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THE INTEGRAL ON QUANTUM SUPERGROUPS OF TYPE ^s* 

PHUNG HO HAlt 

Abstract. Quantum groups of type Ar\s generalize the general linear supergroups GL(r\s). 
We compute the integral on these quantum supergroups and whence derive a quantum analogue of 
(super) HCIZ integral formula. 

Introduction. A quantum supergroup of type .4r|s is a Hopf superalgebra, 
which, as an algebra, is a quotient of a free non-commutative tensor algebra on a 
certain finite dimensional vector superspace V, by certain relations, determined in 
terms of a Hecke symmetry of birank (r + 1, s -f 1) acting on V 0 V. If the Hecke 
symmetry reduces to the ordinary super-permuting operator in the category of vec- 
tor superspaces, we recover the quantum general linear supergroup GL(r + 1,5 + 1), 
(Section 1). 

In this work, we compute the integral on quantum supergroups of type ^4r|s. 
The notion of integral on Hopf algebras was introduced by Sweedier [24]. This is 
an analogue of the notion of invariant integrals on compact groups (see, e.g., [21]). 
In fact, the algebra of representative functions on a compact group is dense in the 
algebra of all continuous complex valued functions by Peter-Weyl's theorem. The 
former algebra is a Hopf algebra and the definition of the invariant integral can be 
given in a purely algebraic way using the coalgebra structure, namely, a (left) integral 

on a Hopf algebra ff, defined over a field A;, is a linear form  /  : H —> k, satisfying 

the following condition: 

/(a)=m(/®idif)A(a), 

where m, A denote the product and coproduct on H and we identify the field k with 
a subspace of H by means of the unit of H. This definition can also be extended 
for Hopf super algebras. On the other hand, the existence of integral on compact 
supergroups was established by Berezin [3]. Unlike the case of compact group, the 
volume of a compact supergroup may vanish, as it happens to the supergroups U(r\s) 
of unitary supermatrices. 

A formula for the integral on the group U(d) was obtained by Itzykson and Zuber 
[4]. This formula computes the integral at the function of the form trM,N,n(U) := 
[tr(MUNU~1)]n, where M, N are hermitian matrices. It can be given in the following 
form 

(0.1) f      [tr{MUNU~1)]n[dU]= Y —$x(M)$x(N) 
Ju(d) ^, rA xzvi 

for any hermitian matrices M and N. Here, V* is the set of partitions of n of length d. 
$A is the irreducible character of ?7(d), corresponding to the partition A. If £i,£2, •.-,& 
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are the eigenvalues of M then $\(M) = SA(fi> £2> •••>&)) ^A are the Schur functions 
[19, Chapter I], c^ is the dimension of the irreducible module of the symmetric group 
©d) rx is the dimension of the irreducible representation of U(d), corresponding to 
partition A. Explicitly, dx = dlYl^^hfa)'1, rA = Ylxe^(c(x) +d)h(x)~1, where 
c(x) is the content, h(x) is the hook-length of the box x in the diagram [A] (see 
[loc.cit.]). 

This formula turns out to be a special case of a formula obtained by Harish- 
Chandra [16]. The integral on the left-hand side of (0.1) is therefore referred as 
Harish-Chandra-Itzykson-Zuber (HCIZ) integral. 

A super analogue of the HCIZ formula was obtained by Alfaro, Medina and 
Urrutia [1, 2], it reads 

(0.2)     /       str(MUNU-1ndU}=       £       izl&^^$A(M)$A(Ar), 
M+M=« 

where A = (sr) + fiUv' : 

Our problem of finding integrals on the function algebra of quantum linear super- 
group GLq(r\s) is thus motivated by the HCIZ integral. On the other hand, it is an 
interesting problem from the point of view of Hopf algebra theory. Integrals on Hopf 
algebras were studied by several authors since the pioneering work of Sweedler [24], 
see e.g. [23, 18, 8]. For finite dimensional Hopf algebra is is known that the integrals 
exist uniquely up to a scalar. However, few examples of infinite dimensional Hopf 
algebras with integral, except cosemisimple Hopf algebras, are known. 

Let R be a Hecke symmetry on a finite dimensional vector super space V of 
dimension d. Define an algebra HR as a quotient of the free non-commutative algebra 
k({ziitii 1 ^ hj ^ d}) by relations in (1.2), (1.3). Then HR has a structure of a Hopf 
superalgebra and is called the algebra of functions on a quantum supergroup of type 
Ar_i|5_i, where (r, s) is the birank of i?, see Section 1. 

The Hopf algebra HR is cosemisimple if and only if r = 0 or s = 0. In this 
particular case, the integral was explicitly computed in [11] and an analogue of the 
HCIZ integral formula was given in [12], where the notion of characters of coribbon 
Hopf algebras was introduced. The case of arbitrary (r, s) will be treated in the 
present paper. Since our object is considered to generalize the supergroup GL(r\s), 
it is natural that we are working in the category of vector superspaces, so that our 
algebra HR will be a Hopf superalgebras. Nevertheless, as we shall see in the course 
of the paper, the ground category does not plays any essential role. 

Using the commutation rule on HR, one can show that an element of HR 

can be represented as a linear combination of monomials on zf^t^ of the form 
zil "' ziP^k  '" ^k - From the linearity of the integral, we see that it is sufficient to 

find the integral on the set of monomials of the form zf* • • • z^t1^ • • • t^ . It turns out 
that any integral should vanish on those monomials with p ^ q. 

The formula of the integral on zQ - - zf^t^ • • • tl£  is based on an operator Pn : 
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y<g>n —y yOn jn Section 2 we show that the axiom for the integral is equivalent 
to certain conditions on Pn. In Section 3 we construct Pn. In Section 4 we derive 
a quantum analogue of HCIZ integral from our formula for the integral. To do this 
we first introduce the notion of character of if^-comodules and recall the notion of 
points of a quantum group. The quantum super HCIZ integral formula in Theorem 
4.1 then follows immediately from the formula in (3.6). In the last section we discuss 
the orthogonal relation of some simple iJ^-comodules. 

In the case of the compact group SUq(2), the orthogonal relations for matrix 
elements of the coefficient matrix of simple comodules over was given by Soibelman 
and Vaskman [26], the case of arbitrary compact quantum groups was treated by 
Woronowicz [25]. Their basic idea was that any simple comodules over a compact 
quantum groups should be isomorphic to its double dual and the formula could be 
given in terms of the intertwiner of these two comodules. This method can not 
be applied directly for quantum supergroups since in many case, the trace of the 
intertwiner may vanish. 

