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FINITE JET DETERMINATION OF 
HOLOMORPHIC MAPPINGS AT THE BOUNDARY* 

PETER EBENFELTt 

0. Introduction. A classical theorem of H. Cartan ([HCa]) states that an au- 
tomorphism / of a bounded domain D C CN is completely determined by its 1-jet, 
i.e. its value and derivatives of order one, at any point ZQ G D. If D, in addition, 
is assumed to be smoothly (C00) bounded and strictly pseudoconvex, then by Feffer- 
man's theorem [Fe] any such automorphism extends smoothly to the boundary dD as 
an automorphism dD —t dD. It is then natural to ask: is / completely determined by 
a finite jet at a boundary point p G dD? An affirmative answer to this question, when 
D is strictly pseudoconvex, follows from the work of Chern and Moser [CM] (see also 
E. Cartan [ECal-2] for the case iV = 2, and Tanaka [Tl-2]). Indeed, the following 
local version of Cartan's theorem is a consequence of their work. Any holomorphic 
mapping which is defined locally on one side of a smooth, Levi nondegenerate real 
hypersurface M C CiV and extends smoothly to M, sending M diffeomorphically into 
another smooth real hypersurface M' C C^, is completely determined by its 2-jet at 
a point p G M. Observe that the conclusion is nontrivial even in the strictly pseu- 
doconcave case when the mapping extends holomorphically to a full neighborhood of 

The main objective of the present paper is to extend the above mentioned local 
result to a more general class of real hypersurfaces (Theorem 1 below). We should 
point out that the result for Levi nondegenerate hypersurfaces follows from the con- 
struction of a unique Cartan connection on a certain principal G-bundle over such a 
hypersurface. There is no analogue of this construction in the more general situation 
considered in this paper. 

Let M C C^ be a smooth real hypersurface and assume that M is defined locally 
near a point po £ M by the equation p(z,z) = 0, where p is a smooth function with 
p(Po,Po) = 0 and dp(po,po) ^ 0. Let Lj,... , Ln, with n = N — 1, be a basis for the 
CR vector fields on M. We shall say that M is ko-nondegenerate at po if 

(0.1) Span{LV2(po,Po): M < ko} = CN, 

where pz := (dZjp)i<j<N, dZj := d/dzj, and standard multi-index notation for differ- 
ential operators is used i.e. La := Lj1 ... L^n. This nondegeneracy condition will be 
given in a different, but equivalent, form in terms of the intrinsic geometry of M in 
the next section. The reader is referred to the book [BER3] for basic material on real 
submanifolds in complex space and CR structures, and further discussion of various 
nondegeneracy conditions (see also §1 of the present paper). We mention here only 
that Levi nondegeneracy at a point po G M is equivalent to 1-nondegeneracy. Our 
main result is the following. 
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THEOREM 1. Let M, M' C C^ be smooth (C00) real hyper surf acts. Let f^g: U -> 
CN, where U C G^ is an open connected subset with M in its boundary, be holomor- 
phic mappings which extend smoothly to M and send M diffeomorphically into M'. If 
M is ko-nondegenerate at a point po G M and 

(0.2) (^7)(po) = (d?9)(Po),    VaeZ^:|a|<2A;o, 

then f = g in U. 
Finite jet determination of holomorphic mappings sending one real submanifold 

into another has attracted much attention in recent years. We mention here the papers 
[BER1-2, 4-5], [L], [Hanl-2], [Hay], [Z]. The reader is also referred to the survey article 
[BER6] for a more detailed history. However, in all the above mentioned papers, it is 
either assumed that M and M' are real-analytic (which will imply that all mappings 
/ extend holomorphically to some neighborhood of M), or the conclusion is that 
the formal power series of the mapping / is determined by a finite jet (see [BER4], 
[L]). Theorem 1 appears to be, to the best of the author's knowledge, the first finite 
determination result, since the work of Chern and Moser mentioned above, which 
applies to merely smooth hypersurfaces and smooth mappings. We should mention 
that if M and M' are real-analytic, then the conclusion of Theorem 1 was proved in 
[BER2] (cf. also [Hani] and [Z]). A related notion is that of unique continuation at the 
boundary for holomorphic mappings. A unique continuation principle is said to hold 
for a class of mappings at a point p if any mapping from this class which agrees with 
the constant mapping to infinite order at p is necessarily constant. (Observe that, 
due to the nonlinear nature of mapping problems, a unique continuation principle for 
a class of mappings into a manifold does not imply that two mappings, in this class, 
which agree to infinite order are necessarily the same.) We shall not address this 
problem further here. We mention the papers [ABR], [BR], [BL], [CR], [El], [HK], 
and refer the interested reader to these papers for further information. 

The proof of Theorem 1 is based on Theorem 2 below, and a result from [BER4], 
alluded to above, which asserts that, under the assumptions of Theorem 1, the jet of 
/ at PQ of any order is completely determined by its 2£;o-jet. The proof of Theorem 1 
is given at the end of §3. 

Our second result, which is the basis for Theorem 1 above, states, loosely speak- 
ing, that given two suitably nondegenerate real hypersurfaces, there is a system of 
differential equations, which is complete in a certain sense, such that any CR diffeo- 
morphism /: M -» M' must satisfy this system. The idea to look for such a differential 
system goes back to the work of E. Cartan and Chern-Moser mentioned above. The 
approach was further developed in the work of Han. To formulate the result more 
precisely, we need to fix some notation. Let us denote by Jk(M1 M')^^^ the space of 
A;-jets at p G M of smooth mappings f-.M-tM' with f(p) = p' G M'. Given coordi- 
nate systems x — (xi,... , X2N-\) and x* — {x!x,... , x^-i) on -W and M7 near p and 
p', respectively, there are natural coordinates A*1 \— (Af), where 1 < % < 2N — 1 and 
P G Z^-1 with 1 < \(3\ < k, on Jk{M,M,)(<ViP,) in which the fc-jet at p of a smooth 

mapping /: M -> M' is given by Af = (dgfi)(p), 1 < \(3\ < k and 1 < i < 2N - 1. 

THEOREM 2. Let M,Ml c C^ be smooth (C00) real hypersurfaces. Assume 
that M is ko-nondegenerate at a point PQ. Let f0: M —■» Mf be a smooth CR dif- 
feomorphism. Then, for any multi-index a G Z^-1 with \a\ = k^ + A;^ + ko -h 2 
and any j = 1,... ,2iV — .1, there are smooth functions rjC(Xk;xr)(x) on U, where 
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k := fco + fcg + fco + 1 and U C Jk{M,M')(VQrfQ) x M x M' is an open neighborhood 

of ((^/O)(0),/o(po),Po); such that 

(0.3) dZfj=r?(d0f',f),    V|a| = fc2+fcg+*b + 2, j = l...,2JNr-l, 

ty/iere 1 < |/?| < /c; for every smooth CR diffeomorphism f: V -> M', w;/iere V C 
M Z5 some open neighborhood of po, with ((8%/)(0), f(po),Po) € C/. Moreover, the 
functions r? are rational in Xk G Jk(M,Mf)^po^; here, x = (xi,... ,X2JV-1) and 
x' = (^i,... ,^2N-i) are an2/ 'oca^ coordinate systems on M and M1 near po and 
/0(Po); respectively, and /$ := / o xj. 

Similar results for real-analytic hypersurfaces can also be found in [Hanl-2] and 
[Hay]. The idea behind the proof of Theorem 2 is to consider the tangent mapping 
df: CTM -» CTM' and derive differential equations for df using properties of a 
sequence of invariant tensors (generalized Levi forms) which were developed in the 
author's paper [E3]. The proof of Theorem 2 is given in §3. 

We conclude this introduction by giving two applications of Theorems 1 and 2. 
For this, we need some more notation. A smooth real vector field X on M is called 
an infinitesimal CR automorphism if the local 1-parameter group of diffeomorphisms, 
exptX, generated by X is a local group of CR diffeomorphisms (see e.g. [BER2] or 
[Sl-2]). The set of infinitesimal CR automorphisms, defined near p G M, forms a 
vector space over E denoted by aut(M,p). We shall give a sufficient condition on M 
at a point p for dimRaut(M,p) < oo. A smooth real hypersurface M C C^ is called 
(formally) holomorphically degenerate at p G M, if there exists a formal holomorphic 
vector field 

N 

(0.4) r = 53ai(z)a,i> 

where the aj(z) are formal power series in z — p, which is tangent to M, i.e. such that 
the Taylor series at p of a defining function p(zyz) for M divides (Yp)(z1z) in the 
ring of formal power series in (z—p, z—p). Being holomorphically nondegenerate (i.e. 
the opposite of being degenerate) at a point is a strictly weaker condition than that 
of being fc-nondegenerate for some integer k. (See [BER3, Chapter XI] for a more 
detailed description of the relationship between the two notions). Also, recall that M 
is said to be minimal at p G M (in the sense of Tumanov and Trepreau) if M does 
not contain a complex hypersurface through p. 

