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CLASSIFICATION OF INDEFINITE HYPER-KAHLER SYMMETRIC
SPACES*

DMITRI V. ALEKSEEVSKY! AND VICENTE CORTES?

Abstract. We classify indefinite simply connected hyper-Kéhler symmetric spaces. Any such
space without flat factor has commutative holonomy group and signature (4m, 4m). We establish a
natural 1-1 correspondence between simply connected hyper-Kahler symmetric spaces of dimension
8m and orbits of the group GL(m, H) on the space (S*C*)" of homogeneous quartic polynomials S
in n = 2m complex variables satisfying the reality condition S = 7.5, where 7 is the real structure
induced by the quaternionic structure of C2™ = H™. We define and classify also complex hyper-
Kahler symmetric spaces. Such spaces without flat factor exist in any (complex) dimension divisible
by 4.

1. Introduction. We recall that a pseudo-Riemannian manifold (M, g) is called
a symmetric space if any point £ € M is an isolated fixed point of an involutive
isometry s, (called central symmetry with centre ). Since the product of two central
symmetries s, and s, with sufficiently close centres is a shift along the geodesic (zy),
the group generated by central symmetries acts transitively on M and one can identify
M with the quotient M = G/K, where G is the connected component of the isometry
group Isom(M, g) and K is the stabilizer of a point 0 € M.

A symmetric space (M = G/K,g) is called Kahler (respectively, hyper-Kahler)
if its holonomy group Hol(M, g) is a subgroup of the pseudo-unitary group U(p, q)
(respectively, of the pseudo-symplectic group Sp(p,q) C SU(2p,2q)). Any hyper-
Kéhler symmetric space is in particular a homogeneous hypercomplex manifold. Ho-
mogeneous hypercomplex manifolds of compact Lie groups were constructed by Ph.
Spindel, A. Sevrin, W. Troost, A. Van Proeyen [SSTVP] and by D. Joyce [J] and
homogeneous hypercomplex structures on solvable Lie groups by M.L. Barberis and
L. Dotti-Miatello [BD].

The classification of simply connected symmetric spaces reduces to the classifica-
tion of involutive automorphisms o of a Lie algebra @, such that the adjoint repre-
sentation adél‘m preserves a pseudo-Euclidean scalar product g, where

g=t+m, ojf=1 om=-1,

is the eigenspace decomposition of the involution . Note that the eigenspace decom-
position of an involutive automorphism is characterized by the conditions

(e, €] C &, [E;m] cm, [mm]cCeé.

Such a decomposition is called a symmetric decomposition.

In fact, for any pseudo-Riemannian symmetric space M = G/K t e conjuga-
tion with respect to the central symmetry s, with centre o = eK is 2 . involutive
automorphism of the Lie group G, which induces an involutive autom: phism o of
its Lie algebra g. The pseudo-Riemannian metric of M induces a E-invariant scalar
product on m = T, M, where g = € + m is the symmetric decomposition defined by
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664 D. V. ALEKSEEVSKY AND V. CORTES

o. Conversely, a symmetric decomposition g = € + m together with a E-invariant
scalar product on m determines a pseudo-Riemannian symmetric space M = G/K,
where G is the simply connected Lie group with the Lie algebra g, K is the connected
(and closed) subgroup of G generated by €, the pseudo-Riemannian metric on M is
defined by g and the central symmetry is defined by the involutive automorphism o
associated to the symmetric decomposition.

Naturally identifying the space m with the tangent space T,M, the isotropy
group is identified with Adg|m and the holonomy algebra is identified with adb,

where ) = [m, m]. If one assumes that the holonomy algebra is irreducible then one
can prove that the Lie algebra g is semisimple. Hence the classification of pseudo-
Riemannian symmetric spaces with irreducible holonomy reduces to the classification
of involutive authomorphisms of semisimple Lie algebras. Such a classification was
obtained by M. Berger [B1, B2] and A. Fedenko [F]. It includes the classification
of Riemannian symmetric spaces (obtained earlier by E. Cartan), since according to
de Rham'’s theorem any simply connected complete Riemannian manifold is a direct
product of Riemannian manifolds with irreducible holonomy algebra and a Euclidean
space.

A classification of pseudo-Riemannian symmetric spaces with non completely re-
ducible holonomy is known only for signature (1,n) (Cahen-Wallach [CW]) and for sig-
nature (2,n) under the assumption that the holonomy group is solvable (Cahen-Parker
[CP]). The classification problem for arbitrary signature looks very complicated and
includes, for example, the classification of Lie algebras which admit a nondegener-
ate ad-invariant symmetric bilinear form. An inductive construction of solvable Lie
algebras with such a form was given by V. Kac [K], see also [MR1], [Bo] and [MR2].

In this paper we give a classification of pseudo-Riemannian hyper-Kahler symmet-
ric spaces. In particular, we prove that any simply connected hyper-K&hler symmetric
space M has signature (4m,4m) and its holonomy group is commutative. The main
result is the following, see Theorem 6.

Let (E,w, j) be a complex symplectic vector space of dimension 4m with a quater-
nionic structure j such that w(jz,jy) = w(z,y) for all z,y € Eand E = E; & E_
a j-invariant Lagrangian decomposition. Such a decomposition exists if and only if
the Hermitian form v = w(+,j-) has real signature (4m,4m). We denote by 7 the real
structure in S?"E defined by 7(e1ez ... ea,) := j(e1)j(ez) -..j(ear), €; € E. Then any
element S € (S*E, )" defines a hyper-Kahler symmetric space Mg which is associated
with the symmetric decomposition

g=bh+m,

where m = (C? @ E)” is the fixed point set of the real structure p on C?> ® E given by
p(h®e) = jph® je, where jy is the standard quaternionic structure on C2 = H, h) =
span{S, ./|e,e’ € E}" C sp(E)™ = sp(m,m) with the natural actionon m C C* ® E
and the Lie bracket m A m — b is given by

[h ® e, K ® 6/] = WH (h, hl)Se,e’a

where wy is the standard complex symplectic form on C2.

Moreover, we establish a natural 1-1 correspondence between simply connected
hyper-Kahler symmetric spaces (up to isomorphism) and orbits of the group G L(m, H)
in (S4E+)T.

We define also the notion of complex hyper-Kahler symmetric space as a complex
manifold (M, g) of complex dimension 4n with holomorphic metric g such that for any
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point z € M there is a holomorphic central symmetry s, with centre z and which has
holonomy group Hol(M, g) C Sp(n,C) (Sp(n,C) < Sp(n,C) x Sp(n,C) C O(4n,C)
is diagonally embedded) and give a classification of such spaces. We establish a nat-
ural 1-1 correspondence between simply connected complex hyper-Kahler symmetric
spaces and homogeneous polynomials of degree 4 in the vector space C" considered
up to linear transformations from GL(n,C).

2. Symmetric Spaces.

2.1. Basic facts about pseudo-Riemannian symmetric spaces. A
pseudo-Riemannian symmetric space is a pseudo-Riemannian manifold (M, g)
such that any point is an isolated fixed point of an isometric involution. Such a
pseudo-Riemannian manifold admits a transitive Lie group of isometries L and can
be identified with L/L,, where L, is the stabilizer of a point 0. More precisely, any
simply connected pseudo-Riemannian symmetric space M = G/K is associated with
a symmetric decomposition

(2.1) g=t+m, [E¢cEt, Emlcm, mmjct

of the Lie algebra g = Lie G together with an Adg-invariant pseudo-Euclidean scalar
product on m. We will assume that G acts almost effectively on M, i.e. &€ does not
contain any nontrivial ideal of g, that M and G are simply connected and that K is
connected. Then, under the natural identification of the tangent space T, M at the
canonical base point 0 = eK with m, the holonomy group Hol C Adg|m. We will
denote by b the holonomy Lie algebra. Since the isotropy representation is faithful it
is identified with the subalgebra ) = [m, m] := span{[z,y]| z,y € m} C €. Recall that
the curvature tensor R of a symmetric space M at o is D-invariant and determines
the Lie bracket in the ideal h + m C g as follows:

h = R(m,m) := span{R(z,y)|z,y € m} and [z,y]=—R(z,y), z,y€ m.