Notations and Conventions. We work in the category of vector superspaces 
over an algebraically closed field k of characteristic zero. All algebraic objects, like 
algebras, morphisms, linear forms etc., will then be considered as objects in this cat- 
egory, for instance, morphisms are always even, i.e. map even (odd) elements to even 
(odd) elements. An element from a vector superspace usually means a homogeneous 
one. The dual space to a vector spaces of finite dimension is defined by an even form. 
If xi, #2, • • • 5 Xd is a homogeneous basis for a vector superspace V, then the dual basis 
f ^ £25 • • • £d on ^* has tfre same parity as xi, x^, • • •, ^d and satisfies ^(xi) = 5!?. To 
avoid any signs appearing, the dual to a tensor product V 0 W of two vector super- 
spaces V and W is canonically identified with W* <g) V*. The standard permuting 
operator on the tensor product V <g) W is given by the rule a <g) b \—> (—l)abb (g) a, for 
homogeneous elements a, 6, where a denotes the parity of a. 

A matrix C of entries from the field k will have the entry on the i-th row and j-th 
column denoted by Cj. For a matrix Z of entries from an algebra, its (z, j) entry will 
be denoted by Zj. We adopt the convention of summing up after indices that apper 

both in lower and upper places, for example, ajfrjj. = ^ a)b3
k- 

For the notion of partitions, diagrams, standard tableaux, contents, hook-length, 
etc., the reader is referred to [19, Chapter I]. Let V denote the set of all partitions, 
Vn denote the set of partitions of n, for A G Vn we shall write A h n or |A| = n. 
Let rr's denote the set of (r, 5)-hook-partitions: {A G V\\r+i < s}, nr's denote the 
subset of rr's: {A G rr's|Ar = 5}, finally, let T^ =Vnn rr>s and ft£s = O^ n Vn, 
T)d _ pd,0 1  n       L n   • 

For a partition A, [A] denotes the corresponding diagram. The diagram [A], filled 
with the numbers 1,2,..., |A| in such a way that they increase in each column and each 
row, is called a standard A-tableau. The number of standard A-tableaux is precisely 
the dimension of the irreducible representation of the symmetric group (5n, n = |A|. 
The content of the node on the i-th row and j-th column is j — i, its hook-length is 
the cardinal number of nodes lying on the same row and to the right and lying on 
the same column and below. For a A-tableau £(A), ct(A)(m) is the content of the node 
containing m. 
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EXAMPLE. Let A = (3,2,2). Then 

some standard A-tableaux are: £i(A) = 
1 3 4 1 3 7 
2 6 <2(A) = 2 4 
5 7 5 6 

we have ctl(^)(5) = —2,cil(x)(6) = —1. A can be considered as element of fi1,2 or 
fi3,2. However, if consider A as an element of fi1,2, £i(A) and £2 (A) are both essential 
while, if consider A as an element of ft3,2, £2(A) is still essential but £i(A) isn't (see 
Lemma 3.1). 

1. Quantum Groups Associated to Hecke Symmetries. Let V be a super 
vector space over &, a fixed field of characteristic zero. Fix a homogeneous basis 
xi)X2,...,Xd of V. We denote the parity of the basis element Xi by i. An even 
operator R on V 0 V can be given by a matrix Rfj: R(xi ®Xj) = Xk® xiR^j. Since R 

is an even operator, the matrix element R^ is zero if i + j' ^ k + /. i? is called Hecke 
symmetry if the following conditions are satisfied: 

i) R satisfies the Yang-Baxter equation R1R2R1 = R2R1R2, where i?i := i?®/, 
i?2 •= I <E) i?, and / is the identity matrix of degree d. 

ii) R satisfies the Hecke equation (R — q)(R 4-1) = 0 for some q which will be 
assumed not to be a root of unity of degree greater then 1. 

iii) There exists a matrix P™ such that PJ^R^ = SfSj. A matrix satisfying this 
condition is called closed. 

EXAMPLE. The following main example of Hecke symmetries was first considered 
by Manin [20].. Assume that the variable Xi, i < r are even and the rest 5 variables 
are odd. Define, for 1 < z, j, fc, / < r + 5, 

R ■r\si 
kl 

q2 if i = j = k = l,i = 0 
— 1 if i = j = k = l,i = 1 
q2 - 1 if k = i<j = l 
(-l)rjq if k = j^i = l 

I  0 otherwise. 

The Hecke equation for Rr\s is (x — q2){x + 1) = 0. When q — 1, i^r|s reduces to the 
super-permuting operator on V 0 V. 

Let i? be a Hecke symmetry. We define the matrix bialgebra ER and the matrix 
Hopf algebra RR as follows.   Let {zj,^|l < i,^ < d} be a set of indeterminates, 

with parities x\ t) = i + j. We define ER as the quotient algebra of the free 
non-commutative algebra, generated by {zj|l < z, j < d}, by the relations 

(1.1) (-ly^R^zfz* = (-ifit+'QzfaBft,    1 < i,j,k,l<d. 

Here, we use the convention of summing up by the indices that appear in both 
lower and upper places. We define the algebra HR as the quotient of the free non- 
commutative algebra generated by {zj,^|l < z,j < d}, by the relations 

(1.2) (-l)*<?+«J$zf*/ = (-iytt+'khk
qz

l
nR%,     1 < i,j,k,l<d, 

(1.3) (-l)to,+i>s# = (-l)'"(f+J)<J4 = 4.    l<i,k<d. 
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The relations in (1.1) can be considered as the commuting rule for elements of 
ER. On HR the relations (1.2) and (1.3) also imply the following relations: 

(1.4) (-if^RVJzitl = (-l)A(ft+«C«fc>    l<P,q,i,k<d, 

(1.5) (-l^A.RJliiJt? = (-lyU+b^Rg,    1 < i,j,k,l<d. 

By the closedness of R, (1.4) is equivalent to 

(1.6) (-l)^>P*r^i = (-1)^+^"^,    l<M,m,n<d. 

Setting m = n in (1.6) and summing up after this index, and using (1.3) we get 

(1.7) (-rfWctzft = <7j, where Cf := P?™. 

It is easy to show that ER and HR are bialgebras with respect to the coproduct 
given by 

A(zj) = 4®^)    A(*}) = ^®4- 

£/# is, in fact, a Hopf algebra with the antipode on HR is given by 

s(z}) = (-i)W+'h},   s(t)) = i-iy^cizfc-1]. 

We also define D1, := Ph. The matrices C and D, called reflection operators, play 
important roles in this work. Using the Hecke equation we can show that (cf [11]) 

(1.8) CD = DC = q'1 - (q-1 - l)tr(C). 