THEOREM 3. Let M C C^ be a smooth (C00) real hypersurface which is holo- 
morphically nondegenerate and minimal atpo.  Then, 

/4tN - 3 
(0.5) dimRaut(M,po) < (2N - 1) I       _ 2 

A real-analytic hypersurface M is said to be holomorphically degenerate at p G M 
if there exists a holomorphic vector field, i.e. a vector field of the form (0.4) with the 
aj(z) holomorphic, tangent to M near p. This definition turns out to be equivalent 
to the one given in the smooth category above (i.e. using formal vector fields) for a 
real-analytic hypersurface (see [BER3, Proposition 11.7.4]). Stanton [S2] proved that 
dimRhol(M,p) < oo for a real-analytic hypersurface M, where hol(M,p) denotes the 
subspace of aut(M,p) consisting of those infinitesimal CR automorphisms which are 
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real-analytic, if and only if M is holomorphically nondegenerate at p. The correspond- 
ing statement (as well as results for higher codimensional real-analytic submanifolds) 
for aut(M,p), with M real-analytic, was proved in [BER2]. In contrast to the real- 
analytic case, the condition of (formal) holomorphic nondegeneracy is not necessary in 
Theorem 3. A real smooth hypersurface M in C2 which is holomorphically degenerate 
and minimal at 0, but everywhere Levi nondegenerate outside 0 is given in [BER3, 
Example 11.7.29]. The fact that M is Levi nondegenerate outside 0 can be seen to 
imply (see the concluding remarks in §4.2) that dimRaut(M,0) satisfies the bound in 
(0.5). However, if there exists a vector field 

N 

(0.6) Y = J2«A*Mi> 
3=1 

where the aj(z,z) are smooth functions whose restrictions to M are CR, tangent to 
M near p, then the arguments in [S2] easily show that dimRaut(M, 0) = oo. This 
discrepancy is addressed further in §4.2. The proof of Theorem 3 is given in §3. 

For our final result, we shall denote by Aut(M,p) the stability group of M at 
p G M, i.e. the group of germs at p of local CR diffeomorphisms /: V -» M, where 
V C M is some open neighborhood of p, with f(p) —p. If M is fco-nondegenerate 
at po) then, by Theorem 1, the jet mapping j*1*0 sends Aut(M,po) injectively into 
the jet group G2ko (CN )Po C J2ko (£N, C^ )(PO)Po), which consists of those jets that are 
invertible at po. We shall show that the elements of Aut(M,po) depend smoothly on 
their 2A;o-jets at po. More precisely, we have the following result. 

THEOREM 4. Let M c C^ be a smooth (C00) real hypersurface which is UQ- 

nondegenerate at PQ G M.  Then, the jet mapping 

j2k°:Aut(M,po)->G2k°(CN)Po 

is injective and, for every f0 G Aut(M,po)> there exist an open neighborhood UQ of 
jpo0(f0) in G2ko(CN)p0, an open neighborhood VQ of po in M, and a smooth (C00) 
mapping F: UQ X VQ —> M such that 

(0.7) F(j%°U)r)=f, 

for every f € Aut(M,po) with jpko{f) € UQ. 

For real-analytic hyper surf aces, the result in Theorem 4 (with real-analytic de- 
pendence) was proved in [BER1]. (See [BER4] for the higher codimensional case; cf. 
also [Z].). 

Acknowledgement. The author would like to thank B. Lamel and D. Zaitsev for 
many helpful comments and discussions on a preliminary version of this paper. 

1. Preliminaries. A real hypersurface M C C^ inherits a CR structure V := 
T0'1^ D CTM from the ambient complex space C^. (Here, T0'1^ denotes the 
usual bundle of (0,1) vectors in CN.) In this section, we shall consider abstract, not 
necessarily embedded (or integrable), CR structures. At the end of this section, we 
shall again specialize to embedded hypersurfaces, which substantially simplifies some 
of the computations in subsequent sections. The reader is referred to the concluding 
remarks in §4 for a brief discussion of the abstract case. 

Let M be a smooth (C00) manifold with a CR structure V C CTM. Recall that 
this means that V is a formally integrable subbundle (the commutator of two sections 
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of V is again a section of V) such that Vp fl Vp = {0} for every p G M. Sections of the 
CR bundle are called CR vector fields. We shall denote by n > 1 the CR dimension of 
the CR manifold M, which by definition is the complex fiber dimension of V, and we 
shall assume that the CR structure is of hypersurface type, i.e. that dim^M = 2n + 1. 
The reader is referred to [BER3] for an introduction to CR structures. 

We define two subbundles T0M C T'M C CT*M as follows 

(1.1) T0M := (V 0 VJ-S    T'M = V"1, 

where A1- C CT*M, for a subset A C CTAL denotes the union over p G M of the 
set of covectors at p annihilating every vector in .4p. Real nonvanishing sections of 
T0M are called characteristic forms and sections of T'M are called holomorphic forms. 
Thus, characteristic forms are in particular holomorphic forms. 

We shall give an alternative definition of A'o-nondegeneracy, as defined in the 
introduction, in terms of the intrinsic geometry of _\/. This definition appeared in 
[E2]. For a holomorphic form LJ, the Lie derivative with respect to a CR vector field 
X is given by 

(1.2) Cxu = X^du. 

where j denotes the interior product, or contraction, and d denotes exterior differen- 
tiation. For p G M, define the subspaces 

(1.3) T°M := Eo(p) C E^p) C ... C Ek(p) C ... C T^M 

by letting Ek (p) be the linear span (over C) of the holomorphic covectors 

(1.4) (CXk...CXl9)(p), 

where X1,... , Xk range over all CR vector fields and 9 over all characteristic forms 
near p. M is called finitely nondegenerate at p G M if Ek(p) = T^M for some k. More 
precisely, we say that M is fco-nondegenerate at p if 

(1-5) Eko-1(p)CEko(p) = T;M. 

For an argument showing that this definition coincides with that given for embedded 
hypersurfaces in the introduction, the reader is referred to [BER3] (see also [E2]). For 
each fc, set 

(1.6) Fk(p)=VpnEk(p)-. 

It was shown in [E3] that the mapping 

(1.7) (Xi,... iXkM) H> ((Cxk ■ ■ ■ CXl6)(p),Y(p)), 

defines a multi-linear mapping 

(1.8) Vp x ... Vp x Ffc-i (p) x rp
0M -+ C. 

which is symmetric in the first k positions. The tensor so defined for k = 1 coincides 
with the classical Levi form, and the space Fi (0) is the Levi nullspace. 

Let us fix a distinguished point on M denoted by 0 G M. We choose a basis 
Li,... ,Ln of the sections C00(t/, V), where U C M is some sufficiently small neigh- 
borhood of 0, adapted to the filtration 

(1.9) Vo = Fo(0) DF1(0)D...D Fk{0) D ... D {0} 
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in the following way. Observe that the sequence of subspaces Fk (0) stabilizes at a 
smallest subspace ^(0), which equals {0} if and only if M is fco-nondegenerate at 
0. Let rk = n - dimci^O) and choose Li,... , Ln so that Z/rfc+i(0),... I/n(0) spans 
F/c(0) for k = 0,1,... , Afo. We shall use the following conventions for indices. For 
j — 1,2,..., Greek indices a^\P^\ etc., will run over the set {1,... ,^-i} and 
small Roman indices a^\b^\ etc., over {TJ-I + 1,... ,n}. Capital Roman indices 
A, B, etc., will run over {1,... , n}. 

Now, choose also a characteristic form 6 on M near 0. We write 

(1-10) hAl.„AkB:=(£Ak...£Al6,LB), 

where C^ := JCLA and L^ := LA- Note that (^Ai...Afca(fc)(0)) represents the tensor 
defined by (1.7) relative to the bases LA(0), La{k) (0), and 0(0) of Vo, ^(0), and T0

0M, 
respectively. 

Let T be a vector field near 0 such that T, LA, L^ form a basis for C00(Lr, CTM). 
Let (9,6>A, eA be the dual basis for C00(C/, Cr*M). Note that, for each k = 1,... , fo, 
the covectors 0(0),da (0) form a basis for Ek(0). For brevity, we introduce the 
functions 

and also 

^B := (^C^A A LB) ,    /?gB := (d9c,LDALB) 

(1.12) R%:=(d6c,LAAT),    R% := (dec ,T A LB) . 

The following identity is useful. 