The following result is well known:

PRrROPOSITION 1. The full Lie algebra of Killing fields of a symmetric space has
the form

isom(M) =h+m,
where the full isotropy subalgebra is given by
(2.2) bh=aut(R) = {A €so(m)|A-R=[4,R(,-)] - R(4-,-) — R(-,A-) = 0} .

2.2. Symmetric spaces of semisimple Lie groups. We will prove that in the
case when (M = G/K, g) is a pseudo-Riemannian symmetric space of a (connected)
semisimple Lie group G then G is the maximal connected Lie group of isometries of
M.

PROPOSITION 2. Let (M = G/K,g) be a pseudo-Riemannian symmetric space
associated with a symmetric decomposition § = €+m. If G is semisimple and almost
effective then

(i) the restriction of the Cartan-Killing form B of g to € is nondegenerate and

hence € is a reductive subalgebra of g and g = €+ m is a B-orthogonal
decomposition,
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(ii) € = [m,m] and

(111) g =isom(M,g) is the Lie algebra of the full isometry group of M.

Proof: For (i) see [O-V] Ch. 3 Proposition 3.6.
(i) It is clear that g = [m,m] + m is an ideal of g. The B-orthogonal complement
a:= g c €is a complementary ideal of g. Since [a,m] = 0 the Lie algebra a acts
trivially on M. From the effectivity of g we conclude that a = 0.
(iii) By Proposition 1, g = isom(M,g) = b +m, where h) = aut(R) = {4 € so(m)|
A-R = 0}. Now b preserves m and by the identity A-R = [4, R(-,")]-R(A-,")—R(-, A")
it also normalizes €. This shows that f) normalizes g and hence g C g is an ideal.
Since g is semisimple there exists a g-invariant complement b in g. Note that [g, b] C
gNb=0. We can decompose any X € bas X =Y + Z, where Y € h and Z € m.
From [g, b] = 0 it follows that [g,Y] = [g, Z] = 0 and in particular [m,Y] = 0. This
implies that ¥ =0 and X = Z € bnm = 0. This shows that b = 0 proving (iii). 0

We recall that a pseudo-Riemannian Hermitian symmetric space is pseudo-
Riemannian symmetric space (M = G/K, g) together with an invariant (and hence
parallel) g-orthogonal complex structure J.

PROPOSITION 3. Let (M = G/K,g,J) be a pseudo-Riemannian Hermitian sym-
metric space of a semisimple and almost effective Lie group G. Then the Ricci cur-
vature of M is not zero. B

Proof: From Proposition 2 it follows that g = isom(M,g) = h+m, where ) = € =
[m,m]. It is well known that the curvature tensor R of any pseudo-Kéahler manifold
(and in particular of any pseudo-Riemannian Hermitian symmetric space) is invariant

under the operator J. This shows that J € fj = aut(R) = [m,m] = b (holonomy
Lie algebra), which implies that the holonomy Lie algebra is not a subalgebra of
su(m) = su(p, q). Hence M is not Ricci-flat. In fact, we can write J = > ad[X;,Y;],
for X;,Y; € m. Then using the formulas —2Ric(X,JY) = trJR(X,Y) for the Ricci
curvature of a pseudo-Kéhler manifold and R(X,Y) = —ad,x,yj|m for the curvature
of a symmetric space we calculate:

-2 "Ric(X;, JY;) = Y trJR(X;,Y;) = = ) trJad[X;,Y;] = ~trJ? #0.

3. Structure of Hyper-Kihler Symmetric Spaces.

3.1. Definitions. A (possibly indefinite) hyper-K&ahler manifold is a pseudo-
Riemannian manifold (M*", g) of signature (4k, 4l) together with a compatible hy-
percomplex structure, i.e. three g-orthogonal parallel complex structures (J;, J2, Js =
J1J2). This means that the holonomy group Hol C Sp(k,!). Two hyper-Kahler man-
ifolds (M, g,J,) (@ =1,2,3) and (M',g’, J.,) are called isomorphic if there exists a
triholomorphic isometry ¢ : M — M’ i.e. p*J, = J, and p*¢’ = g.

A hyper-Kihler symmetric space is a pseudo-Riemannian symmetric space
(M = G/K,g) together with an invariant compatible hypercomplex structure. Con-
sider now a simply connected hyper-Kahler symmetric space (M = G/K, g, Ja).
Without restriction of generality we will assume that G acts almost effectively. M
being hyper-Kéhler is equivalent to Adg|m C Sp(k,l), or, since K is connected,
to adg|m C sp(k,!). This condition means that € commutes with the Lie algebra
Q@ =sp(1) C so(m) = so(4k, 4l) spanned by three anticommuting complex structures
Jl, Jz, J3.
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3.2. Existence of a transitive solvable group of isometries and solv-
ability of the holonomy. In this subsection we prove that any simply connected
hyper-Kahler symmetric space (M,g,J,) admits a transitive solvable Lie group
G C Aut(g, J,) of automorphisms and has solvable holonomy group.

ProrosiTION 4. Let (M = G/K,g,J,) be a simply connected hyper-Kdhler
symmetric space and A = Auto(g,Q) D Auto(g,Jn») D G the connected group of
isometries which preserve the quaternionic structure Q = span{J,}. Then

(i) the stabilizer A, of a point 0 € M contains a mazimal semisimple subgroup

of A,

(i) the radical R of A acts transitively and triholomorphically on M and

(i11) the holonomy group of M is solvable.

Proof: We consider the quaternionic K&hler symmetric space (M = A/A,,9,Q).
The Lie algebra a, of the stabilizer is given by

(o = aut(R, Q) = {A € so(T,M)|A- R =0,[4,Q] C Q}.

Since the curvature tensor of a quaternionic Kahler manifold is invariant under the
quaternionic structure @ we conclude that @ C @, and a, = Q ® Z3(Q), where
Zq(Q) denotes the centralizer of @ in a. Since @) = sp(1) is simple, we may choose a
Levi-Malcev decomposition @ = § + t such that the Levi subalgebra § O Q). We put
m,. := [@, ] and denote by m; a Q & Zs(Q)-invariant complement of Q in [@, §]. The
stabilizer has the decomposition a, = Q & (Z5(Q) + Z¢(Q))-

LEMMA 1. The complement M = Mg + M, to d, in A is A,-invariant and the
decomposition

a=0a,+m

is a symmetric decomposition.

Proof: Tt is clear that m, is d,-invariant and m; is invariant under @ ® Zg(Q)
by construction. It remains to check that [Z¢(Q), ms] C m. Since m, = [Q, M), we
have

[Ze(Q),ms] = [Z(Q),[Q, m,]] = [Q, [Z¢(Q), m ]| C [Q,t] =m, Cm.

