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LOW INDEX MINIMAL HYPERSURFACES OF SPHERES* 

OSCAR PERDOMOt 

Abstract. Let M be a compact oriented non-equatorial minimal hypersurface of the unit n- 
dimensional sphere. Suppose that for any non-zero vector in w 6 Rn+1 there exists an orthogonal 
matrix B such that B(M) = M and B{w) ^ w. Since all known examples of minimal hypersurfaces 
have antipodal symmetry, they satisfy this condition. 

We prove that: i) the stability index of M is greater than or equal to n-f 2 with strict inequality, 
unless M is a Clifford hypersurface; ii) the difference between the first two eigenvalues of the Jacobi 
operator is less than or equal to n —1 with strict inequality, unless the norm of the second fundamental 
form is constant; and iii) if M hats antipodal symmetry and is not a Clifford hypersurface then the 
index is greater than n + 3. Moreover if the unit normal vector is even, the index is greater than 
2n + 2. 

1. Introduction. Let M be a compact, oriented minimal hypersurface 
immersed in the n-dimensional sphere Sn. Let v be a unit normal vector field along 
M. For any tangent vector v G TmM, m G M, the shape operator A is given by 
A(v) — — Vvi/, where V denotes the Levi Civita connection in Sn. We will denote by 
A the Laplacian on M. Given any function / : M —v R1 we can form the 1-parameter 
variational family defined by 

Mt - {exp(ra,£/(m)z/) : m G M} 

where exp(m, •) is the exponential map at m G Sn. 
It is well known (see e.g. [9]) that the area of Mt satisfies: 

— (area(Mt))|i=0    =   0       (minimality of M) 

(area(Mt))|i=^     =      /   J(/)/        (second variation formula) 
J M 

cP_ 

dt2 ■-— jM 

where J is the Jacobi operator on M, given by 

J=-A-||A||2-(n-l) 

When /M J(/)/ < 0 for some / G C00(M), we see that area(M) >area(Mt) for 
small values of t ^ 0. In particular this implies that the minimal hypersurface, M, 
while a critical point of the area functional, is not a local minimum. For hypersurfaces 
in spheres this is always the case, since we can take / = 1. 

The Jacobi operator induces a symmetric bilinear form 

/(/,S)=  I  J(f)9 
JM 

known as the index form on M. Let V be a subspace of C00(M) on which the 
index form is negative definite, i.e. fM J(f)f < 0 for all / G V. Since the eigenvalues 
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of the operator —A tend to oo, the dimension of V must be finite. We define the 
index of M, ind(M), as the maximum dimension of any such subspace V. Intuitively, 
ind(M) measures the number of "independent" directions in which M fails to minimize 
area. 

The easiest minimal hypersurfaces to describe are the equators, i.e. the totally 
geodesic 5n_1's in 5n, and the Clifford hypersurfaces, which are products of spheres; 
when we split the ambient space Rn+1 as RA:+1 x R/+1, with k 4- / = n — 1 (and 
k, I > 1), we get a Clifford hypersurface corresponding to this splitting, namely 

x 5*    \   7    C Sn C R^1 x R^+i 

A minimal hypersurface M with index ind(M) = 0 is called stable, i.e. it 
minimizes area up to second order. As seen above, in the sphere we always have 
ind(M) > 1, so no minimal hypersurface is stable there. It is not hard to prove that 
totally geodesic hypersurfaces are characterized as the only minimal M71-1 C Sn with 
ind(M) = 1, see for example Lemma 3.1. 

Our efforts here begin with the simple observation that if M is not totally geodesic, 
then ind(M) jumps; it is at least that of the Clifford hypersurfaces; namely, n + 2 (see 
Lemma 3.1 again). This suggests the conjecture motivating our work: 

CONJECTURE 1.1. The Clifford hypersurfaces are the only minimal Mn-1 c Sn 

with ind(M) = n + 2. 
F. Urbano in [12], proved that the conjecture is true in the case n = 3. The first 

part of our main theorem establishes that the conjecture is true in all dimensions, 
with one additional (and seemingly weak, as we will explain) assumption about the 
symmetries of M. That is, when ind(M) = n + 2 and our weak symmetry assumption 
holds, M is a Clifford hypersurface. 