LEMMA 1.13. For any nonnegative integer k, and indices ^4i,... ,Ak,C, D G 
{1,... ,n}, £/&e following identity holds 

(1.14) flA1...AkCD ~ LchAi...AkD + ^A1...AkB^CD + ^A1...Ak^CD' 

Proof. Recall that £^fc .. .£^0 is a holomorphic 1-form and, by the definitions 
(1.10-11), 

(1.15) ^fc • • • ^0 = /^...A^ + ^...A^- 

Here, and for the remainder of this paper, we use the summation convention which 
states that an index appearing in both a sub- and superscript is summed over; e.g. 
/i£>0D = ^2D hoO0. We also have, by the definition of the interior product, 

(1-16) hAl_AkCD = (dCAk ... CAie,LQ A LD). 

The identity (1.14) follows by applying the exterior derivative d to (1.15) and substi- 
tuting in (1.16). D 

Define i,Q to be the smallest integer £ for which 

f hAl^ArD{0) = 0,    VAi,... Ar, D € {1,... ,n}, r < I 

^1'17^ | hAo_AoDo{0) ^ 0,    for some A?,... 4°,D0 G {1,.... ,n}. 

If no such t exists then we set (,$ = oo. Observe that if M is A;-nondegenerate at 0 
for some fc, then to < fe, but 4 < oo does not imply finite nondegeneracy. Also, note 
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that, for any r < £o, the subspace i?
r_i(0) = Vo and, hence, the indices ar, 6r, etc., 

introduced above run over the whole index set {!,... ,n}. 
(Also note, by the fact that LA is adapted to the filtration (1.9), that if IQ < oo 

then we can take D0 = 1 in (1.17).) 

LEMMA 1.18. For any integer r > 2 and any integer j > 0 such that j +r < IQ 

and indices Ai,... , Ar, C\... ,Cj,D G {1,... , n}, the following holds 

hAL^Ar-iArDfi) = {LArhA1...Ar.1D)W 

(1.19) : 

{Ld --LCj
hA1...Ar-1ArD)(fy =  (£<?! •••I'Ci^Ar

ft'A1...Ar_1D)(0). 

/n particular, 

(1-20) ^...^(0) - (L^0 •••^2^1D)(0)- 

Proo/. The first identity in (1.19) follows immediately by evaluating (1.14) at 0 
and using the definition of £o. In particular, it follows that 

(1-21) {LArhA1...Ar.1D)(0) = 0 

for any 2 < r < £Q. NOW, the second identity in (1.19) follows by applying LQI to 
(1.14) and using (1.21). The conclusion of Lemma 1.18 follows by induction. D 

Recall that M is said to be of finite type at 0 G M if LA , L^ and all their repeated 
commutators 

(1.22) [Xm, [Xm-i, . . . [X2,Xi] ...]],      -X*!, . . . , Xm G {Li, . . .  ,Ln,Li, . . .  ,I/n}, 

evaluated at 0 span CToM. The commutator in (1.22) is said to have length m. (A 
commutator of length one is simply one of the vector fields L^, LA-) If M is of finite 
type at 0, then it is said to be of type mo if mo is the smallest integer for which all 
commutators of the form (1.22) of lengths < mo span CTbM. Define £i to be the 
smallest integer £ for which 
(1.23) 

(0, [LArJ... [LAl,LD].. .]> (0) = 0,    \/Aly... Ar,D G {1,... ,n}, r < £ 

(0, [LAo,... {LAO,LDO) ...]) (0) ^ 0,    for some A* ... A0
r,D

0 G {1,... ,n}. 

If no such £ exists then we set £1 = 00. Observe that £1 < 00 implies that M is of 
finite type mo < £1 + 1 at 0, but the converse is not true, i.e. M can be of finite type 
at 0 while £1 = 00 . 

PROPOSITION 1.24. // either of the two integers £o,£i is finite, then they are 
equal. Indeed, for any r < £0, it holds that 

(1.25) {9, [LAr,... [LAl,LD}...]) (0) = -hAl...ArD(0), 

for all Ai,... Ar, D G {1,... ,n}. In particular, if M is k-nondegenerate at 0, then it 
is also of finite type < k + 1. 

Proof. Note that the first part of Proposition 1.24 clearly follows from (1.25). 
Hence, we shall only prove (1.25). For any 1-form f and vector fields X, Y, we have 
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the following well known identity (see e.g. [He]) 

(1.26) (dZ,XAY) = X(SJY)-Y(S,X)-(S,[X,Y]). 

Thus, for a holomorphic 1-form cu on M, we obtain 

(1.27) (UJ, [LA,Ld]) = LA (a;, LD) - (£Au, LD). 

By applying (1.27) with u = #, we deduce that 

{
0
A

L
A^

L
D\) = -hAlD. 

By Lemma 1.18 and the symmetry of the tensors hAl   ArD(0), we then deduce that 

(1.28) (LQl...L0a (0,[LAl,LD]))(0) = -^...^^^(0),    V0 < 5 < 4 - 1, 

where 5 = 0 in (1.28) means (<9, [LAl,LD]) (0) = -^^(O). By applying (1.27) with 
cu = Cg. .. .CQ19) we obtain 

(1.29) (CB. ...C^O^LA^LDIJ = L^h^^BjD - hA1B1...BjD- 

Hence, it follows from Lemma 1.18 and the symmetry of the hAl   ArE>(0) that 

(1.30) (L^ .. .Lca (cSj . ..£Bl0, [LAl,LD])) (0) - 0,    V 1 < j + s < £0 - 1. 

Now, assume that 

(1.31) (L(51...Le-(fl,[^rJ...[LAl,LD]))(0) = 

-hc1...caA1...ArD(P)>    VI <5 + r <4, 

where 5 > 0 and the meaning for s = 0 is analogous to (1.28), and 

(1.32) ^LCl...LCs(KCBj...CSl0,[LAr^..[LAl,LD}...]))(0)=0, 

Vl<i + 5 + r <4, 

where j, 5 > 0, for r = 1,.. .i?. Observe that we have proved this for R = 1. Now, 
if i? < 4, then the (1.31) and (1.32) follows for all r = 1,... ,R + 1 by applying 
(1.27) and Lemma 1.18. The verification of this is straightforward and left to the 
reader. By induction, we deduce that (1.31) and (1.32) hold for r = 1,... ,£o- In 
particular, (1.25) holds for any r = 1,... ,^o- This completes the proof of Proposition 
1.24. □ 

So far, everything has been done with an arbitrary choice of basis T^LA1LA^ 

except that we chose the LA to be adapted to the filtration in (1.9) as explained 
above. We shall now use the fact that M is embedded in C^ and choose a particular 
basis. 

LEMMA 1.33. Let M C C^ be a smooth real hyper surf ace. Then, there is a basis 
T,LA,LA such thatT is real, the LA adapted to the filtration (1.9) as explained above, 
and 

(1.34) RAB = RDB = RA = RB = 0, 
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for all indices A,B,C,D G {1,... ,n}. 
REMARK. Clearly, the conditions (1.34) are equivalent to dOc = 0. Based on this 

observation, an alternative proof of Lemma 1.33 can be given by pulling back suitable 
coordinate functions from the ambient space. 

Proof. By making use of the identity (1.27), we conclude that 

R
C

AB = -{6
C
ALA,LB]),   Rc

AB = -{ec,[LA,LB]), 

Rc
A = -{ecALA,T]),  Rc

A = -{ecAT,LA]). 

Hence, to prove the lemma, it is equivalent to show that there is a basis T, L^,L^ 
with T real and LA adapted to the filtration (1.9) such that the LA commute, and 
[L^, LB] and [LA, T] are multiples of T. The existence of such a basis, disregarding the 
adaption of the LA to the filtration, is well known (see e.g. [BER3, Proposition 1.6.9]). 
Since the adaption of the LA is a condition only at the point 0, we may achieve this 
by applying a linear transformation with constant coefficients to any basis LA- Such 
a transformation does not affect any commutator relations and, hence, the lemma 
follows. □ 

In what follows, we shall assume that (1.34) holds. 

2. A Reflection Identity for CR Diffeomorphisms. Let M be a smooth 
CR manifold as in the preceeding section, and let M be another smooth CR manifold 
of the same dimension and CR dimension, with distinguished point 0 G M. We 
shall denote corresponding objects on M by using *; e.g. V C CTM denotes the CR 
bundle on M, T,L^,L^ is a basis for C00(C/,CTM), where U is some sufficiently 
small neighborhood of 0 G M. We shall assume that both M and M are embeddable, 
locally near 0 G M and 6 G M, as real hypersurfaces in C^. Hence, (1.35) holds on 
M and analogous identities on M. 

