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A CLASSIFICATION OF NON-DEGENERATE HOMOGENEOUS 
EQUIAFFINE HYPERSURFACES IN FOUR COMPLEX 

DIMENSIONS* 

MICHAEL EASTWOOD+  AND VLADIMIR EZHOV* 

Abstract.    We solve the classification problem as in the title.   We present explicit defining 
equations and give a characterization in terms of easily computable affine invariants. 

1. Introduction. The equiaffine transformations of C4 are those of the form 

v »—► Av + b    for A G SL(4, C) and b G C4. 

A complex hypersurface E C C4 is said to be equiaffine homogeneous if and only if it 
is the orbit of a complex Lie subgroup of the group of all equiaffine transformations. 
Such a hypersurface is everywhere non-singular. We shall also suppose that E is non- 
degenerate (at one point and hence, by homogeneity, at all points). In this article, we 
classify the non-degenerate equiaffine homogeneous hypersurfaces in C4 up to affine 
equivalence. 

The corresponding classification problem for surfaces in C3 was solved by Nomizu 
and Sasaki [9]. There are six such surfaces:- 

1. Z = XY 

2. Z2 = XY + l 
3. XYZ = 1 

4. X2{Z + Y2)3 = 1 

5. Z = XY + X3 

6. Z = XY + logX 
The first five were found by Guggenheimer [5] and this list was completed in [9]. 
See [10] for further discussion and for general background on affine differential geom- 
etry. 

In [1], the affine homogeneous surfaces in C3 were classified by means of normal- 
izing their defining functions. The equiaffine cases have 

1. z = :n/+ 0(5) 

2. z = xy + x2y2 + 0(5) 

3. z = xy + x3 + y* + 0(5) 

4. z = xy + x3 + y3 + fx4 - 

5. z = :n/ + s3 + 0(5) 

6. z = xy + x3 + xA + go;5 H 

My - f rrV - W + h* + 0(5) 

+ 0(6) 
as their normal forms. The higher order terms are determined by the given terms 
together with the requirement that the surface be affine homogeneous. In [1] this 
list is derived by choosing affine coordinates specially adapted to the surface and 
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subject to criteria for homogeneity that restrict, order-by-order, the coefficients of the 
defining function. The point is that the first few terms of a defining function already 
determine the infinitesimal affine symmetries of a given surface. These symmetries 
form a Lie algebra called the symmetry algebra and exponentiation of the symmetry 
algebra determines the surface. 

There is, however, a substantial difficulty in passing from C3 to C4. For surfaces 
in C3, the cubic terms of a defining function are easily normalized and carry very 
little information. In fact, the examples above are typical. As detailed in [1], the 
cubic terms x3 + y3 signal a non-vanishing Pick invariant whilst if the Pick invariant 
is zero, then the cubic terms are absent or can be normalized to be x3. By contrast, 
there is a great deal of affine invariant information at third order for a hyper surf ace 
in C4. It is possible to normalize the cubic terms but then the approach of [1] runs 
into trouble no matter what normalization is adopted. For the resulting equations 
to be tractable it seems that additional assumptions are needed. If, for example, 
the symmetry algebra is assumed to have dimension four or more, then additional 
normalizations may be adopted and the equations are easily solved [3]. Fortunately, 
once this case is eliminated, we may adopt a new approach that renders the resulting 
equations tractable. 

This new approach utilizes directly the three-dimensional symmetry algebra. Lie 
algebras naturally divide into two classes. If the structure constants are trace-free, the 
Lie algebra is said to be Bianchi class A and, otherwise, Bianchi class B following 
Bianchi's classification of the three-dimensional Lie Algebras. In two dimensions 
there is, up to isomorphism, just one Lie algebra in each class. In three dimensions, 
the class B Lie algebras have canonical forms with sufficient structure to render the 
resulting equations tractable whilst for class A algebras normalizing the cubic terms 
of a defining equation works as before. So, this combination of techniques solves the 
problem. The classification is as follows. 

THEOREM 1. The equiaffine homogeneous hypersurfaces in C4 are given locally 
by the following equations. Different equations and different values of the parameter 
a in A4 define affinely inequivalent hypersurfaces. 

11 W = XY + Z2 

12 W2 = XY + Z2 + 1 
13 W = XY + Z2 + X3 

14 W = XY + Z2 + logX 

15 W(XY + Z)2 = 1 

16 W2(XY + Z2)3 = 1 

Al WXYZ = 1 

A2 WZ + WY2 + X2Z + X2Y2 = 1 
A3 6WXYZ - iX3Z - 3X2Y2 + W2Z2 + 4WY3 = 1 
A4 W = XY + Z2 + X2Z + aX4 

Bl WZ2 = Z + X3+ XYZ 
B2 (W + XY + X3)2Z = l 

B3 (WZ + Y2+X2Z)* = Z 

B4 W2X2(Z + Y2)3 = 1 

B5 (W + XY + X2Z)2Z = 1 

B6 (W + XY)2(Z + X2) = 1 

B7 WZ2 = Z + X2 + XYZ 
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BS (jy + yz + x2z)5 = z 
B9 (WZ + X2 4- yZ2)5 = Z4 

BIO W = XY + Z2 + XZ2 

BII w2 = xy + x2y + x2z 
In Section 2 we review Blaschke normal form for a defining function and the 

further normalizations that we shall adopt for the cubic terms in a defining equation. 
Also in this section are some canonical forms for matrices, useful in normalizing the 
symmetry algebra of a homogeneous hypersurface. In Section 3 it is explained how 
write down polynomial equations to capture that a hypersurface E C C4 be equiaffine 
homogeneous with three-dimensional symmetry algebra. 

The main work is in Sections 4 and 5, which solve the equations derived in Sec- 
tion 3. Section 6 sorts out these solutions and those from [3] into a better list. In par- 
ticular, we find easily computable invariants that distinguish between non-equivalent 
hypersurfaces. 

The rest of the article comprises four appendices. The first two of these are 
concerned with the classical theory of the binary sextic and how it applies to the nor- 
malization and invariant theory we require. Several severe computations are required 
in our classification. For these we made extensive use of computer algebra. Rather 
than interrupt the main body of the article with continual references to computer pro- 
grams, Appendix III is a commentary on these programs. The final appendix presents 
just one example of the explicit exponentiation of a symmetry algebra to determine 
the corresponding hypersurface. 

