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DEFORMATIONS OF SYMPLECTIC LIE ALGEBROIDS, 
DEFORMATIONS OF HOLOMORPHIC SYMPLECTIC 

STRUCTURES, AND INDEX THEOREMS* 

RYSZARD NEST+  AND BORIS TSYGAN* 

1. Introduction.  A deformation quantization of a smooth manifold M is by 
definition a formal multiplication law on the space Ccc(^/)[[ft]] 

f*9 = f9 + Y<Wkp«U^)-' 
k>l 

where * is an associative ft-linear product satisfying 

Uf*9-9*f) = {f,9} + 0(h). 
in 

One usually requires P^ to be local, i.e.  bidifferential, expressions in / and g.  It is 
also convenient to assume that 

1 * / = / * 1 = /. 

[2]- 
A powerful theorem of Kontsevich [24] states that there is a bijection between 

the set of isomorphism classes of deformations of C00(M) and the set of equivalence 
classes of formal Poisson structures (i.e., of formal series VJ — Ylk>o ^^ satisfying 
[07,07] = 0 where {, } is the Schouten-Nijenhuis bracket). In this paper, we classify 
deformations for a class of Poisson structures for which explicit methods of Fedosov 
work. Using those methods, we prove an index theorem for this class of deformations. 

In the case when M is a symplectic manifold it is known that deformation quan- 
tizations always exist [9] and are classified by the points of the homogeneous space 
JJTLO 4- H2(M,C[[h]]) [31], [8], [9]. A simple geometric construction of deformation 
quantization of a symplectic manifold was given in [13] by Fedosov. 

Fedosov's methods are well suited for study of a more general class of Poisson 
manifolds. In this paper we generalize both them and the classification results of [31] 
to the Poisson structures associated with symplectic Lie algebroids (this generality was 
suggested to us by A. Weinstein who also independently carried out the construction 
of Fedosov connections in [40]). 

A Lie algebroid is a vector bundle E over M whose sheaf of sections is a sheaf of 
Lie algebras and a morphism of bundles 

p-.E^t TM 

satisfying 
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and 

for / in C^M) and ^,77 in r(M,£). 
Given a Lie algebroid, one can define the ^-differential forms 

En*(M) = r(M,AE*) 

and the de Rham differential 

d:ESl*(M)-+ESl*+1(M) 

(using the classical Cartan formula). A symplectic Lie algebroid is a Lie algebroid 
(E, [ , ],p) together with a non-degenerate closed element of EQI

2(M). One can 
define an ^-connection on a vector bundle F as an operator r(M, F) —> EQ,1(M,F) 
satisfying standard properties. The typical examples of symplectic Lie algebroids are 
as follows 

• Symplectic manifolds 
The Lie algebroid in question is just the sheaf of vector fields on M and the de- 
formation theory is determined by the second cohomology group 
F2(M,Cp]]). 

• Constant rank Poisson structures 
The Lie algebroid is given by the sheaf of vector fields tangent to the leaves 
of a Poisson foliation and the deformation theory is determined by the second 
cohomology group H2{M, Q,hor\[fi\]) (with coefficients in the sheaf of leafwise 
constant functions). 

• Symplectic structures with logarithmic singularities along submanifolds of co- 
dimension one 
The Lie algebroid is given by the sheaf of vector fields whose restriction to 
the submanifold is tangent to this submanifold, and the deformation theory 
is determined by the second cohomology group bH2(M, C[[fi]]), the de Rham 
cohomology of differential forms with logarithmic singularities. 

• Manifolds with corners 
The Lie algebroid is given by a subsheaf of the sheaf of vector fields whose re- 
strictions to the boundary are tangent to the strata at the boundary. The de- 
formation theory is determined by the second cohomology group 
bH2{M, C[[^]]), the de Rham cohomology of differential forms with logarith- 
mic singularities along the boundary. 

• Compactified cotangent bundles 
For a manifold X, one can compactify its cotangent bundle T*X by adding 
the cosphere bundle S*X to get the closed ball bundle B X. Let E be the 
Lie algebroid of fields on B X whose restriction to S*X is tangent to the 
fibres 5*, x € X. One can show that the standard symplectic form on T*X 
extends to an i£-symplectic form on B X. 

• Complex symplectic manifolds 
The Lie algebroid is given by the sheaf of vector fields of type (1,0), and the 
deformation theory involves both deformation of the holomorphic structure 
and deformation of the product. In this case, there are natural obstructions 
to construction of deformations. These obstructions are related to the Hodge 
spectral sequence.  When they vanish, the deformations are again classified 
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by their characteristic class, but the space of characteristic classes allowed is 
a proper (non linear) submanifold of iJ|)i?(M)[[/i]]. 

In the context of a symplectic Lie algebroid one has to be careful as to what is a 
formal deformation. One can define the algebra of ^-differential operators EOp(M) as 
the abstract algebra generated by C00(.l/) and r(M,E) subject to obvious relations. 
This is in itself a deformation of the commutative algebra r(M, S*E). The morphism 
p defines a (not necessarily injective) homomorphism of EOp(M) to the algebra of 
all differential operators on M. It is therefore more natural to call a deformation a 
formal power series 

k>0 

where Pk are E-bidifferential operators, Po(/:9) — fg and Pi(/?g) — Pi(g,f) — {f>g}- 
One imposes a natural associativity condition on VJ. Isomorphisms of deformations 
are defined similarly, as well as derivations. 

The main classification results of this paper can be summarized as follows. 

THEOREM 1.1. Let (E,[ , ],p,u)) be a symplectic Lie algebroid on M. The 
set of isomorphism classes of E-deformations Ah(M) of (E, [ , ],p,cj) is in bijective 
correspondence with the space 

where EH2(M,C[[h]]) is the second cohomology group of the E-de Rham complex. 
The cohomology class 6 associated to the deformation by the above theorem is called 
its characteristic class. 

THEOREM 1.2. Letkh{M) = (C^M)^]]),*) be an E-deformation of M. There 
exists a Lie algebra extension 

0 -+ Ad{hh(M)) -► EDer(Ah{M)) -> EHl(M,C{[h]]) -> 0. 