Assume that /: M —> M is a smooth CR diffeomorphism defined near 0 in 
M such that /(0) = 6. Recall that a smooth mapping /: M -> M is called CR 
if /*(Vp) C V/(p), where /*: CTM -* CTM denotes the tangent mapping or push 
forward, for every p G M; a CR diffeomorphism is a diffeomorphism which is CR and 
whose inverse is also CR. In particular, if / is a CR diffeomorphism then, for every 
p G M near 0, /*(Vp) = V/(p)- We introduce the smooth GL(Cn)-valued function 
(75), and real-valued functions £, rjA so that 

(2.1) U{LB) = 1$LA,    h{LB) = ^LA,    U{T)=tif + r]
ALA+^LA. 

We can write (2.1) using matrix notation as 

/ z   0   0 
(2.2) f*{T,LB,LB) = {f,LA,LA)\n^   7^   _0_ 

By duality, we then have 

(2.3) r ( eA j = [ rf  7%   o_\\eB 

The main technical result in this section is the following, which can be viewed as 
reflection identities for 7^ and rjD. 
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THEOREM 2.4. If M is ko-nondegenerate atOeM, then the following identities 
holds for any indices D, E £ {1,... , n), 

(2-5) 7£=rg(2>'72,£/!;/), 

(2-6) rl
D=sD<pi°,Lq\f) 

where 

(2.7) T^{L^tL'tq){p),    sD(L^,L^;q)(p) 

are smooth functions which are rational in ^J7^ and polynomial in L1^, the indices 
A, C run over the set {1,... ,ra}, and J, I over all multi-indices with \J\ < ko — 1 
and \I\ < ko; here, (p,q) € M x M. Moreover, the functions in (2.7) depend only on 
M and M (and not on the mapping f). 

For the proof of Theorem 2.4, we shall make use of the following identity 

(2.8) <d/*a;, X AY) = (du>, f*X A f^Y), 

which holds for any 1-form cu on M and vector fields X, Y on M. First, letting to = 9, 
X = LA, and Y = LB, we obtain 

(2-9) ZhAB = lErfhcD- 

Here, and in what follows, we abuse the notation in the following way. For a function 
c defined on M, we use the notation c to denote both the function c o / on M and 
the function c on M. It should be clear from the context which of the two functions 
is meant. For instance, in (2.9), we must have hcD = hQD of. By letting & = 6E, 
X = L^, and Y — LB in (3.1), we obtain 

(2.10) ^71 + ^^=0. 

Applying (2.8) with X = L^, Y — T, and CJ = 0, we obtain 

(2.11) LAt + €hA = thZhc + TZV^CD, 

and with u = 6C, we obtain 

(2.12) LAr)C + r}ChA =0. 

To obtain (2.11) and (2.12), we have used the fact 

{dLu,LcALD} =Lc(u,LD) -LD(CJ,LC^ - (^J,[LC,LDYJ 

= 0, 

which holds for any holomorphic 1-form Q on M by the formal integrability of the CR 
bundle V. We apply (2.8) one last time, with CJ — 9C, X = T, and Y — LA-, to obtain 

(2.13) T^ - LAr\c - rfhl = 0. 
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LEMMA 2.14. For any nonnegative integer k, and indices .Ai,... ,Ak,B,C £ 
{1,... , n}, the following identities hold 

(2.15) Lc{7BhAl...AkD) =lWchA1...AklH ' lBlIc^A1...AkhjH -^hA^.A^hcB 

and 

(2.16) Lc{r)DhAl_AkD) = ^IC^A^.^IH - ^ih^A^Auhn " ^^...A^^C- 

Proof. We shall prove (2.15). Recall that hAl AkD in (2.15) denotes hAl AkDof 
by the convention introduced in §1. Hence, 

where according to our convention LjhAl   AkD = {LjhAl   AkD) o /, and we obtain 

(2.18) MTB^.JUD) = {Lc<yg)hAl„mAhD + 75 7^(^7^... A.D). 

Let us rewrite (2.10) as 

(2.19) LA1§ = -V
BhAB. 

The identity (2.15) follows by substituting (2.19) in (2.18) and then applying Lemma 
1.13. 

The proof of the identity (2.16) is completely analogous. Expand the left hand 
side by the chain rule, and then substitute for the derivatives of riD by using (2.12), 
and for the derivatives of hAl AkD by using Lemma 1.13. The details are left to the 
reader. □ 

The following two lemmas will be important in establishing Theorem 2.4. 

LEMMA 2.20. For any integer k > 0, and indices Ai,... jA/^B G {1,... ,n}; 

the following identity holds 

(2.21)    7g7£ • ■■lAk
khc1...ckD = rA1...AkB(LJ'r'A;f)+SsA1...AkB(LJl(A-J) 

(=1 (=1 

where 

^1...^B(I'M;9)(P),     sAl_AkB{LJj^;q)(p), 

are polynomials in LJj^, where A, C run over the indices {1,... ,n} and J = 
(Ji,... , Jt) G {Ij.-.nj^ for t < k — 1, whose coefficients are smooth functions of 
(p, q) E M x M; here, we have used the notation LJ = Lj1 ... Ljt. Moreover, the 
functions in (2.22) depend only on M and M (and not on the mapping f). 

Proof We observe that (2.9) satisfies the conclusion of Lemma 2.20 for k = 1. 
Assume that the conclusion of Lemma 2.20 holds for all integers k = 1,.. .j — 1. Fix 
indices Ai,... , Aj-i, B € {1,... , n}, choose an index Aj G {1,... , n}, and apply LA. 
to (2.21) with k — j — 1. The statement of the proposition for k = j now follows by 
applying Lemma 2.14 and substituting for LA.£ using (2.11). The proof is completed 
by induction on A:. □ 
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REMARK. In what follows, we shall use the notation r, 5, t, and u with varying 
sets of sub- and superscripts for "generic" functions which may be different from time 
to time. 

LEMMA 2.23. For any integer k > 0, and indices Ai,... ,Ak £ {1,... ,n}; the 
following identity holds 

(2.24)    VD7%--.7%hc1...0hD=rAl...Ah(L->'v2,LIt;f) 

1=1 1=1 

where 

(2.25) rA^Ah {L^l, LTZ; g)(p),    «£;;;%* (L-^; g)(p) 

are polynomials in LJ7^ anrf L7^ m £Ae former case and in LJ^ in the latter, where 
A, C run over the indices {!,... ,n} and J = (Ji,... , Jt), I — (h,... ,It+i), with 
li, Jj G {1,... n}; /or £ < A; — 1, whose coefficients are smooth functions of (p,q) G 
M x M; here, we have used the notation LJ = Lj1 ... , Ljt and LJ = L^ ... , Ljt. 
Moreover, the functions in (3.18) depend only on M and M (and not on the mapping 
!)■ 

Proof. We start with equation (2.11) and proceed as in the proof of Lemma 2.20. 
We leave the details to the reader. D 

We are ready to prove Theorem 2.4. 
Proof of Theorem 2.4. Using the fact that the matrices (7^) are invertible, we 

rewrite (2.21) and (2.24) as follows 

fc-i 

(2.26) 7EhAl...AkD + E7K^1...C,D'^::S(^7^;/)+ 
Z=l 

k-1 

EvDh1...clD
lu%:±B(L^f) = 'rAl...AkB(L^A.f)+ 

1 = 1 

'sA1...AkB(LJ'rA>f)t> 

and 

(2.27)   V
D UA1...AfcD + E^1...a1D'^:i(^M;/)J + 

k-1 

E^...c,^;;tF(£M;/) = 'rA...A(L^,L^/). 
1=1 

To prove the theorem, we must show that there are n choices AJ, where AJ = A{ ... Aj. 
with lj < fco, such that the linear equations (2.26-2.27), with A = AJ for j = 1,... , n 
and B = 1,... n, can be solved uniquely for 7^ and r]D near 0. For this it suffices to 
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show that if, for some (v%,vD) G Cn2+n, 

k-l 

(2.28)    v^hAl,,,AkMO) + YlvEh1..AD(0),tfi:±l(LJ1^fm + 
1=1 

k-l 

E^^-C^W'^-.-.IB^M;/)^) = o 

and 

k-l 

(2.29)   vD   hAl„.AkD(0) + E^1...C,D(0)'4
1

I:1(
L
M;/)(0)    + 

1 = 1 

k-l 

E^^,..c,D(0)'^1
i;'.t

F(i^;/)(0) = o, 
1=1 

for all Ai,... Aki B G {1,... , n} and all k < ko, then v^ = vD — 0. To see this, note 
(2) (2) 

that (2.28-2.29), for k = 1, implies directly that va = vg = 0; recall the convention 
introduced in §1 that the indices a(/c+1) run over {1,... ,7^}, where rk = n — dimFk{0) 
as introduced in §1, and the indices a^+1) run over the set {r^ +1,... n}. Thus, since 
^Aa(2)(0) = 0, the equations (2.28-2.29) for k = 2 reduce to 

(2) ^ (2) * 
(2-30) v%   hAlA2a,2) (0) = 0,    va   hAiA2ai2) (0) = 0, 

(3) (3) 
which in turn implies va = v^ = 0. Proceeding inductively, using at each step 
the fact that for any integers 1 < j < k < ko, 

(2.31) ^1...^a(*)(0) = 0, 

we conclude that the equations (2.28-2.29), for k < fto, imply va = v% =0, 
which is equivalent to vD — v^ = 0 since rk0+i = n for a /co-nondegenerate CR 
manifold. This completes the proof of Theorem 2.4. D 

3. Proofs of Theorems 1,2, and 3. We begin with the proof of Theorem 2. 
For this proof, we shall need the following two lemmas. We shall keep the notation 
introduced in previous sections. 

