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EXTENSION OF LIPSCHITZ MAPS INTO 3-MANIFOLDS* 

SERGEI BUYALOt  AND VIKTOR SCHROEDER* 

Abstract. We prove that the universal covering Y of a closed nonpositively curved 3-dimensional 
Riemannian manifold possesses the following Lipschitz extension property: there exists a constant 
c > 1 such that every A-Lipschitz map f : S -* Y defined on a subset S of an arbitrary metric space 
X has a cA-Lipschitz extension / : X -> Y. 

1. Introduction. We say that a metric space Y has the Lipschitz extension 
property (L) if there exists a constant c > 1 such that every A-Lipschitz map / : 
5 -> Y defined on an arbitrary subset S of some metric space X can be extended to 
a cA-Lipschitz map / : X —> Y. 

Obviously, to have property (L) is a bilipschitz invariant of Y. One can prove 
that the Lipschitz extension property implies that Y is contactible. A space with 
property (L) also satisfies a quadratic isoperimetric inequality for closed curves, i.e. 
a closed curve of length I in Y can be spanned by a surface with area < c'l2. This 
follows from the fact that the arclength parametrization of the curve defined on the 
circle 5^ C M2 of radius r = ^ is Lipschitz and can be extended to a Lipschitz map 
defined on the disc. 

A classical result of McShane [M] states that E has the property (L) with constant 
c(K) = 1. Applying this result to the coordinate functions, En has property (L) with 
constant c(En) = ^/n. Lang [L] showed that the optimal constant for En has to 
depend on n and that (L) is not valid for an infinite-dimensional Hilbert space. 

In [LPS] it is proved that the following three classes of Hadamard spaces have the 
property (L) 

(1) the 2-dimensional Hadamard manifolds; 
(2) the class of Gromov-hyperbolic Hadamard manifolds whose curvature is 

bounded by -b2 < K < 0; 
(3) the class of homogeneous Hadamard manifolds and euclidean Tits buildings. 
In this paper we study the validity of (L) for 3-dimensional spaces. Let us first 

investigate the standard homogeneous 3-dimensional geometries: 
S3, E3, H3, S2 x E, H2 xE, NIL, SOL, PSL 2 

Since S3 and S2 x E are homotopically nontrivial, they do not satisfy the extension 
property, while E3, H3 and H2 xE satisfies (L) by McShane's result and the case (3) 
above. Since PSZ/2(E) is bilipschitz to H2 xE (this observation is due to Epstein, 
Mess and Gersten according to [KLe]) the property (L) is satisfied. On the other 
hand NIL and SOL do not share (L) since they do not allow quadratic isoperimetric 
inequalities (see [Eetal]). 

We show that the property (L) holds for a large class of simply connected 3- 
manifolds. Our results can be summarized by the following two theorems. 

THEOREM A. Let Y be the universal covering of a nonpositively curved, closed 
Riemannian 3-manifold. Then Y satisfies (L). 
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THEOREM B. Let M be a metric space homeomorphic to a Haken manifold (pos- 
sibly with boundary) with zero Euler characteristic which is not of type NIL or SOL. 
Then the universal covering Y of M satisfies (L). 

We recall that a Haken manifold is a compact irreducible 3-dimensional manifold 
which contains a closed embedded 2-sided surface whose fundamental group is infinite 
and injects via the canonical inclusion homomorphism. Besides quotients of NIL and 
SOL Theorem B includes other classes of manifolds which cannot carry metrics of 
nonpositive curvature. By [BK], [Le] there are graphmanifolds which cannot carry 
metrics of nonpositive sectional curvature. 

Actually Theorem A can be reduced to Theorem B in the following way: Let Y be 
the universal covering of a closed nonpositively curved 3-manifold M. We represent 
M as Y/T where F is the group of decktransformations on Y. By a result of Eberlein 
[Eb], Y is either Gromov-hyperbolic or contains a two-dimensional totally geodesic 
flat plane F C Y. If Y is hyperbolic, then Y is in the class (2) considered above 
and the property (L) follows. If Y contains a flat plane, then by [B], [S] there exists 
also a closed flat plane. Hence there exists a flat plane F C Y such that the group 
IV = {7 £ r : ^{F) = F} operates with compact quotient on F. The proof of 
this result also shows that there exists indeed a flat F C Y which is embedded into 
M , i.e. for all 7 E T either 7(F) = F or 7(F) fl F = 0. Then the set of flat 
planes {7(F) : 7 G F} divide Y into convex subsets (blocks) and this decomposition 
is invariant under F. One can colour the blocks with two colours such that adjacent 
blocks have different colours. Clearly a finite index subgroup of F leaves the colouring 
invariant and hence M is finitely covered by a nonpositively curved manifold which 
contains an embedded 2-sided torus whose fundamental group injects. Thus M is 
finitely covered by a Haken manifold (which is not of type NIL or SOL). 

In order to prove Theorem B we use results of [Le] and [KLe] to show that the 
manifold Y is bilipschitz to a convex subset of a 3-dimensional Hadamard space which 
is built out of very special blocks corresponding to the geometric decomposition of 
M. Thus we have to prove property (L) only for this special class of Hadamard 
spaces, which we call Hadamard spaces with a SH-block structure. For details of this 
structure and the existence of the bilipschitz map see section 4. 

To prove (L) for a Hadamard space Y with 5^-block structure, we use the ap- 
proach from [LPS] which applies for all Hadamard spaces Y: 

Let / : 5 —¥ Y be a A-Lipschitz map. Then one can associate to every x 6 X 
a bounded closed convex subset A(x) :— f]seS B (/(s),2Adist(:r,s)) C Y. Note that 
A{x) = {/(#)} for x G S. In [LPS] it is shown that the map A : X ->> C, where C is the 
space of bounded closed convex subsets of Y endowed with the Hausdorff metric Hd, 
is Lipschitz with constant 2\/2A. In order to obtain the required extension / : X ~> Y 
one has to compose A with a Lipschitz-retraction R : C -> Y, where we identify Y 
canonically with a subset of C. Note that the existence of the Lipschitz retraction R 
is a special case of the general problem. 

In general the existence of R is not clear for arbitrary Hadamard spaces, we will 
show however: 

THEOREM C. Let Y be a Hadamard space with a SH-block structure and let C be 
the set of bounded closed convex subsets of Y endowed with the Hausdorff distance. 
Identify Y C C via the canonical inclusion y i-> {y}. Then there exists a Lipschitz 
retraction R : C -> Y. 

Indeed we will prove only a weaker statement, namely the existence of a quasi- 
Lipschitz retraction: 
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THEOREM D. Let Y be a Hadamard space with a SH-block structure. Then 
there are constants L and / and a map R : C -> Y such that dist (i?(yl),i?(A/)) < 
L Hd(A, A') + / for every A, A' G C and dist (y, R(y)) < I for each y e Y. 

Using a main result of [LPS] we can deduce Theorem C from the weaker Theo- 
rem D: first restrict the (L, Z)-Lipschitz map R to a set iV, which is a maximal discrete 
subset in C \ Y with the property that Hd(A, A') > I whenever A G iV , A' G Y U N. 
Then we define R' : iV U Y -> Y by R'\N = iJ|JV, JJ'IY = idy. The map R! is 
L'-Lipschitz and by the local extension result [LPS], Theorem 5.3, this map can be 
extended to a Lipschitz map on C. Note that Y is geodesically complete and satisfies 
the local doubling property required in the cited Theorem 5.3, since Y is easily seen 
to be bilipschitz to a Hadamard manifold with bounded sectional curvature. 

The aim of the rest of the paper is the proof of Theorem D. In section 3 we 
discuss the geometry of the space C of bounded closed convex subsets of an arbitrary 
locally compact Hadamard space in more detail. In section 4 we discuss Hadamard 
spaces with a block structure and more particular Hadamard spaces with a SH-hlock 
structure. In section 5 we construct the (L, Z)-Lipschitz retraction of Theorem D. 

We would like to thank Thomas Schick for the remark that property (L) implies 
the contractibility of the space. 