This shows that a = d,+m is an d,-invariant decomposition. We denote by a = a,+p
a symmetric decomposition. Any other @,-invariant decomposition is of the form
a = d,+P,, where ¢ : P — @, is an d,-equivariant map and p,, = {X +¢(X)|X € p}.
If such non-zero equivariant map ¢ exists then p and a, contain non-trivial isomorphic
()-submodules. Since P is a sum of 4-dimensional irreducible @-modules and 4, is
the sum of the 3-dimensional irreducible @-module @ and the trivial complementary
Q-module Zg, (Q), we infer that there exists a unique @,-invariant decomposition,
which coincides with the symmetric decomposition a = a, + . O

To prove (i) we have to check that m; = 0. We note that by the previous lemma
5= (Q® Zg(Q)) + M, is a symmetric decomposition of the semisimple Lie algebra §.
Since [m;, m;] C Zg(Q) it defines a hyper-Kahler symmetric space N = L/L,, where
L is the simply connected semisimple Lie group with Lie algebra [ = Zg(Q) +m; and
L, is the Lie subgroup generated by the subalgebra Zg(Q) C [. Since N is in particular
a Ricci-flat pseudo-Riemannian Hermitian symmetric space, from Proposition 3 we
obtain that N is reduced to point. Therefore m,; = 0. This proves (i) and (ii). Finally,
since the holonomy Lie algebra b is identified with ) = [m,m] = [m,,m,] C vit is
solvable as subalgebra of the solvable Lie algebra t. O
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3.3. Hyper-Kahler symmetric spaces and second prolongation of sym-
plectic Lie algebras. Let (M = G/K,g,J,) be a simply connected hyper-Kéhler
symmetric space associated with a symmetric decomposition (2.1). Without restric-
tion of generality we will assume that G acts almost effectively and that € = [m, m] =
b (holonomy Lie algebra). The complexification m€ as bc-module can be writ-
ten as mC = H ® E, such that h* C Id ® sp(E) = sp(E), where H = C? and
E = C? are complex symplectic vector spaces with symplectic form wy and wg,
respectively, such that ¢© = wy ® wg is the complex bilinear metric on MT induced
by g. Note that the symplectic forms are unique up to the transformation wy — Awg,
we = A lwg, A € C*. We have also quaternionic structures jz and jg on H and
E, such that wy (juz, juy) = wu(z,y) for all 2,y € H and wg(Jrz, jrYy) = we(z,y)
for all z,y € E, where the bar denotes complex conjugation. This implies that
vu = wg(-,Ju-) and vg := wg(-,jg-) are Hermitian forms on H and E. For fixed
wy and wg the quaternionic structures jy and jg are uniquely determined if we re-
quire that vy is positive definite and that p = jy ® jg is the real structure on m¢,
i.e. the complex conjugation with respect to m. The metric ¢C and the Hermitian
form ¢g®(-, p-) = yg ® g restrict to a real valued scalar product g of some signature
(4k,41) on m = (H ® E)?, where (2k, 2l) is the (real) signature of the Hermitian form
ve = wg(:,jE-). Note that for the holonomy algebra we have the inclusion

h=1d® (h°) < sp(E)’ = {4 € sp(E)|[4, jz] = 0}

= aut(E,wg,jp) = aut(Mm, g, Jo) = sp(k,!).

Using the symplectic forms we identify H = H* and E = E*. Then the symplectic
Lie algebras are identified with symmetric tensors as follows:

sp(H) = S?H, sp(E)=S*E

Since the curvature tensor R of any hyper-Kihler manifold M*™ at a point p € M
can be identified with an element R € S%sp(k, 1) it is invariant under the Lie algebra
sp(1) = span{Ji, J2, J3}. Let M = G/K be a hyper-Kéhler symmetric space as
above. By Proposition 1 we can extend the Lie algebra g = €+ m =0 + m to a Lie
algebra

g=sp(l)+h+m

of Killing vector fields such that [sp(1), h] = 0. In the H ® E-formalism the Lie algebra
sp(1) is identified with sp(H)’# ® Id C so(m).

LEMMA 2. Denote by g = sp(1,C) +f) + mC the complezification of the Lie
algebra §. Then the Lie bracket [-,-] : A2m€ — § can be written as
(3.1) [h@eh' ®e]=wy(h,h')See ,

where S € (h5)@ = B S2E* NERSE* = h*@h"NSLE. Moreover S issp(1,C)&
b~ -invariant and satisfies the following reality condition: [Sjge,er — Se,jge’, JE] = 0.

Proof: The Lie bracket [, : A?m® — bc is an sp(1,C) & bc-equivariant map,
due to the Jacobi identity. We decompose the sp(H) @ sp(E)-module A2mC:

NMC=A2(HRE)=AN’H® S’E® S’HONE=wp ®S’E® S’H® NE.
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Since h© C S?E the Lie bracket defines an sp(1, C) @h -invariant element of the space
wg®S?ERS?E®S?HRAN?E®S?E. The second summand has no nontrivial sp(1, C)-
invariant elements. Hence the bracket is of the form (3.1), where S € S2E* ® [')C C
S?E ® S?E. The Jacobi identity reads:

O — [h@e, [hl ®el, hll ® el/]] _ [[h® e, hl ®e’],h” ®ell] _ [hl ®e’,[h®e, hll ®el/]]

= —wH(h', h")h ® S’e:,ene - wH(h, h,l)h” ® Se,e’ e’ + WH (h, h”)hl Q Se,ell e .

Since dim H = 2 we may assume that h, h’ = h” is a symplectic basis, i.e. wg(h,h’) =
1, and the equation implies: Secve’ = See€”, ie. S € (bc)m. The Lie bracket of
two real elements A® e+ jyh® jpe and h@e' + jph® jpe’ € m C mC is an element
of ). This gives:

[h®e+juh®jpe,h®€ + juh @ jre') = wh(h, juh)(Sejper — Sjge,e’) € B

From the fact that the Hermitian form vy = wg(-,jg-) is positive definite it fol-
lows that wg(h,jgh) # 0. This establishes the reality condition since ) = {A €
C . ’

h71[4,5r] =0}. 0

In fact any tensor S € S*E satisfying the conditions of the above lemma can
be used to define a hyper-Kéhler symmetric space as the following theorem shows.
We can identify S*E with the space C[E]*) of homogeneous quartic polynomials on
E = E*.

THEOREM 1. Let S € S4E, E = C?", be a quartic polynomial invariant under
all endomorphisms S. o € SE = sp(E) and satisfying the reality condition

(3'2) [SjEe,e’ - Se,jEe’ajE] =0.

Then it defines a hyper-Kahler symmetric space, which is associated with the following
complex symmetric decomposition

(3.3) € =b"+H®E, b°=span{Sccle e € E} Csp(E).

The bracket A2(H ® E) — bc is given by (8.1). The real symmetric decomposition is
defined as p-real form g = bh +m of (3.3), where

E=b={A4ech%[4,j5) =0} = span{Sjzee — Sejpele,€’ € E}, m=(H®E)’.

The hyper-Kahler symmetric space M associated to this symmetric decomposition is
the quotient M = Ms = G/K, where G is the simply connected Lie group with Lie
algebra g and K C G is the connected (and closed) subgroup with Lie algebra € = .

Moreover any simply connected hyper-Kahler symmetric space can be obtained
by this construction. Two hyper-Kihler symmetric spaces Ms and Mg defined by
quartics S and S’ are isomorphic if and only if S and S’ are in the same orbit of the
group Aut(E,wg, jg) = {A € Sp(E)|[4, jg] = 0} = Sp(k, ).

Proof: First of all we note that bc = Sg g := span{S.  |e, e’ € E} is a subalgebra
of sp(E) because

C
(Se.ers Sp.p1] = (Serer - S)ppt = S5, o fuf' =S58, 0fr = =Ss, utfr =S5, 05 €0
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Since S is bc-invariant and completely symmetric we can check, as in Lemma 2, that
the Jacobi identity is satisfied and that (3.3) defines a complex symmetric decompo-

sition. We prove that ) := span{S; e, — Se jzerle, ' € E} C {4 € bcl[A,jE] = 0}
defines a real form of h*. Indeed for e, e’ € E we have

1 v—1
Se,e’ = §(Seye’ + SjEeijC’) - '2_(\/ _lse,e' -V -1SjEeij€')

1 V-1
= §(SjEE”,€’ - Se”ije/) - T(SjEelly\/—_le’ - SC”,jE\/—_ICI)’

where ¢” = —jge. Due to the reality condition the restriction of the Lie bracket
[,]: A2m€ = §° to A?m has values in h and g = h-+m is a symmetric decomposition
with [m,m] = . The metric ¢* = wy ® wg defines a real valued scalar product g
of some signature (p,q) on m = (H ® E)?, which is invariant under the Lie algebra
b. Since [h,jg] = 0 the holonomy algebra ) C sp(k,1), p = 4k, ¢ = 4l. Hence this
symmetric decomposition defines a hyper-Kéhler symmetric space.