Since we are working in the category of vector superspaces, the rule of sign effects 
on the coproduct. More precisely, the compatibility of product and coproduct of a 
super bialgebra reads 

A(a6)= 5^(-l)a2Slai&i®a2&2, 
(a)(6) 

for homogeneous a, 6. Analogously, the antipode satisfies 

S{ab) = (-l)"hS(b)S{a)A{S{a)) = (-l)^2S'(oa) 0 5(ai) 

for homogeneous a, b. Consequently, though the matrix Z is multiplicative, i.e. 
A{Zj) = zl

k 0 Zj, its tensor powers are not. 
To compute the coproduct on the tensor powers of Z, we introduce a sign function 

sign(/, J), where /, J are multi-indices of the same length. For any fixed n, the matrix 
(sign(/, J)) where /, J run through the set of multi-indices of length n is the matrix 
of the standard isomorphism 

6n : (V* 0 V)®n —> {V®71)* 0 T/0n, 

which is defined in the standard way using the super-permuting operator, with respect 
to the basis xi, X2,..., Xd and its dual f1, £2,..., £d. Explicitly, 6 moves the elements 
of V* to the left of the elements of V without reshuffling them and then reverses the 
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order of the elements from V*. The signs that appear define the function sign. In 
other words, 8n is given by 

0(C1 (g) XjJ 0 • • • <g> (Cn ® xjn) = sign(/, J)(^n 0 • • • (8) C1 0 ^ (g) • • • (8) ^n). 

We thus have the following recurrent formulae for sign: 

s\gn(Ii,Jj) = (-iy^+^s\gn(I,J),s}gn(iI,jJ) = (-lf^s]gn(I,J), 

where |/| := ii + 22 + • • • + i7l if / = (H,^2, • • • ^n)- For single indices, we have 
sign(z,i) = 1 for any ij. 

Then, using induction we have 

A(4zh "■*£) = sign(7,^)sign(ir, J)sign(/, J)^^ ■ ■ ■ z£ ®$z% ■ ■ ■ z^. 

Thus, setting Zj = sign(J, J)z£zf2 ■ ■ ■ zf2, we have 

A(Z5) = Z^- ® Zf. 

Analogously, setting Tj := sign(J, ^z^z^ • • • z^, we have 

A(TJ) = Tf 0 T^,     and moreover    5(^5) = (-1)^1(1^1+1^1)^. 

We shall, for convenience, formally set 

ZtJ:=5(Z5) = (-l)l-;l(l/HJl)Ti;, 

where K' is the sequence K written in the reverse order. There is a close connection 
between ER and HR with the Hecke algebras of type A. The n-th Hecke algebra of 
type i4, Tin,q is generated by elements Ti,l <i < n — 1, subject to the relations 

TiTj = TjTi, \i - j\ > 2;    TiTi+iTi = Ti+iTiTi+1,i = l,...,n - 2; 

T^fa-lJU + ^Vi. 

To each element w of the symmetric group &n of permutations of the sets 
{l,2,...,n}, one can associate in a canonical way an element Tw of l-ln = Hniq, 
in particular, Ti = l,T(iji+1) = T^. The set {T^lw e &n} form a A;-basis for Tin [6]. 

.R induces an action of the Hecke algebra Tin = Tiq,n on the tensor powers V®71 

of V, pn(Ti) = Ri := id^'"1 0 i? 0 id^71-'-1. We shall therefore use the notation 
Rw := p{Tw). On the other hand, ER coacts on V by 5(xi) = Xj 0 z?. Since ER is a 
bialgebra, it coacts on V®n by means of the product. Explicitly, S(Zi) = Xj 0 Z/, 
where X/ := x^ 0 • • • 0 a;;n. 

Let us use the notation TEnd for the set of all endomorphisms of a vector super- 
spaces. The following is a super version of the double centralizer theorem proved in 
[10, Theorem 2.1]. 

PROPOSITION 1.1. With the assumption that q is not a root of unity of degree 
greater then 1, we have the following isomorphism of algebras: 

(1.9) TEnduSV®71) = {ERY 

(1.10) TEnd*"(F®n)<*/>n(Wn), 
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where, E^ is the n-th homogeneous component of ER, which is a coalgebra. Since R 
is an even operator, (1-10) implies 

(1.11) EndE*(y^)^pn(^n). 

Proof. It is sufficient to prove (1.9). (1.10) then follows by means of the density 
theorem [5, Vol. 2], for T-Ln is semisimple. It is to establish a non-degenerate bilinear 
form (TEnd'Hri(y

(S)n),^), which is compatible with the product and coproduct. 
Recall that ££ is a quotient of (V* <g> V)®n by the relation in (1.2). Using the 

isomorphism 0n, we identify this space with (y®71)* 0 y®n
m Then E^ is isomorphic 

to the quotient of the latter by the subspace 

n-l 

2=1 

The proof of [10, Theorem 2.1] now applies and gives us the desired result.□ 

The double centralizer theorem implies that a simple Z^R-comodule is the image of 
the operator induced by a primitive idempotent oiT-Ln and, conversely, each primitive 
idempotent of Tin induces an ER comodule which is either zero or simple. On the 
other hand, irreducible representations oi%n are parameterized by partitions of n. 
Hence up to conjugation, primitive idempotents oi%n are parameterized by partitions 
of n, too. Note that by the semisimplicity of 1-Ln) pn(1-Ln) is also a subalgebra of T-Ln. 

The primitive idempotents xn := Y,w Twl[n]q\ and yn := ^(-^"^^/Mi/^ 
induce the symmetrizer and anti-symmetrizer operators on V®n. Let 5n := lmpn(a;n) 
and An := lmpn(yn). Then one can show that S := ©^LQ ^n and A := ©^LQ^ 

are algebras [9]. They are called symmetric and exterior tensor algebras on the cor- 
responding quantum superspace. 

By definition, the Poincare series PA(£) of A is Yl^o^^^ki^n)- It is proved 
in [14] that this series is a rational function having negative roots and positive poles. 
Let r be the number of its roots and s be the number of its poles. Then, simple 
jEft-comodules are parameterized by partitions from F^5 := {A h n|Ar4-i < s} [loc.cit., 
Theorem 5.1]. Consequently, in the algebra pnCHn) primitive idempotents are pa- 
rameterized by partitions from F^5, too. 

The pair (r, s) is called the birank of R. Our main assumption on R is that 

(1.12) tr(C) = _[s_r]g:=_^_zl! 

where C is the reflection operator introduced above. In fact, (1.12) holds for any 
Hecke symmetry. The proof will be given elsewhere. 

Simple fffl-comodules are much more complicated. The problem of classifying all 
its simple comodules is still open. 