2. Preliminaries. We recall some general facts from the theory of Hadamard 
spaces, see [BrH]. Let (Y, dist) be a Hadamard space, i.e. a complete geodesic metric 
space satisfying CAT(O) inequality which means that triangles are thinner than in 
euclidian space. A Hadamard space is called CAT(—1), if triangles are even thinner 
than comparison triangles in hyperbolic space. The unique geodesic arc between two 
points y and y' is denoted by yy'. For every bounded nonempty subset A C Y there 
is a uniquely determined smallest closed ball containing A. Its center is called the 
circumcenter of A. With diam A we denote the diameter of A. If A, A' are closed 
bounded subsets of Y let 

HdOM') := inf{£ > 0 : A C U£(A'), A' C Ue(A)} 

be the Hausdorff distance, where U£(A) := {y G Y : dist(y, A) < e}. A subset A C Y 
is convex, if A contains yyf for all points y, y' G A. For a closed convex subset A C Y 
the distance function dist(-, A) is convex and for every y G Y there is a unique point 
PA{y) € A closest to y. PA ' Y —> A is called the metric projection onto A. 

3. The Space of Convex Subsets in a Hadamard Space. 

3.1. Convex hull and convex projection. Let Y be a Hadamard space, B the 
space of closed, bounded subsets in Y equipped with the Hausdorff metric denoted 
by Hd, C C B consists of the convex subsets. There is the canonical projection 
conv : B —> C which associates to each B G B its closed convex hull conv(jB). 

LEMMA 3.1. The map conv : B —> C is 1-Lipschitz and does not change the 
diameter. 

Proof. Connecting 6, b' G B G B by the geodesic segment increases neither diam B 
nor the Hausdorff distance to any B' G B by convexity of the distance function. The 
claim follows since conv(B) coincides with closure of Un-Bn, where BQ = B and Bn+i 
is obtained from Bn by connecting each pair of points 6, br G Bn by the geodesic 
segment. D 

Given a closed, convex C C Y, we have the metric projection pc : Y -» C which 
is a 1-Lipschitz map. The map pc : C —> C, Pc(A) = conv opc(A) is called the convex 
projection on C. 
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LEMMA 3.2. Let C be a closed, convex subset in Y. Then the convex projection 
pc : C —> C is 1-Lipschitz. 

Proof. Since pc is 1-Lipschitz, the induced map pc : B -> B is 1-Lipschitz too. 
Hence, pc is 1-Lipschitz by Lemma 3.1. □ 

LEMMA 3.3.  The diameter diam : C -¥ E is a 2-Lipschitz function. 
Proof Given A, A' £ C, we take ao, ai e A which approximate diam A up to 

an arbirarily small error (we do not suppose that A is compact). Let ag, a'], G -4' be 
closest points to ao, ai respectively. Then 

diam A' > dist(ao,a,
1) > dist(ao,ai) - 2Hd(,4,,4/)- 

Hence, the claim. Q 

3.2. Geodesies in C. Here we study in more detail the space C = C(Y) assuming 
that the Hadamard space Y is locally compact. The points of Y are elements of C, 
and this gives the canonical isometric embedding Y C C. We identify Y with its image 
inC. 

The space C is a geodesic space (see Proposition 3.5), and one can show that the 
Hausdorff metric is convex in some weak sense. Given y, y* £ Y, there is a unique 
midpoint z E C between y, y1, which coincides with the midpoint of the segment 
yy' C Y. This follows from the fact that the closed balls in Y of radius dist(y,?/)/2, 
centered at y, y' respectively, have a unique point in common, namely, z. This 
argument shows that Y is a (closed) convex subset in C. Moreover, the canonical map 
circ : C —> Y given by the circumcenter of a convex set has the property 

Hd(A,circ(^)) = inf Hd(i4,y), 

i.e., circ is a metric projection.   However, already for Y = M2 examples show (see 
[LPS]) that this map is not Lipschitz. 

The following lemma is a version of Theorem 1.8.2 from [Sch] where only the case 
Y = W1 is considered. 

LEMMA 3.4.  The space C is complete. 
Proof Let {Ai} C C be a Cauchy sequence. Then Bj = Ui>jAi E B for each 

j > 1. Furthermore, {Bj} decreases, Bj+i C Bj. Since Y is locally compact and 
hence proper, the set B — PijBj is not empty. We show that Hd(i4i,B) < e for each 
e > 0 and all sufficiently large i. First, we note that Hd(A;, Aj) < e for all sufficiently 
large i, j. It follows that Bj C C/g^) and thus B cUe{Ai). Similarly, Ai C U£{Bj), 
and we obtain Ai C i7e(B). Then Hd(^,B) < e for ^ = conv(#) by Lemma 3.1. 
Thus B = \\miAi. D 

PROPOSITION 3.5. Lei Y be a locally compact Hadamard space. Then C = C(Y) 
is a geodesic space. 

Proof. We first prove the existence of a midpoint between any two A, A' € C. This 
is true for any Hadamard space Y without the requirement to be locally compact. 

Let B C Y be the set of the midpoints of all geodesic segments aa' C Y with 
a e A, a' e A'. We put A = ^E.d^A.A') and assume that there exists b E B with 
dist(6,i4) > A. This b is the midpoint of a segment aaf with a E A, a' E -A'. Since 
A is convex, the distance function to A is convex. Thus dist(a/, A) > 2dist(6,^4) 
because dist(a, A) = 0. Hence, dist(a/, A) > Hd(i4,-A') contradicting the definition of 
Hd(A, A'). This shows that B lies in the closed A-neighbourhood of A, U\(A). 
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On the other hand, for each a G A there is b G B with dist(6, a) < A: let b be the 
midpoint of aa' where a' G A' is the closest point to a, thus dist(a, a') < 2A. This 
shows that A C U\(B). Thus Hd(J3, A) < A and, similarly, Hd(B, A') < A. By the 
triangle inequality 2A < Hd(A, B) + Hd(J3, A') < 2A and hence 

Hd(B,i4) = A = Hd(B,i4/). 

For the convex hull 5 = conv(I?) we have Hd(B,i4), Hd(J§,>l/) < A by Lemma 3.1. 
Hence, Hd(jB,-4) = A = H.d(B,Ar) by the triangle inequality. Thus B is a midpoint 
between A and .4'. 

By Lemma 3.4, C is complete. It follows that C is geodesic. D 

REMARK 3.6. Two sets A, A' G C possess a unique midpoint in C only in 
exceptional cases, see [Sch]. Yet, the procedure described above gives the canonical 
geodesic segment between any two points in C. 

3.3.  Geodesies in C associated with a distance function.  Let h : Y —> 
M be the distance function to a closed, convex subset C C Y. Then h is convex 
and 1-Lipschitz. Furthermore, the sets Ct = {y G Y : h(y) < t} are convex and 
Hd(Ct,CV) = I*' - t\ for each t, t' > 0. 

Given A G C, we let tA •— inf{* > 0 : Ac Ct}, pt := pCt : C -^ C be convex 
projections. 

LEMMA 3.7. For each A G C, 0 < t < tA we have 

Kd(Aipt(A)) = tA-t. 

Proof. If tA = 0 then the claim is obvious. Otherwise A fl dCtA ^ 0 by the 
definition of t^ and pt(A) C Ct, we have Hd (A,p£(4.)) > tA — t. On the other hand, 
Hd(-A,pt(i4)) < ^A — ^ because 4. C CtA and by properties of the metric projection 
Pt :Y -t Ct. Using Lemma 3.1, we obtain Hd (A,pt(A)) < tA ~ t. U 

Using the distance function ft, we construct geodesic paths in C as follows. 

PROPOSITION 3.8. For each A G C there exists a unique path a A • [0,oo) —> C 
with the properties: 

(1) a Ait) = A for all t>tA; 
(2) crA{t) is the minimal convex subset in Ct containing pt o aA(tf) for all t' > t. 