In case of complex manifolds (cf. section 5 which can be read independently 
of the rest of the paper), a question related to the classification problem above is 
to classify all deformations of the sheaf of algebras of holomorphic functions on a 
complex manifold M with a holomorphic complex structure. By definition, such a 
deformation is a structre of a sheaf of algebras on OA/[[^]] which is equal to OM 

modulo h and such that the local multiplication law and the transition isomorphisms 
are given by the power series in h with coefficients in (bi)differential operators. For 
any deformation, one can define its characteristic class 6 as in the smooth case. Given 
a complex manifold M, let F*^*'*) denote the decreasing filtration of the de Rham 
complex of M given by 

(i.i) Fin^*\M)= ^2 n^')(M). 
A;>2,/>0 

THEOREM 1.3. Let (M,u) be a complex manifold with a holomorphic symplectic 
structure oo, such that the maps 

(1.2) ir(M,C) -►iari(M,0M); i = l,2 
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are surjective. The set of isomorphism classes of formal deformations of (M, UJ) is in 
bijective correspondence with i72(F1n*'*(M),d)[[/i]]. Moreover there exists a family 
of smooth (nonlinear) maps: 

(1.3) r„ : {H2(F1n*'*(M),d)}n -> H2
(M,OM)) 

such that the characteristic class of the deformation associated to CXQ + hai + ... is 
given by the sum 

(1.4) — u; + ^ftn(an+Tn(ao,... ,an_i)). 
ih n 

The associated formal deformation of the sheaf of algebras of holomorphic functions 
is locally isomorphic to the Weyl deformation of holomorphic functions on an open 
polydisc in CdimM. 

The maps rn are related to Rozanski-Witten invariants and to the homotopy 
Lie algebra structure of Kapranov [37], [22]. This relation will be discussed in a 
subsequent paper. 

The basic tool used below is a notion of E-jets, a generalization of the notion of 
infinite jets of smooth functions to the case when the Lie algebroid in question is not 
identical with the sheaf of vector fields on M (comp. [10], [11], [36]). In the case when 
the structural morphism p is injective at the level of sections of E, the bundle E Jets 
is the bundle of algebras of formal Taylor coefficients in the directions given by vector 
fields from p(E). 

For example, in the case when 

M = {xe E71!^ >0,... ,xk >0}, 

E'-jets at the points of the stratum 

{x\xi = 0 <==> i e {n,... ii} } 

are formal power series in 

xu i £{ii,-- ,ii}, andlogfai!),... Jogfai). 

The bundle E Jets carries a natural flat ^-connection which we call Grothen- 
dieck connection ([20],[23]), and the algebra of horizontal sections can be identified 
with the algebra of smooth functions on M. Moreover, the symplectic structure on 
the Lie algebroid induces on E Jets a structure of a bundle of Poisson algebras. 

A formal deformation of M in our general sense can be also defined as a fiberwise 
formal deformation of this bundle of (local, complete) Poisson algebras compatible 
with the Grothendieck connection. 

On the other hand, given a symplectic structure uo on E, one can construct the 
associated Weyl bundle ^W whose fibre at a point is linearly isomorphic to the 
completed symmetric algebra 5'*(jE,*)[[/i]]. This is naturally a bundle of algebras with 
the fibers endowed with the algebra structure given by the Weyl product. 

Now, given a formal deformation *, E Jets becomes a bundle of algebras and one 
can show that 

EJets 4 ^W 
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(non-canonically) as bundles of algebras. The image of the Grothendieck connection 
under this isomorphism provides a flat connection on ^W preserving the multipli- 
cation and having some additional properties (a Fedosov connection). Thus any 
formal deformation gives a Fedosov connection on the Weyl bundle. On the other 
hand, given a Fedosov connection on the Weyl bundle, the algebra of flat sections is 
linearly isomorphic to C00(M)[[/i]] and one can define the deformed product * on the 
bundle of E-jets. 

Note that a Fedosov connection V is a flat connection with values in the Lie 
algebra g = Der(Ah), where Ah denotes the Weyl algebra of the standard linear 
symplectic space. There is the natural central extension 

0 -> Cp]] -> g -> g -► 0 

The characteristic class of the deformation can be computed as the curvature 
i[V, V] for any g-lifting V of V. 

As one of the applications of the results of this paper, let us mention the index 
theorems for elliptic operators in various contexts. The main point is that symbol 
calculus of pseudodifferential operators is a formal deformation in a disguise (see 
[33]). Moreover, the standard trace on the trace class pseudodifferential operators 
corresponds to the unique trace on a formal deformation of any symplectic manifold. 
As the result, the precise information about formal deformations of a constant rank 
Poisson structure associated to a foliation allows one to prove higher index theorems 
for foliation algebras (see [31]). 

More generally, let E be a symplectic Lie algebroid on a manifold M. Given its 
deformation, we define a trace density map 

fih : CCPer(Ah(M)) -> (En2n-%M)((h))[u-\u}ld) 

where the left hand side is the periodic cyclic complex of the deformed algebra of 
functions. We compute (theorem 6.1) the action of this map on cohomology in terms 
of reduction modulo h (the principal symbol map) 

CC^r(Ah(M)) -> CCrr(C00(M)), 

of Connes' morphism CCrr(C~(M)) -> O^M)^"1,^]], of the characteristic class 0 
of the deformation, and of the A class of the bundle E. This theorem generalizes the 
index theorems from [14], [30], [31]. It allows to give a new proof of a recent theorem 
of Epstein and Melrose [12]. An analogous theorem for complex manifolds, proven in 
[3], implies a Riemann-Roch theorem for elliptic pairs conjectured by Schapira and 
Schneiders [38]. 

Note that, conjecturally, theorem 6.1 holds for any Poisson structure. This con- 
jecture relies on a general formality conjecture for chains [39] which is an analog of the 
formality theorem of Kontsevich [24] for the complexes of cyclic chains. If true, the 
generalized theorem 6.1 allows to generalize the A class of the tangent bundle of the 
foliation of symplectic leaves to the case when a Poisson structure is not necessarily 
regular. 

REMARK 1.4. The whole idea of applying formal methods to geometry stems 
from the papers of I.M. Gelfand and his collaborators ([18],[19]), and especially one 
of the aims of developing the theory of formal deformations and associated charac- 
teristic classes as in [31] is to apply the machinery of index theorems in the case of 
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corners to combinatorial study of characteristic classes. The second autor is grateful 
to B.L.Feigin and to LM. Gelfand for many fruitful insights of this subject and its 
applications to index theory. 

2.  Generalized Jet Spaces. 

2.1. Lie algebroids. We will recall below some of the standard notions con- 
nected with Lie algebroids [26], [35], [1]. 

DEFINITION 2.1. Let M be a smooth manifold. A Lie algebroid on M is a 
triple (E,p, [ , ]), where E is a vector bundle E on M, [ , ] is a Lie algebra structure 
on the sheaf of sections of E, and p is a map of vector bundles 

p : E -> TM 

such that the induced map 

r(p) :r(M,JB) ->Vect(M) 

is a Lie algebra homomorphism and, for any sections a and r of E and a smooth 
function / on M, the following identity holds: 

WJT]=p{<r)(f)-T + f[<7,T}. 

