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CLASSIFICATION OF INDEFINITE HYPER-KAHLER SYMMETRIC 
SPACES* 

DMITRI V. ALEKSEEVSKYt  AND VICENTE CORTES* 

Abstract. We classify indefinite simply connected hyper-Kahler symmetric spaces. Any such 
space without flat factor has commutative holonomy group and signature (4m,4ra). We establish a 
natural 1-1 correspondence between simply connected hyper-Kahler symmetric spaces of dimension 
8m and orbits of the group GL(m, H) on the space (54Cn ).r of homogeneous quartic polynomials S 
in n = 2m complex variables satisfying the reality condition S = rS} where r is the real structure 
induced by the quaternionic structure of C2m = ffiP. We define and classify also complex hyper- 
Kahler symmetric spaces. Such spaces without flat factor exist in any (complex) dimension divisible 
by 4. 

1. Introduction. We recall that a pseudo-Riemannian manifold (M,g) is called 
a symmetric space if any point x G M is an isolated fixed point of an involutive 
isometry sx (called central symmetry with centre x). Since the product of two central 
symmetries s^ and Sy with sufficiently close centres is a shift along the geodesic (xy), 
the group generated by central symmetries acts transitively on M and one can identify 
M with the quotient M = G/K, where G is the connected component of the isometry 
group Isom(M, g) and K is the stabilizer of a point o € M. 

A symmetric space (M = G/K, g) is called Kahler (respectively, hyper-Kahler) 
if its holonomy group Hol(M, g) is a subgroup of the pseudo-unitary group U(p,g) 
(respectively, of the pseudo-symplectic group Sp(p,g) C SU(2p, 2q)). Any hyper- 
Kahler symmetric space is in particular a homogeneous hypercomplex manifold. Ho- 
mogeneous hypercomplex manifolds of compact Lie groups were constructed by Ph. 
Spindel, A. Sevrin, W. Troost, A. Van Proeyen [SSTVP] and by D. Joyce [J] and 
homogeneous hypercomplex structures on solvable Lie groups by M.L. Barberis and 
I. Dotti-Miatello [BD]. 

The classification of simply connected symmetric spaces reduces to the classifica- 
tion of involutive automorphisms a of a Lie algebra Q, such that the adjoint repre- 
sentation adJtn preserves a pseudo-Euclidean scalar product g, where 

g = 6-hm,     <J|6=1,    <7|m=-l, 

is the eigenspace decomposition of the involution a. Note that the eigenspace decom- 
position of an involutive automorphism is characterized by the conditions 

[6,1] c 6,    [t, m] c m,    [m, m] c 6. 

Such a decomposition is called a symmetric decomposition. 
In fact, for any pseudo-Riemannian symmetric space M = G/K t e conjuga- 

tion with respect to the central symmetry s0 with centre o = eK is ? . involutive 
automorphism of the Lie group G, which induces an involutive autom' phism a of 
its Lie algebra g. The pseudo-Riemannian metric of M induces a 6-invariant scalar 
product on m = T0M, where Q — I 4- TU is the symmetric decomposition defined by 
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<J. Conversely, a symmetric decomposition Q = t + ttl together with a ^-invariant 
scalar product on m determines a pseudo-Riemannian symmetric space M = G/K, 
where G is the simply connected Lie group with the Lie algebra g, K is the connected 
(and closed) subgroup of G generated by t, the pseudo-Riemannian metric on M is 
defined by g and the central symmetry is defined by the involutive automorphism a 
associated to the symmetric decomposition. 

Naturally identifying the space Ttl with the tangent space T0M", the isotropy 
group is identified with Ad^ltn and the holonomy algebra is identified with adt, 

where f) = [m,ttl]. If one assumes that the holonomy algebra is irreducible then one 
can prove that the Lie algebra Q is semisimple. Hence the classification of pseudo- 
Riemannian symmetric spaces with irreducible holonomy reduces to the classification 
of involutive authomorphisms of semisimple Lie algebras. Such a classification was 
obtained by M. Berger [Bl, B2] and A. Fedenko [F]. It includes the classification 
of Riemannian symmetric spaces (obtained earlier by E. Cartan), since according to 
de Rham's theorem any simply connected complete Riemannian manifold is a direct 
product of Riemannian manifolds with irreducible holonomy algebra and a Euclidean 
space. 

A classification of pseudo-Riemannian symmetric spaces with non completely re- 
ducible holonomy is known only for signature (1, n) (Cahen-Wallach [CW]) and for sig- 
nature (2, n) under the assumption that the holonomy group is solvable (Cahen-Parker 
[CP]). The classification problem for arbitrary signature looks very complicated and 
includes, for example, the classification of Lie algebras which admit a nondegener- 
ate ad-invariant symmetric bilinear form. An inductive construction of solvable Lie 
algebras with such a form was given by V. Kac [K], see also [MR1], [Bo] and [MR2]. 

In this paper we give a classification of pseudo-Riemannian hyper-Kahler symmet- 
ric spaces. In particular, we prove that any simply connected hyper-Kahler symmetric 
space M has signature (4m,4m) and its holonomy group is commutative. The main 
result is the following, see Theorem 6. 

Let (E, LJ, j) be a complex symplectic vector space of dimension 4m with a quater- 
nionic structure j such that co(jx,jy) = (jo(xyy) for all x,y £ E and E = E+ © E- 
a j-invariant Lagrangian decomposition. Such a decomposition exists if and only if 
the Hermitian form 7 = (*)(-, j-) has real signature (4m,4m). We denote by r the real 
structure in S2rE defined by r(eie2 ... e2r) := j{^i)j{.^2) • • -jfar), ei € E. Then any 
element S G {SAE+)T defines a hyper-Kahler symmetric space Ms which is associated 
with the symmetric decomposition 

where ttl = (C2 0 E)p is the fixed point set of the real structure p on C2 0 E given by 
p(h®e) = JHhQje, where jn is the standard quaternionic structure on C2 = M, I) = 
span{5e)e'| 6,6' G E}r C sp(E)T = sp(m,m) with the natural action on m C C2 ® E 
and the Lie bracket m A TTl -> \) is given by 

[h 0 e, h' 0 ef] = cc>#(/i, h')Se,e<, 

where UOH is the standard complex symplectic form on C2. 
Moreover, we establish a natural 1-1 correspondence between simply connected 

hyper-Kahler symmetric spaces (up to isomorphism) and orbits of the group GL(m, H) 
in (S4£+)r. 

We define also the notion of complex hyper-Kahler symmetric space as a complex 
manifold (M, g) of complex dimension 4n with holomorphic metric g such that for any 
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point x G M there is a holomorphic central symmetry sx with centre x and which has 
holonomy group Hol(M,#) C Sp(n,C) (Sp(n,C) M- Sp(n5C) x Sp(n,C) C 0(4n,C) 
is diagonally embedded) and give a classification of such spaces. We establish a nat- 
ural 1-1 correspondence between simply connected complex hyper-Kahler symmetric 
spaces and homogeneous polynomials of degree 4 in the vector space Cn considered 
up to linear transformations from GL(n,C). 

2.  Symmetric Spaces. 

2.1. Basic facts about pseudo-Riemannian symmetric spaces. A 
pseudo-Riemannian symmetric space is a pseudo-Riemannian manifold (M,g) 
such that any point is an isolated fixed point of an isometric involution. Such a 
pseudo-Riemannian manifold admits a transitive Lie group of isometries L and can 
be identified with L/L0, where L0 is the stabilizer of a point o. More precisely, any 
simply connected pseudo-Riemannian symmetric space M = G/K is associated with 
a symmetric decomposition 

(2.1) fl = £ + m,   [6,6] c 6,    [6,m]cm,   [m,tn]c6 

of the Lie algebra Q = Lie G together with an Adx-invariant pseudo-Euclidean scalar 
product on TTl. We will assume that G acts almost effectively on M, i.e. t does not 
contain any nontrivial ideal of 0, that M and G are simply connected and that K is 
connected. Then, under the natural identification of the tangent space T0M at the 
canonical base point o = eK with TTl, the holonomy group Hoi C Adxltn. We will 
denote by I) the holonomy Lie algebra. Since the isotropy representation is faithful it 
is identified with the subalgebra f) = [m, m] := span{[a;,y]| x,y G TTl} C 6. Recall that 
the curvature tensor R of a symmetric space M at o is f)-invariant and determines 
the Lie bracket in the ideal f) -f TTl C Q as follows: 

f) = i?(m, TTl) := span{i?(x, y)\x, y G TTl}    and    [x, y] = —R(x, y) ,     x, y G TTl. 

