
morphisms which we now deal with are blowups (see [F, 6.7] and [FM, 9.2.2]). Let Z 
be a regularly embedded closed subscheme of a scheme Y, and let Y be the blow-up of 
Y along Z, then the projection / : Y -4 Y is a local complete intersection morphism 
of relative codimension 0. 

THEOREM 3.8. Let f.: P^ -> F^ be the blow-up o/Pn at a point P. Then there 
is no constructible function a £ F(Pn) such that the diagram (1.2) is commutative. 

Proof. Let us suppose that there exist some constructible function a G F(Pn) 
such that the following diagram commutes: 

F(Pn) —^—>  tf*(Pn;Z) 

oc-r c(Tf)nr 

F(Pn)   ► #*(Pn;Z). 

Then it follows from the commutativity of the above diagram that a = 1 on Pn \ E, 
where E(= p^-1) denotes the exceptional divisor. To see this, let Q be any point 
different from P and set Q' = f^iQ).   Then we have a(Q/) = c*(a(Q') • IQ/) = 
c* (a. /*(1Q)) - c(Tf) n /*Mig)) = c(Tf) n r([Q]) = c(Tf) n m = [Qf} = 1. 
Hence a can be expressed as 

a = ^XE + PE 

with some constructible function /?# supported on E. Then we have 

c*(a.r(lp))=c*(a-lE)=c*(i8B). 

On the other hand, by the same argument as above, we get that 

c (a • r (ip)) = c(Tf) n r MIP)) = c(Tf) n r ([p]) = 1. 
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Thus it follows that C*(0E) — 1. Now, since any constructible function can be ex- 
pressed as a linear combination of some characteristic functions of sub varieties, it 
follows from the irreducibility of E that 

PE = b ' ^E + 5 

where b is some integer and S is another constructible function supported on subvari- 
eties of lower dimensions, i.e., of dimension < n — 1. If 6^0, then 

c*(pE) = b[E} + *-- , 

since [E] cannot vanish, because #271-20^) = #2n-2(Pn \ -P) © #2n-2(E) by the 
Mayer-Vietoris sequence. Hence C*(PE) 7^ 1- Therefore 6 = 0, and since c*(/?#) = 1 
it follows that S ^ 0 and that c*(5) = 1. Now consider any line L going through 
the blown-up point P, and let L be the proper transform of L and let [[£,]] be the 
corresponding point in the exceptional divisor E. Then we have 

a ■ f*(1L) = (1F\B + *) • ^ + lz - %]]) 

Therefore we have 

c*(a • /*(1L)) = c*(<J) + c*(Z) - c*([[L]]) 

= c*((5) -f c*(L) - 1 

= c*(L)    (since c*(5) = 1) 

= [L] + 2    (since Z^P1). 

On the other hand it follows from [F, Corollary 6.7.1] and the commutativity of the 
pullbacks with the cycle map [F, Example 19.2.1] that we have 

r([L]) = [Z]H-[L']> 

where U is a projective line in E = Fn-1. Therefore we get that 

cCT/) n /*(c(L)) = cCT/) n /*([L] + 2)    (since L SS P1) 

= c^) n /*([L]) + 2    (since c^/) = ! + •••) 

= c(T/)n([L] + [L']) + 2 

= [L] + [L7] 4- some integer. 

Here we note that [I/] does not vanish since i^OP") = ^(F71 \ P) © ^(S) by the 
Mayer-Vietoris sequence. Then the above commutative diagram implies that 

c,(a-r(lL))=c(T/)nr(c,(L))) 

namely we have to have that 

[Z] + 2 = [Z]'+ [Z/] + some integer. 

Thus, in particular \L'\ has to vanish, which is a contradiction. D 
More generally, we can construct such an example from any variety V of dimension 

n> 2. 
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COROLLARY 3.9. Let V be the blow-up ofV at any smooth point ofV and f : V —> 
V the blow-up ofV at any point of the exceptional divisor (= f>ri-1J ofV.  Then there 

is no constructible function a € F(V) such that the diagram (1.2) is commutative. 

This can be seen using the above case of the blow-up / : P71-1 -> F71-1. 
As we can see from the above argument, as to the cohomology class c(T/), we use 

only the fact that the O-dimensional part of the cohomology class c(Tf) is equal to 1, 
thus as a corollary we get 

COROLLARY 3.10. Let f : X —» X be a blow-up map as above. Then there are 
no constructible function a G F(X) and no total cohomology class c£(X) of X whose 
O-dimensional part is 1, i.e., no total cohomology class c£(X) E 1 + ®i>0if22(X;Z); 

such that the following diagram is commutative : 

F(X) -^->  H*(X',Z) 

oc-r \ci{X)nr 

F(X)  > H*(X;Z). 