As a matter of notation, we will use QE to denote the Lie algebra (r(M, E), [ , ]), and 
will regard C^Af) as a left g^-module with the action given by T(p) and, for a £ QE 

and/£ C^M), 

afd^f(np)(v))f 
Note also that QE is a left C/00(M)-module. From now on we will abbreviate r(p) by 
P- 

The following construction gives a natural generalization of the de Rham complex 
for a Lie algebroid. 

DEFINITION 2.2. Let {E,p, [ , ]) be a Lie algebroid on M. The E-de Rham 
complex (EQl*(M),Ed) is given by 

En*(M) = r(M, A-(#*)), 
Eduj(au... ,<T/C+I) = 

\ +  Ei^C-1)^-1^^^-]^!,--- A,--- ,,fij,--- ^/c+i). j' 

The cohomology of this complex will be denoted by EH*(M) and called the E-de Rham 
cohomology of M. 

A E-connection on a vector bundle F on M is a linear map 

V : T{F <g> A"(£?*)) -> r(F ® A'+1CE*)) 

satisfying the Leibnitz identity: 

V(f<j) = Edfa + fV(a). 

Note that the above definition makes sense because local sections of E are closed 
under Lie bracket. However, in distinction to the standard de Rham complex, 
(EQ*(M),Ed) is not locally acyclic and hence does not give an acyclic resolution 
ofC00(M). 
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2.2.  E-Differential operators and E-jets. 

DEFINITION 2.3.   Let (i5,p,[ , ]) be a Lie algebroid on M.   The sheaf of E- 
differential operators EOp on M is given by 

U ^ EOp(U) = T/   f        ar-ra- [<T, r] 
I <T{fT) - {Mr - a(f)T 

Here T is the free graded algebra generated by vector spaces C00(M) (of degree 0) and 
QE (of degree 1). The sheaf of algebras EOp is equipped with the left action of the sheaf 
OM of smooth functions on M. Moreover, the grading of the algebra T descends to a 
filtration EOp of EOp. The sections of EOp will be called E-differential operators 
on M of degree < n. 

The subsheaf of E-differential operators without zero order term,     Op   (M) is 
defined as the left ideal generated by the image of the map 

E-*EOp{M). 

Let us record the following result 

LEMMA 2.4 (Poincare-Birkhoff-Witt). 

GrEOp(M)~T(M.S(E)) 

We will refer for the proof to [29]. 

REMARK 2.5. Note that in the degenerate case, when p vanishes, this is the 
standard Poincare-Birkhoff-Witt theorem applied fiber wise to a bundle of Lie alge- 
bras. 

DEFINITION 2.6. Let (E,p,[ , ]) be a Lie algebroid on M. The space of E-jets 
on M is the linear space 

EJets(M) = HomCo0{M){
EOp{M),Cco{M)). 

We set 

EJets+(M) = Homcoo{M){EOp^ (JVO.C^M)). 

PROPOSITION 2.7. In the above notation, EJets(M) is the space of global sections 
of a pro finite-dimensional vector bundle EJets.  The equation 

V D e EOp(M), a e QE, VG(<7)Z(JD) = <TI(D) - l(aD) . 

defines on the bundle E Jets a flat E-connection which we will call the Grothendieck 
connection. 

Proof Let U be a local coordinate system on M such that E\U ~ U x En. We 
denote by (ei,... ,en) the associated basis for r(U:E). By Poincare-Birkhoff-Witt 
theorem, 

(2.2) ea=     JJ     -iT,a = (ai,...,an)G(NU0)n 

2=1,... ,71 
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form a basis of E-differential operators over C00(C/). Let la denote the family of E-jets 
given by 

TheC00(C/)-linear map 

C^WtoSW1 ~ EJets(U) 

given by sending the symmetric tensor 

S^1 ... 5%n; {<Ji}i=i,... ,n the standard basis of En 

to la defines local trivializations and hence a bundle structure on the E-jets with the 
fiber SRn. 

Since the transition functions are given by symmetric powers of matrices with 
smooth coefficients, this gives the required profinite-dimensional vector bundle struc- 
ture. The fact that VG is a flat ^-connection is a direct reformulation of the definition 
of a Lie algebroid. 

EXAMPLE 2.8. Suppose that M is just a single point. Then the Lie alge- 
broid is given by a Lie algebra g, the E-jet bundle coincides with the completed 
symmetric power Sg* and the E-de Rham complex with coefficients in ^Jets with the 
Grothendieck connection gives 

(A-5*<g>5'5*,0) 

where d denotes the Koszul differential. 

PROPOSITION 2.9. The map 

C00(M)    E4      EJets(M) 
f _>    {D^p(D)f} 

is an isomorphism onto the kernel of the Grothendieck connection VG • 
Proof. Given an element I of E Jets(M), VGZ = 0 is, by flatness of VG, equivalent 

to 

1(D) =p(D)l(l). 

This implies the claim of the proposition. 

Let AQ be the coproduct on the universal enveloping algebra U(QE) of the Lie 
algebra QE> It is a homomorphism of algebras 

U(gE)    -4    U{gE)®U(BE), 
V<7 G QE : c        £?      a <g> 1 + 1 <g> a. 

PROPOSITION 2.10. The dual of the coproduct AQ induces on both E Jets and 
E Jets+ the structure of bundles of commutative algebras with fibers at a point m given 
by S(E^l) (respectively the augmentation ideal ^(E^)). The Grothendieck connec- 
tion is a derivation with respect to this algebra structure. The bundles of algebras 
E Jets and S(E*) are (non-canonically) isomorphic. 



DEFORMATIONS OF LIE ALGEBROIDS AND INDEX THEOREMS 607 

Proof. To begin with, note that an -B-jet is a linear map 

leH(m(U(QE),C00(M)) 

such that 

VaEQB-  l(f<T...) = fl(a...), 
Vcr, r G QE ■■  l(... <T{fT) ...) = /(.-. {fv)T ..•)+'(••• P{?)U)T ■■■) 

From this it is easy to check that the transpose of AQ, given by 

{hl2){D) = {h®l2){±Q{D)), 

is in fact well defined and, since AQ is symmetric, defines a commutative algebra 
structure on .E-jets. Since all the other statements are local, it suffices to work within 
a trivializing neighbourhood U of a point of M and we will use the representation (2.2) 
for the elements of EOp(U). The filtration by order on EOp(U) induces a complete 
decreasing filtration 

EJets(U) = FQ D F1 D F2 D ... 

on E Jets(U) and the Poincare-Birkhoff-Witt theorem implies that 

Gr(EJets(U)) = C00^) 0 5(En*). 