The Hopf algebra HR (resp. the bialgebra ER) is called the (function algebra on) 
a quantum group (resp. quantum semigroup) of type Ar_i\s_i. 

Let R = i?r|s be the standard deformation defined above. Rr\s has the birank 
(r, s). The associated Hopf algebra is called the (function algebra on the) standard 
quantum general linear supergroup GLq(r\s) [20]. In this case, the matrices C and D 
are diagonal, tr(C) = tr(D) = -[5 - r]q. 
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2. The Integral on HR. Recall that by definition, a left integral on a Hopf 

algebra H over a field k is a non trivial lineal functional / : H —> k with the 

invariance property: 

(2.1) |(a)=^a1|(a2). 
(a) 

Since we are considering super algebras, we shall also require that the integral is even, 
that means the value of an integral at an odd element of HR is zero. The even part 
HQ of H is an ordinary Hopf algebra and if H possesses a non zero integral then 
its restriction on HQ is also non-zero and therefore by a theorem of Sullivan [23] is 
uniquely determined up to a scalar constant. 

It easy to see that (2.1) is equivalent to 

(2.2) £ [(aSib^h =J2^ f(°iS(b)). 
(b)   J (a) J 

From the definition of HR, an arbitrary element of HR can be represented as a 
linear combination of monomials in z? and tlk. On the other hand, using the relation 
on HR and the axiom (iii) of R, we can represent a monomial like t^z1^ as a linear 
combination of monomials of the form zp^ i.e., we can interchange the order of z' 
and ^5 in a tensor product. Namely, we have, according to (1.5), 

(2.3) (-i)'(?+3'M'4 = (-ir^tfiw^- 
Thus, by using the rule (2.3), we can represent any element of HR as a linear combi- 
nation of monomials of the form 

z3l . . . ^P^I   . . . t1* 
1\ 1p        K\ Kg 

Therefore, it is sufficient to compute the integral at such monomials. Next, notice that 
the integral at those monomials with p ^ q must vanish, by virtue of (2.2). Indeed, if 
the integral did not vanish at such monomials, (2.2) would give us a non-homogeneous 
relation between elements of HR, which is a contradiction. 

Let us denote, for n = 1(1), 

T    JL 
J-nlK := j (zftfJ

K) = (_l)l*l(l*l+l-7|>  f (zfTJ
K) 

where, as defined in the previous section, K' is K written in the reverse order. Thus, 
we can consider In as the matrix of an operator acting on V®n <g> V®n. 

We have the following conditions on In (cf. [11, Section 4]) : 
(11) In should be invariant with respect to the relations within z's and ^s given 

in (1.2) and (1.5), respectively, that is, for all i,j = 1,2,..., n — 1 

(Ri ® R^In = In(Rj ® Ri). 

(12) when we contract In with respect to the relation (1.3), (1.7), we should get 
Jn_i, more precisely, 

Xi-n  J    JljnL   __   j JlLirln 0jnlnhinK — In-ll1K1
0kn 

rik-n J   JLiln       T JljnLl /~iin 
Kjln

1niKkn   — 1n-llipK1   ^jn' 
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(13) In should respect the rule (2.2), which reads 

r    JL   rp'M   _    ryL  T    JN 
1nlMZjK   — ZjN1nlK' 

These conditions are, in fact, sufficient for an integral on HR. For, assume we 
have a collection of matrices /n, satisfying the conditions (11-13) above, then we can 
extend it linearly on the whole HR. The only ambiguity may occur is that, there 
may be more than one way of leading an element of HR to a linear combination of 
monomials of the form ZJTj^. However, the Yang-Baxter equation on R ensures that 
different ways of using rule (2.3) give us the same result, up to relations in z's and 
t' s, respectively. 

We thus reduced the problem to finding a family of matrices In satisfying condi- 
tions (11-13). Our next claim is that In can be found in the following way 

(2.4) /„=   Y,  q-l{w)(PnC®nRw-i)®Rw 

we&n 

where Rw = p(Tw) as in Section 1, C is the reflection operator introduced in Section 
1 and Pn is a certain operator on V®n. More precisely, we have 

LEMMA 2.1. Assume that for each n > 1 the operator Pn £ pnCHn) = 
EndHR(V®n) C End/c(Vr<S)n) is in the center of pn^Hn) and satisfies the condition 

Pn-i®idv = Pn(Ln + tr(C)) 

where Ln are the Murphy operators: L\ = 0, 

n-l 

Ln = Y^ ^"^(n-^n),      ™ > 2, 
2=1 

(n — i,n) is the inversion that changes places of n — i and n. Then the matrices In 

given in (2.4) satisfy the conditions (11-13). 
Proof. The conditions (II) and (13) can be easily verified. In fact, (II) is equivalent 

to the equations 

J2 q-l(w\RiPnC®nRw-i)®Rw=   J2  q-liw)PnC®nRw-i®{RwRi), 
weGn we<Sn 

for i = 1,2,..., n — 1. By assumption, Pn commutes with all Ri. On the other hand, 
using the Yang-Baxter equation we can also show that C®n commutes with all Ri. 
Therefore the equation above follows from 

(2.5) J2 q~l{w){RiRw-i)®Rw= Y, Q~l{w)Rw-i®(RwRi),   mnn®Hn, 

which can be easily verified using the Hecke equation for R. The verification of (13) 
is straightforward, it does not involve Pn and C®n but rather a direct consequence of 
relations in (1.2). 

The harder part is to verify (12). Here we use the condition 

Pn.i®idv = Pn(Ln + tr(C)). 
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It is known that each element Tw of 1-Ln can be expressed in the form Tw — 
Tk"-Tn-iTWl for some wi G ©n-i> where ©n_i is the subgroup of @n, fixing 
n. We define a linear map Hn —> Hn-i setting 

Tk--Tn-2TW1    if k<n-2; 
tr(C)TWl ifk = n-l. rin\J-w) — 

The two conditions in (12) can then be rewritten as follows: 

(2.6) 52   q-l{w)hn(PnRw-i)®Rw=    J2    q-l{u)Pn-iRu^®Ru, 

as elements of pn-i{Hn-i) 0 PnCH-n), and 

(2.7) Yl  <l~l{wHPnRw-i)®hn(Rw)=    52    q-^Pn-tRu-i^Ru, 
We&n UE&n-l 

as elements of pn(l-Ln) 0 pn-i(Hn-i), (in the equations above, we have canceled the 
term C0™-1 on both sides). 