LEMMA 3.1. For any indices D,E,F £ {1,... ,n}; multi-index J, and nonnega- 
tive integer k, we have the following 

(3.2) Ls^7?=r?i(LV), 

(3.3) LELJTkr)D =s%Jk {UT^rf, LKT™+lr)c), 

where the functions in (3.2-3) are smooth functions which are rational in the arguments 
appearing inside the parentheses. The indices A, C run over the set {1,... ,n}; and 
I, K, over all multi-indices with \I\ < \ J\, \K\ < \ J\ — 1; the integer m runs from 0 
to k. Moreover, the functions in (3.2-3) depend only on M and M (and not on the 
mapping f). 

Proof. We shall use the following fact, which is an easy consequence of the 
commutator relations established in the proof of Lemma 1.32.   For any vector field 
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X E {LA, LA,T) and any multi-index J = (Ji,... J\J\)J we have 

(3.4) XLJ = LJX+     Y,     C
KL

K
T, 

\K\<\J\-I 

where the CK are smooth functions on M (which depend on X and J). To prove (3.2), 
we observe that, in view of (3.4), we have 

LELJ7V=LEL^F 
(3-5) =LJLE7°+     Y,     cKLKT^>. 

\K\<\J\-l 

The identity (3.2) follows from (2.10) and (2.13). The proof of (3.3) is similar, and 
left to the reader. D 

LEMMA 3.6. For any index E € {1,... ,n}; multi-indices J and any nonnegative 
integer k, we have the following 

(3.7)        LELJTkZ = 3ik(LK^LITmric9L
ITm^LKTm+1^Tm^Tmrfc;f)- 

where the function in (3.7) is a smooth functions which are rational in the arguments 
preceding the ;. The indices A, C run over the set {1,... ,n}, and I, K over all 
multi-indices with \I\ < \J\, \K\ < | J\ — 1; the integer m runs from 0 to k. Moreover, 
the function in (3.7) depends only on M and M (and not on the mapping f). 

Proof. We apply (3.4) as in the proof of Lemma 3.1 to deduce that that L^Z/T*^ 
is linear in Z/T^, LKTrn+1^ and L7rmL^^ To evaluate the latter term, we make 
use of (2.11) and (2.13) to deduce that LJTkL^ is polynomial in Z/T™*;, Z/T771^, 
LKj%, and Z/Tm7^. Finally, we commute LT and Tm using (3.4), and then use 
(2.10) to conclude that Z/Tm7<{ is a linear function of Tm^ and Tmr)c. Summing 
up, we obtain (3.7). This completes the proof of Lemma 3.6. D 

The following argument is inspired by the paper [Han2]. We shall say, for a 
function u on M, that u G 0% if 

(3.8) u = r(LI
1%LIT^r}

c,LITm^LNTn
1

(i,LNTnr]
C')f), 

where the function in (3.8) is a smooth functions which is rational in the arguments 
preceeding the ;. The indices A, C run over the set {1,... ,n}. The multi-indices 
Z, N and the nonnegative integers m, n run over all multi-indices with |Z| + m < p, 
\N\ + n < a. Moreover, the function in (3.8) should depend only on M and M (and 
not on the mapping /). Similarly, we shall say that u E C^ if (3.8) holds with the 
additional condition that m <q,n <b. Observe that by Lemma 2.30 (and the reality 
off), we have 

(3-9) 1F^
C
^&C^Y, 

where the negative ones in the superscript signify that no terms involving LN/y^ or 
LNric appear. Recall that ko is the order of nondegeneracy of M. By (2.10-12), we 
obtain 

(3-10) iJ7F, LV G C^y 
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for any multi-index J.   By applying LE to e.g.  the equations for LJ/yp and using 
Lemmas 3.1 and 3.6, we conclude that 

(3.11) LBL
J
^ = rfCL^I'T^L'T^.T^r?0;/), 

where \K\ < ko — 1, |/| + m < fco, and m < 1. By substituting for 7^ and 77° in (3.11) 
using the equations provided by (3.10), we conclude that LEI? ^ ^j^1!-1- ^e obtain 

a similar equation for LELJrjc, Hence, we obtain 

(3.12) LELJj°, LEL3nc € C^f1. 

Next, by applying Lp to the equations for LEL
J
JP and LELJr}C', provided by (3.12), 

we obtain 

(3.13) LPLEL
J
^, LpLELJTl

c € C^\. 

Similarly, repeated application of Lp^, Lp2, ... , Lpk yields 

(3.14) LPk ...LPl LEL
3
^ ,Lpk... Lp1 LELJ

V
C € C^\. 

Hence, by taking linear combinations of Lpk ... Lp.LELp     ... LpkL
J, we deduce that 

(3.15) [... [LE, LPxl... , LpjL7^, [... [LE, LpJ,..., Lpk}L
J

V
c € C^. 

Let £0 < ko be the integer provided by Lemma 1.24 for which 

(3.16) [...[LE,Lpl},...,Lpk} = aT, 

for some function a with a(0) ^ 0. Then, (3.15) implies, in particular, that 

(3-17) T7g, Tf,c e C^felr 

Before proceeding, we shall need the following result on commutators of differen- 
tial operators, which seems to be of independent interest. 

PROPOSITION 3.18. Letio be the smallest integer for which (1.23) holds. Then, 
for any multi-index J, integer k > 1, and index F G {1,... ,n} there exist smooth 
functions aEl--E™Pl-ps, bf1-^ such that 

\J\+kmto 

(3.19) Y, J2aE-E^-H--[LBl..-LBm,Lp1},Lp2}... ,Lps] = LJTk. 
771=1   5=0 

and 

\J\+k  k 

(3.20) Y, E h*1-Em [•••[LE1...LE^LPILP]...,LP) = {hPlYLJT\ 
m=l s=0 YT length 5 

where p.= k + | J\ — \ J\i + 1 and \J\i denotes the number of occurences of the index 1 
in the multi-index J; here, the length of the commutator [... [X, Yi],!^] • • • ,YS] is s. 

Proof In this proof, we shall use the following notation to simplify the notation, 

CEi...Em,F1...Fa ''- [••• [[LEX '••LEm,Lp1],LF2] . .. ,L^J, 
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where CJB1...^m is understood to mean LE1 •.. LEm> Using bilinearity of the commu- 
tator and the identity 

(3.21) [AB, C) = A[B, C] + [A, C}B, 

a straightforward induction shows that 

(3.22) [...[[LElLE2...LEm,LPl],LP2]...,LP3] = 

Zl        CE1,F%1...Fl3_CE2...Ern,FJ1...FJl, 
(hf)eP2(s) 

where P2(s) denotes the set of all partitions of {1,... , s} into two disjoint increasing 
sequences i = (iu... ,is-/), 1 < n < ...za-z < 5, and i = (ji,... Ji), 1 < ji < 
... < ji < s for / = 0,... 5. (Of course, for e.g. / = 0 the partition is understood to 
be the trivial one i = (1,... ,5) and j = 0.) Similarly, if we denote by Pm(s) the set 
of all partitions of {1,... ,5} into m disjoint increasing sequences ^ = (i{,... ,2^), 
1 < i\ < ... i*t < 5, t — 1,... m, and ^ 5^ = 5 (allowing empty sequences), then we 
have 

(3.23) [...[[^1LSa...LSm,LJp1]>Lft]...>Lft] = 

/   , C'E1,F.1...F.i     " 'C'Em,Fim...Fim    7 x—^ li tsi 1 ^m 
(ii,...,i^)GPm(5) 

Observe that CE El,^p3 = aE p1   EgT, ioi some function aE p ^ps such that 

^,^...^(0) =0,    \/s < to,    and    ^^...^(O) = ^...^^(O) ^ 0, 

for some choice of Fi,... , F^0. Hence, with s — £0 we obtain, by (3.23) and Lemma 
1.24, 