Furthermore, the restriction (JA\[^^A\ ^ a geodesic in C. 
Proof We first show that a A exists. By (1), it is already defined for all t > tA- 

For dyadic numbers Dn — {k2~n : k = 0,1,..., 2n} C [0,1] we define by induction 

7n(l) - A,    7n (/c2-n) - pstA o 7n ((fc + 1)2-) , 

where s = A;2_n, k = 2n - 1,..., 1,0. Clearly, 7n(s) G C is the minimal convex 
subset in Ct, t = stA, containing pt o 7n(5/) for all sf > s G jDn- It also follows 
from this definition and Lemma 3.7 that the map 7n : Dn -> C is a homothety with 
coefficient ^A- In particular, Hd(-4,7n(s)) < tA for each 5 G Dn. On the other hand, 
Pt{Af) C pt oftyCA') for each A' G C, ^ > t. Thus 7n+i(s) D 7n(s) for each 5 G -Dn. 
In other words, the sequence of convex sets, 7n+p(s), p > 1 increases and all these 
sets lie in the ^-neighbourhood of A. Thus there exists a limit 

(TAistA) =   lim  7n+p(5) G C 
p—>-oo 
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for each s G D = UnDn. This defines a A on "dyadic" numbers in [0,^]- Clearly, a A 

is isometric on this set and possesses property (2). Now, using Lemma 3.4, we extend 
a A to an isometric map [0,^] -^ C, which possesses property (2). 

Assume that there is another map af
A : [0, oo) -» C with properties (1), (2). Thus 

O-'A coincides with a A on [£4,00), in particular, cr^(^) = A. It follows from the 
construction of a A that cr^) C 0"^(£) for each t > 0 since (7^(i) contains p^ o cr^^7) 
for all t* > t according (2). Then by minimality a^ = a A- 0 

LEMMA 3.9. For every A, A' e C, the function 

<PA,A' (*) = Hd (<7A(t), GA> (t)) 

increases on [0, 00). 
Proof, This immediately follows from Lemma 3.2 and the construction oi GA- Q 

4.  Hadamard Spaces with Block Structure. 

4.1. Block decomposition of Y and the associated tree. We say that a 
3-dimensional Hadamard space Y has a block-structure, if it has a decomposition 
Y = \Jv^yYv with the following properties: each block Yv is a closed, convex subset 
with non empty interior and geodesic boundary dYv, which is the countable union of 
disjoint 2-flats in Y. Every two blocks Yv, Yv> either are disjoint or have a common 
boundary component which separates them. We assume in addition that the minimal 
distance between different boundary components of Yv is at least 10. 

A boundary component of a block is called a wall. Each wall is adjacent to exactly 
two blocks and is a convex subset of Y isometric to E2. 

Let T = T(Y) be the graph dual to the decomposition Y = Uv^vYv. In other 
words, the vertex set of T coincides with V and vertices v, v' G V are connected by 
an edge if and only if Yv D Yvi ^ 0, i.e., the edges of T are associated with the walls. 
Clearly, T is a tree with vertices of infinite (countable) degree. We equip T with a 
length metric dist^ in which every edge has length 1. 

LEMMA 4.1. If A C Yv, A' C YV' for some A, A' e C and distT(v,v') > 1 then 
Hd^,^) > 10. 

Proof The blocks Yv, Yv> are not adjacent by the condition. Thus each geodesic 
segment aa' C Y with a G A, a' G A* must intersect at least two walls. Hence, 
dist(a,a/) > 10. D 

4.2. Exhaustion of Y associated with a Busemann function on T. Fix 
£ G dooT and a Busemann function B^ : T —>> E associated with f. We can assume 
that B^(v) G Z for each v G V. Given n G Z, we define 

Cn=U{Yv : Bz(v)<n}. 

Then Cn is a closed, convex subset in Y whose boundary dCn is the countable union 
of walls. Clearly, we have Cn C Cn+i and Y = Un^zCn. 

Furthermore, for each block Yv there is exactly one distinguished boundary com- 
ponent of YVi namely, the wall Wv separating Yv from f. This wall corresponds to the 
first edge of the geodesic ray in T from v towards £. 

4.3. 5iJ-block structure on Y. We say that Y has a SH-block structure, if 
the set V can be decomposed as V = 5UiJ with the following properties: every block 
of type S (Seifert type, or 5-block for shortness) is isometric to the metric product, 
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Yv = Fv x M, where Fv C H2 is a convex subset bounded by countable many disjoint 
geodesic lines. Clearly, every S-block is a CAT(O) space. 

Every block Yv of type H (hyperbolic type, or iJ-block) is isometric to the comple- 
ment of the union of countable many open disjoint horoballs in H3 (with the induced 
intrinsic metric). Such a block is also only a CAT(O) space because its boundary 
components are convex and flat. 

Furthermore, we require that if different 5-blocks Yv, Yv> are adjacent along a 
wall W, then the E-factors of the decompositions Yv = Fv x E, Yvi — Fvi x E are 
orthogonal along W (we refer to this as the 7r/2-condition). 

We allow that any of the sets S, H but not both might be empty. 
We denote by Core Y the union of all walls and S-blocks in Y. We do not exclude 

that CoreF = Y, however, we always have CoreY / 0 by the definition of the SH- 
block structure. Each connected component of CoreY is either a wall separating 
two i^-blocks or the union of S-blocks and hence closed and convex. Furthermore, 
different components of CoreY are separated by the distance at least 10. 

4.4. Existence of a Sil-structure. In this section we show that a manifold 
satisfying the assumptions of Theorem B admits a SiJ-structure. 

Decompose M by the JSJ-decomposition into components which are Seifert 
fibered or atoroidal. Each component of the decomposition can be equipped with 
a structure modelled by the standard geometries, where the assumption rules out the 
53 and S2 x E geometry. If the decomposition is nontrivial, only E3, H3 or H2 xE can 
occur, i.e. if one of the components is modelled by one of the remaining geometries 
iV/L, SOL or P5L2(E), then M is a compact quotient of theses geometries. 

Thus we can assume that the decomposition is nontrivial. Let us first assume 
that there is no hyperbolic piece in the decomposition. Then by a result of Kapovich 
and Leeb [KLe] the universal covering Y of M is bilipschitz to a manifold with SH- 
structure where all blocks are of type 5. Note that in our definition of a block structure 
we have the assumption that walls are separated by 10. This additional requirement 
is easily obtained. 

If the decomposition contains a hyperbolic piece then by a result of Leeb [Le] M 
carries a complete metric of nonpositive curvature. This metric is a geometric one on 
the Seifert pieces. On the hyperbolic pieces the metric is of constant curvature away 
from the boundary walls which is smoothly modified near the boundary tori and flat 
in a small neighbourhood of these tori. Using a bilipschitz modification in the way 
described by [KLe] for the metric on the universal covering Y of M one can assume 
that adjacent Seifert pieces satisfy the 7r/2-condition and that different walls have 
distance > 10. In addition we assume that different walls of a hyperbolic piece have 
distance > 12, that the curvature is constant -1 outside of the 1-neighbourhood of 
the walls and — 1 < K < 0 on the whole block. We refer to this metric as the smooth 
metric on Y. Near the boundary walls of hyperbolic pieces, the smooth metric does 
not satisfy the requirement of our definition of i7-block. Thus we have to modify this 
metric near a wall to obtain a SH-block structure. 

The 3-neighbourhood of a wall of a hyperbolic block in the smooth metric can be 
written as F x [0,3] , where F x {0} is the boundary fiat and the segments 11-> {p} x {t} 
are unit speed geodesies orthogonal to the boundary. On the other hand let H x [0, oo) 
be the canonical parametrization of the closure of the complement of a horoball in H3. 
We will cut off F x [0,3] from Y and glue back H x [0,2 4- to] where to and isometries 
on both boundary components will be constructed in the sequel. The new metric 
will be bilipschitz to the old one and after the corresponding change at all walls of 
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hyperbolic blocks we obtain a 5i7-structure. 
Note that Z2 operates on F x [0,3]. We choose an isometry f0 : H x {0} -> F x {0} 

and obtain an isometric action of Z2 on H x [0, oo). There exists a value £o such 
that the volumes of the tori H x {to}/12 and F x {1}/Z2 are equal. Note that 
£o < 1 since — 1 < K < 0 for the smooth metric. Consider the Z2-equivariant map 
h:Hx {t0} -+ F x {1}, f^to) = (/o(p),l). Let /, : ff x {t -to] -+ F x {*} 
defined by /t(p,i • ^o) = (fo(p),t) for 0 < t < 1. Now we deform fi in a Z2-invariant 
way via maps ft : H x {£o - 1 + t} -> F x {^}, 1 < ^ < 2, such that ^induces an 
affine map between the corresponding tori and such that all these maps preserve the 
volume. This is possible, since the curvature of the smooth metric is constant in this 
region. Finally we deform /2 via maps ft : H x {^o - 1 +1} -> F x {£}, 2 < t < 3 to 
an isometry /s : H x {to + 2} —> F x {3}. In the last step we do not require the map 
to be equivariant. However it is clearly possible to choose this deformation in a way 
that we obtain a bilipschitz map / : H x [0,2 + to] —> F x [0,3] which is an isometry 
on both boundary components. 