Conjecture 1.1 implies that the index functional jumps to at least n + 3 for every 
non-equatorial minimal hypersurface which is not Clifford. Since for all known minimal 
hypersurfaces (different from equators and Clifford hypersurfaces) the index is a least 
2n + 3, we have the following conjecture: 

CONJECTURE 1.2. ind(M) > 2n -f- 3 for any non-totally geodesic minimal hyper- 
surface M71-1 C Sn which is not Clifford. 

In Section 4 we will partially solve this conjecture for minimal hypersurfaces with 
antipodal symmetry. We will show that it holds true for minimal hypersurfaces with 
antipodal symmetry and even unit normal vector i/. For minimal hypersurfaces that 
define immersion in the projective space, those with odd unit normal vector field, Do 
Carmo-Ritore-Ros [3] showed the existence of an even eigenfunction of J which is not 
a first eigenfunction. Combining this result with Theorem 1.3 part 1, we deduce that 
the index of any minimal hypersurface in Sn with antipodal symmetry is greater than 
n+3, provided that M is not an equator or a Clifford hypersurface. 

Let us motivate the second part of our main theorem. If |m| is constant, then the 
first eigenvalue Ai of the Jacobi operator is — (n — 1) — imp. Because the coordinate 
functions are eigenvalues of the Laplacian with eigenvalue -(n — 1) we get that — imp 
is also an eigenvalue of J. Hence the second eigenvalue satisfies A2 < — ||i4||2, so we 
have that the distance between Ai and A2 is at most n — 1, i.e. 

A2 — Ai < n — 1 
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The second part of our main theorem shows that, with the same assumption about 
symmetries as in part 1, the estimate above holds for minimal hypersurfaces even if 
||J4|| is not constant. Moreover, equality in the estimate above implies ||,4||2 = |A2|. 

To state our assumption about the symmetries of M we define the group 

0M(n + l) = {7eO(n + l)    :    >y(M) = M} 

The antipodal map, r(x) = —x, may or may not be an element of OM(^ + 1). 
When it is, we say that "M has antipodal symmetry". 

We shall prove: 

THEOREM 1.3. Let M be a compact, oriented minimal non-equatorial hyper- 
surface of S71, and suppose that OM(^ + 1) fixes only the origin in Rn+1. Then: 

1. ind(M) > n + 2, with equality if and only if M is a Clifford hypersurface. 
2. A2 — Ai < n — 1, with equality if and only if \\A\\2 = |A2|. 
The symmetry assumption here seems weak because it holds even when M has 

only antipodal symmetry, and all of the many known embedded minimal hypersurfaces 
of spheres do have antipodal symmetry. Indeed, it seems possible that every compact, 
oriented minimal hypersurface in Sn must have this symmetry or, at least, that a 
minimal hypersurface in Sn without this symmetry must have high index. 

We therefore have the following corollary: 

COROLLARY 1.4. Let M be a compact, oriented minimal non-equatorial hyper- 
surface of Sn invariant under the antipodal map. Then ind(M) > n-f 2, with equality 
if and only if M is a Clifford hypersurface. 

Before I proceed, I would like to thank my advisor, Professor Bruce Solomon, for 
his lessons on mathematics and for his supervision that guided me to the understanding 
and achievement of this paper which is part of my Ph.D. dissertation [7]. 

2. Some Preliminaries. For every fixed vector w in H71^1 we define /^(m) = 
(iu,z/(ra)) and lw(m) = (w.m) for all m G M. Here ( , ) denotes the inner product 
in Rn+1 and v denotes a unit normal vector field on M. As explained in [10,§1] the 
minimality of M implies 

(2.1) -Alw = (n - l)lw 

and the Codazzi equations imply 

(2.2) -Afw = P||2/a, 

This latter equation makes the functions fw eigenfunctions of J with eigenvalue 

Throughout this paper we will denote by Ai = Ai (M) the first eigenvalue of the 
Jacobi operator J. It is well-known that the multiplicity of Ai is 1 and that the 
eigenfunctions associated to Ai never vanish on M, (e.g. by Courant's nodal domain 
theorem, [2]). 

In proving our Main Theorem we will use the following two results: 

THEOREM 2.3. ([9, Lemma 6.1.7]) If M is not totally geodesic, then X1 < 
-2(n-l). 
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THEOREM 2.4. ([1] and [6]) The Clifford hypersurfaces are the only minimal 
hypersurfaces of Sn with \\A\\2 = n — 1. 