The operator Ln comes into play because of the following identity in 'Hn®'Hn-i 
(cf [11, Lemma 4.1.3]) 

(2.8) 52  q-liw)Tw-i®hn(Tw)=     52    q-lM(Ln + tr(C))Tu-i®Tu 

we&n ue&n-i 

here we identify T-Ln-i with the subalgebra oiHn generated by Tu,u G &n-i- In fact, 
we can replace tr(C) by any element of k. Replace Tw by Rw in (2.8) and plug in the 
identity C^Rw^ ^K^Jj), we obtain (2.7). 

On the"other hand, (2.8) and (2.5) imply (2.6): 

52  q-liw)hn(PnRw-i)®Rw=   52  q-l(w)hn(Rw-,)®RwPn 

we&n we&n 

=    52    q-l^Tu-i0(Ln+tr(C))TuPn 

ue&n-i 

=    52    q-'MPn^Tv-iQTu. 
ue&n-i 

The lemma is therefore proved.D 

Thus, we reduced the problem of finding an integral on HR to constructing op- 
erators Pn G pnCH-n) satisfying certain conditions.   The next step is to construct 
Pn. 

3. The Construction of Pn. We want to construct operators Pn G PniJ^n) 
with the property 

Pri(Ln+tr(C))=Pn_i0idK. 

The Murphy operators Ln were introduced by Dipper and James [7] following 
Murphy's construction, to describe a full set of mutually orthogonal primitive idem- 
potents of the algebra ?^n: 

Eu{x)=        TT        r     ^"^Vi  .    !<*<<**, A €7>n, 
l<™i» [Cti(\){m)]l-[k]q 

1 — mKkKm—l 
fc7,£cti(A)(7n) 



THE INTEGRAL ON QUANTUM SUPERGROUPS OF TYPE Arls 761 

where {^(A),l < i < d\} is the set of standard A-tableaux, cti(Ay(ra) is the content 
of m in the standard tableau ti(X). The primitive idempotents ^-(A), i = 1,2, ...,dA 
belong to the same block that corresponds to A, their sum FA = Y^i<i<dx ^u(x) is 

the minimal central idempotent corresponding to A. 
m+l 

It is known that Lm satisfies the equation     TT    (Lm — [k]q) =0. Therefore, for 
k=—m—1 

1 < m < n, 

(3.1) LmEti(x) = Eti(\)Lm = cii(A)(m)Ei.(A). 

Let n^s denote the set {A|Ar+i < s, Ar = 5}. For A 6 ftr's, [{sr)] C [A]. We define 

PX  ' 

xe[xMsn} 

=      TT      q-  11,,1Mx)+r-5]g
l 

and 

(3-2) Pn :=    ^   PA^(A) =   J2  ^Fx' 

l<i<c7.A 

Recall that Pn are defined in the algebra pn{^~Ln) — End^CK071), which is the fac- 
tor algebra of Hn by the two-sided ideal generated by minimal central idempotents cor- 
responding to partitions from Vr^T1^5. Fixing an embedding PnC^n) ^ Pn+iC^n+i)? 
PnCH-n) 3 ^ '—^ ^ <H) idv E Pn+i(%n+i), we identify pn^Hn) with a subalgebra of 
Pn+l C^n+i )• 

LEMMA 3.1.  TAe operators Pn are central in PnCHn) a>nd satisfy the equation (in 
Pn+liUn+l)) 

Pn+i(Ln+i -[s- r]q) = Pn. 

Proof. The operator Pn is obviously central, for it is a sum of central elements. 
We check the equation above. First, notice that, if A G O^i and ^(A) is a 

standard A-tableau, then the node of [A], containing n + 1, is removable, i.e., having 
removed it we still have a standard tableau. The tableau ti(X) is called essential if this 
node is not the node (r, 5), otherwise it is called non-essential. A tableau is essential 
iff the tableau, obtained from it by removing the node containing n + 1 is again a 
7-tableau with 7 £ f^'s. 

Observe, that if ti(X) is non-essential, then cti^x){n + 1) = s — r, hence 

EtiW(Ln+1 -[s-r}q) = 0, 

by virtue of Equation (3.1). We reshuffle the terms of Pn+i in groups as follows 

Pn+1=     Yl J2      P\Et{\)+ Y^ P^Et{X)' 
-yettn3     A€nr,li t{X) 1S 

■\ s 1 s A Ti + 1 non —eessential 

That is, for each ^(7), 7 G ft£5, we pick up into a group those standard tableaux 
t(A), A G fi^+i that contain ^(7) as a subtableau. The above observation implies that 
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the last sum in the right-hand side of the above equation is killed by Ln+i — \s — r\q. 
Thus, it is sufficient to prove, for a fixed ^(7), 7 G fi£s, 

J]      PA^(A)(in+l - [5 - r\q) = P7Eti{7). 

*(A)DM7) 

Wehave(Ln+i-[s-r]9)^(A) = [ct(A)(n+l)]g-[5-r]g£?t(A) andthuspA([cA(a;)]g- 
[5 —r]g) = p7 whenever [7] is obtained from [A] by removing the node x. Since, for any 
two standard tableaux £(7) and t(X) with 7 C A as above, the number n + 1 should 
lie in the node x, for which [A] \ [x] = [7], we deduce that the equation to be proved 
is equivalent to 

(3-3) Yl    EtW=Ei uh)- 
A€n»;i 

Since UU-n- _1(Ln+1-[k]q) = 0, 

n+1           n+1       r               rn 
v   >            TT       ^n+l         K\q  _ - 

Therefore 
n+1                         n+1       T               r,, 

Z7                      \ ^       Z7               TT       ^+1       Wq 
Eu(,)-     ^ i^^4lli   [m],-[*], 

m= — n—1                 fc=-n-l,    L     jy        L   jy 
fc^m 

Remember that we are working in the algebra pn+i(/Hn+i), in which E\ / 0 if and 
only if A G f^+i • Each term on the right-hand side of the above equation is either zero 
or a primitive idempotent of the form -E^A) with t(\) containing ^(7) as a subtableau. 
Since the left-hand side of (3.3) contains all primitive idempotents in pn+i{Hn+i) that 
correspond to standard tableaux containing ^(7) as a subtableau, the equation (3.3) 
follows. Lemma 3.1 is therefore proved.□ 

As a corollary of Lemmas 2.1 and 3.1, we have 

THEOREM 3.2. The Hopf algebra HR associated to a Heche symmetry R, which 
satisfies the condition (1.12), possesses an integral, which is uniquely determined up 
to a scalar multiple.  Let (r, s) be the birank of R.   Then an integral can be given as 

follows: if 1(1) = l(K) < rs, f (ZJ Z^L
K) = 0 and if 1(1) = l(K) =n>rs, 

(3.4) j{ZitfL
KI) = Y^Q~l{w)(PnC^Rw-i)fRw

J
K, 

(K' = (fcn,fcn-l,.",Al)>). 