Throughout this article, E will always denote an equiaffine homogeneous hyper- 
surface in C4. We shall use, without comment, the Einstein summation convention: 
a repeated index carries an implied sum over that index. 

2. Normal Forms. We shall always choose coordinates (w1,ix2, w3, w) G C4 so 
that E passes through the origin and so that its tangent space at the origin is the 
hyperplane {w = 0}. In other words, E is defined by an equation 

w = F(ul) = gijUluj 4- aijku%u3uk + bijkiulujukuL H . (2.1) 

Non-degeneracy of E means that the quadratic form gij is non-degenerate. In addition, 
we shall suppose that the symmetric form a^-fc is trace-free with respect to g^. It 
is shown in [6] that this requirement can always be met and that the remaining 
coordinate freedom is 

w H^ rw       I 
.    .   }     for r 7^ 0 and c* ■ e GL(3, C). (2.2) 

Ul \-> CljU3    \ 

This preferred w-axis is called the affine normal, a notion due to Blaschke in three 
dimensions. With a^-fc trace-free we shall refer to (2.1) as Blaschke normal form. For 
further details, see [1]. 

Blaschke normal form applies to hypersurfaces in any dimension but from now on 
we shall specialize to hypersurfaces in four dimensions. In this case, we shall rename 
the u1 coordinates as x,y,z and normalize the quadratic form in (2.1) as follows:- 

gijtfu* =2xy + z2. (2.3) 

Then aijk being trace-free is to say that the cubic term aijkUlu3uk is a linear combi- 
nation of the following monomials :- 

x3, x2z1 x2y - 2xz2, Sxyz - z3, xy2 - 2yz2, y2z, y3. (2.4) 
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The coordinate freedom (2.2) may further be used to normalize this linear combination 
whilst preserving (2.3). In Appendix I it is shown that, for non-zero cubic terms, the 
following normalizations may be adopted. 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

X3 0 0 0 0 0 0 0 0 0 1 

^ 1 1 1 1 1 0 0 0 0 0 

x2y-2xz2 * * * 1 0 1 1 1 0 0 

3xyz - z3 * * 1 0 0 * 1 0 1 0 

xy2 - 2yz2 * 1 0 0 0 1 0 0 0 0 

y2z 1 0 0 0 0 0 0 0 0 0 

y3 0 0 0 0 0 0 0 0 0 0 

(2.5) 

Each column gives a possible normalization with *'s representing free parameters. 
Normal form #1, for example, has 3 free parameters: 

w = 2xy + z2 + x2z + a(x2y - 2xz2) + b(3xyz - z3) + c(xy2 - 2yz2) + y2z + 0(4) 

in its cubic terms. Note that Table (2.5) is not a classification. There are overlaps and 
repetitions under the action (2.2). For our purposes, it is only necessary to resolve this 
deficiency for the particular examples arising in our analysis of homogeneous surfaces. 
It is, however, worthwhile to note the general 8-fold multiplicity in normal form #1 
generated by the coordinate changes 

x *->• z'x, y *-> —iy, z !->• —z and x i-> y, y \-} x, z K> z. 

These changes generate the dihedral group ^4 and induce 

a \-> ia, b i-* — 6, c *-» — ic       and       a H-> C, b »->> 6, c i-> a. (2.6) 

as regards the three parameters a, 6, c. 
The normalizations in Table (2.5) will be used in Section 4 in dealing with Bianchi 

Class A. Section 5 deals with Bianchi class B and then we shall need to normalize the 
Lie algebra itself. The following linear algebra is designed for this purpose. 

Two real quadratic forms may be simultaneously diagonalized if one of them is 
definite. For indefinite or complex quadratic forms, this is no longer the case. The 
usual argument [11] involves eigenvectors and breaks down if an eigenvector turns out 
to be null. The proof of the following lemma is a modification of the usual argument 
and is left as an exercise. 

LEMMA 1. Suppose that H and N are 3x3 symmetric complex matrices and that 
H is non-degenerate. Then we can find an invertible 3x3 complex matrix A such 
that 

AtNA = 

0 1 0 
AtHA = 1 

_ 0 
0 
0 

0 
1 

1/ A 0 1 " 0 A 0 r 0 A 0 
A v 0 or A 1 0 or A 0 1 
0 0 A* 0 0 V 0 1 A 

(2.7) 
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3. Setting up the Equations. The following procedure is fully explained in [3]. 
Also there is [2], where a similar story is told under the assumption of an Abelian 
symmetry algebra, and[l], which deals with homogeneous surfaces in affine three- 
space. We shall therefore be brief. For any polynomial g{x,y,z), we shall write 
Tr N g(x, y, z) for the truncated polynomial obtained by deleting terms of total degree 
greater than JV. 

THEOREM 2. Suppose f(x,y,z) is a polynomial of degree N without constant or 
linear terms. If f(x,y,z) can be completed to a power series whose graph near the 
origin is an open subset of an affine homogeneous hypersurface S. then there are 4x4 
matrices P,Q,R such that 

Tr N-l a/ 
dx 

r) f f) f 
(x,y,z), —(x,y,z), — (x,yy z), -1 

oy oz 

x 

y 
z 

f(x,y,z) 

M 
dx 

(x,y,z) 

Tr 

Tr 

N-l 

N-l 

ox oy oz 

df. df. df 
 lX, V.Z),  (X,1/, 2),  (X.V, Z), — 1 
dxy    y    '  dyK    y    '  dzy    y    ' 

Q 

R 

X 

y 
z 

f(x,y,z) 

x 

y 
z 

f(x,y,z) 

df,        x 

(3.1) 

di 
dz 

(x,y,z). 