The following result is well known: 

PROPOSITION 1. The full Lie algebra of Killing fields of a symmetric space has 
the form 

isom(M) = f) + m, 

where the full isotropy subalgebra is given by 

(2.2) fj = aut(fl) = {A G so(m)| A ■R=[A, R{-, •)] - #(-4-, •) - #(•, A-) = 0} . 

2.2. Symmetric spaces of semisimple Lie groups. We will prove that in the 
case when (M = G/K, g) is a pseudo-Riemannian symmetric space of a (connected) 
semisimple Lie group G then G is the maximal connected Lie group of isometries of 
M. 

PROPOSITION 2. Let (M = G/K,g) be a pseudo-Riemannian symmetric space 
associated with a symmetric decomposition Q = 14- tn. If G is semisimple and almost 
effective then 

(i) the restriction of the Cart an-Killing form B of Q to £ zs nondegenerate and 
hence t is a reductive subalgebra of Q and Q = £ + tn is a B-orthogonal 
decomposition, 
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(ii) t = [m, m] and 
(Hi) Q — isom(M,^) is the Lie algebra of the full isometry group of M. 
Proof: For (i) see [O-V] Ch. 3 Proposition 3.6. 

(ii) It is clear that Q =. [m,tn] + TTl is an ideal of Q. The ^-orthogonal complement 
Ci := Q C 6 is a complementary ideal of Q. Since [a, TTl] = 0 the Lie algebra a acts 
trivially on M. From the effectivity of Q we conclude that a = 0. 

(hi) By Proposition 1,0 = isom(M,#) = f) + m, where t) = aut(iJ) = {A G so(m)| 

A-R = 0}. Now f) preserves m and by the identity A-R = [A, R(^ •)]-R(A') ')-R(', A-) 

it also normalizes 6. This shows that f) normalizes Q and hence Q C Q is an ideal. 
Since Q is semisimple there exists a g-invariant complement b in 0. Note that [g, b] C 

g n b = 0. We can decompose any X G b as X = Y' + Z, where Y G f) and Z G m. 
From [g, b] = 0 it follows that [g, y] = [g, Z] = 0 and in particular [m, y] = 0. This 
implies that Y = 0 and X = ZGbnm = 0. This shows that b = 0 proving (hi). D 

We recall that a pseudo-Riemannian Hermitian symmetric space is. pseudo- 
Riemannian symmetric space (M = G/K, g) together with an invariant (and hence 
parallel) y-orthogonal complex structure J. 

PROPOSITION 3. Let (M = G/K,g,J) be a pseudo-Riemannian Hermitian sym- 
metric space of a semisimple and almost effective Lie group G. Then the Ricci cur- 
vature of M is not zero. 

Proof: From Proposition 2 it follows that g = isom(M, g) = f) +ra, where f) = t = 
[m,m]. It is well known that the curvature tensor R of any pseudo-Kahler manifold 
(and in particular of any pseudo-Riemannian Hermitian symmetric space) is invariant 

under the operator J. This shows that J G f) — aut(i?) = [m,tn] == \) (holonomy 
Lie algebra), which implies that the holonomy Lie algebra is not a subalgebra of 
su(tTl) = su(p, q). Hence M is not Ricci-flat. In fact, we can write J = ^adfX^y^], 
for Xi,Yi G m. Then using the formulas -2Ric(X, JY) = tvJR(X,Y) for the Ricci 
curvature of a pseudo-Kahler manifold and R{X,Y) = — ad[x,y]|tTl for the curvature 
of a symmetric space we calculate: 

-2 ]r mc(Xu JYi) = Y] tiJR(Xi, Yi) = - Y^ tr JadfXi, yj = -tr J2 # 0 . 

3.  Structure of Hyper-Kahler Symmetric Spaces. 

3.1. Definitions. A (possibly indefinite) hyper-Kahler manifold is a pseudo- 
Riemannian manifold (M4n,g) of signature (4A:,4Z) together with a compatible hy- 
percomplex structure, i.e. three ^-orthogonal parallel complex structures (Ji, J2, J3 = 
Ji J2). This means that the holonomy group Hoi C Sp(A;, /). Two hyper-Kahler man- 
ifolds (M,g, Jo) {a = 1,2,3) and (M',^', J^) are called isomorphic if there exists a 
triholomorphic isometry <p : M -> M', i.e. <p* J'^ — Ja and (p*gf = g. 

A hyper-Kahler symmetric space is a pseudo-Riemannian symmetric space 
(M = G/AT, g) together with an invariant compatible hypercomplex structure. Con- 
sider now a simply connected hyper-Kahler symmetric space (M = G/K, g, Ja). 
Without restriction of generality we will assume that G acts almost effectively. M 
being hyper-Kahler is equivalent to AdK|tn C Sp(A;,/), or, since K is connected, 
to adg|m C sp(M). This condition means that t commutes with the Lie algebra 
Q — sp(l) C so(rri) = so(4A;,4/) spanned by three anticommuting complex structures 
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3.2. Existence of a transitive solvable group of isometrics and solv- 
ability of the holonomy. In this subsection we prove that any simply connected 
hyper-Kahler symmetric space (M,g,Ja) admits a transitive solvable Lie group 
G C Aut(p, JQ,) of automorphisms and has solvable holonomy group. 

PROPOSITION 4. Let (M = G/K.g.Ja) be a simply connected hyper-Kahler 
symmetric space and A = A\ito(g,Q) D Auto(g, Ja) D G the connected group of 
isometrics which preserve the quaternionic structure Q = span{ Ja}. Then 

(i) the stabilizer A0 of a point o E M contains a maximal semisimple subgroup 
of A, 

(ii) the radical R of A acts transitively and triholomorphically on M and 
(Hi) the holonomy group of M is solvable. 
Proof: We consider the quaternionic Kahler symmetric space (M = AIA0,g,Q). 

The Lie algebra do of the stabilizer is given by 

do = aut(i?, Q) = {A E so(T0M)\A  R = 0, [A, Q] C Q} . 

Since the curvature tensor of a quaternionic Kahler manifold is invariant under the 
quaternionic structure Q we conclude that Q C a0 and a0 — Q 0 Z(L(Q), where 
Z(i(Q) denotes the centralizer of Q in a. Since Q = sp(l) is simple, we may choose a 
Levi-Malcev decomposition a = S + X such that the Levi subalgebra B D Q. We put 
tnr := [Q, t] and denote by ms a Q0Zs(Q)-invariant complement of Q in [Q,S]. The 
stabilizer has the decomposition a0 = Q ® (Zg(Q) -f- Zx(Q)). 

LEMMA 1. The complement m = ms + tnr to a0 in a is ■do-invariant and the 
decomposition 

d = d0 + m 

is a symmetric decomposition. 
Proof: It is clear that Tnr is a0-invariant and ms is invariant under Q 0 Z^(Q) 

by construction. It remains to check that [Z^(Q),m.s] C tn. Since tri5 = [Q,tTls], we 
have 

[Zx(Q),ms] = [Zx(Q),[Q,ms]] = [Q,[Zr(Q),ma]] c[Q,t]=mrcm. 

This shows that a = a0+tn is an Clo-invariant decomposition. We denote by d = d0+p 
a symmetric decomposition. Any other a0-invariant decomposition is of the form 
d = do+p^, where </? : p -> do is an a0-equivariant map and p^ = {X + (p(X)\X E p}. 
If such non-zero equivariant map tp exists then p and d0 contain non-trivial isomorphic 
Q-submodules. Since p is a sum of 4-dimensional irreducible Q-modules and d0 is 
the sum of the 3-dimensional irreducible Q-module Q and the trivial complementary 
Q-module Z(xo(Q), we infer that there exists a unique a0-invariant decomposition, 
which coincides with the symmetric decomposition a = d0 4- p. D 