REMARK. Since Pn,C,R are even operators, the integral in (3.4) vanishes unless 
|/| = |L|,|J| = |^|. 

There is a symmetric bilinear form on the Hecke algebra 7{n, given by (Tu, Tv) = 
g'M<$*_!. With respect to this bilinear form, {Rwiw G @n} and {q~l^Rw-iiWG&n} 
are dual bases [6]. 

Let {E%, A h n, 1 < i,j < d\} be a basis of Hn with the following properties 
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1. {E%, < i,j < d\} is a basis of the block in Tin, corresponding to A; 
2. E^E^SZ5{El 

and let k\ = (E™,E™), (•,•) be the mentioned above bilinear form. Then, {E^,< 

hj < ^A} and {E^/kx, < i,j < d\} are dual bases with respect to the above form. 
Hence, using standard argument we can easily show 

(3.5) £  q-l^Rw-i®Rw=     Yl    TE^®E^ 
™e6„ AH 1<iJ<d\ 

The number kx can be computed explicitly: kx = Q71^ YlxGlx^i^g1 ^ where 
n(^) — Y^i^iii ~~ I)? ^W is ^e hook length of x in the diagram [A]: hx{x) = 
\i 4- A^- - i — j + 1, where (z,,?') is the coordinate of x in the diagram [A] (cf. [12]). 

The formula (3.4) can therefore be rewritten as follows: 

(3.6) J(Zf^')=    E    Uc®nPnEii)fEiiJK=    52    f(CmE^fEfK. 

4. Characters of 77^ and Quantum Analogue of Super HCIZ Integral 
Formula. In this section, we would like to give a quantum analogue of the super 
HCIZ integral formula. Recall that the super HCIZ integral formula (0.2) computes 
the integral on the compact supergroup U{r\s) at the function on the variable U 
running in U(r\s): str(MUNU~1)n, where M,N are fixed hermitian supermatrices. 
First, notice the following equality for supermatrices 

[striMUN^U-1)}71 = str((Mf/iVC/-1)^n) = (-IpM^N^'U^^ 

where we adopt the notion in Section 1 of Zj and Z^j. In fact, the first equation 
above is obvious, the second equation follows from the following recurrent relation 

(-if^MftU&NilZ'utf = (-l^Mj^iVt*;^; . (-iyM}UiN^U^. 

By definition, an A-point of HR is an algebra homomorphism 0 : HR —> A, 
where A is a superalgebra over k. Set M = </>(Z). Then the entries of M commute by 
the same rule as the entries of Z. M is called a quantum supermatrix with values from 

A. We set Mj := ^(Z^) and Aft^ := 0(S(Z5)) = 0(^t j')• Our quantum analogue of 

HCIZ formula will compute the integral at the element Df MjZj^N^L, Z^p,, where 
D^ is the entries of the tensor power of the matrix D (which consists of scalars from 
fc), M and N are points of HR with entries anti-commuting with the elements of 
HR. In other words, let M and TV be quantum supermatrices with values from an 
algebra A. A® HR has a natural structure of a superalgebra as the product of two 
superalgebras in the category of vector superspaces. The integral on HR induces 
a map A <g> HR —> A.  We want to compute the value of this map at the element 

DfMjZftN^L, Z^ p, of the algebra A®HR in terms of the values of certain irreducible 
characters of HR at the matrices M and iV. 

We first need the notion of coribbon coquasitriangular Hopf superalgebras. The 
notion of coquasitriangular Hopf superalgebras does not differ from the notion of co- 
quasitriangular Hopf algebras (see e.g. [17]), except that a sign may appear whenever 
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we permute two adjacent elements in a tensor product. Explicitly, we define a coquasi- 
triangular structure on a Hopf superalgebra H as an even linear map r : HQ H —»• fc, 
subject to the following conditions (see, e.g. [13]): 

(-l)SiaMai,&i)a2&2 - (-l)Sia&iair(a2,&2), 

r(a6,c) = (-l)6cir(a,ci)r(6,C2),    r(a,6c) = r(ai,c)r(a2,6), 

(-l)Sia2r(ai,61)r-
1(a2,62) - (-l)Sia2r-1(a1,61)r(a2,62) - e{ab). 

The following properties of r are consequences of the definition: 

r(5(a),6) =r-1(a,6)    r(a, 1) =r(l,a) =e(a). 

The coquasitriangular structure r : if ®ff —»► k induces a braiding in the category 
of i7-comodules making this category a braided category. Explicitly, the braiding is 
given by 

TM,N : M ®N —► N&.M,    m<g)n \—> (-l)™"0^ <8)mor(mi,ni),    m e M,n e N. 

Define a linear map u : H —> k, u{a) := (-l)aia2r(a2,5(ai)). Then the square 
of the antipode can be computed by means of u 

(4.1) 52(a)=u-1(a1)a2^(a3), 

where u~1 ^ its convolution inverse is given by u~1{a) = (—l)aia2r(52(a2), ai) (cf. [13, 
Section 2]). 

A ribbon form on a coquasitriangular Hopf superalgebras is an even linear map 
t : H —> k, subject to the following conditions: 

t(a1)a2 = aitfa),    t(S(a)) - t(a),    t(ai)t~1(a2) = t~1(ai)t(a2) = e(a), 

t(ab) = (-l)aS^(a1)^1)r(62,a3)r(a3,63)- 

The ribbon form satisfies: 

(4.2) *(ai)*(a2) - u-^a^u'^Si^)). 

The proof is to expand the right-hand side using the formula for the square of the 
antipode given above. 

Notice that, since r and t are even linear map, r(a,b) = 0 unless a + b = 0 and 
t(a) = 0 unless a = 0. 

The ribbon form t induces a twist in the category of finite dimensional H- 
comodules, making this category a ribbon category [22, 17]. The twist is given by 

8M-M—► M,    mi—>mot{mi). 

Let H be a coribbon Hopf superalgebra, and M an if-comodule of finite di- 
mension. Fix a basis a;i,a;2,. • • ,#d and let aj,l < i,j < d be the corresponding 
multiplicative matrix, that is, the coaction of H on M is given by 8{xi) = Xk <S) a1-. 
Let TM be the matrix of the twist morphism 9M with respect to this basis. Then we 
have TM) = t(a)). Similarly, let DM) = (-lfju(S(a))) = (-lfr(ai,S(a^). Let / 
be an endomorphism of M and F be its matrix. We define 

$(/) := tr(DMTMFA) 
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to be the character of the morphism /, where A is the matrix (aj) (cf. [12]). The 
character of the comodule M is $(M) := $(idM) = ^(DMTMA). 