REMARK 3.11. For a blow-up map TT : X -)» X of X along any sub variety of X 
there is no bivariant constructible function a € ¥{X -> X) whose value is generically 
equal to 1, because of the local Euler condition imposed on the constructible func- 
tion a (e.g., see [Sa, (1.3) Remarque]). As to the bivariant-theoretic "Riemann-Roch 
formula", it is therefore obvious that for any blow-up map TT : X -+ X there is no 
canonical orientation a/ G ¥(X -> Y) and no total cohomology class c£(X) of X 
whose O-dimensional part is 1 such that 

.7(Q:/) = c£(X) • Uf 

for any Grothendieck transformation 7 : F —> Iff satisfying the normalization condition 
that 7(1*) = c(TX) fl [X] for X smooth with TT : X -> pt and l*. := l*. 

REMARK 3.12. In this remark we discuss the extra constructible function £xsing 

a bit more. 
Let E be a vector bundle of rank k over a nonsingular variety M of dimension 

n + k and s : M —> E a regular section, and let X := s-1(0) be the zero of the section, 
which is a local complete intersection of dimension n. Let i : X —> M be the inclusion. 
Then the Fulton-Johnson class cFJ(X) is nothing but ^ffiffi n [X] and the Milnor 
class is by defintion 

M(X) := (-1)^* (f^j^- n [X] -c(X)) = (-l)dimXc,(£xsin6). 

When X has isolated singularities xi,X2r" ,xr,it follows from [Sul] that we 
can set 

r 

where fiXi denoting the Milnor number of X at the isolated singularity Xi. 
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In [A3, Theorem 1.5 ] P. Aluffi expressed the Milnor class in terms of his //-class 
[A2] in the case of hyper surf aces and it can be also expressed as follows ([A3, Theorem 
1.4]): 

M(X) = (-i)dimX-7^T n (5(y,M)v (g) L) , 
C{L) 

where E — L is a line bundle since we are now dealing with the hypersurface case, 
Y is the singular locus of X and the class s(Y, M)v <g> L is supported on the singular 
locus Y. See [Al], [A2] and [A3] for the other notation. 

In [PP3] A. Parusihski and P. Pragacz described the Milnor class in the case of hy- 
persurfaces, using some data coming from Whitney stratifications of the hypersurface 
X. They described it as follows: 

M(x) = -±-n    J2    ^c*(5)- 
ScSmg(X) 

Here Sx is a (in fact, any) Whitney stratification of X and as is a certain integer 
attached to each stratum S obtained by using the Milnor numbers of the strata. (The 
degree 0-part of this formula, i.e., a formula for the Euler-Poincare characteristic x(X) 
of X was obtained in [PP2, Theorem 4].) 

In [BLSS2] (see [BLSS1] for its summary) J.-P. Brasselet, D. Lehmann, J. Seade 
and T. Suwa have expressed the Milnor class by the so-called localized Milnor classes 
of the connected components of the singular locus. In the special case when the 
connected components are all nonsingular, they describe it very explicitly involving 
some kind of cohomology classes "a" [BLSS2, Lemma 7.5, Theorem 7.6 and Corollary 
7.7]; which is, roughly speaking, as follows: 

M(X) = J2 (some coh7°losy class) nc(S), 
s C^ 

where S"s are the connected components of the singular locus and assumed to be 
nonsingular. 

So one could expect that a general formula would be of the following form 

sesx      ^   ) 

SCSing(X) 

where iA,B • A —>► B is the inclusion and Sx is a Whitney stratification of X and Gs 
is a certain cohomology class involving not only the bundle E but also the subvariety 
S, and the problem is of course to determine the cohomology class 65. (Note that in 
general ©5 cannot be expressed as a polynomial in the individual Chern classes of E 
[OY] and surely involves some classes of the variety 5 itself as seen in [BLSS2].) Thus, 
we could express the extra constructible function exsmg? as a "cohomology valued" 
constructible function, as follows: 

sesx 
5cSing(X) 

c(E) ' ^ 
y   i* .1 
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Certainly the value of c* on a i?*(X)-valued constructible function is defined to be 

c*(£0^. iw) := J2ew nc*(w)y 
w w 

with 0w denoting a cohomology class of X. 
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