To prove (i) we have to check that Xds = 0. We note that by the previous lemma 
B = (Q 0 Z$(Q)) + tUs is a symmetric decomposition of the semisimple Lie algebra S. 
Since [ms,ms] C ZQ(Q) it defines a hyper-Kahler symmetric space A^ = L/L01 where 
L is the simply connected semisimple Lie group with Lie algebra I = ZQ(Q) +tns and 
LQ is the Lie subgroup generated by the subalgebra ZQ{Q) C L Since iV is in particular 
a Ricci-flat pseudo-Riemannian Hermitian symmetric space, from Proposition 3 we 
obtain that N is reduced to point. Therefore Xds = 0. This proves (i) and (ii). Finally, 
since the holonomy Lie algebra f) is identified with F) = [tn,m] = [mr,mr] C t it is 
solvable as subalgebra of the solvable Lie algebra t. D 
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3.3. Hyper-Kahler symmetric spaces and second prolongation of sym- 
plectic Lie algebras. Let (M = G/K^g^J^) be a simply connected hyper-Kahler 
symmetric space associated with a symmetric decomposition (2.1). Without restric- 
tion of generality we will assume that G acts almost effectively and that t — [m, tu] = 

f) (holonomy Lie algebra). The complexification m.c as f) -module can be writ- 

ten as mc = H <S) E, such that f)C C Id 0 sp(£) = sp(E), where H - C2 and 
E — C2n are complex symplectic vector spaces with symplectic form a;// and o;^, 
respectively, such that gc = un 0 CJ^- is the complex bilinear metric on mc induced 
by g. Note that the symplectic forms are unique up to the transformation uu ^ Aa;^, 
WE H- A-1^^, A G C*. We have also quaternionic structures jn and JE on E and 
-B, such that LUH(JHX,JHy) = ^nix.y) for all x,y e H and COEUEXJEV) = VEfay) 
for all x,y E E, where the bar denotes complex conjugation. This implies that 
7// .'= WH(-,JH') and 7^ := COE(^JE') are Hermitian forms on iJ and i£. For fixed 
OJH and a;^ the quaternionic structures jn and ^ are uniquely determined if we re- 
quire that JH is positive definite and that p = JH ® JE is the real structure on tnc, 
i.e. the complex conjugation with respect to m. The metric gc and the Hermitian 
form gc(',p') = 7// 0 7^ restrict to a real valued scalar product g of some signature 
(4k, il) on m = (H <3E)P, where (2A;, 21) is the (real) signature of the Hermitian form 
7E = WE{')JE')' Note that for the holonomy algebra we have the inclusion 

f> = Id <8> {\)C)JE ^ sp(E)^ = {A e SP(E)\[AJE] = 0} 

= 8Alt(E,(jJEjE) - aut(m,^, Ja) = Sp(kJ) . 

Using the symplectic forms we identify H = H* and E = E*. Then the symplectic 
Lie algebras are identified with symmetric tensors as follows: 

sp(iJ) =S2H,    sp(E) = S2E. 

Since the curvature tensor R of any hyper-Kahler manifold M4n at a point p £ M 
can be identified with an element R G 52sp(A;, /) it is invariant under the Lie algebra 
sp(l) = span{Ji, J2, J3}. Let M = G/K be a hyper-Kahler symmetric space as 
above. By Proposition 1 we can extend the Lie algebra g = 6-hm = f)-htTltoa Lie 
algebra 

fl = sp(l) + f) + m 

of Killing vector fields such that [sp(l), f)] =0. In the H0^-formalism the Lie algebra 
sp(l) is identified with sp(i?)iH 0 Id C so(m). 

LEMMA 2. Denote by Q = sp(l,C) + f) 4- Xnc the complexification of the Lie 

algebra Q.  Then the Lie bracket [•, •] : A2xnc —> f)    can be written as 

(3.1) [h 0 e, ti 0 e'] = w^C/i, /i')^^' , 

where S e (()C)(2) := ^€052£,*n£;053E* = f)C0l)CnS4£. Moreover S z5sp(l,C)e 

f)  -invariant and satisfies the following reality condition: [SjEe^ — SeijBei,JE] = 0. 

Proo/: The Lie bracket [•,•] : A2mc -+ f) is an sp(l,C) 0 f) -equivariant map, 
due to the Jacobi identity. We decompose the sp(iJ) © sp(i£)-module A2tnc: 

A2mc = A2(H ®E) = A2H 0 S2E 0 S2H 0 A2E = CJH 0 52E 0 52i/ 0 A2E. 
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Since f) C S2E the Lie bracket defines an sp(l, C) © f) -invariant element of the space 
ujH®S2E<g)S2E®S2H®A2E®S2E. The second summand has no nontrivial sp(l,C)- 

invariant elements. Hence the bracket is of the form (3.1), where 5 G S2E* 0 f) C 
S2E ® S2E. The Jacobi identity reads: 

0 = [h 0 e, [h' 0 e', h" 0 e77]] - [[h 0 e, ^ 0 e'], ft" 0 e"} - [h' 0 e', [ft 0 e, ft" 0 e"]] 

= -(jJH{ti,h")h 0 5e',e"e - cj//(ft, ft7)/?," 0 Scc'e" + Wtf (h, ft'^ft' 0 S^c'/e'. 

Since dimi? = 2 we may assume that ft, ft/ = ft" is a symplectic basis, i.e. u;#(ft, ft') = 

1, and the equation implies: Se,e"e>' — Se^/e", i-e. 5 G (1) )^2^. The Lie bracket of 
two real elements ft 0 e + JH h 0 j^e and ft 0 e7 + j/fft 0 jjse' G tn C tn€ is an element 
of I). This gives: 

[h®e + jHh®JEe,h®e'+jHh®JEef] = uJH(h,jHh){Se^Ee> - SJEe,e>) G \). 

From the fact that the Hermitian form 7# = UH(-,JH-) is positive definite it fol- 
lows that UHihJnti) ^ 0.   This establishes the reality condition since f) = {A G 

f)C|[A^] = 0}.D 
In fact any tensor 5 G S4E satisfying the conditions of the above lemma can 

be used to define a hyper-Kahler symmetric space as the following theorem shows. 
We can identify S4E with the space C[i£}(4) of homogeneous quartic polynomials on 
E = E*. 

THEOREM 1. Let S G 54E, E = C2n, be a quartic polynomial invariant under 
all endomorphisms Se,e' G S2E = sp(J5) and satisfying the reality condition 

(3.2) [SjEe,e' - SeJEe'jE] = 0. 

Then it defines a hyper-Kahler symmetric space, which is associated with the following 
complex symmetric decomposition 

(3.3) Qc = t)€ + H®E,     fy^spanlSe^'Ke' £ E} C sp(E). 

The bracket A2(H 0 E) -> f)    is given by (3.1).  The real symmetric decomposition is 
defined as p-real form 0 = \) + TTl of (3.3), where 

6 = f) = {A G t)C\[A,JE\ = 0} = span{5JBe,e' - Sejse'|e,e' G E} ,    m - (if 0 E)p. 

The hyper-Kahler symmetric space M associated to this symmetric decomposition is 
the quotient M = Ms = G/K, where G is the simply connected Lie group with Lie 
algebra Q and K C G is the connected (and closed) subgroup with Lie algebra t = \). 

Moreover any simply connected hyper-Kahler symmetric space can be obtained 
by this construction. Two hyper-Kahler symmetric spaces Ms and Ms> defined by 
quartics S and S' are isomorphic if and only if S and S' are in the same orbit of the 
group Aut(E,ujEjE) = {A G Sp(J5)P, JE] = 0} £ Sp(M). 

Proof: First of all we note that f) = SE,E •= span{5e)e' |e, e7 G E} is a subalgebra 
of sp(E) because 

[Se,e',Sfj>] = (Se,e' ' S)fJ> - Ssee,fJ> - SftSe,e,f' = Ss^W - Sf^.f € *)    • 
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Since 5 is f) -invariant and completely symmetric we can check, as in Lemma 2, that 
the Jacobi identity is satisfied and that (3.3) defines a complex symmetric decompo- 
sition. We prove that f) := spanfS^e' - Se,j2re'le>e/ € E} C {A e t) \[A,JE] = 0} 
defines a real form of t) . Indeed for e, ef E E we have 

2 0(^e,e' + SjEejEe>) (v     ISe^e'       V     l^jfiej^e') 

where e'7 = —JEZ- Due to the reality condition the restriction of the Lie bracket 
[•, •] : A2mc —> I) to A2m has values in f) and 0 = f)-t-m is a symmetric decomposition 
with [m, m] = f). The metric gc — UJH ® ^E defines a real valued scalar product g 
of some signature (p, q) on tn = (H 0 E)p, which is invariant under the Lie algebra 
\). Since [f),^] = 0 the holonomy algebra f) C sp(A:,/), p — 4A;, q — 41. Hence this 
symmetric decomposition defines a hyper-Kahler symmetric space. 