(3.24) 
771 

[.•.[LEl ...LEniLp^LpJ... ,1/^J = ^2(hF1...Fi0El +o(l))LEl ...LEl ...LErnT 

+   J]   bKpL
KT*+   J2   CKLKT

' 
\K\+p = rn \K\<m-2 
\K\<m-2 '       ' — 

where bkp(0) = 0, LEl means that factor is omitted, and o(l) denotes a function 
vanishing at 0; the last sum in (3.24) arises from arranging (by commuting) so that 
the vector field T comes last in the first sum. Recall, from §1, that for each index 
a(£o) £ {15... 5r£0} there exist Fi,... ,i^0 so that hpi pi Q^QJCO) 7^ 0. For this 
argument, we only need the fact that there exist Fi,... , F^0 so that hp1 pl 2(0) ^ 0. 
We choose Fi,... , F£0 to be minimal, in the lexicographical ordering (Ai ... As < 
Bi ... Bs if, for some r < 5, Ai < Bi for i < r, and Ar < Br), with this property. 
Setting Ei = ... Em = 1, we observe that we can solve for L™~lT in (3.24). Setting 
Ei = .. .Fm_i = 1 and L^m = £# with F > 2, we can then solve for L^l~1LET. 
Proceeding inductively, we see that we can solve for any LJr, with | J\ — m — 1, in 
terms of 

[...[LEl...LErn,Lp1),Lp2]...,Lp£o],    bKpL   Tp,    L   T, 
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where K runs over multi-indices with \K\ < m — 2, and p over positive integers such 
that ji^l +p = m, and each 6^(0) = 0. Next, letting s = 2£o and F£0+i = F/ for 
^ = 1,... £o, we obtain (by also using that /i^ ps ^ is symmetric in the first s indices 
Fi,...F,) 

m 

(3.25) [...[LE1 ...LErri,Lp1],Lp2\... >LF2t0} :=:YlaEJF1...F2£o
LE1 •.>LE1 ".LEJT 

+ Cp        ^        (hF1...Fe0Ell
hF1...Fl0El2 + O{1))LE1 • • • L^ . . . Lj^ . . . L^T2 

l</l</2<^l 

|K|<m-3 P = l,2 

where c^. is some combinatorial factor (> 0) which depends on the minimal set of 
indices Fi,... ,F£Q. Using the fact that we have already solved for the Z/T, \J\ = 
m — 1, in terms of bK2LKT2 where 6/^2(0) = 0, a similar argument to the one used 
above shows that we can solve for each LJT2, \ J\ — m - 2, in terms of 

{...{LEl...LEm,Lpl],Lp2}...,LP2eo},    o(l)LKTP,    L^T,    LKT2 

where K, Q, runs over multi-indices with \K\ < m-3, |Q| < m — 2, and p over positive 
integers such that \K\ -\-p = m. Proceeding by induction over k (with the total order 
m fixed), we eventually find that we can solve completely for Tm in terms of 

[.'..[LE1-:.LEm,LF1],LF2]... ,LFmlo\,    L   Tp, 

with \K\ 4- p < m — 1. Substituting back, we obtain 

Yia
E-B^-p'[....[LEl...LEm,Lpl],LPa]...,LPJ = LJTk 

71=0 

+      ^      C
KPL

K
TP, 

|K|+P<m-1 

where m = | J| + fc. The proof of (3.19) is completed by a simple induction on the 
total degree m. 

For the proof of (3.20), we proceed analogously by first setting 5 = 1 and Ei = 
... = Em = 1 in (3.23). We find that 

(3.26) rnhp1L?-lT = CEl„mEm9r+     £    cKLKT. 
\K\<m-2 

Next, with Ei = ... = FTT,,-! = 1 and Em = F, we obtain 

(3.27) (m - I^P^^LET + HPEL^T = CEl.„Emtp +     5]    c^L^T. 
|K|<m-2 

Thus, multiplying by hp1 and using (3.26), we obtain (3.20) for a multi-index J = 
(1,... ,1,J5) G {1,... .n}171"1 and A; = 1. Similarly, we obtain (3.20) for arbitrary 
multi-indices J and k = 1. Proceeding inductively, setting 5 = 2,3,... A;, using (3.23), 
and multiplying through by a suitable power of hpl to apply the results obtained in 
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previous steps, we arrive at (3.20). The details are left to the reader. This completes 
the proof of Proposition 3.18. D 

To complete the proof of Theorem 2, let us observe the following schematic dia- 
gram which describes the action of applying the operators LE to elements in CT^jTq 

'Ek. 

LEk    rq+k-l,q+k-l    ljEk+i^  rq+k}q+k    LEk+2x   ^q+k+lrf+k    ljEk+3 
^ L/q+k,q+k * ^q+k^+k * ^q+ktq+k * ' ' ' 

The verification of the diagram is straightforward using Lemmas 3.1 and 3.6, and the 
details are left to the reader. Similarly, we have 

\6.M)      Opyq > 0p+l,9         > ' ' '  *" UP+k,q         > 0p+k+ltq    ^ • ' * 

We claim that the following holds for any multi-index J and nonnegative integer fc, 

(3.30) I/T^F, iJTV e C;Xle^in{k0,rny 

where m = | J\ 4- fc. Observe that (3.30) holds for m = 1 by (3.12) and (3.17). 
We shall prove (3.30) by induction on m. Thus, assume that (3.30) holds for all 
m < mo — 1. By Proposition 3.18, we can produce the differential operator LJTk by 
taking linear combinations of operators of the form LPLQLR, where |Pj -f \R\ < mo Ah 
|QI < m0i and mo = | J\ + k. Applying first LQLR to e.g. jp we conclude, using 

(3.10) and the diagram (3.28), that L^L^ e C™0'^^^• By applying Lp 

to the equation for L^L^-jp and using the diagram (3.29), we obtain LJTk^p € 
CT^T^Lk mv The conclusion LJTkyg e C"1'"1, ... m > follows by using 

the induction hypothesis to substitute for the LITm^ and L/Tmr7C, with |/| -f m < 
mo - 1, that appear in the equation for LJTkryp. By applying the same argument 
to ?7D, we conclude that (3.30) holds for m = mo and, hence, for all m by induction. 
This proves the claim. In particular, we then have 

(3-31) T^^ZC^ll^^y 

By applying LJ to these equations and using (3.28), we deduce that 

to OON TJTk^D   rJTkr>D a r'a(J>k)d(J>k) 
(6-6Z) L   1    ^F,   L   i    V      eCko+kto,qW 

where 

(3.33) a( J, k) = min(A:o, A) 4-1 J| - 1 

(3.34) q(J,k) = min(A;o + MQ,mm(ko, k) + \J\), 

and 
{/(J, k) = min(fco + fc^o,iiiin(fco,fc) -h |J| — 1). 

Observe that (3.32) implies 

(3.35) L'T'y?, L^T^ G Cff^;^^    Vk: 0<k<ko. 

Now, from (3.4) it follows that LRTkZ = TkLR^ modulo terms of the form TkLs£ 
with |5| < \R\. Hence, by applying (2.11-13), we conclude that LRTk£, is a polynomial 
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in Tm£ = T™£, Tmrjc, LKj%, and L1!™'1^, where m < fc, |K| < |ii| - 1, and 
|/| < |i?|. It follows that we also have 

(3.36) L^UC^^^t    Vk:0<k<k0. 

Let us introduce the new class Dp1^ consisting of functions u for which there is an 
equation 

(3.37) u = riL^UTnrF ,LNTn^LNTnfaLNTnr)C\f), 

where | J| 4- m < p, m < q, \N\ + n < a, n < 6, and the function r is rational in the 
arguments preceeding the ";" and only depends on M and M. By the above remarks 
concerning LRTk^ and (3.31), we have 

(3.38) rfc7£, TkriD e D ko-\-klo,min(ko,k) 

Since equations of the form (3.37) do not involve terms of the form Z/Tm£, we obtain 
a different diagram describing the action of LE on the classes -D^, namely 

(<* qcn    na>6      LgK n^1'6      Lg2v        LEk, na+k-i,b  Lgfc+iv 
{*•**)      ^q+k^ f ^q+k^+l f ' ' ' ^ Vq+kiq+k > 

LEk+i     na+k,b Lgfc+2     j-.a+k+lj    LEk+3 

By (3.38-39), we deduce 

(3.40) L'T^, L^rj* G D^^^^j^    \/k:k>k0 + l. 

We have the following technical, but important, lemma. 

LEMMA 3.41.  For any multi-index J, and nonnegative integer k < k®, we have 

(3.42) L T 7F, L T 77   , Z, T ££CkQ^ko+kQtQ)lQM^kQ+kQlQ)lQ. 