Since the complete local algebra S^M71*) has no deformations in the class of commu- 
tative algebras, this implies in particular that 

EJets(U) ~ C^iU) 0 5(En*). 

An explicit isomorphism can be constructed as follows. Let (/i,... ,Zn) be the S-jets 
defined by 

kfa) = Sij, li(eklek2 ... ekl) = 0 for I > 0. v 

It is easy to see that the map 

EJets(U) 9/^^/(ea.)ea 

a 

gives the required isomorphism ({e^} being the dual basis to {ea}). 
To prove the last statement of the proposition, note that for a good cover {Ui} one 

has the isomorphisms fa : EJets\Ui — S(E*)\Ui. The transition isomorphisms gij = 
facfrj1 take values in the pronilpotent group of those automorphisms of S(E*) whose 
derivative at zero is equal to the identity. Therefore the cocycle {gij} is cohomologous 
to the trivial cocycle. 

2.3.  Symplectic Lie algebroids. 

DEFINITION 2.11. A symplectic Lie algebroid structure on M is a pair 
{{E,p, [ , ]),u;), where (E,p, [ , ]) is a Lie algebroid structure on M and u is a closed 
E-two-form on M such that the associated linear map: 

QE x g^ 3 (X,Y) ^ CJ(X, Y) e C00(M) 
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is a symplectic structure on E. Whenever possible, we will abreviate the notation for 
the symplectic Lie algebroid to (E,u). 

A symplectic Lie algebroid structure (E, u) on M leads to an associated Poisson 
bracket which we will construct and study below. To begin with, the definition above 
gives us an isomorphism: 

ICJ '- Em —>» E^. 

Given a smooth function / on M, we define the associated Hamiltonian vector 
field Hf as the image of / under the composition: 

(2.4) H . coo{M) A Ct^M) 4 r(M,E*) S1 r(M,E) A Vect(M). 

LEMMA 2.12. Let (E,UJ) be a symplectic Lie algebroid structure on M. The 
equation 

(2-5) {f,9} = Hfg 

defines a Poisson structure on M. Moreover the following identity holds 

(2.6) [Hf,Hg)=H{ftg}. 

Proof. It is obvious from the construction that Hf is a vector field in /?(£#). Also 
from the construction we get the equality: 

{f,9}=u(I-1pt<ff,I-1pidg). 

This gives the skew symmetry of {/, g}, while the (Jacobi) identity: 

{/, {<?, h}} + {g, {h, /}} + {h, {/, g}} = 0 

is equivalent to 

Eduj(I-1ptdf,I-1ptdg,I-1ptdh) - 0 

(recall that a; is a closed E-form). 

DEFINITION 2.13 (Poisson bracket on jets). Let, as above, (E.cu) be a symplectic 
Lie algebroid structure on M. Let 

E7 = Y^ ei ® fi 
i 

be the antisymmetric tensor in r(M, E®2) which is the image of co under the isomor- 
phism !„ (S) IUJ- The { , } is the skew-symmetric C00(M)-bilinear map given by 

(2 7) EJets(M) x EJets(M)    W EJets(M) 
{hM) ^     {Dt+ihtohKAoW-Zieitofi)}- 

In the case of p = 0 this is known as the bracket of Berezin-Kirillov-Kostant-Souriau. 

THEOREM 2.14. (E Jets, { , }) is a bundle of Poisson algebras over M, with fiber 
isomorphic to the Poisson algebra 

(R[[xu... ,a;n,fi,... ,fn]],{ , }st) 
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where n=~rankE and 

n 

{f,9}st = J2 (dxifd^g - dzJdXig) 
i=i 

Proof. To begin with, let us prove that (EJets,{ , }) is a bundle of Poisson 
algebras. Since this is a local statement and since u is nondegenerate, we can assume 
that (ei,... , en, /i,... , fn) form a basis for the space of sections of E. We set 

i 

From the definition it follows immediately that the following equivalences hold: 

0)    { ^hMM Oi>M = -{Wi}  } <=> {& is antisymetric } 

}    1 hihM + hihM} J I (id + (T23)((Ao<8)6(Ao(i?))-^®l) J 

2)    /        ^hMMihA^h}}        \^l Eijeiej®fi®f3+ei®fiej®fj  j 
\ + cyclic permutations = 0 J \ + cyclic permutations = 0 J 

But 0) holds by construction, 1) is a straightforward consequence of the coassociativity 
of AQ and the way it acts on g^, while 2) is easily seen to be equivalent to 

[cu,m] = 0  in    (r(M, A3E),Schouten bracket), 

which is in turn equivalent to the fact that u is a closed E-form. 
To prove the rest of the theorem, it is usefull to get a more explicit representation 

of the Poisson structure. So still working locally, let us recall that 

EJets(U) ~ C00^) 0 5(M2n*), 

with / G r(U]E*) giving a generating set of first order E-jets (in the grading of 5). 
Since cu is non degenerate, we can choose as first order sections 

e*=u;(e,-),   for e G T(U;E). 

Now 

{e*,/*}(!) =W(e,/) 

by the definition of the bracket, and hence 

{e*, /*} = a;(e, /)1 +   higher order terms . 

In other words, { , } gives a Poisson structure on M[[xi,... , xn, £i,... , £n]] associated 
to a symplectic structure. An application of the formal Darboux theorem finishes the 
proof. 



610 R. NEST AND B. TSYGAN 

3. Formal Deformations. 

3.1. Basic definitions. 

DEFINITION 3.1. Let A be an associative unital algebra over a unital ring k. A 
formal deformation of A is a structure of an associative algebra over k[[h]] on A[[h]] 
given by a product * of the form 

oo 

(3.1) /*<? = /<? + £^(/,<?) 

and 

l*f = f*l = f 

An isomorphism of two deformations * and *' is a formal series 
T(a) = 1 + X^^ hkTk(a) such that T{a)*T{b) = ^(a*, b). A deformation quantiza- 
tion of a smooth manifold M is a deformatin of C00(M) for which Wk are bidifferential 
operators. An isomorphism of such deformation quantizations is an isomorphism of 
corresponding deformations for which T^ are differential operators. 