By Lemma 2 any hyper-Kahler symmetric space can be obtained by this con- 
struction. It is well known that a simply connected symmetric space M of signature 
(p,q) is determined by its abstract curvature tensor R G S2(A2V), V = W>q, and 
two tensors R and Rf define isometric symmetric spaces if and only if they belong 
to the same O(V) orbit. Similarly a simply connected hyper-Kahler symmetric space 
is determined up to isometry by its abstract curvature tensor R e 52(A2F), where 
V = M4;c'4/ is the pseudo-Euclidean vector space with fixed hypercomplex structure 
Ja € 0(V). For a hyper-Kahler symmetric space the complexified curvature tensor 
has the form 

R(h ®e,ti® e') - —L)H(K ti)Se,e' , 

where S G S4E is the quartic form of Lemma 2. Two such curvature tensors define 
isomorphic hyper-Kahler symmetric spaces if and only if they belong to the same 
orbit of Aut(!4M/, Ja) = Sp(M). The group Sp(M) acts on Vc = H 0 E as 
Id 0 Sp(E)JE = Id <S> A\it(E, UJEJE)- Hence two curvature tensors R = -UJH 0 S and 
R' = —WH & Sf are in the same Sp(A;, /)-orbit if and only if S and 5' are in the same 
Sp(M)-orbit onS4^ D 

4.  Complex Hyper-Kahler Symmetric Spaces. 

4.1. Complex hyper-Kahler manifolds. A complex Riemannian mani- 
fold is a complex manifold M equipped with a complex metric g, i.e. a holomorphic 
section g G r(52T*M) which defines a nondegenerate complex quadratic form. As 
in the real case any such manifold has a unique holomorphic torsionfree and met- 
ric connection (Levi-Civita connection). A complex hyper-Kahler manifold is 
a complex Riemannian manifold (M4n,g) of complex dimension 4n together with a 
compatible hypercomplex structure, i.e. three ^-orthogonal parallel complex linear 
endomorphisms (Ji, J2, Js = J1J2) with J2 = — 1. This means that the holonomy 
group Hoi C Sp(n, C) = ^o(4n,C) (Sp(l,C)). The linear group Sp(n,C) is diagonally 
embedded into Sp(n,C) x Sp(n,C) C GL(4n,C). Two complex hyper-Kahler mani- 
folds (M,<7, Ja) (a. = 1,2,3) and (M^g'^J^) are called isomorphic if there exists a 
holomorphic isometry ip : M -4- Mf such that (p* J^ = Ja and cp^g' = g. 
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We will show that the complex hyper-Kahler structure can be described as a half- 
flat Grassmann structure of a certain type. A Grassmann structure on a complex 
Riemannian manifold (M, g) is a decomposition of the (holomorphic) tangent bundle 
TM = H 0 E into the tensor product of two holomorphic vector bundles H and E 
of rank 2m and 2n with holomorphic nondegenerate 2-forms LOH and UJE such that 
g = UJH 0 UJE- The Grassmann structure will be called parallel if the Levi-Civita 
connection V = V™ can be decomposed as: 

V = V" 0 Id + Id <g> VE , 

where V^ and Vs are (uniquely defined) symplectic connections in the bundles H 
and E. A parallel Grassmann structure will be called half-flat if V^ is flat. Note that 
a parallel Grassmann structure on a simply connected manifold is half-flat if and only 
if the holonomy group of the Levi-Civita connection is contained in Id (8) Sp(n, C) C 
Sp(m,C) ® Sp(n,C) C 0(C2m ®C2n). 

PROPOSITION 5. A complex hyper-Kahler structure (g, Ja) on a simply connected 
complex manifold M is equivalent to the following geometric data: 

(i) a half-flat Grassmann structure (TM,p, V) = (H,(JJH,V
H

)®{E>UE,V
E

) and 
(ii) an isomorphism of flat symplectic vector bundles H = M x C2.   Under this 

isomorphism UJH = hlAh^, where (hi, /12) is the standard basis ofC2 consid- 
ered as parallel frame of the trivial bundle H = M x C2. 

More precisely, 

(4.1) ' Ji = i?i <g>Id,    J2=Rj®Id,    and   J3 = Rk Old, 

where we have identified C2 = Chi 0 Qi2 with H = spanR{l,i, j, k} = spanc{l, j} = 
Cl © Cj with the complex structure defined by left-multiplication by i and Rx denotes 
the right-multiplication by the quaternion x G H. 

Proof: It is easy to check that the geometric data (i) and (ii) define a complex 
hyper-Kahler structure on M. Conversely let (g,Ja) be a complex hyper-Kahler 
structure on M. The endomorphism Ji has eigenvalues ±i and the tangent space can 
be decomposed into a sum of eigenspaces 

TM = E+ 0 E- . 

From the Ji-invariance of the metric g it follows that g(E±iE±) = 0 and we can 
identify E-. = E* with the dual space of E = E+. Since J2 anticommutes with Ji 
it interchanges E and E* and hence defines an isomorphism E -> E*. Now p(-, fo) 
defines a symplectic form UJE on E. Let iJ = MxC2=Mx (Oil 0 C/12) be the 
trivial bundle with 2-form OJH = hi A h^. Then we can identify 

TM = E®E* = E @ E = hi ® E ® hi ® E = H ® E. 

We check that under this identification we have g = UJH ® UJE- Note that both sides 
vanish on hi ® E and /12 <S) E and OJH (hi, hi) = 1. We calculate for e, e' € £7 = -E+ = 

g(e,J2e') = UE{e,e') = ^if(^i,^2)^^(6, e') = (CJH (8)a;^)(fti 0e,/i2 ® e'). 

Hence we have a Grassmann structure. The eigenspaces JB± of the parallel endomor- 
phism Ji are invariant under parallel transport. Therefore the Levi-Civita connection 
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V induces a connection \7E in the bundle E. Since Vg = 0 and VJ2 = 0 we have 
VE(jjE — 0. We define a flat connection V^ on the trivial bundle H = M x C2 by 
the condition VHhi =■ V^ = 0. Then V = V^ <g> Id + Id <g> Vs. So the Grassmann 
structure is half-flat. 

Finally, using the standard identification C2 =W, one can easily check that the 
Ja are given by (4.1). D 

4.2. Complexification of real hyper-Kahler manifolds. Let (M,g\Ja) be 
a (real) hyper-Kahler manifold. We will assume that it is real analytic. This is 
automatically true if the metric g is positive definite since it is Ricci-flat and a fortiori 
Einstein. Using analytic continuation we can extend (M,g, Ja) to a complex hyper- 
Kahler manifold (Mc,pc, Jj) equipped with an antiholomorphic involution T. In 
complex local coordinates z-7 = xi+iyi which are extension of real analytic coordinates 
xi, yi the involution is given by the complex conjugation z^ -¥ z^ = xJ' — iyi. We 
can reconstruct the (real) hyper-Kahler manifold as the fixed point set of T. We will 
call (M,flf, Ja) a real form of (Mc,gc, J%) and (Mc,^c, jj) the complexification of 
(M,p,Ja). 

In general a complex hyper-Kahler manifold has no real form. A necessary con- 
dition is that the holonomy group of \7E is contained in Sp(A;, /), n = k + /, and hence 
preserves a quaternionic structure. Then we can define a parallel antilinear endo- 
morphism field jE • E -> E such that j2

E = -1 and ojE(JEZ,JEy) = uJE{x,y) for all 
x,y £ E, where the bar denotes complex conjugation. We define a parallel antilinear 
endomorphism field jn : H -t H as the left-multiplication by the quaternion j on 
H = M x EL Then p = jn <S> JE defines a field of real structures in TM = H 0 E. 
We denote by V C TM the real eigenspace distribution of p with eigenvalue 1. Here 
TM is considered as real tangent bundle of the real manifold M. If Mp C M is a leaf 
of V of real dimension 4n then the data (g,Ja) induce on Mp a (real) hyper-Kahler 
structure. 

4.3. Complex hyper-Kahler symmetric spaces. A complex Riemannian 
symmetric space is a complex Riemannian manifold (M,g) such that any point is 
an isolated fixed point of an isometric holomorphic involution. Like in the real case 
one can prove that it admits a transitive complex Lie group of holomorphic isometries 
and that any simply connected complex Riemannian symmetric M is associated to a 
complex symmetric decomposition 

(4.2) 0 = 6 + m,   [M]c£,   [£,m] cm, ■■[m,m] = t 

of a complex Lie algebra 0 together with an ad^-invariant complex scalar product on 
m. More precisely M — G/K, where G is the simply connected complex Lie group 
with the Lie algebra Q and K is the (closed) connected subgroup associated with 
6. The holonomy group of such manifold is H = Adx|m. Any pseudo-Riemannian 
symmetric space M = G/K associated with a symmetric decomposition Q = t + m 
has a canonical complexification Mc — Gc/Kc defined by the complexification Qc = 

t + m€ of the symmetric decomposition. Proposition 1 remains true for complex 
Riemannian symmetric spaces. Ignoring the reality condition we obtain the following 
complex version of Theorem 1. 