5. Proof of Theorem D. If the space Y would be a CAT(-l) space, it would 
be easy to construct a Lipschitz map C —> C which associates to every A E C a set 
with uniformly bounded diameter. E.g. choose a point u E dooY and take the convex 
projection of A on the horoball centered at u which lies distance 1 from A. One can 
then pick a point in this projected set to obtain a (L, /)-Lipschitz retraction C -> Y. 

In our situation we do not have this uniform hyperbolicity. Nevertheless we will 
construct a map Stop ORQ : C —> C which associates to every A 6 C a convex subset 
with a very special shape. The map RQ : C —>* C is a modification of the projection 
in the CAT(—l)-case and Ro(A) has either small diameter or is contained in CoreF 
(which was defined in sect. 4.3). The map RQ is defined in sect. 5.2, 5.3. 

The stopping map Stop : C —v C is a general construction valid for any Hadamard 
space with a block structure. By the discussion in 4.2 a manifold Y with a block 
structure has the exhaustion Y = Un^zCn. Given this exhaustion one can associate 
to every A E C a sequence (An)nez in C such that A^ = A if A C Ck and Ak C Ck- 
The construction of Ak out of A^i uses a geodesic in C associated to the distance 
function to Ck as in sect. 3.2. 

In this way we associate to every A G C a piecewise geodesic (A and (in some 
sense) (A depends Lipschitz on A (see Lemma 5.1). The stopping map chooses an 
appropriate point on this piecewise geodesic. The result of Stop ORQ is either 

(i) a set with small diameter, or 
(ii) up to a small error an interval in E-direction of an 5-block, or 
(iii) essentially an arc on a circle in a boundary wall of a hyperbolic block. 
In a last step we have to choose in each of these cases a point R(A) G Y in a 

consistent way. This choice is described in sect. 5.5.2. 
The required quasi-Lipschitz retraction R will be obtained as the composition 

of several admissible maps C —> C. A map / : C -> C is said to be admissible if it 
decreases the diameter, 

diamo/(A) < diamA   for every   A G C. 

For instance, every convex projection is admissible by Lemma 3.2. 

5.1. Stopping map Stop. In this section we assume that Y has a block- 
structure as defined in sect. 4.1, 4.2. 
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5.1.1. Canonical piecewise geodesic paths in C. We recall the exhaustion 
Y = Un^zCn. Given A E C, n E Z, there is a unique path cr^ : [0,oo) -» C 
associated with C = Cn by Proposition 3.8. The restriction cr^n|[0,£/ijn] is geodesic, 
where tA,n '-= inf{t > 0 : A C Cn,*}- Note that tA,k > 0 for every k < n(A), where 
n(A) := min{n E Z : A C Cn}. 

For each A E C we define the canonical piecewise geodesic path CA * [0, oo) —> C 
using geodesies 0\4,n- A sequence of break points tk > 0, k E Z will be defined in such 
a way that tk < tk-i, CA|[^,^-I] is a geodesic in C between Ak = CA(*&) and Ak-i, 
Ak C Cfc and tk is a minimal ^ > 0 for which CA(0 C Cfe. 

To this end, we put n = n(A), tfc = 0, CA(^) •= ^4 =: A^ for all k >n. Assuming 
that tk, (A\[0,tk] and Ak = CA(^) are already defined for k < n, we put 

£fc-l = *fe + ^Ajb.fc-lj      Ak-l = CA(^-I),      CA(*) = 0\4fc,/c-l(U-l - t), 

where tk < t < tk-i. This gives a well defined value CA(^) since (jAfcjfc_i(tAfc,fc-i) = 
Ak by definitions of cr^ and t^. Furthermore, CA;|[*ibj*A:-i] is a unit speed geodesic 
in C between Ak and Ak-i- For every t E (tk+i^tk], the set CA(^) C Y lies in 
Ckjk-t = {y E y : dist(i/,Cfe) <tk— t}. Moreover, by Proposition 3.8, CA(0 is the 
minimal convex subset in C = Ck,tk-t containing pc o CAC^) fo^ all tjfe+i <t'<t. 

Finally, A/.(-4) := ^-i - tk — tAk,k-i > 10 for every fc < n(i4) by the defining 
properties of our blocks and the definition of t^- Hence, ^kei^pk^k-i] = [0, oo), and 
CA is defined on [0, oo). 

It immediately follows from the definition and Lemma 3.2 that the map A \-¥ CA(£) 

is admissible for every t > 0. 

5.1.2. Monotonicity of the Hausdorff distance between canonical paths. 
Given A, A' E C, we define continuous piecewise affine functions 5, s' : [0, oo) —> 
[0,oo), 5(0) — 0 = s'(0) depending both on A, A'. We put inductively tk-i = 
tk +max{A/c(A), A/^(A,)}, k E Z, subject to the condition £& = tk(A, A') — 0 for each 
A; > max{n(A),n(A/)}. Now, if Afc(A) > Afc^') then we define 

5(tfc+t) = tfc(j4)+t   for    0<t<Afc(i4). 

If Afc(i4) < Afc^) then using A^ := A^A') - A*(4) we put 

5ft   +rt = /
i*(A) for0<t<A2„ 

^      ;      \^(A)+^-A|    for A!<*< A^A'). 

Similarly, we define 5' using break points tk^A') instead of tk{A). 
The meaning of this definition is that the length A/-(A) of the geodesic subsegment 

AkAk-i C CA might be larger than the corresponding length Afc(A/) for A'. In that 
case, we move along CA by 5 from Ak to Ak-i with unit speed simultaneously staying 
for a while at A'k till CA 

0 5 reaches the same level and then move along £4/ by s1 from 
A'k to A^.j with unit speed. 

LEMMA 5.1. Given A, A' E C, the function 

V>A,A'(*)=Hd(CAOs(*),CA'Os'(*)) 

decreases on [0,00), where s, s' are defined as above. 
Proof. This follows from Lemma 3.9 by untangling definitions of canonical paths 

CA, CA' and speeds 5, s'. D 
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COROLLARY 5.2.- For every A, A' eC, k eZ we have 

Hd(Ak,A'k)<Ed(A,A'), 

where Ak = CA 
0tk(A). 

Proof. This follows from Lemma 5.1 and the fact that ^(^4) = s(tk), ^(^4') = 
s'^fe), where tk = tk(A,A') G [0, oo) is involved in the definition of the speeds 5, sf. U 

5.1.3.  Critical, touching and stopping points of a canonical path. We 
denote by Ci the subspace of C which consists of elements sitting in one block. Clearly, 
Ci is closed in C and if a path CA reaches Ci then it never leaves it. We define the 
critical point of (A as the first point at which (A hits Ci, 

tcr - tcr(j4) - inf{* > 0 : CAW e Ci}. 

It follows from the definition of CA that if t G [tk+i^k] satisfies t < tcr then tk < tCT. 
Thus tcr is always a break point for CA, tcr = tk for some k £ Z, or tcr = oo. 