Proof The proof is a simple modification of the corresponding result for surfaces 
proved in Theorem 1 and Corollary 1 of [1]. Suffice it to say that (3.1) constitutes the 
low order terms in the full defining equations for the symmetry algebra of S. That 
there are solutions is to say that there are infinitesimal symmetries in each of the 
three basic coordinate directions. This must be the case if E is homogeneous. D 

When N = 3, the system (3.1) is always soluble. Specifically, regarding f(x,y,z) 
as fixed, (3.1) constitutes 27 linear equations which may be solved for 27 of the 48 
entries in P, Q, and R. There are, however, other restrictions on f(x, y, z) of degree 3. 
They arise by considering what it means for the algebra generated by P, Q, and R to 
be closed under Lie bracket as must be the case if we are to find a genuine symmetry 
algebra within the general solution of (3.1). To this end, let us write P — (pij), 
Q = (qij), R = (rij), and introduce quantities m2-7 for 1 < z, j < 3 as follows:- 

m11 = q13 - ri2 

m21 = rn - pis 

^12 

P23 

m 13 
q33 - ^32 

m22 = r2i 

m31 = pi2 ■qn m 32 : P22 - 421 

m23 = rsi - P33 

"l      =P32 -931- 

(3.2) 

THEOREM 3. Suppose f(x,y,z) is a polynomial of degree 3 without constant or 
linear terms. Suppose f(x,y,z) can be completed to a power series whose graph near 
the origin is an open subset of an equiaffine homogeneous hypersurface E with three- 
dimensional symmetry algebra. Then we can find a particular solution of (3.1) for 
N = 3 with 

and 

trace P = trace Q = trace R — 0 

QR-RQ = muP + ml2Q + muR 
RP-PR = m21P + m22Q + m23R 
PQ-QP    =    m31P + m32Q + m33^. 

(3.3) 

(3.4) 
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Conversely, for each such solution, f(x^y^z) can be completed to a power series whose 
graph near the origin is an open subset of an equiaffine homogeneous hypersurface. 
Proof The equations (3.3) restrict attention to equiaffine- symmetries. Then, the 
equations (3.4) say that the equiaffine symmetry algebra of E is closed under Lie 
bracket. Once the symmetry algebra has closed in this way, the higher order terms in 
the power series expansion of the defining function are determined by exponentiating 
to the Lie subgroup whose orbit is S. D 
For equations (3.4) to hold we are supposing that E is the orbit of a three-dimensional 
Lie subgroup. In general, the isotropy algebra consists of the infinitesimal symmetries 
of E that also fix the origin. To order 3, it gives rise to the subspace X consisting of 
4x4 matrices X satisfying the following system of linear equations :- 

Trc — (x,y,z), —{x,y,z), —{x,y,z),-l 
ox ay oz 

X 

x 

y 
z 

f(x,y,z) 

= 0. (3.5) 

and we require only that (3.4) hold modulo X. Complete details in the analogous case 
of homogeneous surfaces in C3 are given in [1]. 

When the symmetry algebra is three-dimensional, the quantities m2-7 introduced 
in (3.2) may be viewed as its structure constants. This is clearly exhibited in (3.4). 
In particular, if we introduce 

v1=m23-m32        V2=m3l-m13        v3 = m12 - m21, (3.6) 

then the Jacobi identities read 

Vimij=0    for.; = 1,2,3. (3.7) 

It is convenient to regard v = (vi) as a row vector and M = (rau) as a 3 x 3 matrix. 
Then (3.7) reads vM = 0. The proof of the following lemma is elementary and will 
be omitted. 

LEMMA 2. If we write the quantities c1 j in (2.2) and gij in (2.1) as matrices 
C — (dj) and G = (gij), then 

G ^ ^GC       M ^ detfCJC"1 M(C"1)*        v ^ vC (3.8) 

under the change of coordinates (2.2). 
This suggests that we split M into its symmetric and skew parts, such a splitting 

being preserved under (3.8). The vector v is, in effect, the skew part so let us write 
(nlj) = N = (M + Mt)/2 for the symmetric part. The Jacobi identity now reads 
vN = 0. This is the only constraint in order that the quantities m1^ define a Lie 
algebra. 

DEFINITION 1. We shall say that the symmetry algebra defined by m2-7 is Bianchi 
class A if and only if v — 0. Otherwise, we shall say that it is Bianchi class B. 

In summary, we have three systems of equations in the 48 variables Pij, qij, and 
rij in order that f{x,y, z) of degree 3 can be completed to define an equiaffine homoge- 
neous hypersurface. Firstly, there are the 27 linear equations (3.1). Each line of (3.1) 
is an equality of second degree polynomials without constant term mx,y,z and so each 
may be regarded as 9 equations for the 9 coefficients of x, y, z, x2,y2,z2,xy, yz, zx. For 
equiaffine hypersurfaces we have 3 further linear equations (3.3). Finally there is a 
system of quadratic equations (3.4). All these equations must be satisfied in the case 
of an equiaffine homogeneous hypersurface with three-dimensional symmetry algebra. 
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It is easy to check (with computer algebra) that the linear system (3.1) may be 
uniquely solved for the 27 variables 

Pll P21 P31 PAl P42 P43 <7l3 Q2S 933 
qi2 422 ^32 441 442 443 Tn r21 r3i 
ri3      ^23      ^33      Ui      r42      ^43      Pl2     P22     P32 

and (3.3) for the 3 variables 

P44     444     ^44- 

We may now eliminate 

ri2      ^22  ^32 Pl3     P23     P33      4ll  421  431 

in favour of m^ by means of (3.2). Splitting M = (m^) into its symmetric and 
skew parts, as above, we are left with a system (3.4) of quadratic equations in the 18 
variables 

PU     P24     P34  414  424  434  ^14  ^24  ^34 

Vi V2     vz    n11    n22    n33    n12    n23    n31. 
(3.9) 

This is the system of equations we must solve. 