By Lemma 2 any hyper-Kahler symmetric space can be obtained by this con-
struction. It is well known that a simply connected symmetric space M of signature
(p,q) is determined by its abstract curvature tensor R € S?(A%V), V = RP9, and
two tensors R and R’ define isometric symmetric spaces if and only if they belong
to the same O(V') orbit. Similarly a simply connected hyper-Kahler symmetric space
is determined up to isometry by its abstract curvature tensor R € S?(A2V), where
V = R*4 is the pseudo-Euclidean vector space with fixed hypercomplex structure
Jo € O(V). For a hyper-Kihler symmetric space the complexified curvature tensor
has the form

R(h®e,h' ®e') = —wn(h,h')Se.er ,

where S € S*E is the quartic form of Lemma 2. Two such curvature tensors define
isomorphic hyper-Kahler symmetric spaces if and only if they belong to the same
orbit of Aut(R*4 J,) = Sp(k,l). The group Sp(k,l) acts on V¢ = HQ® E as
Id® Sp(E)’®? =Id® Aut(E,wE, jg). Hence two curvature tensors R = —wy ® S and
R' = —wy ® §' are in the same Sp(k,[)-orbit if and only if S and S’ are in the same
Sp(k,)-orbit on S*E. O

4. Complex Hyper-Kahler Symmetric Spaces.

4.1. Complex hyper-Kiahler manifolds. A complex Riemannian mani-
fold is a complex manifold M equipped with a complex metric g, i.e. a holomorphic
section g € I['(S?T*M) which defines a nondegenerate complex quadratic form. As
in the real case any such manifold has a unique holomorphic torsionfree and met-
ric connection (Levi-Civita connection). A complex hyper-Kéhler manifold is
a complex Riemannian manifold (M*", g) of complex dimension 4n together with a
compatible hypercomplex structure, i.e. three g-orthogonal parallel complex linear
endomorphisms (J;, J2, J3 = J1Ja) with J2 = —1. This means that the holonomy
group Hol C Sp(n,C) = Zo(an,c) (Sp(1,C)). The linear group Sp(n,C) is diagonally
embedded into Sp(n,C) x Sp(n,C) C GL(4n,C). Two complex hyper-Kéhler mani-
folds (M, g, Ja) (@ =1,2,3) and (M’, ¢’, J}) are called isomorphic if there exists a
holomorphic isometry ¢ : M — M’ such that ¢*J,, = J, and ¢*¢' = g.
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We will show that the complex hyper-Kahler structure can be described as a half-
flat Grassmann structure of a certain type. A Grassmann structure on a complex
Riemannian manifold (M, g) is a decomposition of the (holomorphic) tangent bundle
TM = H ® E into the tensor product of two holomorphic vector bundles H and E
of rank 2m and 2n with holomorphic nondegenerate 2-forms wg and wg such that
g = wy ® wg. The Grassmann structure will be called parallel if the Levi-Civita
connection V = VTM can be decomposed as:

Vv=vVlgld+lde VF,

where V¥ and V¥ are (uniquely defined) symplectic connections in the bundles H
and E. A parallel Grassmann structure will be called half-flat if V¥ is flat. Note that
a parallel Grassmann structure on a simply connected manifold is half-flat if and only
if the holonomy group of the Levi-Civita connection is contained in Id ® Sp(n,C) C
Sp(m,C) ® Sp(n,C) C O(C*™ ® C*").

PROPOSITION 5. A complez hyper-Kdhler structure (g, J,) on a simply connected
complex manifold M is equivalent to the following geometric data:
(i) a half-flat Grassmann structure (TM,g,V) = (H,wy, VE)®(E,wg, VE) and
(ii) an isomorphism of flat symplectic vector bundles H = M x C*. Under this
isomorphism wy = h} A h%, where (hy, ha) is the standard basis of C2 consid-
ered as parallel frame of the trivial bundle H = M x C2.
More precisely,

(4.1) J=R;®ld, Jo=R;®Id, and J3=Rp®Id,

where we have identified C> = Chy @ Chy with H = spang{1,1,j,k} = spanc{1,j} =
Cl & Cj with the complex structure defined by left-multiplication by i and R, denotes
the right-multiplication by the quaternion x € H.

Proof: 1t is easy to check that the geometric data (i) and (ii) define a complex
hyper-Kahler structure on M. Conversely let (g, J,) be a complex hyper-Kahler
structure on M. The endomorphism J; has eigenvalues +:¢ and the tangent space can
be decomposed into a sum of eigenspaces

TM=E,®E_.

From the Jj-invariance of the metric ¢ it follows that g(E+,E+) = 0 and we can
identify E_ = E* with the dual space of E = E,. Since J; anticommutes with J;
it interchanges E and E* and hence defines an isomorphism E = E*. Now g(:, Jo-)
defines a symplectic form wg on E. Let H = M x C2 = M x (Ch; & Chy) be the
trivial bundle with 2-form wy = k% A hi. Then we can identify

ITM=E®E" =E®E=hMQ®E®h®E=HQE.

We check that under this identification we have ¢ = wy ® wg. Note that both sides
vanish on h; ® E and hy @ E and wg(hy, he) = 1. We calculate for e, e’ € E = E, =
hy ® E:

g(e, J2¢') = wg(e,€') = wh (h1, ho)wg(e,€') = (wg @ wg)(h; ® é,h2 ®e').

Hence we have a Grassmann structure. The eigenspaces E4 of the parallel endomor-
phism J; are invariant under parallel transport. Therefore the Levi-Civita connection
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V induces a connection V¥ in the bundle E. Since Vg = 0 and V.J, = 0 we have
VEwg = 0. We define a flat connection V¥ on the trivial bundle H = M x C? by
the condition V#h; = VHhy; =0. Then V= V¥ @ Id +Id ® VE. So the Grassmann
structure is half-flat.

Finally, using the standard identification C> = H|, one can easily check that the
Jo are given by (4.1). 0

4.2. Complexification of real hyper-Kéhler manifolds. Let (M, g, J,) be
a (real) hyper-Kahler manifold. We will assume that it is real analytic. This is
automatically true if the metric g is positive definite since it is Ricci-flat and a fortiori
Einstein. Using analytic continuation we can extend (M, g, J,) to a complex hyper-
Kahler manifold (M€, g%, JC) equipped with an antiholomorphic involution 7'. In
complex local coordinates z/ = x7 +4y? which are extension of real analytic coordinates
27,y the involution is given by the complex conjugation z/ = %/ = 27 — iyJ. We
can reconstruct the (real) hyper-Kéhler manifold as the fixed point set of T. We will
call (M, g, J,) areal form of (M€, g%, JC) and (MC, g%, JC) the complexification of
(M,g,Ja).

In general a complex hyper-Kahler manifold has no real form. A necessary con-
dition is that the holonomy group of V¥ is contained in Sp(k,!), n = k+1, and hence
preserves a quaternionic structure. Then we can define a parallel antilinear endo-
morphism field jg : E — F such that j%4 = —1 and wg(jEz, jry) = we(z,y) for all
x,y € E, where the bar denotes complex conjugation. We define a parallel antilinear
endomorphism field jg : H — H as the left-multiplication by the quaternion j on
H =M xH Then p = jyg ® jr defines a field of real structures in TM = H ® E.
We denote by D C T'M the real eigenspace distribution of p with eigenvalue 1. Here
TM is considered as real tangent bundle of the real manifold M. If M? C M is a leaf
of D of real dimension 4n then the data (g, J,) induce on M? a (real) hyper-Kahler
structure.