LEMMA 5.3. For each A E C, the critical point tcr(j4) is finite. 
Proof. Since A is bounded and distances between boundary components of all 

blocks are uniformly separated from 0, there is only a finite number of blocks whose 
interiors intersect A (if there is no such block then A sits in a wall). If tk < tcr for 
some k < n(A) then passing through tk decreases this number for CA(^) at least by 
1, whereas moving along CA does not change this number while t G (tk, tk-i). Hence, 
the claim. □ 

We denote by ACT — CA(tcr)- One can easily predict the block where Acv sits 
only by knowing A G C. To this end, consider the (finite) subtree TA C T spanned 
by the set {v G V : AD Int Yv ^ 0} (if this set is empty then A sits in a wall W 
and TA is the edge of T corresponding to W). There is a unique vertex v G TA with 
B^(v) = mini?£|TA =: k. Then Acr C Yy and, moreover, Acr D A ^ 0 (however, it 
is not true in general that Acr C A). Everything interesting for us will take place 
either in Yy or in the adjacent block Yyt with B^v') = k — 1. Namely, every point 
of the (broken) segment CA ([£&>M0<4)]) 

w^h the stopping point /JL(A) defined below 
corresponds to an element of C sitting in one of these two blocks. In particular, this 
holds for Stop(A) = CA 

0 ^(A). 
The map crit : C -> Ci, crit(i4) = Acr is not continuous: every A G Ci which 

touches Cn(A)-i is a point of discontinuity, and jumps might be arbitrarily large. 
However, we have the following 

LEMMA 5.4. IfEd(A,Af) < 10 for some A, Af e C then Acr, Af
cr are sitting in 

one and the same block or in adjacent blocks. 
Proof We can assume that Af = A'cr by Corollary 5.2. Next we note that 

A n A^ ^ 0 for each A G C. If the claim would not be true then for each a G A fl Acr 

we would have dist(a, A') = dist(a, A'cr) > 10 since Acr, A
f
cr would be separated by at 

least one block. But then H.d(A,A') > 10. This is a contradiction. D 
Assume that for A G C we have Ak G Ci for some k < n(A). We define the fcth 

touching point Tk = Tk(A) by Tk := ^-i — 8k, where 

5k = 8k(A) = wf{6 > 0 : Ak n Ck-i,8 ? 0}- 

Obviously, 8 k (A) < A/C(A), thus we have Tk G [tkitk-i]. Furthermore, Ak C Ck-i,Ak\ 
lntCk-i,5k because Ak sits in one block. Hence, Tk -tk = Ak — 8k < diamyU- 
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Finally, we define the stopping point // = fi(A) G [0, oo) for (A as follows. Let 
tcr = tk be the critical point of CA, k < n(A). We take the fcth touching point 
Tfc G [tk, tk-i] and put fi = Tk + 5 if Tk -f 5 < ^-i. Otherwise, we let A = 5 — ^ > 0 
and put /j, = Tk-i 4- A. So, we have fj, G [U,^_i] in the former case and we show 
that fj, G (tk-i,tk-2 — 5] in the last case (recall that tk-2 — tk-i > 10). This is so 
because tk-i < r^-i < fi and A < 5 < 10 < Sk-i- The inequality ^_i > 10 holds 
for the following reason. Since Ak G Ci, the set Ak-i sits in the wall Wv of the block 
Yv containing Ak, B^(v) = fc. Then the level 5jb_i is at least the minimal distance 
between different boundary components of the blocks, i.e., Sk-i > 10. Hence, the 
claim. 

We define a map Stop : C -* C by Stop(A) = (A0
K

A
)' 

We also Put ^(A) := 5fc(A), 
where tk — tcr is the critical point of CA, fc < n(A). Again, Stop possesses points of 
discontinuity. Nevertheless, we have the following 

PROPOSITION 5.5. For every A, A1 G C with H := EdiA^A') < 5 the sets 
Stop(A); Stop(A') sit in one and the same block and 

Hd(Stop(A),Stop(A')) <SH 

except may be the case when Acr,Af
cr sit in one and the same block and 5(A) > 5 > 

(!>(A'). In this exceptional case we have 

Hd (Stop(^), Stop(A/)) < 4iJ + diamo Stop(A). 

Furthermore, Stop(y) G Y for every y G Y C C and dist (y, Stop(2/)) < 5. 
Proof. We consider several cases. 
(a) i4cr, A^ sit in different blocks. Using Lemma 5.4, we can assume W.L.G. 

that Acr = Ak, Af
cr = A'k^. By Corollary 5.2, Hd^, Ak) < H. Next we have either 

A'k = A'^ = A' or AJ. ^ Ci. In either case, A'k meets Cfc_i. Thus Hd^, Ak) > 6(A) 
because Ak does not intersect IntCk-ij^A)- Hence, 6(A) < H < 5. This means that 
both stopping points Stop (A), Stop (A') sit in one and the same block Yvi, B^(v') = 
k-1 and//(A) = tk-2—p, M^') = ^k-2^Pr^ where p = &k-i+ 5(A)-5, p' = ^_i-5. 
Note that l^-i - 8'^ < Hd(Afc_i, A'^) < H and 

|p-pl|<|^1-*Jt.1| + *(A)<2fr. 

By Lemma 5.1, we have 

Hd (CA(^-2 - 5),CA'(^_2 - s)) < H 

for every 5, 0 < 5 < mm{Ak-i(A), Ak-i(A')}. Since p < A^.^A), p' < A^-i^'), 
we obtain 

Hd (Stop(^), Stop(A')) = Hd {U(tk-2 - P)XA>(4-2 - P')) 

< Hd (a(<fc-2 - P), ^-(^-2 - p)) + IP - />'i 
<3i?. 

(b) Acr, -^cr ^ in one an<i ^e same block Yv and (5(^4), 6(A1) > 5 or (5(A), (J(A') < 
5. We have Acr = Ak, A'cr = A'k for k = B£(u) and \5{A) - 6{A')\ < H. Suppose first 
that <5(J4), b{A!) > 5. This means that both stopping points Stop(yl), Stop(A') sit in 
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Yv and /J,(A) = tk-i - p, ^(A') = t^ - p! for p = 5(A) - 5, p' = SiA') - 5. As above, 
we obtain 

Hd (Stop(A), Stop(^)) < Hd (CA{tk-2 - P), U> (^_2 " P)) + \P - P'\ < M. 

Now we assume that 6(A), 6(A') < 5. As in the case (a), this means that both stopping 
points Stop(yl), Stop^') sit in Yvt adjacent to Yv, B^(v') = k — 1. In this case, we 
have fi(A) = tk-2 - P, ^(A') = t'k_2 - p' for p = fa-i + 6(A) - 5, // = ^.i 4- 6(A') - 5 
and |/9 - p'\ < |4-i - <%_il + l^(^) ~ ^(^Ol <2H. As in the case (a), this implies 

Rd(Stop(A),Stop(A'))<3H. 

(c) Acr, A'a sit in ^ and 6(A) > 5 > J^')- We have 0 < 6(A) - 6(A') < H 
and Hd(Stop(^),CA'(^_i - PJ) = Hd (Ufe-i - p)XA'(t,k_1 - p)) < H for p = 
6(A) — 5 by Lemma 5.1. The Hausdorff distance between £4/ %_]_ —p) and Stop(^4/) = 
CA' 

0 P>(A') can be estimated from above as the sum of lengths of three geodesic 
segments in C obtained by restricting (A' on [t^ -/M'^J, [^_1,T^_1], [T^,^^')] 

respectively. The length of the first one is p, the second one at most diam^.^ and 
the last one 5 - 6^). All together they give at most 6(A) — 6(Af) + diam^_1. 
Since H.d(Ak-i,^4Jt_i) < H and diamA^-i < diamoStop(^4), we have diamA^ < 
diam o Stop(A) + 2H. Thus 

Hd (Stop(^), Stop^7)) < 4iJ + diamo Stop(^). 

The last assertion of the Proposition immediately follows from the definition of Stop. 
D 

From Proposition 5.5 we easily obtain 

COROLLARY 5.6. For any choice R(A) £ Stop(i4) we have 

dist(i?(A),R(A')) <4:lId(A,A') + 2D 

for every A, A' £ C with diam o Stop (^4) < D and diam o Stop (A') < D, and 
dist (y, R(y)) < 5 for every y £ Y C C. 

This Corollary shows that to prove Theorem D we have to make a good choice 
R(A) £ Stop(^4) for stopping sets with large diameter. To this end, we make a 
preliminary step which is needed only in the case when there are hyperbolic blocks in 
our SH-block structure on Y. This step is described in the following two sections. 

5.2. Diameter projection associated with Busemann function. In sec- 
tion 5.2 and 5.3 we construct the map RQ : C -t C. Here we consider an arbitrary 
Hadamard space Y and the associated C — C(y). 

Given UJ £ dooY', we consider a Busemann function b^ : Y —> R associated with 
u. Its sublevel sets Ct = {y £ Y : bu,(y) < t} are convex, thus the metric projections 
Pt : Y -> C*, t £ M are 1-Lipschitz. We fix A > 0 and for A £ C put 

t(A) := min&^lyl - A • diam A 

Now, we define pUtA • C -> C by PU,A(A) = convop^^A). Obviously, PW|A(2/) = 2/ for 
every y € Y C C. 