Let M* be the dual vector superspace to M and f1,^2,... ,£d be the dual basis 
on M*. The coaction of H on M* is given by 5{C) = {-l)Hk+i)^ ^ g^y -^^^ 
the character of the dual comodule M* is 

*(M*)=tr(CMTM5(A)), 

where CM} := (-lYMq) = r(a^S{4)). 
The equality in (4.2) can be rewritten as follows: 

(4.3) DM®NTM®N — {D\fTxi) ® (DNTN), 

where the matrices DM®N and T\/0.v are defined similarly for M 0 AT, with respect 
to certain bases of M and iV. Notice that the definition of the ribbon form t implies 
that TM commutes with DM- We have the following properties of $: 

(4.4)$(/©5)=*(/) + $(5),    $(/®5) = $(/)-$(5),    $(/oft) = $(/lo/), 

where /, h and ^ are endomorphisms of the comodules M and iV, respectively. Indeed, 
the first equation is obvious, the second one follows from (4.3), the last one follows from 
the naturality of 6. Since M®N = N®M by means of the braiding, which is a natural 
transformation, i.e. commute with all morphisms, we have $(/) •$(<?) = $(p) *$(/)• 

ilfl is a coribbon Hopf superalgebra (cf. [15]). The coquasitriangular structure 
is given by 

r(4*f) = (-!)%# ,r(^fc) = (-l^i?-1;?, 
r(z*., if) = (-l)*>;,V(i;., if) = (-1)^/, 

and the ribbon form is given by £(zj) = g(r,~,s+1)/.2(J*-, where (r, 5) is the birank of the 

Hecke symmetry R. The form u satisfies w(^) = (—1)U'P^, and w(^) = (—1)2JP/-. 
The double centralizer theorem 1.1 implies that simple comodules of ER are 

parameterized by partitions from the set rrs = {A|Ar_f-i < 5}. For each partition 
A G r^s, denote MA the corresponding simple i?#-comodule, MA is isomorphic to 
\rc\p(E\) for a primitive idempotent E\. Since the map ER —> HR is injective (cf. 
[11, Theorem 2.3.5]), MA is a simple iJ^-comodule, too. Therefore $(MA) = $(#*), 
hence 

Sx := *(MA) = tr(DvenTv*nExZ®n). 

Remember that in the definition of Z®n, the signs are also inserted. 
The equality in (4.3) for t and u implies 

Dv*nTv*n =D®nT®n. 

Since Tv = t(Z) = gr-2+1id, we have 

(4.5) 5A = $(MA) = qn^-s+1^2D!jEx
J

KZf. 

Analogously, we have 

(4.6) S-x := HMD = qnlr-+1V2CIjExl(Z*r , 
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where Cj := (-l)^%(zj) = Pfi. 
We are now ready to formulate a quantum analogue of the HCIZ integral formula 

for quantum supergroups of type Ar\s. 

THEOREM 4.1. Let M and N be A-points of HR. Assume that entries of M and 
N anti-commute with the entries of Z and T. Then 

I {DfMI
JZ

J
KN^,Z^,)=q-^-^  Y,  ^SX(M)S-X(N). 

Proof. Choosing a basis {E%,\ h n, 1 < i, j < d\, such that E\ = E™ for some i, 
we have 

f(Df M'jZJcNrf ZtLp,) = f ((-l)^+^^+^DfM^' ZJ
KZ^,) 

1® rpjiJ 

(by (3.6)) =     J2    fi(-l)(|-;|+l^l)(l^l+|Z|)I>fMiiVtf;C^^Sf 
l<i,j<dx 

Px nP Tijrl T?3iJ   ATiK' nLrpijQ J2    ^DfM^rpN^C^ K 
i<i,j<dx 

X^nn 

=    E    q-n{r-s+1)^(Eii)(M)^(Ein(N) 
l<i,j<dx * 

=    Y,   q-nir-S+1)dx^SX(M)S-X(N). 

In the third equation above the term (-l)(ljrMKl)(lirMZ/l) disappears according to 
the remark following Theorem 3.2, in the last equation, we have, by means of (4.4), 
$(£#) = *(£%£») = #(£?£#') = 0 if i # j. D 

EXAMPLE. Let us consider the case of standard quantum general linear super 
group GLqfrls), determined in terms of the symmetry it!r|5 given Section 1. In this 
case, any diagonal matrix with commuting entries is a point of ER. Thus, assume 
that M and iV are diagonal matrix with entries commuting each other and with the 
entries of Z and T, A — diag(ai,a2, ...,ar+5), B — diag(&i,&2, ...,6r+5). Then, we have 

n 

5(n)(M) = ^/in-A;(^i,.-.,gr,ar)e/c(-grar+i,...,-gr~s+1ar+s), 

A;=0 

/i/c and e& are the A;-th complete and elementary symmetric functions in r and 5 
variables, respectively [19, Chapter I]. Hence 

S\(M) = 5A(gai,g2a2)...,g
rar/-^rar4.i,...,-gr~5+1ar+5), 

5A are the Hook-Schur functions in r+5 variables (cf. [loc.cit., Ex. 1.3.23]). Therefore, 
if A G r£s, thus, A = (rs) + \i U i/, // G VT, v £ Vs, we have [loc.cit.] 

5A(i4) = (-l)M    H   {qiai-qr-j+1ar^)s^qa1)...,q
rar) 

xsu{qTar+i,..., qr+l~sar+s), 
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where s^ (resp.   Sjy) are the Schur functions in r variables (resp.   5 variables). 
Analogously, we have 

5_A(B) = (-l)""!    H   (qr-'-i+1bi-qi-'br+j)sll(qr-'b1,...,q
l-br) 

xsv(q1~8br+i,...,br+8). 

The quantum super HCIZ is then given by, (n > rs), 

L LK\ V-^ dAPA 
r,s 

xtf-'-i+Hi - qj-br+i)sli{{qiai})sl,({qr+1-iar+i}) 

x*^^1—+1-i6<})Sl/({«i-6r+i}). 

For a = 1, —;— =    ,   ,,,,,'   M      and the above formula reduces to (0.2). 

5. The Orthogonal Relations. We are now interested in the orthogonal rela- 
tions. Let MA, M^ be two simple comodules corresponding to partitions A and fiofn. 
Let MA = IHTIEA, M^ = lmEM. Then, choosing a basis E^ ofHn, such that Ex = E™ 
for some i, and using (3.6), we have 

($(MA),$(MM)) := |(*(MA)$(M;)) = (7'*-«+1> JiD'jExJcZfCtfE^Ziw) 

M 

(by (1.8) or (4.2)) = ^^,^tr(C®^A) = 0. 