4. Solving the Equations: Bianchi Class A. Let us adopt normal form #1 
from Table (2.5) for the cubic terms of a prospective defining equation. Thus, we take 
f(x,y,z) to be 

2xy + z2 + x2z + a(x2y - 2a:2:2) + b(Sxyz - z3) + c(xy2 - 2yz2) + y2z 

and consider the system (3.4) in the variables (3.9).   Assuming that the symmetry 
algebra is Bianchi class A, we may set 

vi = V2 = ^3 = 0. (4.1) 

Regarding the parameters a, 6, c as additional variables it is now possible (with com- 
puter algebra) to solve the resulting system. Taking into account the general 8-fold 
multiplicity (2.6), there are just five possibilities for a, 6, c as follows. 

a 0 -1 0 ^3/2 (i + l)/2 

b 0 -1 2/3 -4/3 0 

c 0 1 0 -V572 (*-l)/2 
In fact, the first two are equivalent. The linear coordinate change 

X l + i 1-i -2i X 

y I-)- 0 -2 + 2i 0 y 
z 0 -2 + 2z 2i z 

W H-> — Aw 

transforms the equation 

w = 2xy + z2 + x2z - (x2y - 2xz2) - (Sxyz - z3) + (xy2 - 2yz2) + y2z + 0(4) 

into w = 2xy + z2 + x2z + 7/22: + 0(4). Similarly, the last three are all equivalent and 
may be placed in the more convenient normal form w = 2xy + z2 + x3 + y3 + 0(4) by 
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means of the following coordinate changes :- 

w M> 18w 
3 

2 

-y/2i     V2i     -2i 
-V2i     V2i      2i 
-2        -2        0 

-2\/2z 2\/2z -4i 
\/2(\/3 + z)     V2(V3-i) 42 
-2 - 2VSi      -2 + 2x73^     -2\/6z 

-2^ 
V3 

-1-i l + i -\/2(l+2) 
(l-i)a;     -(l-2)a;2       \/2(l - 2) 

2cc;2 -2u -y/2 

where cu = exp(27rz/3). Setting up (3.4) for cubic terms normalized as #2, #3, 
#4, #6, #7, #8, or #9 gives an inconsistent system of equations in (3.9) and the 
parameters of the normal form, if any. 

Therefore, to finish our analysis of Bianchi class A symmetry algebras, it suffices 
to impose (4.1) and solve (3.4) in the variables (3.9) with /(#, y, z) one of the following 
five possibilities:- 

Case 1 
Case 2 
Case 3 
Case 4 
Case 5: 

f(x, y, z) = 2xy + z2 + x2z + y2z 
f(x, y, z) = 2xy + z2 + a;3 + y3 

f{x,y,z) = 2xy + z2+x2z 
f(x,y,z) = 2xy + z2+x3 

f{x,y,z) = 2xy + z2. 

This is easily done (with computer algebra). In cases 1-4, we find that 

P34 = tf34 = ri4 = r24 = n23 = ^31 = 0 

and the remaining variables are as follows 

PlA P2A qiA 924 r34 nn n22 ^33 ni2 

Case 1 

1/4 ±z/4 +2/4 1/4 0 -1/4 1/4 =F*/2 ±z/4 

1/8 0 0 1/8 1/8 0 0 0 0 

0 0 0 0 1/2 1/2 -1/2 0 0 

Case 2 27/64 0 0 27/64 27/64 0 0 ±y/27/S iv^ 

Case 3 0 0 0 0 0 0 P 0 0 

Case 4 0 0 0 0 0 0 P 0 0 

where /3 is an arbitrary parameter.  Complete details are included in the computer 
prgrams described in Appendix III. 

In each case, the right hand sides of (3.1) with N = 4 determine the quartic terms 
in the corresponding power series. In case 1, for example, we obtain the following 
possible continuations :- 

w = 2xy + z2 + x2z + y2z + ±(x + iy)4 + i(x ± iy)2z2 + 0(5) 

w = 2xy + z2 + x2z + y2z + |x4 + ±y4 + ^xyz2 - ±z4 + 0(5) 

w = 2xy + z2+ x2z + y2z + \x4 + ±x2y2 + ^4 - \z4 + 0(5). 
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Futhermore, if we now regard (3.1) with iV = 4 as linear equations for the matrices 
P,Q,R, then each of these continuations determines, already at fourth order, the 
symmetry algebra and hence the hypersurface itself. Thus, we only need to know 
these defining functions up to fourth order to fix the hypersurface. In fact, up to 
affine equivalence, there are only two hypersurfaces here. The coordinate change 

x H* ix, y i-> — iy, z H> — z 

effects the changes of sign in the first equation and 

X 1 —i -1 1 -i X 

y 
z ^2 

-1 i 
-l-i 

1 + i 
0 

y 
z 

transforms 

into 

2xy + z2 + x2z + y2z + -kfa - iy)4 - Ux + iy)2z 2^2 

2xy + z2 + x2z + y2z + \xA + ±x2y2 + |y4 

In case 2 we obtain 

4^   * 

w = 2xy + z2 + x3 + y3 4- §x2y2 ± ^§x3z =F ^§ysz - ^xyz2 - ^z* + 0(5). 

Again, the hypersurface is determined already by these quartic terms and the signs 
are an artefact of choice of coordinates. In case 3 we obtain 

w = 2xy + z2 + x2z 4-1(1 - 2(3)x4 + 0(5). 

In case 4, the parameter /? does not show up in the continuation:- 

w = 2xy + z2+x3 + 0(5). 

In fact, this case has non-trivial isotropy and the parameter (3 is absorbed into this 
isotropy. In any case, having an equiaffine symmetry algebra of dimension greater 
than three is grounds for exclusion. Case 5 also gives nothing of interest: there are 
two possible continuations but both have isotropy. 

The following theorem summarises the results obtained in this Section. 
THEOREM 4. Suppose S is an equiaffine homogeneous hypersurface in C4 with 

three-dimensional symmetry algebra of Bianchi class A. Then we may choose affine 
coordinates to render E in one of the following normal forms:- 

Al    w = 2xy H- z2 + x2z + y2z + |x4 + |y4 + jxyz2 - ±zA + 0(5) 

A2    w = 2xy + z2 + x2z + y2z + \x4 + ±x2y2 + \y4 - \z4 + 0(5) 
A3 2xy + z2 + x3 + y3 

+ 45^2ol2 zix^ + ^z _ ^t _ ia;yz2 _ ^,4 + 0(5) 

A4    w - 2xy + z2 + x2z + ax4 + 0(5). 
/n eacA case, ^Ae higher order terms in a convergent power series are determined by 
its truncation at fourth order as given. 