LEMMA 5.7.  T/ie map p^A ^ 2(A 4- 1)-Lipschitz. 
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Proof. Giveir A, A' G C, we denote A = pUt/i(A), A' = Pw^A'); t = t(A), 
t' = t(A') and W.L.G. assume that t' < t. Then 

Hd(A, A') < lld(pt(A),pf(A'))     by Lemma 3.1 

KRdiptWipM'V+t-t', 

because pt'{A') = pf o pt(A') and Hd(pt{A'),pt>(A')) < t — t'. Furthermore, 
Hd(p£(/l),pt(A,)) < Hd(A, A') becausept is 1-Lipschitz. Clearly, (d-d'! < Hd(A, A') 
for d = min^^lA, d7 = minb^lA' and 

I*-*'! < Id-d'l +A|diamA-diamA/|. 

Using Lemma 3.3, we obtain It-t'] < (2A + 1) Hd(A, A') and hence 

Rd(A,Af) <2(A + l)Hd(A,A,). 

D 
We fix s > 0 and consider the set Y-i(s) consisting of all y G Y such that the 

ball B2e{y) C Y is a CAT(—1) space. Next, we let aa' C H2 be a segment of length 
e; segments a6, a't' are orthogonal to aar at a, a' respectively, have lengths e and lie 
in one and the same half-plane w.r.t. the geodesic in H2 extending aa'. Now, we put 

A = A£ ':= max{l, 2e/ (dist(6,6') - e)}. 

Note that Ae —> oo as e —>• 0. 

PROPOSITION 5.8. For each A e C, we have either diamopa;jA(A) < e or 

pt(A)(A)ny_i(e) = 0. 

Proof. Assume that diamopa;jA(A) > e and AnY-i(e) ^ 0 for some A £ C, where 
A = pt(A)(A). Note that diamA > e by Lemma 3.1, A C cJC^) by the definition of 

t(A), and A is connected, because A is connected. 
By the assumption, there exists a E A D Y_i(£). Hence, we can find a' G A with 

dist(a, a') = e and c, c' G A with Pt(A)(c) — a> Pt(A)(c/) — a/- For t G [0, A diamA], we 
define a(£) G ac, a'^) G a'c' by dist (a(£), a) = t = dist (a'(t),a!). Note that diam A > 
diamA > e, thus 5 G [0,AdiamA]. Then the function L{t) = dist (a(t), a'(t)) is 
convex and increasing, thus dist(c,c/) > L(Adiam A) > L(e) + L'(e) (Adiam A - e), 
where L'(e) is the local Lipschitz constant for L at t = e. On the other hand, the 
quadrangle a{e)aa,a'{e) is contained in the ball B26{a) which is a CAT(—1) space. 
Comparison with H2 and the definition of A imply that Lf(e) • A > 2. Hence, 

dist(c, c') > 2 diam A — e > diam A, 

since L(e) > L(0) = e and L'(e) < 2. This is a contradiction, because c, c' G A. □ 

5.3. Projecting on Corey. Here we come back to a Hadamard space Y with 
5iJ-block structure. We fix e G (0,1] and consider the set Y-i(e) introduced in 5.2. 
In Sil-block structure case we, obviously, have 

¥-!(£) = {yeY: dist(y, CoreY) > 2e} 

=  [j{yeYv: dist(y,dYv)>2£}. 
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Let Co C C be the subset of all A e C such that either diam^4 < 1 or A C Core Y. 

LEMMA 5.9. There exists an admissible (LJ)-Lipschitz map RQ : C —> Co with 
L — L{e) > 0, I = is such that Ro(y) = y for each y € Y. Here L(e) -> oo as e -¥ 0. 

Proof. We fix CJ G dooY and define_A = A£ as in Proposition 5.8. Then for each 
A G C we have either diamA < e or A := PW>A(-A) lies in the 25-neighbourhood of 
a component of Corey. The last conclusion follows from Proposition 5.8 and the 
fact that the 2e-neighbourhood of CoreY in Y is the union of convex sets pairwise 
separated by the distance at least 10 — As > 6. Hence, if diam A > 1 then the convex 
projection 

PCore Y (^) = COnv 0PCore Y (A) C Core Y 

is well defined and Hd M,Pcorey(^)) — ^e- 

By Lemma 5.7, the admissible map p^A • C -^ C is L-Lipschitz with L = 2(A +1). 
Furthermore, pu ^(y) = y for each y G Y (see sect. 5.2). Now, we define RQ : C -> C 
by 

Ro(A) =PcoreY 0
PU,A(

A
)    

if    diamopW|A(j4) > 1 

and i?o(-A) = PU;,A(^) otherwise. Then i?o is admissible, Ro(C) C Co, Ro(y) = y for 
each y e Y.   Furthermore, for A = pWjA(i4), A' = ^^(A') we have Hd(^4,^4,) < 

L•Hd(A,A,);Hd(i^o(A),I),Hd(i?o(A,)^,) < 2e. Thus 

Hd (i2o(i4), ilo^')) < L • Hd(i4, A7) + 4e, 

i.e., i?o is (I/, /)-Lipschitz with / = 4^ and L = 2(A + 1) —> oo as e -> 0. D 

5.4. Stopping sets with large diameter. Here we study the case that A G Co 
and Stop (A) has a large diameter. 

5.4.1. Sitting in an H-block. Let Yv be an iJ-block, Wv C Yv the distin- 
guished wall (see sect. 4.2), W C Yv a wall different from Wv. We define a subset 
K C W by the condition x G AT if and only if the geodesic segment xpv (x) is transver- 
sal to W at x, where pv :Y ->WV is the metric projection. Clearly, pv restricted on 
Yv coincides with pck restricted on Yv, k = B^(v). The meaning of this definition is 
that if x G W \ K then moving along xpv{x) from x to pv(^) one first goes along W 
until meets K and only then one leaves W towards Wv. 

We put W{p) = W n Ck-i,p which evidently coincides with {re G VF : 
dist(:r, Wi,) < p}. We also let po = inf{p > 0 : AT C W(/?)}. It is convenient to 
use notation B™(x) for a closed ball in W of radius r centered at x. 

Obviously, there exists a unique point XQ G W with dist(xo,pu(xo)) = 
dist(W,Wv) =: pv. 

LEMMA 5.10.  We have It C W(po) C B^ixo) for some ro < 2. 
Proof Consider a horocycle S C H2 and a geodesic line 7 C H2 which touches S at 

x G 5. Then p7(5) C 7 is a subsegment of length 2ri with ri = — In tan f =■ 0.98 ... 
centered at x as an easy computation in hyperbolic geometry shows. Moreover, 
p1(S) = p1 {[ss']) where [ss1] C 5 is a subsegment of length 2r2 centered at x with 
r2 = \/2, and dist(7,5) = dist(7, s') = ri. It follows that K C B^(xo) by comparison 
with H3 because the other boundary walls of Yv are far away to intervene. Their 
influence is only that we cannot say that dCk-i,p has the shape of a horosphere in 
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H3, however, we know that Ck-i,p is convex. Thus considering everything in the ball 
■Bio(^o) C Yv we see that Ck-iiPv H -Bio(^o) is contained in a half-space bounded by 
the hyperbolic 2-plane M which touches W at XQ. Next we have po— pv < r2 because 
the maximal distance from points of K to Ck-i,pv is at most that to XQ. Note that 
the distance between dB^(xo) and M in Yv is equal to ri by the consideration above 
with the horocycle 5 C H2. It follows that W(po) = Wr)Ck-i,pv+(p0-pv) is contained 
in B^{xo) with ro = r2 + (po - Pv - n) < 2r2 - ri < 2. D 

The following Proposition describes the shape of stopping sets with large diameter 
sitting in an H-block. 

PROPOSITION 5.11. //diamoStop(A) > 4 and Stop(A) sits in an H-block Yv for 
some A £ Co then CA(^) C W for all t G [tfe,/i(-A)], where W is a wall ofYv different 
from Wv, k = B^(v). In particular, Stop(A) C W. Furthermore, CA(^) is the convex 
hull in W of an arc on the boundary dW{p) with p = tk-i - t > po (note that W(p) 
is convex and dW(p) equidistant to dW(po) in W). 