THEOREM 2. Let S G S4E, E = C2n, be a quartic polynomial invariant under all 
endomorphisms Se,e< £ S2E = sp(£?). Then it defines a complex hyper-Kahler sym- 
metric space, which is associated with the following complex symmetric decomposition 

(4.3) fl = f) + iJ ® £,     f) = 5£,£ = span{Se,e/ |e, e' e E} C sp(E). 



CLASSIFICATION OF INDEFINITE HYPER-KAHLER SYMMETRIC SPACES       673 

The bracket A2(H 0 E) -> () is given by (3.1). The complex hyper-Kdhler symmetric 
space M associated to this symmetric decomposition is the quotient M = Ms = G/K, 
where G is the (complex) simply connected Lie group with Lie algebra Q and K C G 
is the connected (and closed) subgroup with Lie algebra t — f). 

Moreover any simply connected complex hyper-Kdhler symmetric space can be 
obtained by this construction. Two complex hyper-Kdhler symmetric spaces Ms and 
Ms> defined by quartics S and S' are isomorphic if and only if S and S' are in the 
same orbit of Aut(E,ujE) = Sp(E) = Sp(n,C). 

COROLLARY 1. There is a natural bijection between simply connected complex 
hyper-Kdhler symmetric spaces of dimension An up to isomorphism and Sp(n,C)- 
orbits on the space of quartic polynomials S G S4E in the symplectic vector space 
E = C2n such that 

(4.4) Se.e' -5 = 0    for all   e, e' € E. 

4.4. Classification of complex hyper-Kahler symmetric spaces. The fol- 
lowing complex version of Proposition 4 (with similar proof) will be a crucial step in 
the classification of complex hyper-Kahler symmetric spaces. 

PROPOSITION 6. Let (M = G/K,g,Ja) be a simply connected complex hyper- 
Kdhler symmetric space. Then the holonomy group of M is solvable and M admits a 
transitive solvable Lie group of automorphisms. 

Due to Corollary 1 the classification of simply connected complex hyper-Kahler 
symmetric spaces reduces to the determination of quartic polynomials S satisfying 
(4.4). Below we will determine all such polynomials. We will prove that the following 
example gives all such polynomials. 

EXAMPLE 1: Let E = E+(&E- be a Lagrangian decomposition, i.e. OJ(E±,E±) = 
0, of the symplectic vector space E = C2n. Then any polynomial S £ 54E+ C SAE 
satisfies the condition (4.4) and defines a simply connected complex hyper-Kahler 
symmetric space Ms with Abelian holonomy algebra f) = SE+1E+ C S2E+ C S2E = 
sp(E). 

In fact, since E+ is Lagrangian the endomorphisms from S2E+ form an Abelian 
subalgebra of sp(J5), which acts trivially on E+ and hence on S4E+. 

THEOREM 3. Let S E S4E be a quartic polynomial satisfying (4-4)' Then there 
exists a Lagrangian decomposition E = E+ ® .E_ such that S G S^E^. 

Proof: According to Theorem 2 the quartic S defines a hyper-Kahler symmetric 
space with holonomy Lie algebra f) = SE,E- Since, by Proposition 6, f) is solv- 
able, Lie's theorem implies the existence of a one-dimensional f)-invariant subspace 
P = Cp C E. There exists an cj-nondegenerate subspace W C E such that the LJ- 

orthogonal complement of P is P1- = P © W. We choose a vector q £ E such that 
^fe Q.) — 1 and ^(W", q) — 0 and put Q := (Cq. Then we have 

E = P®W ®Q. 

Since f) preserves P we have the following inclusion 

f) C PE + W2 = P2 + PW + PQ + W2 , 

where we use the notation XY = X V Y for the symmetric product of subspaces 

X, Y C E. Then the second prolongation f)(2) = {T <E S4E\Te,e> E \) for all e,e' E E} 
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has the following inclusion 

l}(2) C P3E + P2W2 + PW3 + W4 

(4.5) = P4 + P3Q + P3W + P2^2 + PW3 + W4. 

Indeed [)(2) C f)2 = P44-P3Q+P3W+P2Q2+P21^(3+P2W2+P<3W2+PW3 + W4. 
The projection f)(2) -)- P2(52 + P2WQ + PQW2 is zero because otherwise S^ G f) C 
PE + P^2 would have a nonzero projection to Q2 4- WQ or 5^^ € \) would have a 
nonzero projection to QW for appropriate choice of w e W. By (4.5) we can write 
the quartic 5 as 

5 = p3(Xp + /Ltq + WQ) +p2B +pC + Dy 

where X^eC.woE W, B 6 S2W, C 6 S3W and D 6 S4W. From now on we will 
identify SdE with the space C[E*]^ of homogeneous polynomials on E* of degree d. 
Then the ^-contraction Tx = t^xT = T{UJX, ...) of a tensor T G 5di</ with a vector 
x G -B is identified with the following homogeneous polynomial of degree d — 1: 

■Lx —  ~j&UJX-L   5 

where d^xT is the derivative of the polynomial T G C[E*]^ in the direction of 
ux =.u){x, •) G E*. For example pg — (p^q) — w(q,p) — d^qP — -dv*p = — 1 = — qv. 

From 5pjg  = ~\lJiP2 and the condition 5pjg • S — 0 we obtain \i — 0, since 
p2 - S = jjip4. This implies 5^,. = 0. Next we compute: 

5M = s(6Ap2 + 3pM;o + B) 

1 

12 
1 

1 

Sq,™ = -7^(-3p2a;(^0,io) + 2pdUJWB + d^C) 

= -T^(-3p2cc;(t(;o,^) + 4pBw + SCW) 

■&w,w' — 77 (P ■LJw.w' ~r dpL/yjiW' + vJ-J'WiW') 
O 

for any t/;,^' G W. 
Now the condition (4.4) can be written as follows: 

3 
0 = 65^ • S = (Spwo +B)-S = (-(p ®wo+wo®p) + B)-S 

= ^(2p3BWQ + 3p2C^0 + 4pDW0) + p3P^o +p2BB+pBC + B'D 

= -2p3Bwo 4- ^P2^ 4- P(6JD™0 4 P • C) 4 B • 23 . 

Note that PWQ = -BWo and B • P = [P, P] = 0. 

0 = -125^ • 5 = (4pBw 4 3CW) • 5 

= 2(p4uj(Bw, wo) + 2p3P2^ - 3p2CBw - ApDew) 

4-3(p3C^^o + P2CW -B+pCw-C + CW'D) 

= 2p4uj(Bunwo)+p3(4B2w + 3C™wo) +P
2
(-6CB^ + 3^ • P) 
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+p(-8£>Bii, + SCu, • C) + 3CW ■ D 

0 = 25^,^' • 5 = -(p ® CWtW> + Cw,w> <8> p) ■ S + 2DWtW' ■ S 

= ^(PMCW,W',WO) - 2p3BCWiW, + 3p2Cc^, + 4pI»o„,w,) + 

2(P
3
DW<WIWQ + p2DWiWi ■ B + pDWtW' ■ C + DWtW' ■ D) 

= -zP^uiCv,^! ,wo) ■\-pz{-BCw,wi + 2DWtWiw0) + 

p^-Cc^ ,„, + 2DWtWl ■ B) + p(2Dc,„,ro, + 2^,^' • C) + 2Dw>wl • D. 

This gives the following system of equations: 

(1) BWQ = 0 

(2) CW0 = 0 

(3) §DWQ + B • C = 0 

(4) B ■ D = 0 

(5)U;(JBW)WO) = 0 

(6) 4:B2w + ZCwwo = 0 

(7) -2CBW + CW-B = 0 

(8) -&DBW + 3CWC = 0 

{9)CWD = Q 

(10)OJ(CWW',WQ) = 0 

(n)-BCww' + 2Dw,w,wo = 0 

(12)^CcmW>+2Dw,w,-B = 0 

(13)JDc„u,' + !?«,,«;' • C = 0 
(14)1)^^- • D = 0. 

Note that (5) and (10) follow from (1) and (2) and that using (2) equation (6) says 
that the endomorphism B has zero square: 

(6')    B2 = 0. 

Eliminating DWo in equations (3) and (11) we obtain: 

(15) 0 = (B- C)ww' + 3BCww' = BCww' - CBWW' - CwBw' + 3BCww' 

= 4BCww' - CBWW' - CuBw'. 