NOTATION 3.2. Given a formal deformation of a Poisson manifold (M, {, }), the 
algebra (C™(M)[[h}}, *) will be denoted by Kh(M). 

A general construction of deformations of Poisson structures is given in [24] 

3.2. Weyl deformation. 

DEFINITION 3.3. Let (V, u) be a symplectic vector space over a field k containing 
the square root of -1. Let TV denote the tensor algebra of V. The Weyl algebra of 
(VJCJ) is the associative algebra over the ring of formal power series A;[[ft]] given by 

(3.2) W(V) = TV/(v ®w-w®v- ihbj{v, w)), 

completed in (ft, F)-adic topology. 
Note that 

F->W(Vr) 

is a functor from the category of finite dimensional symplectic vector spaces to the 
category of finitely generated complete graded algebras over A;[[ft]].  The grading on 
W(Vr) is 

(3.3) |ft| = 2 and, for any v G F,   \v\ = 1. 

A particular case of this definition will deserve a separate name. Let 

with coordinates 

X - (Xi,...  ,#n),   f = (6,.-. ,^n). 

Let (jjst be the symplectic form on V given by 

U)8t(Xi,Xj) = Wst{€ii€j) = 05   Ust(€iiXj) = Kj- 
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The algebra A/i(C2n,a;st (g)R 1) will be called the Weyl algebra and will be denoted 
by Ah. Its generators, image of the above basis for M2n in Ah, will be denoted by 

Notation. Denote by Q the Lie algebra 

{h'1®]® e Ah,i§ real mod  fi}, 

and by Q the quotient: 

{/T1*!* G Aft,i$ real mod  fi}/{ifi-1R + C[[fi]]}, 

both with the bracket given by 

[/> 0] = / * 0 - 0 * /■ 

We give g the grading 

5= n ^n' 
n>-2 

with the grading induced by the grading of A^ and set 

00 = H "an- 
n>0 

We will use the same notation for the induced grading on 9, so that 

0= n Qn 
n>-l 

Note that the group G0 of continuous automorphisms of A^ is a profinite di- 
mensional Lie group with the Lie algebra g0. It contains as a subgroup the group 
GQ = Sp(2n) of linear automorphisms of A^ and the quotient 

G0/ Sp (2n) 

is contractible (= 1°°). We set 

Gn =exp(0>n). 

DEFINITION 3.4. The Weyl deformation of E2n is the formal deformation of 
the Poisson manifold (E2n,a;si) given by the (Moyal) product 

(3.5)        (f*g){x,Z) =exp f y ^(d^d^ -%^J j f(x,Z)g(y,ri) l^^,^^) • 
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We denote by A^(M2n) the ideal of (A/l(E2n),*) consisting of formal power series in 
h with coefRcients of compact support. (A;i(E2n),*) will be always considered as a 
topological algebra, with the fr-adic topology (and C^-topology in coefRcients) 

Since the Moyal product is local, it defines a sheaf of associative algebras on M2n: 

[/-^(C/),*), 

where Ah(U) is the linear space C00(C/)[[/l]]. 

THEOREM 3.5. Let U be an open connected subset ofR2n. The center of Ah(U) 
is C[[h]] -1 and A^(C/) has a unique (up to a scalar multiple), continuous, Cf/TT1 yh]]- 
valued trace Tr given by 

(3.6) Trf =      *    ,  / /wi V     ; J      (ih)nn\Ju
J   st 

Proof: cf. [14] 

The Weyl deformation is a special case of the following construction. Let the 
coordinates on E2n be given by 

x = (zi,... ,Z2k,yi,... lyhVu-- ,^,zi,... ,xm,$i,... ,^m) 

and set 

(3.7) { , } = ]r ZiZi+kdZi A dZi+k + Y^ Vidyi A dvi + X) dxi A 5^' 
i<k i<l i<m 

DEFINITION 3.6.    The Weyl deformation of M2n associated to the Poisson struc- 
ture (3.7) is given by 

/ * g = exp I y J2 Di ® Ei - Ei ® Di I f(x)g(x) \x=xi 

where 

and 

{ZidZi    for i = 1,... , A; 
yidyt    for i = 2k + l,... ,2k + I 
dx/    for i = 2k + 21 + 1,... , 2k + 2/ + m 

Zi+kdZi+k    for i = 1,... ,k 
Ei — {   d^ for z = k + 1,... , k 4-1 

d^ for 2 = k 4- / 4-1, •.. , k + I 4- m 



DEFORMATIONS OF LIE ALGEBROIDS AND INDEX THEOREMS 613 

3.3. Formal deformations associated to symplectic Lie algebroids, Fe- 
dosov construction . Let (JB, [,],p,a;) be a symplectic Lie algebroid over a smooth 
manifold M. Recall that we have associated to E the following structures. 

• A Poisson structure { , }E on M given by a skew-symmetric tensor 

tni E QE ^C^(M) QE- 

• A left OM-module EOp (the sheaf of E-differential operators). 
• The bundle E Jets of Poisson algebras isomorphic (not canonically) as a profi- 

nite vector bundle to S(E*). 
We set n = ^r&nkE and will fix this notation throughout this section. 

DEFINITION 3.7. An E-deformation of M is a formal deformation of the Poisson 
manifold (M, { , }E) with a *-product of the form 

(3.8) f*g = f-g+J2 {mkp(Di,k)(f) ■ p(Ei,k)(g)) , 
l,k>l 

where Dk and Ek are E-differential operators on M, the tensor 

WE = 1 0 1 + ihw1 + ^ ((ih)k(Dlik) 0 (Eltk)) € EOp(M) ®c~(M) EOp{M) 
l,k>2 

satisfies the equation 

(3.9) (Ao 0 id)(WE) • 1 ® ^E = {id 0 AQ)^) • WE 0 1, 

and 

^(/ *5 -5* /) = {/,3}E + 0(/I) 

The corresponding associative algebra (C00(M)[[/i]], *) will be denoted by Ah(M). 

This definition has as a corollary the following lemma, which will allow us to think 
of the category of E-deformations. 

LEMMA 3.8. Let (E, [,],p,UJ) be a symplectic Lie algebroid on M. Given an E- 
deformation, the associated tensor WE induces a structure of a profinite dimensional 
bundle of associative algebras on 

EJets®RC[[h}]. 

We will denote this bundle of algebras by (EJets,*).   The Grothendieck connection 
extends to a flat connection VG ^C id satisfying the Leibnitz identity: 

Voih * h) = VG(II) * h + h * VoCfe). 