In Section 6 we shall see that these normal forms are distinct. 
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5. Solving the Equations: Bianchi Class B. In this section we shall adopt 
Blaschke normal form (2.1) for the defining function but make no further normaliza- 
tions of its cubic terms. Instead, we shall spend the remaining coordinate freedom 
(2.2) in normalizing its quadratic terms and the symmetry algebra. Lemma 1 is de- 
signed for this purpose. Recall that N is the symmetric part of M, the matrix of 
structure constants of our symmetry algebra. Recall that G — (gij) represents the 
quadratic terms in the defining equation and let H = G"1. Lemma 2 says how these 
matrices transform under (2.2). Thus, we can normalize the quadratic terms (2.3) 
and arrange that N be in one of the canonical forms (2.7). This puts NG into one of 
the following canonical forms:- 

Segre characteristic [111] [21] [3] 

NG 
' A     i/     0  ' 

is     A     0 
0     0/x 

" A     0     0 
1     A     0 
0     0/x 

" A     0     0 
0 A     1 
1 0     A 

As in [11], the Segre characteristic records the arrangement of blocks in the Jordan 
canonical form. It is preserved under (3.8). 

We may also normalize v. Consider, for example, the case of Segre characteris- 
tic [21]. The form of v is limited by Jacobi identity vN — 0. One possibility is that 
li = 0 and v — [0,0, h\ for some non-zero h. In this case, by executing the coordinate 
change 

1 X [ l/y/h 0            0    1 r x 
y l-> 0 1/hVh       0 y 
z L    0 0          l/h J Lz 

and redefining A, we find that h may be normalized to unity.   Similar reasoning in 
other cases yields the following canonical forms 

[111] [21] type 1 [21] type 2 [3] 

N 
" i/     A     0 " 

A     v     0 
0     0     0 _ 

0     A     0 

A     1     0 
0     0     0 _ 

"000" 

0     1     0 
_  0     0     VL _ 

"000" 
0    0     1 
0     1     0 _ 

V [0,0,1] [0,0,1] [1,0,0] [M,0] 
whilst maintaining (2.3) for the quadratic terms. Note that when the Segre charac- 
teristic is [3], the non-zero parameter h cannot be eliminated. 

To analyze Bianchi class B then, we construct the system (3.4) for 

f{x, y, z) — 2xy + z2 + an arbitrary linear combination of (2.4) 

and solve for the coefficients of this linear combination and the variables (3.9) normal- 
ized as above. This is easily done (with computer algebra). The details are contained 
in the programs discussed in Appendix III. The results are as follows. 

Segre characteristic  [111].  There are 14 possible solutions 6 of which have 
isotropy and may, therefore, be discarded. The remaining 8 occur in pairs under the 
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change of coordinates x «B- y. This leaves 4 possible hy per surf aces :- 

w = 2xy + z2 + ax3 - \x2y2 - |ax3z - \xyz2 - j^z4 - \axAy + 0(6) 

w = 2a;y + z2 + ax3 + 2a;?/z - |z3 + x2^/2 + ax3z - 2xyz2 + 0(5) 

w = 2xy 4- ^2 4- |2x2z + frn/z - ^23 - ^iy2z + ^ix37/ - ^x2?/2 

- Is^3 + fs^2^ " i*^2 " 4^2^2 - ife^4 + 0(5) 
w = 2x2/ + 22 + |za;2z - xyz + |z3 - |zy22; - ffa;4 + |ix3y + ^x2y2 

35 
32 

- fixy3 - ffy4 - ftsV + fxyz2 + |ty^2 _ 5^4 + 0(5)> 

The first of these is unusual in that the fifth order terms must be given before the sym- 
metry algebra closes. The parameter a in the first two power series is not invariant:- 

x i-> Ax    y H* X~1y   induces    a ^ \3a. (5.1) 

Thus, if a is non-zero, it may be rescaled to unity. On the other hand, if a vanishes, 
then (5.1) generates isotropy so the hypersurface may be discarded. 

Segre characteristic [21] type 1. There are 6 possible solutions 3 of which 
have isotropy and may, therefore, be discarded. This leaves 3 possible hyper surf aces :- 

w = 2xy + z2 + 2a;22; + 2xyz - ^z3 

+ 2x3y + x2y2 + 3x2z2 - 2xyz2 + 0(5) 

w = 2xy + z2 - 2x2z + 2xyz - |z3 

+ x4 - 2x3y + x2y2 + 2xV - 2rry^2 + 0(5) 

w = 2xy + z2 + 2x22; -f x3y - \x2y2 - \x2z2 - \xyz2 - ^z4 + 0(5). 

Segre characteristic [21] type 2. There is just one solution to (3.4) but it has 
isotropy and may, therefore, be discarded. 

Segre characteristic [3]. There are 3 possible solutions 1 of which has isotropy 
and may, therefore, be discarded. This leaves 2 possible hyp er surf aces :- 

w = 2xy + z2 + ax3 + 2x2y - 4a^2 + \ax4 + 2x3y - ^x2z2 + 0(5) 

w = 2xy + z2 + ax3 - ±x2y + ^xz2 + 2aa;4 + |a;3y + ^-x2z2 + 0(5). 

The parameter a is not invariant:- 

w i-* A2it;    y i-> X2y    z ^ Xz   induces    a i-> A~2a. (5.2) 

Thus, if a is non-zero, it may be rescaled to unity. So, these cases split according to 
whether a vanishes. We obtain a total of 4 possible hyper surf aces. 

Bianchi class B summary. The following theorem gathers the hypersurfaces 
obtained above. For convenience som$ elementary coordinate rescalings have been 
employed. 