Proof We have diamA > diamoStop(A) > 1, hence A C Corey. It implies 
Ak C W for some wall W C dYv different from Wv. Since K C W(po), we have 
CA(*) C W for each t G [tk,tk-i — po]- This follows from definitions of (A and K. 
It suffices to show that /2(A) < tk-i — Po- The assumption 11(A) > tk-i — po would 
imply 

Stop(A) - (A O pi(A) C W(po) C B%(xo) 

by Lemma 5.10. Thus diamoStop(^4) < 2ro < 4 which is a contradiction. D 

5.4.2.  Sitting in an S-block. We need the following 

LEMMA 5.12. Assume that diam A > 1 and Acr sits in an H-block Yv for some 
A G Co.  Then A = Acr C dYv and 5(A) > 10. 

Proof We have A C CoreY according to the definition of CQ. Then Acr C 
Yv fl CoreY C dYv since Yv is an iJ-block. Thus ACT being connected sits in a 
boundary wall W of Yv. It follows that A C W since otherwise A would intersect 
the interior of CoreY and consequently Acr could not be a subset of Yv. Hence, 
ACT = A. The wall W is different from the distinguished wall Wv C dYv. Thus 
5(A) >dist(W,Wv) > 10. D 

Let Yv be an 5-block. For A C Yv we denote by A^ the projection of A on the 
H2-factor Fv and by AR the projection of A on the R-factor of the decomposition 
Yv = Fv x E. 

Now we describe the shape of large stopping sets sitting in an 5-block. 

PROPOSITION 5.13. Assume that diam o St op (A) > 4 and Stop(A) sits in an 
S-block Yv for some A G CQ. Then diam (Stop(.4))H2 < 0.1 and moreover either 
5(A) >5 or 5(A) < 1. 

Proof If 5(A) > 5 then Acr C Yv and dist^ ((Acr)K2, (Stop A)H2) > 5. Thus 
diam (Stop(A))H2 < 21n|5^Y < 0.04 as an easy computation in hyperbolic geometry 
shows. 

Assume now that 5(A) < 1. This means that CA(^) moves along £4 by the 
distance 5 - 5(A) > 4 between the corresponding touching point and Stop(A). Thus 
again diam(Stop(A))H2 < 21nf^ < 0.08. 

Finally, assume that 1 < 5(A) < 5. We have .4cr C Yvi where the block YV' is 
adjacent to Yv, B^^') — k -\-1 for k = Bfa), and diam A > diamoStop(A) > 1. It 
follows that Yv> is an 5-block, since otherwise 5(A) > 10 by Lemma 5.12.  Moving 
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at least by 1 in Yv> along £4 shrinks CAW to the size at most 21n^y < 1.6 in the 

H2-direction of Yv'. To reach Stop(-4) one has first to project Ak+i on Ckj with 
S > 10, which is the minimal distance between boundary components of Yv. This 
shrinks CUO to the size at most 2e

eiot.{ < 2.1 in the H2-direction of Yv by an easy 
computation in hyperbolic geometry. However, the H2-directions for Yvf and Yv are 
mutually orthogonal along the separating wall by the 7r/2-condition (see sect. 4.3). 
Hence, diamoStop(A) < 1.6 + 2.1 < 4. This is a contradiction. D 

5.5. Definition of the map R. 

5.5.1. Coordinates in a wall. The point f E dooT defines an orientation on 
every edge e C T by representing e = v'v with B^(v) = B^{v') — 1. Depending on 
types of v', v we classify the corresponding wall W = W(vf,v) as an hh-, sh-, 55-, or 
fts-wall respectively. For instance, if v' E 5, v E H then W is an sh-wall etc. Recall 
that for every 55-wall the 7r/2-condition is satisfied. 

Given an hh- or 5ft-wall W = W^'^v) there is a unique point WQ E W satisfying 
the condition dist^o, W^) = dist(W/', Wv) where we recall Wv 7^ W is the distin- 
guished wall of the iJ-block Yv. We fix mutually orthogonal r-line and ft-line in W 
passing through WQ arbitrarily in the ftft-case and letting the r-line be parallel to the 
E-factor of Yvt = Fvi x R in the sft-case. 

Let W = W(v',v) be an 55-wall. We define its ft-line lh(W) C W to be parallel 
to the M-factor of the S'-block Yv = Fv x R and singled out by the condition that its 
points minimize the distance to Wv in W. The wall Wv is either an 5ft- or ss-wall 
which has already defined ft-line. In the block Yv, this line defines an H2-section 
Fv x xv of Yv - Fv x R by ^(W^) = W,, n (Fv x xv). Now the r-line of W is defined 
as lr{W) = W H (Fv x r^). We put ^0 = JTW fl ^(W) E W. 

We have defined an (non-oriented) coordinate system (woJrJh) for each type of 
walls except the fts-type. However, for this type we do not need that. 

5.5.2. Defining R. We fix a constant D > 6. Given A E Co, we define R(A) E Y 
as follows. If diamoStop(^4) < D then we pick R(A) E Stop(i4) arbitrarily. Now, we 
assume that diamo;Stop(A) > D. 

First, consider the case when Stop(^4) sits in an S'-block Yv. Then we have fixed 
the coordinate system (wo,lr, lh) in the wall Wv because this wall is not of the fts-type. 
We let R{A) E Stop (^4) be a closest point to the H2-section Fv x xv C Yv = Fv x R 
through the coordinate line l^. 

By Proposition 5.13, we have diam (Stop(j4))H2 < 0.1. Hence, R{A) is defined up 
to 0.1-errors in the H2-direction. 

Assume finally that Stop {A) sits in an H-block Yv. Then by Proposition 5.11, 
there is a wall W C dYv different from Wv which contains Stop (A). Thus W is not 
an fts-wall, and the coordinate system (woJr,lh) is fixed in W. Moreover, recall 
that Stop (A) is the convex hull of the (proper) arc A := Stop (A) D 5(p), where 
S(p) = dW(p), W(p) = {x E W : dist(x,Wv) < p}, p > po; S(p) is equidistant to 
5(A)) and WQ E W(po) C B^{wo) for some ro < 2. 

Now, we proceed as follows. Consider a largest subarc AQ C A with the same 
midpoint, which has no common interior point with the coordinate line /r, and put 
R(A) E AQ be the farthest point from lr. 

5.6. Proof of Theorem D: easy cases. We show that R : Co -> Y is a local 
quasi-Lipschitz retraction, i.e., there exist £, D > 0 such that Hd^A') < £ implies 
dist (i?(i4), iJCA')) < ^ for A, A' E Co and dist (y, B(y)) < S" for y E K. Then R1 = 
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RoR0 : C -> Y is a local quasi-Lipschitz retraction by Lemma 5.9: take e* < e/4, e" = 
(e - te^lH?1). For A, A' G C with Hd(A, A') < ^ we have Hd (.Ro(A), ifcCA7))^ e, 
hence, dist {R^A)^^')) < D. In addition dist (y,Ri(y)) = dist (y, i?^)) < .D for 
each y G y. 

The space C is geodesic, and for the geodesic spaces local quasi-Lipschitz implies 
quasi-Lipschitz, i.e., dist (R^Aj^R^A1)) < ^■B.^A^A') for every A, Af G C with 
Hd^A') >e". 

Given A, A7 G Co, we use notation A := Stop(A) and H := Hd(A, A'). Further- 
more, we assume that H < e < 1/6. By Corollary 5.6 we also can assume that 

max{diamA,diam A'} > D, 

where D > 6 the constant from the definition of R. 

5.6.1. Nonexceptional case of Proposition 5.5. By this Proposition A, A' 
are in one and the same block Yv and Hd(A, A') < 3H <Se < 1/2. Hence 

| diam A - diam A'| < 2Hd(A, A') < 1. 

Now if diam A/ < D then diam A < D + 1, and we can apply Corollary 5.6 to obtain 
the result. Thus we assume that 

minldiamA^imA7} > D. 

Subcase(S): Yv is an 5-block, Yv = FvxR. In this case diam AH2, diam A^ < 0.1 

by Proposition 5.13. Since D > 6, this means that each of A, A7 looks very much like 
a segment parallel to the M-factor of Yv, and we have actually 1-dimensional problem 
by projecting on the factors of Yv. Thus 

dist(R(A)1R(Af)) < dist (R(A)RlR(A')R) + dist (R(A)K2,R(A')H2) 

<2Hd(A,A,)H-l <2 

according to the definition of R. 
Subcase (H): Yv is an iif-block. We postpone the discussion of this case to 

sect. 5.8. 