We will need the following result by Do Carmo, Ritore and Ros in section 4. 

THEOREM 2.5. ([3, Theorem 3]) If M has antipodal symmetry and its unit 
normal vector field is odd, then there exists an even eigenfunction ip of the Jacobi 
operator, with Jfy) — Xip and A € (Ai,0). 

3. Minimal Hypersurfaces with Low Index and Weak Symmetry. In 
this section we prove Theorems 1.2 as stated above. We begin with three lemmas: 

LEMMA 3.1. If M is a compact, orientable non-equatorial minimal hypersurface 
of Sn , then ind(M) > n + 2. Moreover — (n —1) is an eigenvalue of J with multiplicity 
greater than or equal to n + 1 

Proof.   Let us define the following linear subspace of C^M) 

L = {fv : M —> R,   fv(m) = (v, i/(m)>  Vm E M,   v <E R^1} 

Our goal is to prove dim(r) = n + 1. For in this case, Equation 2.2 above shows 
that the multiplicity of the eigenvalue -(n — 1) is a least n + 1. It then follows 
that ind(M) > n + 2, because besides the eigenvalue — (n — 1), we have the negative 
eigenvalue Ai < —2(n — 1) by Simons' theorem above. We proceed by showing that 
when dim (F) < n + 1, M is totally geodesic. Suppose dim(r) < n + 1. Then there 
exists a unit vector v G Rn+1, such that fv = 0 on M, i.e. (v(m),v) = 0 for all 
m 6 M. For each x E 5n, let vT(x) be the tangential projection of v onto TxS

n. 
Since (i/(m),v) = 0, vT defines a vector field tangent to M itself. So for any m ^ ±v 
in M, the integral curve of vT passing through m is a great semicircle containing v 
and m, and is contained in M. This forces M to equal the totally geodesic S71"1 

containing v and tangent to TVM. D 

COROLLARY 3.2.    If ind(M) = n + 2 then X2 = -{n - 1). 
Proof. Lemma 3.1 makes clear that when ind(M) = n + 2, we have that the only 

negative eigenvalues of J are Ai, with multiplicity 1, and — (n — 1), with multiplicity 
n + 1. □ 

LEMMA 3.3. Let M be a minimal hypersurface in Sn. If p is a non-vanishing 
eigenfunction corresponding to Ai, and if f is any function perpendicular to p in 
L\M),i.e. fMpf = 0,then: 

[  J(f)f > A2 /  f2    and equality holds iff   J(f) = A2/ 
JM J M 

Proof. The Lemma follows from the minimax (i.e Rayleigh quotient) characteri- 
zation of eigenvalues for self-adjoint elliptic operators. D 

LEMMA 3.4. Under the hypotheses of Theorem 1.3 we have JM lwp2 = 0 for 
every w G Rn+1 

Proof. First, notice that since J is invariant under isometries of M and the 
multiplicity of Ai is 1, p must be invariant under isometries in OM^ + !)• Since M is 
a compact manifold, OM(^ +1) is a closed subgroup of 0(n4-1), hence a compact Lie 
group. Let dp, be the bi-invariant measure on OM(^ + 1) such that foM(n+i) ^ = 1 
(if OM{JI -j-1) is finite, this measure simply places a point mass of equal size at each 
element of OM(^ + 1), and the integral is just a finite sum). Then we have: 
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/        Iwp2 = /        p2(m)(m,w) 

= / ( /        p2{m)(w,m))dfjJ(g) 

= (/        P2(9m)(w,gm))dfx(g) 
JgeOM(n+l)     JmGM 

= (/        p2(m)(g-liu,m))dn(g) 
JqeOM(n+l)     JmeM 

= /        P2(m)( g-lwdp{g),m) 
JmeM J geOM(n+l) 

= 0 

since the vector J0   (n+1\ g~1w dfi(g) is clearly fixed by OM{.TI + 1) and therefore 
vanishes, by assumption. □ 

We are now ready to give our main argument. For the reader convenience we will 
restate Theorem 1.3. 