4.3. Complex hyper-Kihler symmetric spaces. A complex Riemannian
symmetric space is a complex Riemannian manifold (M, g) such that any point is
an isolated fixed point of an isometric holomorphic involution. Like in the real case
one can prove that it admits a transitive complex Lie group of holomorphic isometries
and that any simply connected complex Riemannian symmetric M is associated to a
complex symmetric decomposition

(4.2) g=t+m, [E€fct [FEmcm, mm]=¢

of a complex Lie algebra g together with an adg-invariant complex scalar product on
m. More precisely M = G/K, where G is the simply connected complex Lie group
with the Lie algebra g and K is the (closed) connected subgroup associated with
€. The holonomy group of such manifold is H = Adg|m. Any pseudo-Riemannian
symmetric space M = G/K associated with a symmetric decomposition g = £+ m
has a canonical complexification M® = G¢/K€C defined by the complexification g¢ =
£ + mC of the symmetric decomposition. Proposition 1 remains true for complex
Riemannian symmetric spaces. Ignoring the reality condition we obtain the following
complex version of Theorem 1.

THEOREM 2. Let S € S*E, E = C?, be a quartic polynomial invariant under all
endomorphisms Seer € S?°E = sp(E). Then it defines a complez hyper-Kdhler sym-
metric space, which is associated with the following complex symmetric decomposition

(4.3) g=b+H®E, b§h=Sgr=span{S.elee € E} Csp(E).
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The bracket A2(H ® E) — b is given by (8.1). The complez hyper-Kdihler symmetric
space M associated to this symmetric decomposition is the quotient M = Ms = G/K,
where G is the (complex) simply connected Lie group with Lie algebra g and K C G
is the connected (and closed) subgroup with Lie algebra € = .

Moreover any simply connected complex hyper-Kdahler symmetric space can be
obtained by this construction. Two complex hyper-Kdihler symmetric spaces Mg and
Mg defined by quartics S and S' are isomorphic if and only if S and S’ are in the
same orbit of Aut(E,wg) = Sp(E) = Sp(n, C).

COROLLARY 1. There is a natural bijection between simply connected complex
hyper-Kdahler symmetric spaces of dimension 4n up to isomorphism and Sp(n,C)-
orbits on the space of quartic polynomials S € S*E in the symplectic vector space
E = C™ such that

(4.4) Seer-S=0 forall e €E.

4.4. Classification of complex hyper-Kéahler symmetric spaces. The fol-
lowing complex version of Proposition 4 (with similar proof) will be a crucial step in
the classification of complex hyper-Kahler symmetric spaces.

PROPOSITION 6. Let (M = G/K,g,J,) be a simply connected complex hyper-
Kdhler symmetric space. Then the holonomy group of M is solvable and M admits a
transitive solvable Lie group of automorphisms.

Due to Corollary 1 the classification of simply connected complex hyper-Kéhler
symmetric spaces reduces to the determination of quartic polynomials S satisfying
(4.4). Below we will determine all such polynomials. We will prove that the following
example gives all such polynomials.

EXAMPLE 1: Let E = E; ® E_ be a Lagrangian decomposition, i.e. w(Fx, Fy) =
0, of the symplectic vector space E = C?". Then any polynomial S € S*E, C S*E
satisfies the condition (4.4) and defines a simply connected complex hyper-Kéhler
symmetric space Ms with Abelian holonomy algebra f) = Sg, 5, C S?E; C S?E =
sp(E).

In fact, since E, is Lagrangian the endomorphisms from S2E, form an Abelian
subalgebra of sp(E), which acts trivially on E; and hence on S*E,.

THEOREM 3. Let S € S*E be a quartic polynomial satisfying (4.4). Then there
ezists a Lagrangian decomposition E = Ey ® E_ such that S € S‘E,..

Proof: According to Theorem 2 the quartic S defines a hyper-K&hler symmetric
space with holonomy Lie algebra f) = Sg g. Since, by Proposition 6, f is solv-
able, Lie’s theorem implies the existence of a one-dimensional b-invariant subspace
P = Cp C E. There exists an w-nondegenerate subspace W C E such that the w-
orthogonal complement of P is PL = P @ W. We choose a vector ¢ € E such that
w(p,q) =1 and w(W, q) = 0 and put Q := Cq. Then we have

E=PoWeoqQ.
Since ) preserves P we have the following inclusion
hc PE+W?=P?+PW+PQ+W?2,

where we use the notation XY = X VY for the symmetric product of subspaces
X,Y C E. Then the second prolongation b(2) ={T € S*E|T. . € hforalle,e’ € E}
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has the following inclusion

b c P°E + PPW? + PW® + W*
(4.5) =P+ P2Q+ P*W + PPW? + PW® + W*.

Indeed h® C h? = P4+ P3Q+P3W +P2Q%+ P?WQ+P?W?+ PQW?+ PW3+ W*.
The projection b(z) — P2Q? + P2WQ + PQW? is zero because otherwise Sq, € h C
PE + W? would have a nonzero projection to Q% + WQ or Sy, € b would have a
nonzero projection to QW for appropriate choice of w € W. By (4.5) we can write
the quartic S as

S =p*(\p+ pg+wo) +p’B+pC + D,

where \,p € C, wo € W, B € S?W, C € S®W and D € S*W. From now on we will
identify S?E with the space C[E*](9) of homogeneous polynomials on E* of degree d.
Then the w-contraction Ty = 1w, T = T(wz,...) of a tensor T € SE with a vector
z € E is identified with the following homogeneous polynomial of degree d — 1:

1
T:c = an:cT y

where 8,,T is the derivative of the polynomial T € C[E*]¥) in the direction of
wz = w(z,-) € E*. For example p; = (p,wq) = w(q,p) = Ougp = —0p:p = —1 = —¢p.

From S,, = —1up? and the condition S,, - S = 0 we obtain x = 0, since
p? - S = up*. This implies S,. = 0. Next we compute:

1
Sgq = 6(6/\1)2 + 3pwo + B)
Sqw = ——115(—3p2w(w0,w) + 2p8,ywB + 0,,C)
= ——115(—3p2w(w0,w) +4pBy, + 3Cy)

1
Sw,w’ = g(szw,w' + 3pcw,w’ + 6Dw,w’)

for any w,w’ € W.
Now the condition (4.4) can be written as follows:

3
0=65q,q~S:(3pwo+B)-S=(§(p®wo+wo®p)+B)'S
3
= 5(2p3Bw0 + 3p%Clyy + 4pDyy) + P°Bwo + p?’B-B+pB-C+ B-D
9
= —2p°Bwo + §p26’w0 +p(6Dy, +B-C)+B-D.

Note that Bwg = —B,, and B-B = [B,B] =0.

0=-128,, S = (4pBy + 3Cy) - S
= 2(p*w(Buy, wo) + 2p° B*w — 3p*Cpy — 4pDpy)
+3(p*Cpwo + p*Cy - B+ pCy -C + Cy - D)
= 2p*w(By, wo) + p°(4B%*w + 3Cy,wo) + p?(—6Cpy + 3Cy - B)
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+p(—8Dpy +3Cy - C) +3Cy - D

1
O = QSw’w’ N S = §(p®0w,w’ + Cw,'UJ' ®p) . S+2D’u},w’ : S

1
= §(p4w(Cw’w/,wo) - 2p3BCw,wl + 3P2CC

w,w’

+4pDe ) +

w,w

2(p3Dw,w’w0 +’p2Dw,w’ B +pr,w’ -C+ Dw,w’ : D)

1
= §P4W(Cw,w',wo) + ps(_BCw,w’ + 2-D1.u,w’7~UO) +

3
p2(§CCU’nv’ + Q‘Dwyw' ’ B) + p(QDC,,,'w/ + 2Dw,w' . C) + 2Dw,w' -D.

This gives the following system of equations:
(1) B’wo =0
(2) Cuo =0
(3)6Dy, +B-C=0
4)B-D=0
(5) w(Buw,wp) =0
(6) 4B%w + 3Cy,wo = 0
(7) —=2Cpyw+Cy-B=0
(8) =8Dpyw +3Cy, -C =0
9Cy-D=0
(10)w(Cpw',w) =0
(11)-BCyw' + 2Dy yywo =0

(12)gccww, 42Dy -B=0

(13)Dcywr + Dy - C =0
(14)Dy. o - D =0.

675

Note that (5) and (10) follow from (1) and (2) and that using (2) equation (6) says

that the endomorphism B has zero square:
(6') B2=0.