We can rewrite (7) as: 

(7')     - 2CBww' + CwBw' - BCww' = 0. 

Eliminating CBWW' in (7') and (15) we obtain: 

(16) - WCww' + CwBw' = 0. 

Since the first summand is symmetric in w and w' we get 

(17) CwBw' = Cw> Bw = CBWW' . 

Now using (17) we can rewrite (15) as: 

(15')    2BCww' - CwBw' = 0. 
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The equations (157) and (16) show that BCww' — CwBw' = CBWW' = 0 and 
hence also B • C = 0. This implies DWo = 0, by (3). Now we can rewrite (1-14) as: 

(4.6) BWQ = CW0 =DWO=0 

(4.7) B-C = B'D = 0 

(4.8) B2 = 0 

(4.9) CBW=CWB = BCW = 0 

(4.10) -8DBW + 3CW-C = 0 

(4.11) C^-D = 0 

(4.12) ^Ccww'+2DWtW*'B = 0 

(4.13) ^C^^'+^.ti;' •C, = 0 

(4.14) DWtW,'D = 0. 

Now to proceed further we decompose K := ker 5 = Wo © W', where WQ = ker a;[if 
and W is a (nondegenerate) complement. Let us denote by Wi a complement to K in 
W such that ^(W7, Wi) = 0. Then WQ + Wi is the w-orthogonal complement to the 
.B-invariant nondegenerate subspace W. This shows th&t'BWi C (WQ + WI) DK = 
WQ. Moreover since Wi D K = 0 the map 5 : VFi ->- WQ is injective and hence 
dimWi < dim WQ- On the other hand dimWi > dim Wo, since WQ is an isotropic 
subspace of the symplectic vector space WQ + Wi. This shows that B : Wi -> Wo is 
an isomorphism. 

LEMMA 3. C e S3K and D e S4K. 
Proof: Since WQ = BW the equation (4.9) shows that CV0 = 0, which proves the 

first statement. From (4.10) and the identity 

(4-15) (Cx-C)y = [Cx,Cy]-CcI„ 

we obtain 

(4.16) DBXiy + DBy,x = ^((Cx • C)y + (Cy - C)x) = - jCc9y . 

The equation B • D = 0 (4.7) reads: 

0 = (B - D)Xjy = [B, DXjy] — DBx,y — Dx,By • 

Using this (4.12) yields: 

3 
(4.17) DBX* + DBy,x = [B, Dx,y] = -^,y • B = -Ccxy . 
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Now from (4.16) and (4.17) we obtain that 

0 = CcxyZ = CzCxy 

for all x,y,z G W. This implies [Cx,Cy] = 0 for all x,y G W and hence 

(4.18) CX'C = 0 

for all. x G W, by (4.15). Finally this shows that i^v^o = 0 by (4.10). This proves the 
second statement. □ 

LEMMA 4. DX^CZ = CZDX^ = 0 /or a// £,y,z G W. 
Proof: Using (4.13) we compute: 

(4.19) DXiyCzw = Dczw,xy = -(-Dz^ • CJa;!/ = -([-D2>w, C^]!/ - CDz^xy). 

From (4.11) we get: 

0 = (Cs • i5)ZjWi/ = [Cx, D*,Jy - Dcxz,wy - Dz,cxwy 

and hence: 

and 

— OxlJz^wy — ^z.w^xy ~ -LsyiW^xZ ~ J^z^y^x^ 5 

i^z^w-) ^x\y — ~l-Jy,w(-/xZ ~ Uz^yL'x'W , 

CDz,wxy = CyDz^wx = Dz,wCxy + Dx,wCyZ + Dz,xCyW . 

Now we eliminate the CD-terms from (4.19) arriving at: 

(4.20) Dx,yCzw = {DyiWCxz + DZjyCxw + DZiWCxy + DXiWCyZ + DZiXCyw). 

Considering all the permutations of (a:, y, z, w) we get 6 homogeneous linear equations 
for the 6 terms of equation (4.20) with the matrix: 

/ -1 1 1 1 1 1 \ 
-1 1 1 1 

1 -1 1 1 
1 1 -1 1 
1 1 1 -1 

\ 1 1 1 1 -1/ 

This is the matrix of the endomorphism — 2 Id+e® e in the arithmetic space R6, where 
e = ei + ... + ee; (e*) the standard basis. It has eigenvalues (4, —2, -2, —2, —2, -2). 
This shows that the matrix is nondegenerate and proves the lemma. D 

For a symmetric tensor T G SdW we denote by 

ET := span{ra;1,a;2>...ia;d_2a;d_i|a;i,a;2,...a;d_i G W} C W 

the support of T. 
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LEMMA 5. The supports of the tensors B e S2W, C e S3W and D G SAW 
admit the following inclusions 

EB + Sc C kerJ9 D kerC n ker.D ,     ED C ker.B D kerC. 

Moreover E# + Ec is isotropic and OJ(T,D, ^B + Ec) = 0. 
Proof: The first statement follows from B2 = BCX = BDX}y = CXB = CxCy = 

CxDyiZ — DXiyB = DXiyCz = 0 for all x,y,z 6 W. The second statement follows from 
the first and the definition of support, e.g. if z = Cxy € Ec and w G E^ 4- E^ + ED C 
kerC we compute: 

UJ(Z, w) = cu(Cxy, w) = -uj{y, Cxw) = 0. 

LEMMA 6.  The Lie algebra Dw,w C S2W = sp(W) is solvable. 
Proof: This follows from Proposition 6, since D G S^W satisfies (4.4) and hence 

defines a complex hyper-Kahler symmetric space with holonomy Lie algebra Dw.w- It 
also follows from the solvability O{SE,E as we show now. In terms of the decomposition 
E = P + W + Qa,n endomorphism 

Sxv = {\pA+p*Wo+p2B+pC+D)x,y = (p2B+pC+D)x,y = B{x,y)p2-pCxy + Dx,y, 

where x,y G W, is represented by 

0 -{C^f B(x,y) 
0 DXty -Cxy 
0 0 0 

Since the Lie algebra SE,E is solvable this implies that the Lie algebra Dw,w, which 
corresponds to the induced representation of SE,E on P±/P = W, is also solvable. D 

LEMMA 7. 

u;(tt;o,E£ + Ec + ED) = 0. 

Proof: Note that WQ G kerSflkerCflkerD, due to equations (1-3) and (4.7). This 
implies the lemma. In fact, if e.g. y — Bx G E^ then 

^(WOJS/) = UJ(WO,BX) = -(JU(BWO,X) = 0, 

which shows that a;(itfo, SB) = 0 D 
Now to finish the proof of Theorem 3 we will use induction on the dimension 

dim £7 = 2n. If n = 1 the (solvable) holonomy algebra F) is a proper subalgebra of 
S2E = sl(2, C). Without loss of generality we may assume that either 
a) f) = Cp2 or 
b) 1) = Cpq or 
c) f) = Cp2 + Cpg, 
where (p, g) is a symplectic basis of E. In the all three cases the Lie algebra SE,E = 
f) C Cp2 + Cpg and hence 

S = \p4+w3q. 
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In the cases b) and c) we have that pq G f) and since 

PQ ' S = -(p (8) q + q ® p) • 5 = -2Xp4 - np3q = 0 

it follows that S = 0. In the case a) from SE,E = i) = Cp2 we have that 5 = Xp4. This 
tensor is invariant under f) = Cp2 and belongs to the fourth symmetric power of the 
Lagrangian subspace Cp C E. This establishes the first step of the induction. Now 
by induction using equation (4.14) and Lemma 6 we may assume that £# is isotropic. 
Now Lemma 5 and Lemma 7 show that CWQ -f DB -h Ec + S^ is isotropic and hence 
is contained in some Lagrangian subspace E+ C E. This implies that 5 £ S4^. □ 

Now we give a necessary and sufficient condition for a symmetric manifold M = 
Ms, S G S^E+i to have no flat de Rham factor. 

PROPOSITION 7. The complex hyper-Kdhler symmetric space Ms, S G SAE+, 
has no flat de Rham factor if and only if the support E5 = E+. 