THEOREM 1.3. Let M be a compact, oriented minimal non-equatorial hypersur- 
face of S71, and suppose that OM{JI + 1) fixes only the origin in R71^1. Then: 

1. ind(M) > n + 2, with equality if and only if M is a Clifford hypersurface. 
2. A2 — Ai < n — I, with equality only if \\A\\2 = |A2|. 
Proof.       We will prove part 2 first.   Choose an arbitrary w G Rn+1.   Since 

—Ap — \\A\\2p = (Ai + n — l)p and —Alw = (n — l)lw we have: 

A(plw) =pAlw + lwAp + 2(Vp, Vlw) 

' =(-A1 - 2(n - 1))^ - II^IPp^ + 2(Vp, V^> 

Therefore 

/  J(plw)plw =(Ai + (n - 1)) / (plw)2 - 2 f plw(Vp,Vlw) 
JM JM JM 

(3.6) =(Ai + (n-l)) / (plw)2  -   [ p(Vp,Vl2
w) 

JM JM 

: / (M* 
JM 

IM JM 

>A2    /      (nl.\2 

In the last inequality we have used Lemma 3.3 and Lemma 3.4. From the estimate 
above we deduce: 

(3.7) / p(Vp, Vll) < (Ai - A2 + (n - 1)) f (plw)2 

JM JM 

We know that Yn^i i^i)2 = 1 for any orthonormal basis {e;}^1 of Rn+1, there- 
fore if we apply the inequality above to lw = lei, i = 1,... ,n + 1 and add these 
inequalities we get 

(Ai - A2 + (n - 1)) /  p2 > 0 
JM 
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Hence the distance between the first and second eigenvalue is a most n — 1. We 
also have that if A2 — Ai = n — 1 then the right hand side of (3.7) vanishes and therefore 
the symmetric bilinear form 

f : R^1 x R^1 —> R given by       £{w,v) = [ p(Vp,V(lwlv)) 
JM 

satisfies €(w,w) < 0 for any w G Rn+1. Using again that X^S.1^)2 = 1 for any 
orthonormal basis {ei}^1 of R71*1, we conclude that ^ is traceless. Consequently 
€(w, w) = 0 for all it; E J?n+1. Since A2 — Ai = n — 1 and ^(^, w;) = 0, (3.6) reduces to: 

/   J{plw)plw = A2 /   {plw)2 

JM JM 

This equality together with Lemma 3.3 tell us that: 

J(plw) = \2plw 

Using equation (3.5) to rewrite the equality above gives us 
2(Vp, Vlw) = 2(\7p,w) = 0. Since \7lw is the tangential component of w in TmM, 
and w; was arbitrary, Vp must vanish. Hence p is constant. Notice that p constant 
implies \\A\\ constant. Finally A2 — Ai = n - 1 forces \\A\\2 to be equal to -A2 and 
Part 1 follows. Let us prove Part 1. By Corollary 3.2, ind(M) = n -h 2 implies that 
A2 = — (n - 1). Since M is not totally geodesic we have that Ai < —2(n — 1), Simons' 
result (Theorem 2.3), therefore the distance between Ai and A2 is greater than or 
equal to n — 1. By Part 1, we have that this distance is exactly n — 1 and again by 
Part 1, this implies that ||J4||

2
 = (ra — 1). Theorem (2.4) (The uniqueness theorem of 

Chern-DoCarmo-Kobayashi and Lawson), now implies the result. D 

We have been trying, so far without success, to remove the symmetry condition 
in the result above. Even though all known examples of embedded hypersurfaces of 
Sn have antipodal symmetry, it seems plausible that one might be able to construct 
a minimal hypersurface of Sn without this symmetry using, e.g., the gluing technique 
of Kapouleas and Yang [5]. This antipodal condition is not new; it appears natu- 
rally when working with integral geometry. For example, Ros [8] and independently 
Topping [11], proved that the Willmore conjecture holds for surfaces invariant under 
the antipodal map, i.e., they proved that the square of the mean curvature of a torus 
immersed in R3 must always take a value no less than 27r2 if the image of this torus 
under the stereographic projection in 53 has antipodal symmetry. 