Eliminating D,,, in equations (3) and (11) we obtain:

(15) 0= (B C)yw' +3BCyw' = BCyw' — Cpyww' — CyBw' + 3BCy,w'

=4BC,w' — Cy,w' — CpBw' .
We can rewrite (7) as:
(7Y -2Cpyw' + CyBw' — BCyw' =0.
Eliminating Cpy,w’ in (7') and (15) we obtain:
(16) —3BCyw' +CyBw' =0.
Since the first summand is symmetric in w and w’ we get
(17) CypBw' = Cy Bw = Cp,w'.
Now using (17) we can rewrite (15) as:
(15") 2BCy,w' — CyBuw' =0.
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The equations (15’) and (16) show that BCy,w' = CyBw' = Cpyuw’ = 0 and
hence also B - C = 0. This implies D, = 0, by (3). Now we can rewrite (1-14) as:

(4.6) Bwy = Cyy = Dy, =0
4.7 B-C=B-D=0
(4.8) B2 =0

(4.9) Cpw =CywB=BC, =0
(4.10) —8Dpy, +3C, - C=0
(4.11) Cw-D=0

(4.12) gccww, 42Dy -B=0
(4.13) Dgyw + Dy -C =0
(4.14) Doy D =0.

Now to proceed further we decompose K := ker B = Wy & W', where Wy = ker w|K
and W' is a (nondegenerate) complement. Let us denote by W; a complement to K in
W such that w(W’',Wy) = 0. Then Wy + W, is the w-orthogonal complement to the
B-invariant nondegenerate subspace W'. This shows that BW; C (Wo + W) NK =
Wo. Moreover since W7 N K = 0 the map B : W; — W, is injective and hence
dim W; < dimW,. On the other hand dim W; > dim W, since Wy is an isotropic
subspace of the symplectic vector space Wy + W;. This shows that B : W; — Wy is
an isomorphism.

LEMMA 3. C € S®K and D € S*K.

Proof: Since Wy = BW the equation (4.9) shows that Cyy, = 0, which proves the
first statement. From (4.10) and the identity

(4.15) (Cy - C)y = [Cxa Cy] - CC:y
we obtain

3 3
(4.16) Dpzy+ DByz = g((Cm 2Oy +(Cy-C)g) = —ZC’cwy.

The equation B+ D =0 (4.7) reads:
0=(B:D)gy=[B,Dzy] — DBz,y — Dz,By -
Using this (4.12) yields:

(4.17) Dpyy+ DBy =[B,Dgyl=—Dgy-B=—-Cc,y.
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Now from (4.16) and (4.17) we obtain that

0=Cc,yz=C.Czy
for all z,y,z € W. This implies [C;,C,] =0 for all z,y € W and hence
(4.18) C;-C=0

for all z € W, by (4.15). Finally this shows that Dy, = 0 by (4.10). This proves the
second statement. 0

LEmMA 4. D; ,C, = C,D;, =0 for all z,y,z € W.
Proof: Using (4.13) we compute:

(4.19) Dz,yCzw = Dc,w,zy = _(Dz,w : C):vy = _([Dz,un C:l:]y - CDz,wzy) .
From (4.11) we get:

0= (C:c : D)z,wy = [CI,Dz,w]y - DC'mz,wy - Dz,CIwy

=CyD, 0y — D;4yCoy — Dy 1yCoz — D, ,Cow),
and hence:
[D:w,Czly = —DyCrz — D, ,Cow,
and
Cp, oy =CyD; wx = D, Cry + Dy wCyz + D, ;Cyw.
Now we eliminate the C D-terms from (4.19) arriving at:
(4.20) Dy Cow = (Dy,wCrz + D, ,Cow + D, ,Cry + Dz Cyz + D, . Cyw) .

Considering all the permutations of (z,y, z,w) we get 6 homogeneous linear equations
for the 6 terms of equation (4.20) with the matrix:

-1 1 1 1 1 1
1 -1 1 1 1 1
1 1 -1 1 1 1
1 1 1 -1 1 1
1 1 1 1 -1 1
1 1 1 1 1 -1

This is the matrix of the endomorphism —2 Id+e&e in the arithmetic space R®, where
e=-e1+ ...+ ep; (e;) the standard basis. It has eigenvalues (4,—2,-2,—2,—-2, —2).
This shows that the matrix is nondegenerate and proves the lemma. O

For a symmetric tensor T' € SW we denote by

S = span{Ty, z,,...00_2Ld—1|T1,Z2,...Tyg—1 E W} C W

the support of T
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LEMMA 5. The supports of the tensors B € S?°W, C € S*W and D € S*W
admit the following inclusions

Y8+ Xc CkerBNkerCNkerD, Xp CkerBnNkerC.

Moreover ¥p + ¢ is isotropic and w(Xp,Xp + X¢) =0.

Proof: The first statement follows from B? = BC, = BD.;, =C;B = C,Cy =
CeDy, =D;yB=D,,C, =0forallz,y,z € W. The second statement follows from
the first and the definition of support, e.g. if z = C,y € Z¢c andw € Tg+Xc+Zp C
kerC we compute:

w(z,w) = w(Cry,w) = —w(y, Crw) =0.

LEMMA 6. The Lie algebra Dyw.w C S*W =2 sp(W) is solvable.

Proof: This follows from Proposition 6, since D € S*W satisfies (4.4) and hence
defines a complex hyper-K&hler symmetric space with holonomy Lie algebra Dy, . It
also follows from the solvability of Sg g as we show now. In terms of the decomposition
E =P+ W + @ an endomorphism

Sa:,y = ()\P4 +p3w0+p23+pC+D)a:,y = (p2B+pC+D)m,y = B(:II, y)p2 _pcmy'*'D:c,y,

where z,y € W, is represented by

0 —(Czy)* Bl(z,y)
0 D, —Cgy .
0 0 0

Since the Lie algebra Sg, g is solvable this implies that the Lie algebra Dw,w, which
corresponds to the induced representation of Sg g on P+/P = W, is also solvable. O

LEMMA 7.
w(wo,EB +Xc+Xp)=0.

Proof: Note that wo € kerBNkerC NkerD, due to equations (1-3) and (4.7). This
implies the lemma. In fact, if e.g. y = Bz € L g then

w(wo,y) = w(we, Bx) = —w(Bwg,z) =0,

which shows that w(wg,Xg) =00

Now to finish the proof of Theorem 3 we will use induction on the dimension
dim E = 2n. If n = 1 the (solvable) holonomy algebra I is a proper subalgebra of
S?E = s1(2,C). Without loss of generality we may assume that either
a) h=Cp? or
b) b = Cpg or
¢) h =Cp? + Cpq,
where (p, q) is a symplectic basis of E. In the all three cases the Lie algebra Sg g =
h c Cp? + Cpg and hence

S = xp* + upq.
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In the cases b) and c) we have that pg € b and since
1
pi-S=5(p®q+q®p)-S=-22p"— up’=0

it follows that S = 0. In the case a) from Sg g = h = Cp? we have that S = A\p*. This
tensor is invariant under f) = Cp? and belongs to the fourth symmetric power of the
Lagrangian subspace Cp C E. This establishes the first step of the induction. Now
by induction using equation (4.14) and Lemma 6 we may assume that ¥ p is isotropic.
Now Lemma 5 and Lemma 7 show that Cwg + g + X¢ + Xp is isotropic and hence
is contained in some Lagrangian subspace E; C E. This implies that S € SE,. O

Now we give a necessary and sufficient condition for a symmetric manifold M =
Ms, S € S*E,, to have no flat de Rham factor.

PROPOSITION 7. The complex hyper-Kéihler symmetric space Ms, S € S*E,,
has no flat de Rham factor if and only if the support £s = E.