Proof The definition of a E-deformation the gives a tensor of the form 

(3.10) WE = Yl {(iK)kDk ®C~(M) Ej?)) , 
ik,k 

where D^ and D^ are ^-differential operators on M. We set, for a pair of sections 
(luh)oiEJets^C[[h}], 

(3.11) (h * h){D) = (h ® 12){A0(D) ■ wE). 
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Let X G r(M, E) and E, F be ^-differential operators on M. The identity 

Ao(X){fE ®F-E(S)fF) = (Xf®l-l(g) Xf)E ® F 

shows that li * I2 depends only on the class of ZUE in 

EOp(M)®c~{M)EOp(M). 

The associativity of the *-product on EJets is equivalent to (3.9). 

DEFINITION 3.9. A morphism of two E'-deformations *i and *2 of M is an 
algebra homomorphism of spaces of sections of the associated E-jet bundles 

$ : (r(Af,BJete),*i) -> (r(M,EJets),*2) 

which preserves the subspace of VG-flat sections in r(M, E Jets). A derivation of an 
E-deformation * is a derivation of the algebra (r(M, E Jets), *) which preserves the 
subalgebra of Vc-flat sections. 

REMARK 3.10. The main point of the above choice of definitions is the fact 
that in our general context the algebra (A/l(M), *) does not carry enough information 
about the Lie algebroid E to determine the product on E-jets. As a typical example, 
in the case when the structure map 

p : E -> T(M) 

is zero, an E-deformation is a nontrivial deformation of a bundle of symplectic Lie 
algebras preserving the bundle structure, while (A/l(M),*) is just the undeformed 
algebra of C[[/i]]-valued smooth functions on M. However, in the case of most interest 
for us p will be injective on QE and in this case the deformation of the algebra of 
smooth functions for which the *-product is given by E-bidifferential operators has 
a unique extension to a deformation of the bundle E Jets and hence defines an E- 
deformation. As it turns out, the replacement of the algebra of smooth functions by 
the space of jets makes most of the theory more transparent. 

3.4. E-differential forms with coefficients. Let L be a profinite dimensional 
U(n)-module. Define the space of Unvalued ^-differential forms 

(3.12) £fi(M,L) 

as follows. An element of ^(M, L) is a collection sjy of elements of EQ,(U, AE*) 0 L 
subject to 

su = Quvsy, guv ' U fl V -> U(n) 

where guv are the transition functions of the bundle E (we reduce the structure group 
of E to the maximal compact subgroup U(n)). 

DEFINITION 3.11.   Let w be the symplectic form on E* given by 

(3.13) n(Iu(v)Ju,(w))=u(v,w). 

Then A-i is the element of Eft1(M,Q) given by 

(3.14) A-! : Em /rHWm E*m ^ kh{E*m,wm). 
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LEMMA 3.12. A-i satisfies the identity 

(3.15) [A-itA-xl^iih)-^ 

as elements of EQ(M, centre(g)) C EQ(M,An). In particular [A_i, A-i] vanishes in 
EQ,2(M, Q).  The associated complex 

(Ert(M,Ah),adA-1) 

is acyclic in positive  dimension and its zeroth cohomology group coincides with 
C~(M)p]]. 

Proof. The first identity is straightforward. The rest of the statement follows from 
the fact that ad A_i can be identified with the Koszul differential on r(M, AE* <S> 
s{E*)[m). 

3.5. Fedosov construction. Let Vf be the bundle of symplectic frames in E. 
Let V be a reduction of this principal 5p(2n)-bundle to the maximal compact sub- 
group U(n). 

DEFINITION 3.13 (Weyl bundle, Fedosov connection).   The bundle 

*W = Pxu(n)A
fi 

is called the Weyl bundle of E. A linear map 

V :En0{M,Ah)-^ECt1(M,Ah) 

is called a flat connection on the Weyl bundle if it satisfies the equations 

V(vw) = vV(w) 4- V(v)w 
V2=0. 

It is called a Fedosov connection if it is flat and if there exists a go-connection VQ 

in E such that 

V = Vo + A-x + J2 A^ Ai G nl(M'Si), 
i>l 

(recall that go = sp(2n)). 

THEOREM 3.14 (Fedosov construction). Let 9 be an element of 

(ih)-1u^En2(MX[[h]]) 

such that d9 = 0 and let VQ be any Qo-connection in E There exists a g-valued E-form 
AQ on M such that 

V0 = Vo + Afl, 

satisfying 

VeAe + -[Ae,Ae} = e 
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and defining a Fedosov connection on EW. We will call 9 the curvature ofVg. The 
complexes 

(En(M,kh),Ve) 

and 

(Bn(M, BJets ® EW), VG + Vj) 

are acyclic in positive dimension, 

A%(M)^Ker(ye\BQ0{M^)) 

is an E-deformation of the Poisson manifold (M, { ,  }E) with the associated defor- 
mation of the jet bundle given by 

(EJets(M),*) ^ Ker ((VG + \7e)\En°(M,zjets®EW)) ' 

Proof 

1. Construction of Fedosov connection. 

The construction of V^ is via recursion in the grading of g. Let 

V-i = Vo + 4-i. 

Then 

V-i^.Oeg-i, 

and hence 

[A_1,V-i(A-1)] = 0. 

By the lemma 3.12 above, there exists a go-valued one-form AQ such that 

V-i(A_i) = [A-i,A)]. 

Set 

Voo = V_i+Ao. 

We have 

[Voo, Voo] -6 = 0 mod g>o 

Now suppose that we have constructed 

Vn = V_i+Ao + ... + An; Ape
En1(M^Qp), 

such that 

[Vn,Vn]-6> = 0modg>n. 
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The £:n3(M, gn_i)-component of the identity 

[Vn,[Vn,Vn]-0] = O 

gives 

[^-l,([Vn,Vn]-0)n] = O. 

Again by the lemma 3.12 we can find a An+i in £:n1(M,gn+i) such that 

2[A-UAn+1] + ([Vn, Vn] - 0)n = 0. 

But this means that, for Vn+i = Vn + j4n+i, 

[Vn+i, Vn+i] - 0 = 0 mod fl>n+i. 

Since the filtration on g is complete, the above procedure gives V^ which obviously is 
a Fedosov connection with curvature 0. 

2. Acyclicity of (^(M, A^1), V^). 

Let us write 

£n(M,A,l) = ©Jfe>oCfc 

where Ck consists of (Ah)k-valued E-differential forms on M. {Ck} is a complete 
filtration of our complex, and the differential V^ on Ck/Ck~l reduces to Ad(i4_i). 
By the lemma 3.12 the corresponding spectral sequence degenerates and hence the 
cohomology in positive dimensions is zero, while the kernel of Vg is linearly isomorphic 
toC00(M)[[/i]]. 