Proof. By (3.35-36), we have 

y6A6) L   1   7Fi  L  1   V    ,  ^  J-   ^eCko+ko£oM+ko£o- 

Observe that (3.43) reduces the total order of the unconjugated terms by at least one. 
Now, in the equations given by (3.43), there may appear terms of the form L1 Thl^, 

L^T^rf, where [I1! + fci < | J| + k - 1, and £4 < ko + fco^o- For those term with 
fco + 1 < ki < ko + fco^o, we may apply (3.40) to deduce that 

yo.W) 1^1      JA,   1J    1      Tj     ^ ■^k0-\-(ko+kolo)io1mm{ko + (ko+ko£o)lo1ko + \I1\)' 

Note that, since ki > fo + l and j^j + fci < |J| + fc- 1, we have ko + \I1\ < |J| + A;-2. 
For those terms L1 Tkl/yA, L1 Tklric with ki < ko, we may apply (3.35) again. In 
any case, we have reduced the total order of the unconjugated terms by two. In the 
equations given by (3.44), there may appear terms of the form L1 Tk2^, L1 Tk2r]C, 
and also Ll2Tk2£, where |/2| + Afe < ko + |/i| < | J| + fc - 2, and k2 < ko. We again 
substitute for these terms, using the equations given by (3.35-36). This reduces the 
total order of the unconjugated terms another step. Proceeding in this way, alternately 
substituting using either (3.35-36) or (3.40), we eliminate all the unconjugated terms 
(in a finite number of steps). At each step we introduce new conjugated terms, but in 
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view of (3.35-36) and (3.40), the total order of these never exceed ko + (fco + A^oKo- 
This completes the proof of Lemma 3.41. □ 

By substituting, using Lemma 3.41, for the conjugated terms that appear in the 
equations provided by (3.30), we conclude that for any multi-index J and nonnegative 
integer £;, we have 

/o AK) LJTk'yD    Z/X^T?^ G  nfco + (ko+fcoA))A),A:o+(/co4-£:oM^o 

By using (2.10) and (2.12), we conclude that for any multi-indices R and 5, any 
nonnegative integer A;, and any indices D,F G {l,...n}, there are smooth functions, 
which are rational in their arguments preceeding the ";'\ such that 

(O.4D) 

LRTkLs^ =sRSk(LITi7c,LITiric,LITiZ-j)) 

where |/| +j < ko 4- (ko -f A;o^o)^o- Finally, by using (2.11), its complex conjugate, and 
Proposition 3.18, it is not difficult to see that LRTkLst; can be expressed in terms of 
£ and derivatives of 7^, 7^, rjc, and rjc. Thus, in view of (3.46), we also have, for 
any R1 5, and &, 

(3.47) LRTkLsZ = ^^{L^^L^rf .L'T^.^T^A^
1
^

0
 ^LlTitf), 

where / and j run over the same indices as in (3.46). Now, recall that £0 < ko. The 
conclusion of Theorem 2 follows by writing (3.46-47), for all #, 5, k such that 

lij) + |5| + k = k0 + (ko + k%)ko + 1 

in any coordinate systems x — (#1,... , a^n+i) and x — (fi,... £271+1) for M and M 
near the points 0 G M and 6 G M, respectively, and observing that the same system 
of differential equations holds for any CR mapping / sending a neighborhood of 0 
in M into M with /(0) sufficiently close to 6. This completes the proof of Theorem 
2. □ 

REMARK. We would like to point out that a much simpler conclusion of the proof 
of Theorem 2 can be given in the case £0 = 1, i.e. when the Levi form of M has at 
least one nonzero eigenvalue at 0. We can then use the commutator identity (3.20) 
instead of (3.19) to conclude 

(3.48) J/TV, I/TV € C-1-^^), 

instead of (3.30). By substituting for conjugated terms, using only (3.48), we obtain 
directly equations of the form (3.46) in which |/| + j < 2ko. We invite the reader to 
carry out the details in this case. Observe that the system of differential equations 
obtained for / using this argument is of order 2ko + 2 rather than k^ + kfi + 2 as given 
by Theorem 2 (or fco + (&o + Wo - 1)4 4- 2 ='3A;o + 1 for £0 = 1, which is the order 
that actually follows from the proof of Theorem 2 presented above). 

A similar simpification of the proof in the general case would be possible if one 
could prove that it suffices to take the sum over 5 in (3.19) to run from s = 0 to 
s = MQ instead of all the way up to 5 = mlo • 

Proof of Theorem 1. The system of differential equations (0.3) is a so-called com- 
plete system of order k^ + kfi + ko + 2. In particular, any solution is completely 
determined by its (kg + k$ + ko + l)-jet at 0 G M (see e.g. [BCG3]. cf. also [Han2, 
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Proposition 2.2]). On the other hand, if x —> Z(x) is an embedding of M into C^ 
sending po G M to 0 E C^ and xf -> Z'(x) is an embedding of M' sending P'Q to 
0 € CN, then for any smooth CR mapping /.: M -+ M, with f(po) = PQ, there exists 
(see e.g. [BER3, Proposition 1.7.14]) a formal power series mapping Z' = F(Z), with 
F(0) = 0, sending M into Mf (i.e. p(Z, Z) divides p'(F(Z),F(Z)) in the ring of formal 
power series in Z, Z; cf. e.g. [BER4]) such that 

(3.49) Z'(f(x)) ~ F(Z(x)), 

where ^ denotes equality as formal power series. Also, by [BER4, Theorem 2.1.1], the 
2A:o-jet at 0 of any invertible formal mapping Z' = F(Z), with F(0) = (0), sending 
M into M' determines the series F(Z) completely. In particular, it follows from 
(3.49) that the 2A:o-jet at po of a CR diffeomorphism f: M -> M', with /(po) = Po^ 
determines its (feg + A:^ -+■ A;o 4- l)-jet at po- Hence, the conclusion of Theorem 1 follows 
from Theorem 2. D 

Proof of Theorem 3. We shall need the following proposition. 

PROPOSITION 3.50. If a smooth real hypersurface M C C^ is holomorphically 
nondegenerate at po G M, then there exists an open neighborhood U of po G M and a 
dense open subset U' C U such that M is (N — 1)-nondegenerate at every p G Uf. 

Proof. The statement that, under the hypotheses in the proposition, there exists 
an open neighborhood U of po such that M is finitely nondegenerate on a dense open 
subset U" C U is a consequence of [BER3, Theorem 11.7.5 (hi)]. To prove Proposition 
3.50, it suffices to show that if M is not A:-nondegenerate, for any k < N — 1, on an 
open set V, then M is in fact not finitely nondegenerate at any p G V. Recall the 
subspaces Ej(p) C T^M defined for j = 0,1,... in §1. Assume that EM-I(P) is a 
proper subspace of T^M for every p G V, i.e. M is not ^-nondegenerate, for any 
k < N — 1, in V. Since dimcT^M = iV, we conclude, by (1.3), that there must be an 
open subset V C V and an integer 1 < £ < N — 1 such that 

(3.51) E^1(q) = Ei(q),    VqeV. 

We claim that if E£-i(q) = Ei{q) for all q in some open sufficiently small set V C M, 
then in fact Ei-i(q) — Ek(q) for all k > £ and all q G V. To see this, observe that 
(3.51) implies that, for every Ai,... ,Ai G {1,... ,iV"}, there are smooth functions 

a-r1'*' j  such that 

(3.52) ^•..^1^Eatt^--^^ 
i=o 

in V. (3.52) implies that E^+i(g) = Et^q) for q G V, and the claim follows by 
induction. We conclude that M is not finitely nondegenerate in V. A simple connect- 
edness argument applied to each component of V proves that M cannot be finitely 
nondegenerate at any point in V. This completes the proof of Proposition 3.50. D 

We return to the proof of Theorem 3. The fact that M is minimal at po implies, by 
a theorem of Trepreau (see e.g. [BER3, Theorem 8.1.1]; the analogous result in higher 
codimensions was proved by Tumanov), that for any open neighborhood U of po in 
M, there exists an open connected set fi C C^ (on "one side of M") such that £/'':= 
H fl M C XJ is an open neighborhood of po and every smooth CR function in U is the 
smooth boundary value of a holomorphic function in H. We deduce by the uniqueness 
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of boundary values of holomorphic functions, Proposition 3.50, and Theorem 1 that 
there exists px £ U* such that if /i, /2: U ->- M' are smooth CR diffeomorphisms 
into some smooth real hypersurface M' C C^ and dafi(pi) = daf2{pi), for all |a| < 
2(iV — 1), then /i = /z in C/7. Using this fact, the proof of Theorem 3 is completed 
exactly as the proof of [BER2, Theorem 2]. Choose Yi,... ,Ym £ aut(M,po) which 
are linearly independent over ffi, and denote by F{x,y), where x = (xi,... ,X2N-i) is 
some local coordinate system on M near po and y = (yi,... ,?/m) £ Mm, the time-one 
map of the flow exp£(j/iYi + .. . + 2/mym), for ?/ in some sufficiently small neighborhood 
V of the origin Em. The arguments in [BER2] combined with the uniqueness result 
stated above, for a suitably chosen open neighborhood of U of po in M, shows that 
the mapping V -> J2^"1) (M, M,)Pl, given by 

(3-53) y>->(dZF(puy))lal<2{N_lh 

is smooth and injective. Hence, m < dim^J2^^ (M^ Mf)p1 which proves Theorem 
3. D 

Proof of Theorem 4. The conclusion of Theorem 4 is a direct consequence of 
Theorem 2 and Proposition 3.54 below. We shall use the notation J^M^M771^ for 
the space of /c-jets at 0 £ Rq of smooth mappings /: Rq -> Rm, and A^ = (Af), |/?| < k 
and i = 1,... , m, for the natural coordinates on this space in which the fc-jet of / is 
given by Af = ^(0). 