Proof: If M = Ms = G/ K has aflat factor My, such that M = M; X My, then this
induces a decomposition E = E' @ E® and S € S*E;; hence s C E1NEy # E,.
Conversely let S € S*E,, assume that E! = X5 C E; is a proper subspace and
choose a complementary subspace E. We denote by EL and E® the annihilator of
wEY and wE} respectively. Let us denote E* = E} @ EX, E° = E @ E°, m! =
H® E' and m° = H® E°. Then E°, E! C E are w-nondegenerate complementary
subspaces and m°, m! ¢ m = T,M are g-nondegenerate complementary subspaces.
Since S € S*E} the Lie algebra g = h + m = (h + m') & m° has the Abelian direct
summand m°, see (3.1), which gives rise to a flat factor M°® C Mg = M* x MP°.

THEOREM 4. Any simply connected complex hyper-Kdhler symmetric space with-
out flat de Rham factor is isomorphic to a complex hyper-Kdhler symmetric space of
the form Mg, where S € S*E, and E; C E is a Lagrangian subspace of the complex
symplectic vector space E = C*™. Moreover there is a natural 1-1 correspondence be-
tween simply connected complex hyper-Kdhler symmetric spaces without flat factor up
to isomorphism and orbits O of the group Aut(E,w, E;)|E+ = {A € Sp(E)|AE; =
E,}|EL = GL(E;) = GL(n,C) on the space S*E, such that s = E4 for all S € O.

Proof: This is a corollary of Theorem 2, Theorem 3 and Proposition 7. O

Let M = G/K be a simply connected complex hyper-Kéhler symmetric space
without flat factor. By Theorem 3 and Proposition 7 it is associated to quartic poly-
nomial S € S*E, with support £5 = E,. Now we describe the Lie algebra aut(Ms)
of the full group of automorphisms, i.e. isometries which preserve the hypercomplex
structure, of Mg.

THEOREM 5. Let Mg = G/K be as above. Then the full automorphism algebra
is given by

aut(Ms) = aut(S) + g,

where A € aut(S) = {B € gl(E4)|B-S = 0} acts on g = h + m as follows. It
preserves the decomposition and acts on ) = Sg g by

[A, Sz,y] = SAz,y + Sr,Ay
foralz,y € E and onm=HQ®E by
[A,h®@e]=h® Ae,
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where gl(E,) is canonically embedded into sp(E).

Proof: By (the complex version of) Proposition 1 it is sufficient to determine
the centralizer ¢ of sp(1,C) in the full isotropy algebra f) = aut(R) D sp(1,C) @ b.
Equation (2.2) shows that

c={Id® A|Aesp(E), A-S=1[A,S(,)]-S(4-,-) = S(-,A) =0}.

From A -S = 0 we obtain that the commutator [A,Szy] = Sasz,y + Sz,ay for all
z,y € E and AYs = AE, C E;. This implies ¢ = aut(S). O

5. Classification of Hyper-Kahler Symmetric Spaces. Using the descrip-
tion of complex hyper-Kéhler symmetric spaces given in Theorem 4 we will now clas-
sify (real) hyper-Kahler symmetric spaces. Recall that a simply connected pseudo-
Riemannian manifold is called indecomposable if it is not a Riemannian prod-
uct of two pseudo-Riemannian manifolds. Any simply connected pseudo-Riemannian
manifold can be decomposed into the Riemannian product of indecomposable pseudo-
Riemannian manifolds. By Wu’s theorem [W] a simply connected pseudo-Riemannian
manifold is indecomposable if and only if its holonomy group is weakly irreducible,
i.e. has no invariant proper nondegenerate subspaces. Therefore it is sufficient to
classify (real) hyper-Kéhler symmetric spaces with indecomposable holonomy.

Let (M = G/K,g,Js) be a hyper-Kéhler symmetric space associated to a sym-
metric decomposition (2.1). The complexified tangent space of M is identified with
mC = H® E, the tensor product of to complex symplectic vector spaces with quater-
nionic structure jz and jg such that p = jy ® jg is the complex conjugation of m®
with respect to m. By Theorem 1 it is defined by a quartic polynomial S € S*E sat-
isfying the conditions of the theorem. Moreover the holonomy algebra ) acts trivially
on H and is identified with the real form of the complex Lie algebra Sg g C sp(E)
given by f) = span{Sjc e — Sejerle, €’ € E} = {A € Sg g|[A, jr] = 0} C sp(E)’=.

The quartic polynomial S defines also a complex hyper-Kahler symmetric space
M€ = G®/K€, which is the complexification of M = G/K. By Theorem 3, S € S*L
for some Lagrangian subspace L C E. Recall that the symplectic form w = wg
together with the quaternionic structure j = jg define a Hermitian metric vy = yg =
wg(, jg-) of (real) signature (4k,4l), n = k + [, which coincides with the signature
of the pseudo-Riemannian metric g (we normalize vy = wy(-,jm-) to be positive
definite). We may decompose v-orthogonally L = L@ L* @ L~, such that v vanishes
on LY is positive definite on LT and negative definite on L.

LEMMA 8.
(i) L% = L° and
(ii) LY + L™ + jLT + jL~ C E is an w-nondegenerate and y-nondegenerate h-
invariant subspace (with trivial action of §y).
Proof: We show first that L + jL° is w-isotropic and hence L + jL° = L since L
is Lagrangian. Indeed L D L° is w-isotropic and also jL° because w is j-invariant. So
it suffices to remark that w(L, jL°) = 0:

w(L,jL°) = (L, L°) = 0.

This implies that jL° C L. Since vy(L,jL°) = —w(L,L°%) = 0, we conclude that
jL® C kery|L = L°. This proves (i).

To prove (ii) it is sufficient to check that the subspace Lt + L~ +jL* +jL~ C E
is nondegenerate with respect to <, since it is j-invariant. First we remark that v is
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positive definite on Lt and jL* and negative definite on L~ and jL~, due to the
j-invariance of v: y(jz,jz) = y(z,z), z € E. So to prove (ii) it is sufficient to check
that jL* @ 5L~ is y-orthogonal to the y-nondegenerate vector space L+ + L™:

YLt + L, jLT +jL7)=w(Lt+ L7, LT +L7) =0.

g

By Theorem 1 the quartic polynomial S must satisfy the reality condition
[Sje,er — Se,jer» 7] = 0. Now we describe all such polynomials.

The quaternionic structure j on E is compatible with w, i.e. w(jz, jy) = w(z,y)
for all z,y € E and it induces a real structure (i.e. an antilinear involution) 7 :=
j®j® --®j on all even powers SE C ERE®---® E. For S € S*E and
1, -+, %o € E we have

(TS)(:B]J e ,$27~) = S(j.’l)], T 7].3:27*) -
Note that the fixed point set sp(E)™ = {A € sp(E)|[A, j] = 0} = sp(k, ).

PROPOSITION 8. Let (E,w,j) be a complex symplectic vector space with a quater-
nionic structure j such that w(jz,jy) = w(z,y) for all z,y € E. Then a quartic
polynomial S € S*E satisfies the reality condition [Sje,er — Se,jer,j) = 0 if and only if
S € (SE)" =span{T + 7T|T € S*E}.

Proof: The reality condition for S € S*E can be written as

[Siz,jy + Sz,y,7]2 =0

for all z,y,z € E. Contracting this vector equation with jw € E by means of w and
using the compatibility between j and w we obtain the equivalent condition

0= —w(jw, [ij,jy + Sz,y,j]z)
(51) = S(].’Z,]’y,]z,j’lﬂ) - S(j$ajya2aw) + S(xvy7]27]w) - 5(%1/,2,“1) .

Now putting £ = y = z = w = u we obtain:
0 = S(ju, ju, ju, ju) = S(u, ju, u,u) + S(u, u, ju, ju) - S(u,u, u,u)
and putting = 7u and y = z = w = u we obtain:

0 = —iS(ju, ju, ju, ju) — 1S (Ju, ju, u,w) + iS(u, u, ju, ju) + iS(u, u, u, u).
Comparing these two equations we get S(ju, ju, juj,u) = W, ie. S =1718.
This shows that the reality condition implies that S € (S*E)". Conversely the con-
dition S = 7S can be written as

S(jz, jy, iz, jw) = S(z,y,z,w) forall z,y,z,weE.
Changing z — jz and w — jw in this equation we obtain
S(jz, jy, z,w) = S(z,y, jz,jw) for all z,y,z,w € E.