Proof: If M = Ms = G/K has a flat factor Mo, such that M = Mi x Mo, then this 
induces a decomposition E — E1 0 E0 and 5 G 54Ei; hence S5 C Ei fl E+ ^ E+. 
Conversely let S G 5

4
JE+, assume that E]_ = Es C J5+ is a proper subspace and 

choose a complementary subspace E+. We denote by El_ and E^_ the annihilator of 
UJEI and a>£^ respectively. Let us denote E1 = E]_ 0 El, E0 = E^ 0 EtL, m1 = 
H ® El and m0 = iJ 0 E"0. Then E0 ,El C E are a;-nondegenerate complementary 
subspaces and ttl0,!!!1 C TTl = T0M are ^-nondegenerate complementary subspaces. 
Since S G SAE\ the Lie algebra 0 = f) + m - (f) -h TU1) 0 m0 has the Abelian direct 
summand TU0, see (3.1), which gives rise to a flat factor M0 C Ms = M1 x M0. 

THEOREM 4. ylny simply connected complex hyper-Kdhler symmetric space with- 
out flat de Rham factor is isomorphic to a complex hyper-Kdhler symmetric space of 
the form Ms, where S G 54-B+ and E+ C E is a Lagrangian subspace of the complex 
symplectic vector space E = C2n. Moreover there is a natural 1-1 correspondence be- 
tween simply connected complex hyper-Kdhler symmetric spaces without flat factor up 
to isomorphism and orbits O of the group Aut(.E,aj,£_j-)|i£+ = {A G Sp(E)\AE+ =■ 
£+}|£+ ^ GL(£+) ^ GL(n, C) on the space S4E+ such that E5 = £+ for all S G O. 

Proof: This is a corollary of Theorem 2, Theorem 3 and Proposition 7. D 
Let M = G/K be a simply connected complex hyper-Kahler symmetric space 

without flat factor. By Theorem 3 and Proposition 7 it is associated to quartic poly- 
nomial S G S4E+ with support E5 = E+. Now we describe the Lie algebra aut(Mis') 
of the full group of automorphisms, i.e. isometries which preserve the hypercomplex 
structure, of M5. 

THEOREM 5. Let Ms — G/K be as above. Then the full automorphism algebra 
is given by 

aut(M1s) = aut(S) + 0 , 

where A G aut(5) = {B G gl(E+)\B -5 = 0} acts on Q = f) + m as follows. It 
preserves the decomposition and acts on f) = SE,E by 

[A, &x,yl — &Ax,y "+" bx,Ay 

for all x, y G E and on TTl = H 0 E by 

[A, h (8) e] = h ® Ae, 
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where gl(E+) is canonically embedded into sp^). 
Proof: By (the complex version of) Proposition 1 it is sufficient to determine 

the centralizer C of sp(l,C) in the full isotropy algebra f) = aut(i?) D sp(l,C) 0 f). 
Equation (2.2) shows that 

C = {Id ® A\ A e sp(£), A • S = [A, 5(-, •)] - 5(i4-, •) - 5(., A-) = 0} . 

From A • S = 0 we obtain that the commutator [A, 5xj2/] = SAX.V + Sx,Ay for all 
x,y e E and AE5 = AE+ C £?+. This implies C = aut(S). D 

5. Classification of Hyper-Kahler Symmetric Spaces. Using the descrip- 
tion of complex hyper-Kahler symmetric spaces given in Theorem 4 we will now clas- 
sify (real) hyper-Kahler symmetric spaces. Recall that a simply connected pseudo- 
Riemannian manifold is called indecomposable if it is not a Riemannian prod- 
uct of two pseudo-Riemannian manifolds. Any simply connected pseudo-Riemannian 
manifold can be decomposed into the Riemannian product of indecomposable pseudo- 
Riemannian manifolds. By Wu's theorem [W] a simply connected pseudo-Riemannian 
manifold is indecomposable if and only if its holonomy group is weakly irreducible, 
i.e. has no invariant proper nondegenerate subspaces. Therefore it is sufficient to 
classify (real) hyper-Kahler symmetric spaces with indecomposable holonomy. 

Let (M = G/K,g, Ja) be a hyper-Kahler symmetric space associated to a sym- 
metric decomposition (2.1). The complexified tangent space of M is identified with 
mc = H <E) E, the tensor product of to complex symplectic vector spaces with quater- 
nionic structure jn and JE such that p = jn ® JE is the complex conjugation of mc 

with respect to ttl. By Theorem 1 it is defined by a quartic polynomial S G S4E sat- 
isfying the conditions of the theorem. Moreover the holonomy algebra f) acts trivially 
on H and is identified with the real form of the complex Lie algebra SE,E C sp(.E) 
given by f) = span{5ie,e/ - 5e>ic/ |e, e' € E} = {A G SE,E\[A,JE] = 0} C sp(£)^. 

The quartic polynomial S defines also a complex hyper-Kahler symmetric space 
Mc = Gc/Kc, which is the complexification of M = G/K. By Theorem 3, S E S4L 
for some Lagrangian subspace L C E. Recall that the symplectic form uo — UE 

together with the quaternionic structure j = JE define a Hermitian metric 7 = 7^ = 
UEi'ijE') of (real) signature (4A;,4Z), n = k + /, which coincides with the signature 
of the pseudo-Riemannian metric g (we normalize 7// = (JJH(',JH') to be positive 
definite). We may decompose 7-orthogonally L = L0 ® L+ 0l/_, such that 7 vanishes 
on L0 is positive definite on L+ and negative definite on L~. 

LEMMA 8. 
(i) jL0 = L0 and 

(ii) L+ + L~ + jL+ + jL~ C E is an co-nondegenerate and 7-nondegenerate ()- 
invariant subspace (with trivial action of I)). 

Proof: We show first that L + jL0 is u;-isotropic and hence L + jL0 — L since L 
is Lagrangian. Indeed L D L0 is cj-isotropic and also jLP because UJ is j-invariant. So 
it suffices to remark that LJ(L,JL

0
) = 0: 

UJ(LJL
O
)=1(L,L

O
)=0. 

This implies that jL0 C L.   Since ^(LJL0) = -u(L,L0) — 0, we conclude that 
jL0 C ker7|L = L0. This proves (i). 

To prove (ii) it is sufficient to check that the subspace L+ + L~ -\-jL+-\-jL~ C E 
is nondegenerate with respect to 7, since it is j-invariant. First we remark that 7 is 
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positive definite on L+ and jL+ and negative definite on L~ and jL', due to the 
j-invariance of 7: ^(jx.jx) = j(xyx), x G E. So to prove (ii) it is sufficient to check 
that jL+ 0 jL~ is 7-orthogonal to the 7-nondegenerate vector space L+ + L~: 

7(L+ + L-,jL++jL-) =a;(L+ + L-,L+ + L-) = 0. 

D 
By Theorem 1 the quartic polynomial S must satisfy the reality condition 

[Sje,e' — Seje'ij] = 0- Now we describe .all such polynomials. 
The quaternionic structure j on E is compatible with CJ, i.e. oj(jx,jy) — (jo{x,y) 

for all #,y G £ and it induces a real structure (i.e. an antilinear involution) r := 
j 0 3 0 • • • 0 3 on all even powers 52rE C E <g> JE ® • • • ® JS. For 5 € 52rE and 
#1, • • •, X2r € E we have 

(rS)(xU-" ,X2r) = S(jxir- iJX2r) • 

Note that the fixed point set sp(E)T = {A <E sp(E)|[A,j] = 0} = sp(fc,/). 

PROPOSITION 8. Let (E,UJ,J) be a complex symplectic vector space with a quater- 
nionic structure j such that Ld(jx,jy) = uj(x,y) for all x,y E E. Then a quartic 
polynomial S E S^E satisfies the reality condition [Sje^i — Seje>, j] = 0 if and only if 
S E (S4E)T =.span{T + TT\T E S4E}. 

Proof: The reality condition for S E S*E can be written as 

for all x,y,z E E. Contracting this vector equation with jw E E by means of u and 
using the compatibility between j and cu we obtain the equivalent condition 

0   =   -UJ(JW,  [SjXJy   +   SXiy, J]Z) 

(5.1)        = S(jx, jy\ jz, jw) - S(jx, jy, z, w) + S(x, y, jz, jw) - Six, y, z, w). 

Now putting x = y — z = w = u we obtain: 

0 = S(ju, ju, ju, ju) - S{ju, ju, u, u) + 5(w, u, ju, ju) - 5(w, w, w, u) 

and putting x = iu and y = z = w = uwe obtain: 

0 = —iS(ju, ju, ju, ju) — iS(ju, ju, u, u) + iS(u, u, ju, ju) + iS(u, u, u, u). 

Comparing these two equations we get S{ju,ju,juj,u) — S{u,u,u,u), i.e. 5 = rS. 
This shows that the reality condition implies that 5 E (S4E)T. Conversely the con- 
dition 5 = rS can be written as 

S(jx,jy,jz,jw) = S(x,y,z,w)    for all    x,y,z,w E E. 