3. Construction of the tensor ZUE- 

Given a Fedosov connection V0 as constructed above, we get a flat connection on 
the bundle of A^-valued 2£-jets: 

(3.16) V : T(EJet8 0 EWj -> ^(M, EJets ® EW) 

by setting 

(3.17) V = VG 01 + 10 V^. 

Consider the embedding 

(3.18) (^n*(M, EJets),VG) -+ (En*{M, EJets 0 ^W), VG 0 1 + 1 0 V*) 

Note that this is a morphism of filtered complexes: the filtration on E Jets is by powers 
of the maximal ideal at any point, the filtrations on A^ and on AE* are induced by 
their gradings, and the filtration on the complexes in (3.18) are tensor products of 
those filtrations. Note that (3.18) is a quasi-isomorphism because it induces a quasi- 
isomorphism of associated graded spaces of the above filtrations. 

The fiberwise product gives us now an associative product * on the space of i^-jets 
identified with the space of V-flat sections: 

h * hiD) = 1! 0/2(0^)), 
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and hence by duality a map 0 of left C00(M) modules (with C[[h]] as the field of 
scalars) 

0 : EOp(M) -> EOp(M) 0c-(M) EOp(M). 

Since V commutes with VG, the Grothendieck connection acts on the space of V-flat 
sections as a derivation with respect to the *-product, i.e. 

(f)(XD) = (X ®. 1 + 1 ® X)4>(D): 

But this means that the tensor 

WE = 0(1) e EOp(M) ®c«>(M) ^^^(M) 

satisfies 

fl*/2(^)=il®fa(Ao.(Z?)-G7£?). 

It is now straightforward to see that the associativity of the *-product implies that 
WE satisfies the equation (3.9). 

An immediate corollary of the proof above is the fact that any E-}et I has a unique 
continuation I to a V-flat section of the bundle of W(E* )-valued jets. 

4. End of the proof. 

To show that Ag(M) is an E deformation of { , }#, it is now sufficient to prove 
that, for two C-valued .E-jets li and fa 

h * h = h ■ famodih) and (-[I1J2]) — {hj2}E^od(h), 

where "•" is, as usual, the undeformed product and the commutator is taken with 
respect to the deformed product. By the last sentence of the part three of the proof, 
it is sufficient to show that, if h and fa are the extensions to flat V sections, then 

hh^ih'h)   mod((A;i)>1) 

and 

(i/TMiiJa] = {hME mod((A'l)>1). 

The first equation follows from the computation: 

hh = (h + &h)>i)(l2 + (A,l)>i) = (h • h) + (A,l)>1. 

To prove the second equation, we need a bit of notation. Let 

61, . . . 6n, /1,...  , Jn 

be a local symplectic basis of sections of E and set, for any section v of E, 

v(m)* = /Wm(v(m)) eAh(Em). 

and 

J : Em -> Em with J(ei) = /;, J(/i) = -e* 
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We will write v for v considered as a formal linear coordinate function on E^ and dy 
as the fiberwise derivative on the jet bundle. Modulo (Ah)>i we have 

Vv = v + dj^y + dy* 

and hence any V-flat section / satisfies 

1 = 1+    Y,   (5ei/-/;+a/i/-e*)mod((Afi)>2). 
2=1,... ,n 

Since [e*,/^] = (5^, we get, modulo {hh)>i, 

i 

This completes the proof of the theorem. 

4. Formal Deformations Associated to Symplectic Lie Algebroids, Clas- 
sification . We will continue using notation from the previous section. 

4.1. Global structure of i£-deformations. Our next objective is to show that 
any E-deformation is in fact one of the type constructed above and that the curvature 
form of the associated Fedosov connection is a complete invariant of the deformation 
in our class. 

THEOREM 4.1. Let Ah(M) be an E-deformation for a symplectic Lie algebroid 
(E, [,],p, co) on M, and (EJets,*) the associated deformed bundle of algebras. There 
exists an isomorphism of bundles of algebras 

(t>: {EJets^)-^EW : 

which maps the Grothendieck connection VG to a Fedosov connection (0_1
)*(VG) on 

the Weyl bundle ElW.  The associated deformation of the algebra of smooth functions 

Ker (OTT^Ir^W)) 

is isomorphic to (A/l(M),*). 
Proof. 
We will begin by constructing the required isomorphism of bundles locally. So let 

U be an open subset of M on which E admits a symplectic basis 

(el 5 Jli - • - 5 e7H Jn)- 

In this basis E\u becomes identified with 

U xE2n 

and we denote by E2n the linear subspace of sections of E of the form 

772 h-* (m, u), v fixed in E2n. 
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For a section v of E over M we will denote by lv the E-jet given by 

^(1) = 0, lv(w) = UJ(V,W), 

lv(Dw) = 0 whenever D G EOpJr . 

Clearly the set 

{lv\ve M2n } 

generates the algebra of E-jets modulo fi. 
Note that 

[lV)lw](l) = ihuj(v,w) - ih2B2{v1w) + ... 

where 52 is a skew-symmetric bilinear complex-valued form on E2n. Since UJ is non- 
degenerate, there exists a linear transformation A of M2n 0^ C such that 

—B2(v,w) — OJ{AV,W) +u)(v,Aw). 

Denoting by v the section 

v = v + KA{y) + 0(h2) 

we get 

[/i),/iy](l) = ihbj(v,w) — ih3B3(v,w) + ... 

An obvious induction gives now an invertible map 

(41) R2n®RC[[fi]]    -►       E2n0RC[[/i]] 
^ ' ' v (8) 1 !->•    i; = v (8) 1 + O(fi) 

such that 

(4.2) pij,ZiS](l) = M^^- 

Thus we get isomorphisms 

<f>i  :  EJets\Ui^EW\Ui 

for a good cover. The transition isomorphisms 

gi^cfT^jeC'iM^ut'^W)) 

take values in the pronilpotent group G-1 of automorphisms of W which preserve 
the filtration and are equal to 1 on the associated graded space. Therefore there is a 
global isomorphism of filtered algebras 

EJets -^ ^W 

The image of VG under this isomorphism is a Fedosov connection. 
The characteristic class 
Consider the Lie algebra central extension: 

(4.3) 0 -> (ih)-^ + C[[ti\] -> Q -► g -> 0. 
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For a Fedosov connection V, let V be any lifting of V to a g-valued connection. Then 

is an element of Ett2{M, (z/i)"1^ + C[[fi]]) such that d0 = 0. 