These two equations imply (5.1) and hence the reality condition. O
Now we are ready to classify simply connected hyper-K#hler symmetric spaces.
We will show that the following construction gives all such symmetric spaces.
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Let (E,w, j) be a complex symplectic vector space of dimension 2n with a quater-
nionic structure j such that w(jz, jy) = w(z,y) forall z,y € Eand E=E, ® E_ a
J-invariant Lagrangian decomposition. Such a decomposition exists if and only if the
Hermitian form v = w(:, 7-) has real signature (4m,4m), where dim¢c E = 2n = 4m.
Then any polynomial S € (S*E; )" = S*E; N(S*E)" satisfies the condition (4.4) and
the reality condition, by Proposition 8. Hence by Theorem 1 it defines a (real) simply
connected hyper-Kahler symmetric space Ms with Abelian holonomy algebra h =
(Se4,B4)" = SE, B, N(S?E)™ = span{Sjee' — Seje'le, €' € E} C sp(E)™ = sp(m,m).

THEOREM 6. Any simply connected hyper-Kdahler symmetric space without flat
de Rham factor is isomorphic to a hyper-Kdhler symmetric space of the form Mg,
where S = T+ 7T, T € S*E, and E, C E is a j-invariant Lagrangian subspace
of the complex symplectic vector space E with compatible quaternionic structure j.
A hyper-Kdhler symmetric space of the form Ms has no flat factor if and only if it
complezification has no flat factor, which happens if and only if the support ©s = E4.
Moreover there is a natural 1-1 correspondence between simply connected hyper-Kihler
symmetric spaces without flat factor up to isomorphism and orbits O of the group
Aut(E,w,j,E;)|E; = {A € Sp(E)|[A4,7] = 0,AE; = E }|Ey = GL(m,H) on the
space (S*EL)T such that ©s = E, for all S € O.

Proof: Let M be a simply connected hyper-Kéhler symmetric space. We first
assume that it is indecomposable. Then the holonomy algebra I is weakly irreducible.
By Theorem 1, M = M5 for some quartic polynomial S € S*E satisfying (4.4) and the
reality condition (3.2). By Proposition 8 the reality condition means that S € (S4E)".
On the other hand, by Theorem 3 S € S*L for some Lagrangian subspace L of E.
Now the weak irreducibility of fj and Lemma 8 imply that L = L° is j-invariant. This
proves that S € (S*E, )", where E; = L = L is a j-invariant Lagrangian subspace
of E. This shows that M is obtained from the above construction. Any simply
connected hyper-K&hler symmetric space M without flat factor is the Riemannian
product of indecomposable ones, say M = M; X My X --- X M,, and we may assume
that M; = Ms,, S; € S*E;. Therefore M is associated to the quartic polynomial
S=519S® S, € SE,E=E ®E®---® E,. Moreover S satisfies (4.4)
and (3.2) if the S; satisfy (4.4) and (3.2). This shows that any simply connected
hyper-Kéhler symmetric space is obtained from the above construction.

It is clear that the complexification ME has a flat factor if Mg has a flat factor.
Conversely let us assume that ME has a flat factor, hence g C F, is a proper
subspace. Since j¥s = jSg,gE = Sg,gjE = Sg,gE = X5 there exists a j-invariant
complementary subspace E' in E,. Denote by E’ the annihilator of s in E_ then
E' = E ® E’ is an w-nondegenerate and j-invariant subspace of E on which the
holonomy f)c = Sg,p C S?Zs acts trivially. Then the corresponding real subspace
(H® E') c m = (H ® E)* is a g-nondegenerate subspace on which the holonomy
acts trivially. By Wu’s theorem [W] it defines a flat de Rham factor.

Now the last statement follows from the corresponding statement in Theorem 1.
o

COROLLARY 2. Any hyper-Kdhler symmetric space without flat factor has signa-
ture (4m,4m). In particular its dimension is divisible by 8.

COROLLARY 3. Let M = Mg be a complez hyper-Kdhler symmetric space without
flat factor associated with a quartic S € S*E,, where E, C E is a Lagrangian
subspace. It admits a real form if and only if there exists a quaternionic structure j
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on E compatible with w preserving Ey such that 7S = S, where T is the real structure
on S*E induced by j. In particular dimc M has to be divisible by 8.

Let M = G/K be a simply connected hyper-Kéhler symmetric space without flat
factor. By Theorem 6 it is associated to a quartic polynomial S € (S*E,)" with
support £s = E;. Now we describe the Lie algebra aut(Ms) of the full group of
automorphisms, i.e. isometries which preserve the hypercomplex structure of Ms.

THEOREM 7. Let Ms = G/K be as above. Then the full automorphism algebra
is given by

aut(Mg) = aut(S) + g,
where aut(S) = {4 € gl(E4)|[4,j] =0, A-S =0} acts on
g=b+m,h={A€ Sgr|[4 5] =0} =span{Sjz,y — Sz,jy|z,y € E},m = (HQE)*?

as in Theorem 5.
Proof: The proof is similar to that of Theorem 5. O

6. Low Dimensional Hyper-K&hler Symmetric Spaces.

6.1 Complex hyper-Kihler symmetric spaces of dimension < 8.
Dimension 4
Assume that M is a simply connected complex hyper-Kahler symmetric space of
dimension 4. Applying Theorem 4 we conclude that M = Mg for some S € S*E,,
where E C E is a one-dimensional subspace E; = Ce. This proves:

THEOREM 8. There exists up to isomorphism only one non-flat simply connected
complex hyper-Kdhler symmetric space of dimension 4: M = Mg associated with the
quartic S = e*.

Dimension 8
Any eight-dimensional simply connected complex hyper-K&hler symmetric space is
associated with a quartic S € S*E,, where E; C E is a Lagrangian subspace of

E = C*. We denote by (e,e') a basis of E,.

THEOREM 9. FEight-dimensional simply connected complex hyper-Kdahler symmet-
ric space are in natural 1-1 correspondence with the orbits of the group CO(3,C) =
C* -SO(3,C) on the space SZC? of traceless symmetric matrices. The complex hyper-
Kdhler symmetric space associated with a traceless symmetric matriz A is the manifold
Ms(ay, where S(A) € S4C? is the quartic polynomial which corresponds to A under
the SO(3, C)-equivariant isomorphism SaC® = S2 A2 T3 = S2S2C? = S4C2.

The classification of SO(3, C)-orbits on SZC? was given by Petrov [P] in his clas-
sification of Weyl tensors of Lorentzian 4-manifolds.

Proof: By Theorem 4 the classification of eight-dimensional simply connected
complex hyper-Kahler symmetric spaces reduces to the description of orbits of the
group GL(Ey) = GL(2,C) on S4C? c S252C?. Fixing a volume form ¢ on C? we
can identify S2C? with sp(1,C) = so(3,C). Then the Killing form B is an SL(2,C)-
invariant and we have the GL(2,C)-invariant decomposition: $252C? = S252C? @
CB. The action of SL(2,C) on S2C? is effectively equivalent to the adjoint action of
SO(3,C). The problem thus reduces essentially to the determination of the orbits of
SO(3,C) on S2C3. 0O
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5.1. Hyper-Kahler symmetric spaces of dimension < 8. By Corollary 3
the minimal dimension of non-flat hyper-Kahler symmetric spaces is 8.

THEOREM 10. Eight-dimensional simply connected hyper-Kdhler symmetric space
are in natural 1-1 correspondence with the orbits of the group RT -SO(3) on the space
S2R3 of traceless symmetric matrices. The hyper-Kahler symmetric space associated
with a traceless symmetric matriz A is the manifold Mg 4y, where S(A) € (S*C?)7 is
the quartic polynomial which corresponds to A under the SO(3)-equivariant isomor-
phism SER3 = (S4C?)".
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