REMARK 3.8. The idea of picking the test functions plw relies on the following 
identity: 

(3.9) / J(fg)fg= [ J(f)f92+ [ f2\Vg\* 
JM JM JM 

In order to show the existence of an eigenvalue of J between Ai and — (n — 1) 
or to get a contradiction otherwise, we must take a test function, fg, that makes the 
expression on the left of (3.9) as negative as possible while JM pfg = 0. Notice that 
/ = p makes the first term on the right of (3.9) as negative as Ai JM{fg)2- Since the 
second term on the right of (3.9) contains an expression of the form |V^|2 we picked 
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for g an eigenfunction of —A corresponding to a small eigenvalue. Namely, we took 
g-lw 

REMARK 3.9. By Equation (2.1) we have that the coordinate functions are 
eigenfunctions of -A with eigenvalue n — 1. Yau's conjecture states that if M is not 
only immersed but embedded, then n — 1 is the first eigenvalue of —A. Notice that one 
way to prove that Yau's conjecture is not true is to show the existance of a non-zero 
function / with 

f  f = 0    and     /  |V/|2 < (n - 1) /  f* 
JM JM JM 

Using Part 2 of Theorem 1.3 and the identity (3.9) we have that for any minimal 
embedded hypersurface in Sn with antipodal symmetry and ||^4||2 non constant, the 
function g with gp an eigenfunction of J corresponding to A2 satisfies that: 

/ p^ = 0   and     f p2|V^|2 - (A2 - Ai) / p2g2 < (n - 1) / pV 
JM JM JM JM 

4. Stability Index Jump for Non-totally Geodesic Minimal Hypersur- 
faces in 5n that are not Clifford Hypersurfaces. In this section we will give 
partial solution to conjecture 1.2 in §1. Conjecture 1.2 is motivated by the behavior of 
the index functional on the space of minimal hypersurfaces in 5n with \\A\\2 constant. 
For these hypersurfaces we have, in general, that the space {a + fw 4- lv : a £ R1 w, v G 
Iln+1} gives a 2n + 3 dimensional space in which the index form is negative definited. 
The exceptions are the equators and the Clifford hypersurfaces. For the equators due 
to the their big symmetry group, the space {fw : w G Rn+1} collapses to the space 
of constant functions, and because equators are totally geodesic, |m|2 = 0, then the 
index form is not negative definite on the space {lw : w G R71*1} but identically zero. 
Hence the index of the equators is just 1. For Clifford hypersurfaces, due to their 
symmetries, the spaces {fw : w G R71^1} and {lw : w G Rn+1} are the same. Hence 
the index of the Clifford hypersurfaces is just n + 2. 

LEMMA 4.1. Let M C Sn be a non-equatorial minimal hypersurface with 
antipodal symmetry that is not Clifford. If p, fw and lw are defined as in sections 2 
and 3, then the dimension of the space T = {ap + fw + lv : a G R1 w, v G Rn+1} is 
2n + 3. 

Proof: We proceed by showing that when dim(T) < 2n + 3, M is either totally 
geodesic or a Clifford hypersurface. Suppose dim(T) < 2n + 3. Then, there exist 
a G R1, w, v G R71^1 not all of them zero, such that ap + fw + lv = 0. If a = 0, 
w = 0 and v ^ 0 then it is clear that M is the equator {x G S71 : (re, v) = 0}. If a — 0, 
v = 0 and w ^ 0 then it follows from Lemma 3.1 that M is an equator. If a = 0, 
w 7^ 0 and v / 0 it follows from equation 2.1 and 2.2 that ||^4||2 = n — 1, therefore 
by Theorem 2.4, M is Clifford. The case a ^ 0 is impossible because it would imply 
that p = fw + lv for some w, v G Rn+1. Since p is an even function and lv is an 
odd function, we get that for any m G M, 2lv(m) = fw(m) — fw{—m). Then either 
21 v = 0 or 2lv(m) = —2fw(m); both cases lead to a contradiction with the equation 
p = fw + lv - D 

PROPOSITION 4.2. Let M be a hypersurface like in the previous lemma. If the 
unit normal vector is even, then the ind(M) > 2n + 3. 
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Proof. By Lemma 4.1 and the definition of index, it is enough to show that 
the index form is negative definite on T. Since p and fw are eigenfunctions of J with 
different eigenvalues, we get 

(4.2.1) / pfv = 0 
JM 

Since the functions fw are even by assumption and the functions lv are odd, then 
the functions fwlv and plv are odd, therefore 

(4.2.2) /  fwlv =0= [ plv 
JM JM 

By Green's theorem, (2.1) and (2.2) we get that 

(4.2.3) /  \\A\\*fwlv = (n - 1) /  fwlv = 0 
JM JM 

Using (4.2.1)-(4.2.3) we have for any non-zero function f = ap-\- fw + lv £ T that: 

/(/, /) = /  J(f)f = [ (Map - \\A\\*lv - (n - l)fw)f 
JM JM 

= f {AiaV2 - (n - l)/^ - \\A\m < 0 
JM 

Therefore the index form is negative defined in T. □ 
Notice that Proposition 4.2 along with Theorem 2.5 gives a different proof of 

Corollary 1.4. . 
REMARK. We can deduce the same conclusion in Proposition 4.2 by changing 

the hypothesis "unit normal vector field even" by the hypothesis a||A||2 > n — 1". 
Once again the proof consists in verifying that the index form is negative definite on 
T. 