5.6.2. Exceptional case of Proposition 5.5. In this case Acr, A'cx sit in one 
and the same block Yv» and W.L.G. &(A') > 5 > (5(A). Then 0 < 5{A') - 5(A) < H, 
A! CYV,, AcYv with B^v) =: fc, B^v') = k 4- 1. Let W = ^(v7^) be the wall 
separating Yv and yv/. Then Ak, A'k C VF and Hd(Afc,A

/
A.) < iJ by Corollary 5.2. 

Furthermore diam A7 > diam A^ and diam Ak > diam A. Hence if diam A' < D then 
diam A <D + 2H<D + 1 and we can apply Corollary ^.6. 

Assume that diam A7 > D. Then diam A7 > diam A7 > 1 and Yvi is an 5-block 
since otherwise 5(A') > 10 by Lemma 5.12. This contradicts 5(A7) < 6(A) + H < 10. 
Hence YV' = FV' x E and we have diamA^ < 0.1 by Proposition 5.13 and similarly 
diam(Afc)H2 < 0.1. Furthermore 

Hd(A7,A,) < Hd(A7,A7
fc)+ Hd(A7

fe,A,) 

< 6(4) - 5 4- H < 2H. 

Let (wo,lr,lh) be the coordinate system in the wall W. Then for a point b G 
Ak closest to lh we have dist (R(A,),b) < 2Hd(A7, Ak) + 1 < 1 + ie exactly as in 



702 S. BUYALO AND V. SCHROEDER 

Subcase (S). On the other hand, it follows from the definition of 1^ and the touching 

point r/c (see sect. 5.1.3) that b € CA^)-   Furthermore, we have Hd f Oi(T/C), A) < 

5 - 5(A) < 5(A') - 5(A) < H by the definition of A = Stop(A), in particular, 
dist(M) <H. 

Assume that diam^4 < D. Then dist(6, R(A)) < H + D and we obtain 

dist (R(A), R(A')) < dist (R(A), b) + dist (6, R(A')) <D + 2. 

The remaining case diamA', diam^4 > D will be considered in sect. 5.8. 

5.7. Digression:  a Lipschitz extension property for S1. Let 5* C M2 be 
a circle of radius p endowed with the induced intrinsic metric. We define C(Sp) to 
be the set of all proper arcs A C Sl

p. This set can be identified with Sl
p x [0, irp) via 

A H-> (x, r), where x G A is the midpoint and r the half of the length of A. We assume 
that 0(8^) is endowed with the metric induced from S^ x [0, irp) by that identification. 

Fix a line / C M2 through the center WQ of 5^ and consider the subset $ C 0(3^) 
which consists of all A having no common interior point with /. We define a retraction 
/ : $ ->> Sl

p letting f(A) be the point of A G $ of maximal distance to /. Next we 
extend / to / : C(Sl) -> Sl

p by taking the largest subarc AQ C A with the same 
midpoint, AQ G $ and putting f(A) = /(AQ), cp. the last paragraph of sect. 5.5.2. 

LEMMA 5.14. The retraction f : $ -» Sp is y/2-Lipschitz and its extension 
J \C(Sl

p)-* S] is 2-Lipschitz. 
Proof. This is clear from Figure 5.1 where the left and the right vertical segments 

are identified, {a, b] = lOS^ and $ consists of two equilateral triangles (with interiors) 
drawn in bold. D 

TX        XT YX       XY 
TXl/Vl ix[/\t W X     \ /     X Y t X     \ /     X Y 

Y Jr        \ /       >L Y Y Jr        \ /       X. Y 
T L/\       \ /       /\J Tl \S\       \ I       /\J T 

FIG. 5.1. the map f 

5.8. Proof of Theorem D: difficult cases. We use the notations introduced 
in sect. 5.6. First consider the postponed ^ ^ 

Subcase (H): A, A' are sitting in an iJ-block yv, diamA, diam^' > D and 
Hd(A,A,) < Si? < 3£. Then by Proposition 5.11, 1, !' are in a wall W C dYv 

different from Wv and moreover each oi A, A' is the convex hull of an arc on dW(p), 
dW(p') respectively, where W(p) = {x G W : dist(x,Wv) < p}. Then, obviously, 

Ip-p'l <Hd(A,A')<3H. 



EXTENSION OF LIPSCHITZ MAPS INTO 3-MANIFOLDS 703 

Since W is an sh- or hh-wdll, the coordinate system {woJrilh) in W is fixed. 
Recall that dW(p) is equidistant to dW(po) and W(po) C B^(wo) for ro < 2, where 
M^(po) is the smallest W(p) containing K (see sect. 5.4.1). We have 

A C W(p) = ^(po + P - /^o) C B£+p_p>o). 

Thus diam A < 2(ro + p — po) and hence p — po, p' — po > i)/2 - ro > 1. We also 
note that A = A fl 91^(p) is a proper arc as it is easy to see from the definition of a 
stopping set. 

To make the argument clear we simplify the situation assuming that K C W is 
a ball centered at WQ. This is the case when the 1-neighbourhood of the shortest 
segment between W and Wv intersects no other wall of Yv. 

In this case dW{p) is a circle in W of radius > Dfe — ro centered at WQ. Further- 
more, A subtends the angle at most TT at WQ. Note that the estimates of Lemma 5.14 
are independent of p and the construction of / from this Lemma is equivariant w.r.t. 
the homotheties centered at WQ. Thus taking into account the estimate \p — p'l < 3H 
and applying Lemma 5.14 we easily obtain dist {R{A), RiA')) < L • H for some L > 0. 
Besides Lemma 5.14 and the mentioned estimate, the main contribution in L is due 
to the transition from the HausdorfF metric on subsets in W to the metric used in this 
Lemma. However, this is bilipschitz for e sufficiently small and the estimate L < 100 
would be too pessimistic. 

In general case when K is not supposed to be a ball, the constant L is spoiled 
but only by a bounded (multiplicative) amount. The reason is that the main danger 
for L comes from the possibility of A to subtend an angle at WQ close to 27r, i.e., when 
A almost coincides with W(p). However, this angle though might be bigger than TT 

is then arbitrarily close to TT for all sufficiently large D because dW(p) is contained 
in the annulus {x G W : p — po < dist(a;, WQ) < TQ + p — po} with p — po > D/2 — ro 
and recall W(p) is convex. 

It remains to consider the exceptional case of Proposition 5.5 when both diam A, 
diamA' > D. As in sect, 5.6.2 we assume that 5(Af) > 5 > 5(A) and use all 
agreements and notations of that section. Then Yv is an iJ-block by Proposition 5.13 
because 5 > 6(A) > <5(A') — H > 4. Consequently, W = Wty'^v) is an sh-wall and 
A C W by Proposition 5.11. Recall also that dist (R(A'), b) < 1 + Ae for b G Ak closest 
to the coordinate line lh of the coordinate system (wQ,lr^ lh) in W and diam(A/c)H2 < 
0.1, i.e., Ak C W is a segment of length > D parallel to lr (up to 0.1-errors which we 

ignore in the sequel). Furthermore, b G CACHS) and Hd KACHOJ A\ < H. 

Note that b is the remotest point from lr in CAO"/:) because CA^fc) touches Ak at 
b and Ak is parallel to lr. 

For the same reason as above we assume that K C W is a round ball centered 
at WQ. Then (A^) and consequently A = A n W(p) have no common interior point 
with lr.  By the definition of R we have R(A) G A is a point closest to b and thus 

dist (R(A),b) < Hd (A, CA(T/C)) < H. Hence dist (R(A), R(A')) < 1 + As + H < 2. 

The general case that K is not a ball may cause that A has a common interior 
point with lr. However, it may effect the estimate for dist (R(A), b) only by an additive 
amount bounded by ro. This again follows from the fact that dW(p) sits in the annulus 
centered at WQ which has a large diameter > D/2 — ro and a bounded width < ro. 
This completes the proof of Theorem D. 
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Ak 

FIG. 5.2. farthest points from i 
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