Changing z -> jz and iu -> jw in this equation we obtain 

S(jx,jy,z,w) = S(x,y,jz,jw)    for all    x,y,z,w G E . 

These two equations imply (5.1) and hence the reality condition. D 
Now we are ready to classify simply connected hyper-Kahler symmetric spaces. 

We will show that the following construction gives all such symmetric spaces. 
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Let (E, u),]) be a complex symplectic vector space of dimension 2n with a quater- 
nionic structure j such that oj(jx,jy) = u{x,y) for all x,y G E and E — E+ 0 E_ a 
j-invariant Lagrangian decomposition. Such a decomposition exists if and only if the 
Hermitian form 7 = oj(-,j') has real signature (4m, 4m), where dimcE = 2n = 4m. 
Then any polynomial 5 G (54E+)r = S4£+n(S4£)r satisfies the condition (4.4) and 
the reality condition, by Proposition 8. Hence by Theorem 1 it defines a (real) simply 
connected hyper-Kahler symmetric space Ms with Abelian holonomy algebra \) — 
(SE+,E+)

T
 = SE+,E+n(S2E)T = sv<m{Sje,e>-Seje>\e,ef e E} C sp(£)r S sp(m,m). 

THEOREM 6. Any simply connected hyper-Kahler symmetric space without flat 
de Rham factor is isomorphic to a hyper-Kahler symmetric space of the form Ms, 
where S = T 4- TT, T £ S4E+ and E+ C E is a j-invariant Lagrangian subspace 
of the complex symplectic vector space E with compatible quaternionic structure j. 
A hyper-Kahler symmetric space of the form Ms has no flat factor if and only if it 
complexification has no flat factor, which happens if and only if the support E5 = E+. 
Moreover there is a natural 1-1 correspondence between simply connected hyper-Kahler 
symmetric spaces without flat factor up to isomorphism and orbits O of the group 
AMt{E,u),j,E+)\E+ = {A e Sp(E)\[AJ] = 0,AE+ = E+}\E+ £* GL(m,IHI) on the 
space (S4E+)r such that Es = E+ for all S € O. 

Proof: Let M be a simply connected hyper-Kahler symmetric space. We first 
assume that it is indecomposable. Then the holonomy algebra f) is weakly irreducible. 
By Theorem 1, M = Ms for some quartic polynomial S € S4E satisfying (4.4) and the 
reality condition (3.2). By Proposition 8 the reality condition means that S £ {S4E)T. 
On the other hand, by Theorem 3 5 E SAL for some Lagrangian subspace L of E. 
Now the weak irreducibility of f) and Lemma 8 imply that L = LP is j-invariant. This 
proves that 5 6 (54E+)r, where £+ = L = L0 is a j-invariant Lagrangian subspace 
of E. This shows that M is obtained from the above construction. Any simply 
connected hyper-Kahler symmetric space M without flat factor is the Riemannian 
product of indecomposable ones, say M = Mi x M2 x • • • x Mr, and we may assume 
that Mi = Ms-, Si G S4Ei. Therefore M is associated to the quartic polynomial 
5 = Si © 52 0 • • • © Sr G S4E1 E = Ex © E2 © • • • © Er. Moreover 5 satisfies (4.4) 
and (3.2) if the Si satisfy (4.4) and (3.2). This shows that any simply connected 
hyper-Kahler symmetric space is obtained from the above construction. 

It is clear that the complexification Mg has a flat factor if Ms has a flat factor. 
Conversely let us assume that M^ has a flat factor, hence S5 C E+ is a proper 
subspace. Since jEs = JSE,EE = SE,EJE = SE,EE = ^s there exists a ^-invariant 
complementary subspace E+ in E+. Denote by E^ the annihilator of E5 in E- then 
E' — Ef

+ © E'V is an a;-nondegenerate and ^'-invariant subspace of E on which the 

holonomy 1) = S^ C S2Yls acts trivially. Then the corresponding real subspace 
(H <g) Ef)p C ttl = (H 0 E)p is a g-nondegenerate subspace on which the holonomy f) 
acts trivially. By Wu's theorem [W] it defines a flat de Rham factor. 

Now the last statement follows from the corresponding statement in Theorem 1. 
D 

COROLLARY 2. Any hyper-Kahler symmetric space without flat factor has signa- 
ture (4m, 4m). In particular its dimension is divisible by 8. 

COROLLARY 3. Let M = Ms be a complex hyper-Kahler symmetric space without 
flat factor associated with a quartic S G S4E+, where E+ C E is a Lagrangian 
subspace. It admits a real form if and only if there exists a quaternionic structure j 
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on E compatible with to preserving E+ such that rS = 5, where r is the real structure 
on SAE induced by j. In particular dime M has to be divisible by 8. 

Let M = G/K be a simply connected hyper-Kahler symmetric space without flat 
factor. By Theorem 6 it is associated to a quartic polynomial 5 £ (54E+)r with 
support Es = E+. Now we describe the Lie algebra aut(Ms) of the full group of 
automorphisms, i.e. isometries which preserve the hypercomplex structure of Ms- 

THEOREM 7. Let Ms = G/K be as above. Then the full automorphism algebra 
is given by 

aut(Ms) = aut(S) + Q, 

where aut(S) = {A G gl(-B+)| [A, j] = 0, A • 5 = 0} acts on 

9 = Fj+m,F) = {A e SE,E\[A,J] = 0} = svcm{Sjx,y-Sxjy\x,y e E} ,m = {H®Ey 

as in Theorem 5. 
Proof: The proof is similar to that of Theorem 5. D 

6. Low Dimensional Hyper-Kahler Symmetric Spaces. 
6.1 Complex hyper-Kahler symmetric spaces of dimension < 8. 

Dimension 4 
Assume that M is a simply connected complex hyper-Kahler symmetric space of 
dimension 4. Applying Theorem 4 we conclude that M = Ms for some S G SAE+, 
where E+ C E is a one-dimensional subspace E+ = Ce. This proves: 

THEOREM 8.  There exists up to isomorphism only one non-flat simply connected 
complex hyper-Kahler symmetric space of dimension 4- M — Ms associated with the 
quartic S = e4. 
Dimension 8 
Any eight-dimensional simply connected complex hyper-Kahler symmetric space is 
associated with a quartic 5 G S4E+, where E+ C E is a Lagrangian subspace of 
E = C4. We denote by (e, e') a basis of E+. 

THEOREM 9. Eight-dimensional simply connected complex hyper-Kahler symmet- 
ric space are in natural 1-1 correspondence with the orbits of the group CO(3, C) = 
C* -30(3, C) on the space SQC

3
 of traceless symmetric matrices. The complex hyper- 

Kahler symmetric space associated with a traceless symmetric matrix A is the manifold 
Ms(A)7 where S(A) G 54C2 is the quartic polynomial which corresponds to A under 
the SO(3,C)-equivanant isomorphism SfiC3 = 3% A2 C3 = S$S2C2 = 54C2. 

The classification of SO(3, C)-orbits on SQC
3
 was given by Petrov [P] in his clas- 

sification of Weyl tensors of Lorentzian 4-manifolds. 
Proof: By Theorem 4 the classification of eight-dimensional simply connected 

complex hyper-Kahler symmetric spaces reduces to the description of orbits of the 
group GL(£+) = GL(2,C) on 54C2 C 5252C2. Fixing a volume form a on C2 we 
can identify S2C2 with sp(l,C) £ so(3,C). Then the Killing form B is an SL(2,C)- 
invariant and we have the GL(2,C)-invariant decomposition: S2S2C2 = SQS

2
C

2
 0 

CB. The action of SL(2,C) on 52C2 is effectively equivalent to the adjoint action of 
SO(3,C). The problem thus reduces essentially to the determination of the orbits of 
SO(3,C) onS2C3. □ 
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5.1. Hyper-Kahler symmetric spaces of dimension < 8. By Corollary 3 
the minimal dimension of non-flat hyper-Kahler symmetric spaces is 8. 

THEOREM 10. Eight-dimensional simply connected hyper-Kahler symmetric space 
are in natural 1-1 correspondence with the orbits of the group E+ -30(3) on the space 
5oM3 of traceless symmetric matrices. The hyper-Kahler symmetric space associated 
with a traceless symmetric matrix A is the manifold MS(A)> where S(A) G (54C2)T is 
the quartic polynomial which corresponds to A under the SO(3)-equivariant isomor- 
phism S$R3 ^(54C2)r. 
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