THEOREM 4.3. Let M be a minimal non-equatorial hypersurface in Sn invariant 
under the antipodal map. If M is not a Clifford hypersurface then ind(M) > n + 4. 

Proof. By Proposition 4.2, we only have to take care of the case when the unit 
normal vector v of M is odd. Suppose v is odd. By Theorem 2.5 there exists at least 
one even eigenfunction ip of J with J^) = A^, and A G (Ai, 0). Therefore we have the 
following n + 3 linear independent index eigenfunctions (eigenfunctions of J associated 
with negative eigenvalues) p, ip and {/e;}^1 where {e^}^1 is any orthonormal basis 
of Rn+1. The argument that guarantee another index eigenfunction is similar to the 
argument in the proof of the main theorem. Let us assume that the index is n + 3 (in 
particular we are assuming that the only negative eigenvalues of J are Ai, — (n — 1) 
and A). Since ij) is an even function, then fMipplw. This allows us to deduce the 
inequality (3.6) with A2 = — (n - 1), namely: 

/   J(plw)plw=fri + (n-l)) f (plw)2  -   [  p(Vp,Vll) 
JM JM JM 

> - (n - 1) / (ply,)* 
JM 
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By Theorem 2.3 and the minimax characterization of eigenvalues, the inequality 
above can only be fulfilled if Ai = -2(n - 1) and JM p(Vp, V/JL) = 0 for all w G Rn+1. 
Using again the minimax characterization we deduce that J(plw) = —{n — l)lw, which 
along with Ai = —2(n — 1) imply that ||A||2 = n — 1. This contradicts Theorem 2.4 
since we are assuming that M is not Clifford. D 

REFERENCES 

[1]   S.S. CHERN, M. DOCARMO, AND S. KOBAYASHI, Minimal submanifolds of a sphere with second 
fundamental form of constant length, Functional Analysis and Related Fields, Proc. Conf. 
M. Stone, Springer, 1970, pp. 59-75. 

[2]   CHAVEL ISAAC, Eigenvalues in Riemannian Geometric, Pure and Applied Mathematics., 115 
Academic Press. 

[3]   DO-CARMO, M., RITORE, M., & Ros, A., Compact minimal hypersurfaces with index one in 
the real projective space, Comment. Math. Helv., 75 (2000), pp. 247-254. 

[4]   T. FRANKEL, On the fundamental group of a compact minimal submanifold, Ann. of Math., 
83 (1966), pp. 68-73. 

[5]   N. KAPOULEAS, S-D. YANG, A doubling construction for minimal surfaces, in preparation. 
[6]    LAWSON, H. B, Local rigidity theorems for minimal hypersurfaces, Ann.   of Math.   (2), 89 

(1969), pp. 187-197. 
[7]    O. PERDOMO, First eigenvalue and index:  Two characterizations of minimal Clifford hyper- 

surfaces of spheres, Ph.D. Thesis, Indiana University, 2000. 
[8]   A. Ros, The Willmore conjecture in the real projective space, Math. Res. Lett., 6 (1999), pp. 

487-493. 
[9]    J. SIMONS,  Minimal  Varieties in Riemannian manifolds, Ann.    of Math., 88 (1968), pp. 

62-105. 
[10]    B. SOLOMON,  Quartic isoparametric hypersurfaces and quadratic forms, Math.   Ann, 293 

(1992), pp. 387-398. 
[11]   P. TOPPING, Towards the Willmore conjecture, Calculus of Variations and PDE (to appear). 
[12]   F. URBANO, Minimal surfaces with low index in the three dimensional sphere, Proceedings of 

the American Mathematical Society, v. 108, 4, April 1990, pp. 989-992. 



750 OSCAR PERDOMO 