Here <5pr,3 indicates, whether A belongs to rr's, it is zero if A ^ rr'5 and 1 otherwise. 
On the other hand, for A form rr's, tv{C®nEx) — 0, for it is the quantum rank of MA 

(cf. [15]). 
We have seen that the scalar product above cannot be used to define the or- 

thogonal relations. So we compute instead the integral  / (ZA5(ZM)), where Zx is a 

coefficient matrix of the simple comodule MA, i.e., Zx is the multiplicative matrix 
corresponding to certain basis of MA. 

Let us fix a primitive idempotent E\, A h n, and set MA = Innp(EA) C V®n. Fix 
a basis ei,e2,... ,emA of MA, mx := dimMA. Let Q£, 1 < a,6 < TTIA, be such that 
Qg^c = ^e^,. Since Ex is a projection on MA, we can consider it as a linear map 
from MA into V®n and from V®n onto MA- Hence we define P6

a := ExQa
hEx to be 

endomorphism of V®n. We have P%Pc
d = 5a

dP£. 
Let Cx be the restriction of C®n on MA, which is an invariant space of C®n and 

CA£ be the matrix element of CA with respect to the above basis. Then we have 

Cxa
h=tr{C®nPZ). 

Consider the basis Xj = x^Xi^- • '®Xin of V®n, 1 < ij < d. The corresponding 
multiplicative matrix is Zj. Then the multiplicative matrix for MA, corresponding to 
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the basis ei, 62,... emx is given by Zx^ = PgjZj. Now, choosing a basis E% of Tin 
such that EA = E" for some z, we have 

j{zxts{zx%)) = JiP^zDiP^z^,) 

l<i,j<dp 

= fcA-Wd
atr(C®"P6

c) 

Thus, we have proved 

PROPOSITION 5.1. Let Mx be the simple comodule of HR, corresponding to par- 
tition A and 61,62, ••• ,emA 6e ^5 6a5Z5. Le£ Z^ 6e iAe corresponding multiplicative 
matrix. Let Cx be the restriction of the operator C®n on Mx and Cxi be its matrix 
elements with respect to the basis above. Then we have the following orthogonal-type 
relations: 

(5.1) J\zx
a

bs(zxyd) = k^p&Cxi 

REMARK. The fact that the left-hand side and the right-hand side of (5.1) are 
proportional follows directly from (2.2) and (4.1). However, this direct proof can not 
give us the coefficient k^px- 

REFERENCES 

[1]  J. ALFARO, R. MEDINA, AND L.F. URRUTIA, The Itzykson-Zuber integral for U(m|n), J. Math. 
Phys., 36(6) (1995), pp. 3085-3093. 

[2]  J. ALFARO, R. MEDINA, AND L.F. URRUTIA, The orthogonality relations for the supergroup 
U(m|n), J. Phys. A, 28(16) (1995), pp. 4581-4588. 

[3]  F.A. BEREZIN, Introduction to superanalysis, D. Reidel Publishing Co., Dordrecht, 1987. 
[4]  C. C. ITZYKSON AND J.B. ZUBER, The planar approximation. II, J. Math. Phys, 21 (1980), pp. 

411-421. 
[5]  P.M. COHN, Algebra, John Wiley and Sons, 1982. 
[6]  R. DIPPER AND G. JAMES, Representations of Hecke Algebras of General Linear Groups, Proc. 

London Math. Soc, 52(3) (1986), pp. 20-52. 
[7]  R. DIPPER AND G. JAMES, Block and Idempotents of Hecke Algebras of General Linear Groups, 

Proc. London Math. Soc, 54(3) (1987), pp. 57-82. 
[8]  Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33(1) (1981), pp. 31-50. 
[9]  D.I. GUREVICH, Algebraic Aspects of the Quantum Yang-Baxter Equation, Leningrad Math. 

Journal, 2(4) (1991), pp. 801-828. 
[10]  P. H. HAI, Koszul Property and Poincare Series of Matrix Bialgebra of Type An, Journal of 

Algebra, 192(2) (1997), pp. 734-748. 
[11]  P. H. HAI, On Matrix Quantum Groups of Type An, Int. Journal of Math., 11(9) (2000), pp. 

1115-1146. 
[12]  P. H. HAI,  Characters of representations of Quantum Groups of Type An, Preprint ICTP, 

available at xxx.lanl.gov, 1998. 
[13]  P. H. HAI, Central bialgebras in braided categories and coquasitriangular structures, Journal 

of Pure and Applied Algebra, 140 (1999), pp. 229-250. 
[14]  P. H. HAI, Poincare Series of Quantum Spaces Associated to Hecke Operators, Acta Math. 

Vietnam, 24(2) (1999), pp. 236-246. 
[15]  P. H. HAI, Hecke Symmetries, J. of Pure and Appl. Algebra, 152 (2000), pp. 109-121. 
[16]   H. CHANDRA, A formula for semisimple lie groups, Amer. J. Math, 79 (1957), pp. 733-760. 
[17]  CH. KASSEL, Quantum Groups, volume 155 of Graduate Texts in Mathematics, Springer-Verlag, 

1995, 531p. 



THE INTEGRAL ON QUANTUM SUPERGROUPS OF TYPE Arls 769 

[18]  B.I. LIN, Semiperfect coalgebras, Journal of Algebra, 49(2) (1977), pp. 357-373. 
[19]  I.G. MACDONALD, Symmetric functions and the Hall polynomials, Oxford University Press, 

New York, 1979 (Second edition 1995). 
[20]  Yu.I.  MANIN,  Multiparametric Quantum Deformation of the  General Linear Supergroups. 

Comm. Math. Phys., 123 (1989), pp. 163-175. 
[21]  HOCHSCHILD G. P., Structure of Lie Groups, Holden-Day, San Francisco, 1965. 
[22]   N. RESHETIKHIN AND V. TURAEV, Ribbon Graph and Their Invariant Derived from Quantum 

Groups, Comm. Math. Phys., 127 (1990), pp. 1-26. 
[23]   J.B. SULLIVAN, The Uniqueness of Integral for Hopf Algebras and Some Existence Theorems 

of Integrals for Commutative Hopf Algebras, Journal of Algebra, 19 (1971), pp. 426-440. 
[24]  M. SWEEDLER, Hopf Algebras, Benjamin, New York, 1969. 
[25]   S.L. WORONOWICZ,   Compact matrix pseudogroups,  Commun. Math. Phys, 111 (1987), pp. 

613-665. 
[26]   SOIBELMAN YA. AND VASKMAN L, Function algebra on quantum group SU(2), Adv. in Sov. 

Math., 22(1988), pp. 1-14. 



770 P. H. HAI 