THEOREM 5. Suppose E is an equiaffine homogeneous hypersurface in C4 with 
three-dimensional symmetry algebra of Bianchi class B. Then we may choose affine 
coordinates to render S in one of the following normal forms:- 
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Bl    w = 2xy + z2 + x3 - Ax2y2 - 2xsz - Axyz2 - z4 - Sx4y + 0(6) 

B2    w = 2xy + z2 + x3 + 3xyz - z3 + \x2y2 4- |x3z - ^xyz2 + 0(5) 

B3    w = 2xy + z2 + 2x2z + 2xyz - |z3 + 2y2z + 6x3y 

- 3x2y2 4- 6xy3 4- x2z2 - Sxyz2 + y2z2 - \z4 4- 0(5) 

B4    w — 2xy + z2 + 5x2z + 2xyz - \z3 4- 5y2z 

4- \x2z2 4- 13a;yz2 Hh fy2^2 - \zA 4- 0(5) 

B5    w = 2xy 4- 2:2 4- a;22: 4- Sxyz — z3 

+ lx3y + f a;2y2 + f x2z2 - \xyz2 + 0(5) 

B6    w — 2xy 4- z2 4- a;22: 4- Sxy^: — £3 

4- ^x4 4- \x3y 4- fx2?/2 - fx2^2 - \xyz2 4- 0(5) 

67^; = 2xy + z2 + x2z 4- 2x3i/ - 4a;2?/2 - x2^2 - 4x^2 - z4 4- 0(5) 

B8    w = 2a;y 4- z2 4- x3 4- x2y - 2xz2 4- |x4 4- \x3y - x2z2 4- 0(5) 

69^ = 2x?/ 4- 2:2 4- x3 4- x2^/ - 2x2:2 - |x4 + \x3y + ^x2z2 4- 0(5) 

BIO    w =:2xy + z2 + x2y - 2xz2 4- ^x3y - x2z2 4- 0(5) 

Bll    w = 2x2/ + ^2 + ^22/ - 2x^2 + ±x3y 4- ^-x2^2 4- 0(5). 
In each case, the higher order terms in a convergent power series are determined by 
its truncation as given. 

In the following section we shall prove that these normal forms are affinely in- 
equivalent. 

6. Interpreting the Solutions. Firstly, we deal with the possibility that E 
has isotropy. In [3] the non-degenerate affine homogeneous hypersurfaces in C4 with 
isotropy are classified. It is an elementary matter to go through the classification of [3] 
(using the computer programs described therein) and pick out those that are equiaffine 
homogeneous with equiaffine isotropy. There are just six such hypersurfaces:- 

THEOREM 6. Suppose E is an equiaffine homogeneous hypersurface in C4 with 
equiaffine symmetry algebra of dimension greater than three. Then we may choose 
affine coordinates to render E in one of the following affinely inequivalent normal 
forms:- 

11 w = 2xy 4- z2 4- 0(5) 

12 w = 2xy 4- z2 4- 4x2y2 4- ixyz2 + z4 + 0(5) 

13 w = 2xy 4- z2 4- x3 4- 0(5) 

14 w = 2xy 4- z2 4- x3 4- x4 4- 0(5) 

15 w = 2xy + z2 4- Sxyz - z3 4- |x2y2 - \xyz2 4- 0(5) 

16 ^=:2xy4-z24-3x^-z3-^x22/
2-^X2/z24-||^4 + 0(5). 

In each case, the higher order terms in a convergent power series are determined by 
its truncation at fourth order as given. 
The explicit defining functions in [3] are reproduced in Theorem 1. 

Next we deal with the class A hypersurfaces of Theorem 4. Appendix II attaches 
local affine invariants to every hypersurface, easily computable from the cubic terms 
of any defining equation. Their values on the class A homogeneous hypersurfaces are 
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as follows:- 

Cubic Invariants Remarks 

Al j=l    k=l    1=0 Abelian 

A2 i=l   *=i   '=o Non-Abelian 

A3 i=i    k=\   1=0 

A4 I=J=K=L=0 Parameter a 

(6.1) 

The remarks concerning hypersurfaces Al and A2 are directed at their symmetry 
algebras. From this table, it is clear that cases A1-A4 are affinely inequivalent and 
it remains to show that the parameter a in the hypersurface A4 is a genuine affine 
invariant. We remark in passing that the symmetry algebra of A4 is Abelian if and 
only if a = 1/8. Though all classical scalar invariants vanish, there is a non-vanishing 
vector-valued cubic covariant, namely 

^ijkl — Q>v O'kl'n 

for the hypersurface in Blaschke normal form (2.1). Under the coordinate freedom 
(2.2) this covariant transforms as a tensor under GL(3,C) and by scaling Sijki h^ 
r~1Sijki under w f-> rw. The same is true of the quartic coefficients bijki of a Blaschke 
normal form. For the normal form A3 it is clear that bijki = 9aSijkh Therefore, the 
same identity must hold in any Blaschke coordinates. In particular, this determines 
a in a manifestly affine invariant fashion. 

From the point of view of normal forms, the classification in Bianchi class A is 
now complete. However, finding an explicit defining equation w = F(x,y,z) for each 
hypersurface is a different matter. As explained in [1] for the case of surfaces in C3, 
the interpretation of the matrices P, Qy R in Theorem 2 as generators of the symmetry 
algebra implies that the entire power series F(x,y,z) may be defined implicitly by 

exp rP + sQ + tR 

L 0     0     0 

r ^ r01 
s 0 

i£ t 0 = 
0 0 

0 0  J _, L i J 

X 

y 
z 

F(x,y,z) 
1 

(6.2) 

Finding F(x,yyz) by this means can be quite hard and involves a certain amount of 
trial and error. An example is presented in Appendix IV. Fortunately, once they 
are found there is no need to know where they came from: to confirm that they are 
correct is easily accomplished with computer algebra as follows. 

• Apply Theorem 2 with f(x,y,z) = TiN F(x,y)z) for sufficiently large Af 
(say N = 5), at the same time imposing (3.3), to find the generators P, Q, R 
of the equiaffine symmetry algebra. 

• Now check that (3.1) holds for F(x,y,z) without truncation for these par- 
ticular P,Q,R. This implies that the hypersurface defined by F(x,y,z) is 
equiaffine homogeneous. 

• Verify that the symmetry algebra is Bianchi class A, calculate the invariants 
/, JyK,L and covariant Sijku and refer to table (6.1) to locate the hypersur- 
face in our classification. 