PROPOSITION 3.54. Let U c J/c(M9,Em)o x E9 6e an open domain. Let 
rj(\k){x), for any multi-index a £ Z!^ w;z% |a| = k + 1 anrf any j = 1,... ,m, be 
smooth (C00) functions on U. Then, for any A§ £ J/c(]R9,Em)o such that (Ag,0) £ U, 
there exists a uniquely determined smooth function F: Uo x Vo —> Mm, where UQ is an 
open neighborhood of AQ £ Jk(Rq )W

n)o and VQ is an open neighborhood of 0 £ Rq, 
such that if f = (fi,... , fm) solves 

(3.55) dZfi=rl
s Udgf), V|a|: = A + l 

near 0 £ E« and ;£(/) e Uo, then 

(3.56) F(j^f), •) = /• 

REMARK 3.57. Observe that we do not claim that F(\k, •) solves (3.55) for any 
initial value Xk, but only that if there is a solution with this initial condition then it 
coincides with i^A*, •). The idea for Proposition 3.54 was suggested to the author by 
D. Zaitsev. 

Proof of Proposition 3.54. By a standard argument (considering the derivatives 
dxfi \P\ < A;, as new unknowns), it suffices to prove Proposition 3.54 with k = 1. 
Thus, we may assume that the system (3.55) is of the form 

(3.58) dXjfi = rij(f),    i = l,... ,ra; j = 1,... ,q. 

Fix Aj as in the theorem. Write x = (t,x') £ R x E9_1 and consider the initial value 
problem for a system of ordinary differential equations 

(3.5.9) dtMt,0) = ril(f(t,0))(t,0),    /(0,0) = A1, 

for A1 in some sufficiently small neighborhood of Aj.  By a classical result (see [CL, 
Chapter 1.7], Theorem 7.5 and the following remarks), there is a smooth function 



FINITE JET DETERMINATION OF HOLOMORPHIC MAPPINGS 659 

F1: Ui x Vi -> Em, where Ui is an open neighborhood of Aj € J1(^)^
m)o and Vi 

is an open neighborhood of 0 G E, such that t i-)- F1(X1,t) is the unique solution of 
(3.59). Next, write x = (xi,^^7) G R x E x E7-2 and consider for each xi G C/i the 
initial value problem 

(3.60) dtMxut10)=ril(f(xut,0))(x1,t,0),    f(xu0,0) = ^(A1,^). 

Again by [CL, Chapter 1.7] (Theorem 7.5), there is a smooth function F2: 172 x V2 -> 
Em, where 172 is an open neighborhood of Aj G J1(Eg,Em)o and V2 is an open 
neighborhood of (0,0) G E x E, such that t *-+ F2(X1

)xi1t) is the unique solution of 
(3.60). Proceeding inductively in this way, we obtain the desired function F after the 
g:th step. The straightforward details are left to the reader. We emphasize however 
that the function so obtained need not be a solution of the system (3.58), but it satisfies 
FUb (/)»*) — / whenever / is a solution. This completes the proof of Proposition 
3.54. D 

The proof of Theorem 4 follows by applying Proposition 3.54 to the system of 
differential equations provided by Theorem 2. D 

4. Concluding Remarks. 

4.1. Abstract CR manifolds. In this paper, we have considered embedded real 
hypersurfaces as abstract manifolds with a(n integrable) CR structure. We have used 
the fact that the CR manifolds are embeddable (i.e. the CR structure is integrable) 
to choose a basis for the sections of CTM that satisfy certain commutation relations 
(Lemma 1.33). The author felt that the resulting equations (1.34) simplified the 
computations in the proofs to an extent which, by far, outweighed the loss of generality 
in assuming that the manifolds are embeddable. Without the use of the equations 
(1.34), the key equations (2.10-13) take the following form 

(4.1.1) 

LAIE + IDRAB + VBhAB = iftiRcw 

LAZ + frA = £.lThc + lAVDhcD, 

LAV
C
 + VChA + 1C

DR
D

A = fdRCE + ^F
£IF> 

T^ - LAT)
0
 + 7M - rfH = ZIARB + 1AV

D
RDB + IA^^BB- 

Analogous reflection formulae to those in Theorem 2.4, as well as analogues of the 
crucial Lemmas 3.1, 3.6, and Proposition 3.18, can be established (with considerably 
more work than above). The author is confident that a proof of Theorem 2 for abstract 
CR manifolds (of hypersurface type) M and M' of the same dimension can be produced 
from these ingredients, but he has not had the patience to check the details. 

4.2. Infinitesimal CR automorphisms. It is clear from the proof of Theorem 
3 above that in order for the estimate (0.5) to hold, it suffices that M is minimal at po 
and that there exists an open subset U C M with po in its boundary such that M is 
finitely nondegenerate on [/. The latter holds, in particular, if M is holomorphically 
nondegenerate at po (and, in the real-analytic case, only if), but may hold, in the 
case of merely smooth manifolds, even if M is holomorphically degenerate at po (see 
[BER3, Example 11.7.29]). On the other hand, as is mentioned in the introduction, if 
there exists a vector field Y of the form (0.4), where the restrictions of the aj to M 
are CR functions, which is tangent to M near po, then dimRaut(M,po) = 00. Let us 



660 P. EBENFELT 

call the restriction to M of such a vector field Y a CR holomorphic vector field. Thus, 
one is led to the following question. Suppose M is not finitely nondegenerate at any 
point in an open neighboorhood of po. Does there then exist a CR holomorphic vector 
field on M near po ? The author does not know the answer to this question in general, 
but it seems to be related to the range of the tangential Cauchy-Riemann operator 
db (see e.g. [B] for the definition). We conclude this paper by briefly outlining this 
connection. 

First, observe that a vector field Y is CR holomorphic if and only if Y is a section 
of V and [L, Y] is a CR vector field (i.e. a section of V) for every CR vector field L. Now, 
suppose that there is an open set U C M in which M is not finitely nondegenerate at 
any point. We claim that there exists a (non-vanishing) CR holomorphic vector field 
Y near p G U if (i) dimc£W-i(<z) (which is < TV for q in U by assumption) is maximal 
at q = p, and (ii) d^u — f is solvable at p for every (0, l)-form / with d^f — 0. For 
simplicity, we shall indicate the proof of this only in the case dimR^7v_i(p) = N — 1. 
We choose a smooth nonvanishing section X of V near p such that X(ci) G E^q)1- 
for all k and all q in an open neighborhood of p. (This can be done by assumption 
(i) above.) We denote by L\,... ,Ln a basis of the CR vector fields on M near p, 
where Ln :_= Ln = X. We choose a tranversal vector field T, as in §1, and denote 
by 9^6A,0A, with notation and conventions as in §1, a dual basis of T, LA,L^. The 
fact that Ln is valued in Ejjr, for every h, implies that [L^,Ln] = b^Ln modulo the 
CR vector fields. We shall look for a CR holomorphic vector field Y of the form uLn, 
where u is a function to be determined. It is easy to see that [L^,y] is a CR vector 
field if and only if 

(4.2.1) LAu + ubA = 0 

and, hence, Y is CR holomorphic if and only if (4.2.1) is satisfied for every t-A G 
{1,... , n}. If we could solve 

(4.2.2) dbv = /, 

where / = bA0A, then u = e~v would solve (4.2.1). The (0, l)-form / coincides with 
the form Lnjdb9n, as the reader can verify. From this observation, one can check that 
/ satisfies the necessary compatibility condition for solvability, 

(4.2.3) dtf = db(Lnjdbe
n) = 0. 

Hence, if the tangential Cauchy-Riemann complex is solvable at level (0,1) at p, then 
we can solve (4.2.2) and obtain a CR holomorphic vector field Y — uLn near p. 
However, the author knows of no results on solvability which apply in this situation 
(unless, of course, M is real-analytic). 
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