Finally, we deal with the class B hypersurfaces of Theorem 5. The values of the 
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invariants of Appendix 11 on these hyper surf aces are as follows:- 

Cubic Invariants Remarks 

Bl I=J=K=L=Q Segre [111] 

B2 ; —  11       1, —   29        i _    32 
J * 25      "- *  125      l — 3125 Segre [111] 

B3 »• _  131      /, _  1073      / _           864 
J — 289      '" — 4913      ' —      1419857 Segre [111] 

B4 „• _   73        >„ _   71       / _           27 Segre [111] J — 200      '" —  500      ' —      200000 

B5 -• _  U      7- _   29       7 _    32 
■'  — 25      "" ~  125      ' — 3125 Segre [21] 

B6 -• _  U      7. _   29       7 _    32 
J ~ 25      ^ —  125      ' — 3125 Segre [21] 

B7 I=J=K=L=0 Segre [21] 

B8 I=J=K=L=0 Segre [3] 

B9 I=J=K=L=0 Segre [3] 

BIO I=J=K=L=0 Segre [3] 

Bll I=J=K=L=0 Segre [3] 

(6.3) 

The remarks in this table are directed at the Segre characteristic of NG, computed 
in any Blaschke normal coordinates. Recall that this is affine invariant. In case [111], 
therefore, the cubic invariants are sufficient to identify the hypersurface. The first 
difficulty is to distinguish between B5 and B6. For this it is sufficient to consider the 
covariant 

Under the coordinate freedom (2.2) it transforms as an endomorphism under GL(3, C) 
and by scaling T^ H* rT^ under w H^ rw. A computation yields 

ll       2 

0     -5 
0      0 
0      0 

0 
0 
15 

and 
1 0 0 0 

0 0 0 
2 0 0 15 

for the normal forms of B5 and B6, respectively. Notice that the rank of T^ is 2 
for B5 but 1 for B6. This holds in any Blaschke coordinates and provides an easily 
computable affine invariant distinction. 

Now we must deal with B8-B11. The pair B8 and B9 are already affinely 
distinct from B10 and Bll at the cubic level:- 

2xy + z2 + x3 + x2y - 2xz2    versus    2xy + z2 + x2y - 2xz2. 

An easily implemented distinction is that the second of these admits an affine symme- 
try (5.2) fixing the origin. Infinitesimally, this corresponds to being an eigenfunction 
for a vector field of the form XljU^d/du1'. The pair B8 and B10 are distinguished 
from B9 and Bll by the vanishing of the covariant 

Uil^aiuaW-Sbiik16. 

The upshot of this discussion is that the proof of Theorem 1 is reduced to com- 
putation. Indeed, the identification of any equiaffine homogeneous hypersurface in 
the classification lists of Theorems 4 and 5, is a matter of computation and can be 
completely automated. Such an automation is described in Appendix III. This proves 
Theorem 1. 
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Appendix I. Trace-free Cubics. It is convenient to use the 2-1 homomor- 
phism of Lie groups 

SL(2,C) _>SO(3,Q 

as detailed in [7]. Specifically, if SL(2,C) is acting on C2 by matrix multiplication 

(Appendix LI) a     b 
c     d 

then the induced action on C3 

H* 

a2       -b2/2       -ab 
-2c2        d2 2cd 
—2ac        bd        ad + be 

preserves our quadratic form (2.3). The direct link is to associate 

s2 <-» -2x    st <+ z    t2 ■<->• y, 

identifying the quadratics in s,t with C3. In a similar vein, the action of SL(2,C) on 
binary sextics induces the action of SO(3, C) on trace-free cubic polynomials in x, y, z 
under the association 

s6 •H- -8^3 

sH •H- 4x2z 
sH2 

«-»■ 4:(x2y - 2xz2)/5 
sH3 

•H- -2(3xyz - z3)/5 
sH* •H- -(2xy2 - 2yz2)/5 
St5 •O- y2z 
t6 

•B- y3- 

Normalizing a sextic also normalizes the corresponding trace-free cubic. The table of 
normal forms (2.5) is now straightforward. In the generic case, a sextic polynomial 
has two isolated zeroes which may be placed at 0 and oo by a suitable Mobius trans- 
formation (Appendix 1.1). The necessarily non-zero coefficients of s5t and st5 may be 
set equal by 

for suitable A and then rescaled to unity with (2.2). This gives normal form #1 
in (2.5). At the other extreme, normal form #10 arises when the sextic has just one 
6-fold zero. 

Appendix II. Classical Invariants. A further consequence of identifying 
trace-free cubics in 3 dimensions with binary sextics is that the classical invariant 
theory of the sextic may be carried over (compare [8, Chapter 8]). In [4], generators 
of the ring of invariants are determined. They are of degree 2, 4, 6, 10, and 15. How- 
ever, it is only the invariants of even degree that extend from SO(3, C) to 0(3, C) so, 
for our purposes, the invariant of degree 15 may be discarded. Here are the invariants 
of degree 2 and 4:- 

aijkd ijk 
J = dijka13 at 
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A more convenient notation is to draw a circle for each copy of aijk and to wire them 
up as in accordance with how they are to be contracted (see [7]). Here are the four 
generators using this notation:- 

O      O—O 

O 
ii 
/ 

o—o 
J 

They freely generate the ring of all invariants. Local affine invariants are induced 
as follows. Writing a hypersurface in Blaschke normal form (2.1), we may compute 
/, J, K, L from its cubic terms a^k using the quadratic form ^ to raise indices. Under 
the remaining coordinate freedom (2.2), these quantities simply scale: 

Ji->rl        J^r2       K^r3K       L^rbL. 

Thus, when / ^ 0, the quotients 

3 = J/I2 

are absolute affine invariants. 

k = K/I3       I = L/I5 

Appendix III.  Computer Programs. 
the computer algebra system MAPLE. 

The following programs are written for 

defns classAcasel classB list 
makeeqns 
classA 
changecoords 
classAcontd 

classAcase2 
classAcaseS 
classAcase4 
classAcaseS 

classBsegrelll 
classBsegre21typel 
classBsegre21type2 
classBsegreS 

invariants 
locate 

They are available electronically. The following two locations 
• ftp://ftp.maths.adelaide.edu.au/pure/meastwood/maple/ea 
• ftp://ftp.maths.adelaide.edu.au/pure/meastwood/maple6/ea 

contain these programs for MAPLE V and MAPLE 6, respectively. They perform the 
following tasks. 

defns This program sets the scene by introducing the 4x4 matrices P,Q,R, 
making useful changes of variables, and specifying f{x1 y, z), a cubic polynomial with- 
out constant or linear terms. The possibilities used in the article are already included 
in this file. The results are saved in a file PQRf.m (in MAPLE internal format). 

makeeqns This program makes the equations that must be solved, as discussed 
in Section 3. The program 'defns' must be run first in order to specify f(x,y,z), a 
polynomial of degree 3 without constant or linear terms. The linear equations (3.1) 
and (3.3) are formed and solved. Then the equations (3.4) in the variables (3.9) are 
formed and stored in a file called eqns.m (in MAPLE internal format). 

classA This program solves the equations (3.4) arising from the ten normal- 
izations of Appendix I, assuming that the symmetry algebra is Bianchi class A. See 
Section 4 for discussion. 

changecoords This program checks that the coordinate changes in Section 4 
do as is claimed. 
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classAcontd This program takes one of the five final normalizations derived in 
Section 4 and again solves the resulting equations (3.4). 

classAcasel-5 In each case, the solutions from 'classAcontd' are used to specify 
the generators P,Q,R of the corresponding symmetry algebra and, by using Theo- 
rem 2 with iV = 4, the quartic terms in the defining equation are found. 

classB This program solves the system of equations arising from Blaschke nor- 
mal coordinates together with the normalizations in Bianchi class B as expounded in 
Section 5. 

classBsegrelll-3 These programs complete the analysis of Bianchi class B. 
In each case, generators of the symmetry are displayed and higher order terms in the 
defining equation are computed. 

list This file contains the final list of normal forms, as in Theorems 4 and 5. 
The program itself finds the equiaffine symmetries of any given hypersurface and 
determines whether the symmetry algebra closes. 

invariants This program computes the classical cubic invariants of a non- 
degenerate hypersurface, assumed to be in Blaschke normal form. The invariants 
are defined in Appendix II and used in Section 6. Also in Section 6 are covariants 
and other devices used in distinguishing between various hyper surf aces. These are all 
computed by this program. 

locate This program finds the symmetries of a hypersurface given in closed form 
and determines whether it is equiaffine homogeneous. It says if there is equiaffine 
isotropy. For equiaffine homogeneous hypersurfaces without isotropy, it expands the 
defining function to order 4 and changes to Blaschke normal form. Then it uses Sec- 
tion 6 to locate the hypersurface in the list Al-Bll. The hypersurfaces of Theorem 1 
are included in this file. In particular, bearing in mind the discussion of Section 6, 
the successful running of this program in these cases, proves Theorem 1. 

Appendix IV. Exponentation of a Symmetry Algebra. Consider the hy- 
persurface A3 from Theorem 4. It is convenient to rescale: w *->> (8/27)u>, x ^ (4/3)a;, 
y H-> (4/3)2/, z ^ \/32/27z. Then A3 is defined by the power series 

w = 12xy + 4z2 + 8a;3 + Sy3 + 15x2y2 + Sx3z - Sy3z - 6xyz2 - z4 + 0(5). 

Theorem 2 yields P,Q,R as follows:- 

0 0 -1 1/8 1 '  0 -2 0  0" r-1/3 0  0  0 
-2 0 0 0 0 0  1 1/8 0 1/3 0  0 
0 3/2 0 0 5 -3/2 0  0  0 5 0 0  0 1/8 
0 12 0 0 12 0  0  0 0 0  8  0 

Before substituting into (6.2), it is convenient to conjugate by 

10 0 0 
0 10 0 
0 0 8 1 
0     0     8-1 
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Then (6.2) asks us to calculate exp(rP + sQ + tR) where 

P = 

0 0 0     - 1/8     1  1 r   o    ■ -2 0 0     0 
-2 0 0 0        0 0         0 1/8 0     1 
0 24 0 0        0 Q = 0         0 0 0     0 
0 0 0 0        0 -24      0 0 0     0 
0 0 0 0        0 . .     0         0 0 0     0 

r -i/3 0       0 0     0 - 
0 1/3     0 0      0 

£ = 0 
0 

.    o 

0       1 
0       0 
0       0 

0      8 
-1     8 
0      0 . 

This is possible but much easier is to calculate exp(rP)exp(s(Q)exp(£i2).  Since the 
symmetry algebra is closed: 

this gives a different parametrization of the same hypersurface. We find 

exp(rP) exp(s<3) exp(£R) 

r01 X   ' 

0 y 
0 =z z 
0 w 

. i. . 1 . 

where 

w 
x 

y 
z 

Ss3et - 8e-* + 8 
—s2et — rs3et + re~t 

se* 4- 2rs2et + r2s3et — r2e_* 
8e* + 24rset + 24r2s2et + 8r353e* 8r3e"* - i 

If we make the affine change of variables 

W = (ii;-8)/8    X = x 

and notice that s = X2 — WY, then 

Y = y    Z = (z + 8)/8, 

X    =    -s2A-rVr 
y    =    (l + 2rs)s\ + r2W 
Z   =    (l + 3rs + 3r2s2)\ + r3W 

where A = e* and 5 = X2 - VFy. If we use the first equation to eliminate A from sY 
and 52Z, we obtain a quadratic equation and a cubic equation in r with coefficients 
that are polynomials in W, X, Y, Z. The resultant of these equations is, therefore, a 
polynomial identity in W,X,Y,Z. A computation gives 

W{WY - X2)7(mXYZ - 4X3Z - 3X2Y2 + W2Z2 + WY3 - 1) 

as the irreducible decomposition of this resultant. The basepoint of this hypersurface 
is the origin in (w, #, y, z) coordinates. This corresponds to (W, X, Y, Z) = (—1,0,0,1). 
Therefore, 

mXYZ - 4X3Z - 3X2Y2 + W2Z2 -h 4WY3 = 1 

provides an explicit defining function near (—1,0,0,1). If preferred, we can replace 
W i-> -W, Y »-> —Y, to obtain (1,0,0,1) as basepoint. 
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