DEFINITION 4.2. The characteristic class of the deformation A^(M) is the 
cohomology class of 9 from the above formula. 

e = gfiOne) e E
H

2
{M, {ih)-lR + CM). 

4.2.  Classification of E-deformations. 

THEOREM 4.3. Let {E,[ , ],p,cj) be a symplectic Lie algebroid on M. 
The characteristic class of an E-deformation is well defined. Two E-deformations 

Ai (M) and A2 (M) are isomorphic if and only if their characteristic classes #1 and 
62 are equal. Thus, the affine space 

in 

completely classifies E-deformations of M up to isomorphism. 
Proof. 
By the theorem 4.1 we can assume that both deformations are given by Fedosov 

construction with connections Vi and V2 on the Weyl bundle £W. Let Vi and V2 
be their liftings. Note that the characteristic classes are given by the curvatures 

0i = \[VuVil 2 = 1,2, 

1. We assume that these characteristic classes are cohomologous. 
Let 

el-e2 = Eda,aec00{M)[[h]}). 

But then, replacing V2 by V2 + a, we get two connections with the same curvature 
and unchanged deformations. So we can also assume that #1 = 62 at the level of forms. 
We will construct an element of Autl(E^N) which conjugates the two connections. 

So, let 

Vi = A_i + Vo + Ax + ... 

where Ai are g^-valued one-forms on M and Vo is induced by a unitary connection 
in E (note that go = 3o © C canonically). Let 

The equality of the curvatures of the two connections gives 

[i4-i,Vo + i2o] = 0. 

Since the adA_i-comlex is contractible by Lemma 3.12, we can find 5i in £;n0(M,gi) 
such that 

iio = [<$!, i4_i]. 
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Replacing V2 by Ad(exp<$i)(V2), we get 

Vi - V2 = 0 modg<o. 

Continuing in this vein, the induction on the grading of g gives us a sequence 

5iSEn0(MiBi), 2 = 1,2,... , 

such that 

... Ad(exp53 )Ad(exp(52)Ad(exp(51)(V2) = Vi- 

Hausdorff-Campbell formula implies now that there exists an element of Au^^W) 
conjugating the two connections, and hence the two E-deformations are isomorphic. 

2. Suppose now that the two deformations are isomorphic. 
This means that there exists an isomorphism of the deformed jet bundles: 

{EJets,*i) 4 (EJets,*2)- 

such that 

9 = id + 0(h). 

But this implies that the curvature forms of the two corresponding connections are 
cohomologous and we can apply the result above. 

This finishes the proof of the theorem. 

The following is an immediate corollary of the previous two sections. 

Structure of derivations 

THEOREM 4.4. Let Ah(M) be an E-deformation of M given by a Fedosov connec- 
tion V on the Weyl bundle EW. Any E-derivation of Ah/(M) extends to a derivation 
of the Weyl bundle which maps V-flat sections to V-flat sections. In particular, the 
space EDer(Ah(M)) of E-derivations of Ah(M) is in bijective correspondence with 

{ I e r(M, EW) I V(0 is center valued }. 

There exists a Lie algebra extension 

0 -> Ad(Ah(M)) -> EDer(Ah{M)) -> ^(il^Cp]]) -► 0. 

Proof. All the statements above follow immediately from the fact that any E- 
derivation of the ^-deformation Ah(M) extends by definition to a derivation of the 
associated deformed .E-jet bundle. 

4.3. Gelfand-Fuks construction. Suppose that (E, [ , ],p,a; is a symplectic 
Lie algebroid and that (A/l(M),*) is an E-deformation of M. Let ^W be a Weyl 
bundle and V a Fedosov connection associated to this deformation. Choose any local 
trivialization of the bundle E on any open subset U of M. Let the Fedosov connection 
be of the form Ed -f Ay in this trivialization. The flatness of V translates into 

(4.4) EdAu + ±[Au,Au] = 0 
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and in particular implies that 

(4.5) (sn(M,L),V) 

is a complex. In the future we will use VL to denote V acting on this complex. 
Recall that for any Lie algebra 9, a Lie subalgebra f), and any g module L the 

complex (C*(g, I); L) of relative Lie algebra cochains is defined. 

DEFINITION 4.5.   Let L be a continuous (g, U(n))-module. The Gelfand-Fuchs 
map is the map of complexes: 

gf : (C*(fl,u(n);L),aLie) -»• (Bft(M,L), VL) 

which is defined as follows. Let I be a /c-cochain of the relative Lie algebra complex, 
and let ei,... , e^ be sections of E. We set 

gf(l)(eu... ,ek) =l{Au(e1)1... ,i4^(efc)). 

Note that since I is a relative cochain, the result is independent of the choice of the 
trivialization and that the equation (4.4) implies that 

gf 0 dLie = VL O gf. 

4.4. Example: symplectic manifolds. Let (M,u)) be a symplectic manifold, 
and { , } the associated Poisson bracket on M. For simplicity we will assume through 
the rest of this section that M is connected. As the symplectic Lie algebroid we will 
take the sheaf of all vector fields on M. The results of the previous sections can be 
formulated as follows (cf. [9], [14], [8], [31]). 

THEOREM 4.6. The set of isomorphism classes of formal deformations ofC00{M) 
with 

f*g = fg + 0(h), f,geC^(M) 

and 

[f,9}=iHf,9} + 0(h2), f,g&C°°(M) 

is in bijective correspondence with the elements 0 of the space 

(2ft)-Wir2(M,C[[fi]]). 

Every such deformation algebra is isomorphic to 

for a Fedosov connection on the Weyl bundle W. 

The structural results from the previous section give us the following corollaries. 

COROLLARY 4.7. Let Ah(M) be a formal deformation of a symplectic mani- 
fold (MjCj). There exists a unique up to a scalar multiple ClfiT1, h]]-valued trace on 
A^ (M).  Up to normalization factor this trace has the form 

Tr(f) = n^r /  fuj*dimM + 0(h-idimM+1) 
KJ      (hdimM)\(ih)$dtmM JM 
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Proof. Recall that a deformation of a symplectic manifold is locally unique (the 
characteristic class lies in H2(U) which vanishes for each open contractible subset U). 
Let {Ui}iei be a locally finite covering of M by open contractible subsets and {pi} 
an associated partition of unity. By the theorem 3.5, we get the family of traces Tr^ 
on A^(Ui). Set 

rr(/) = ^rri(pi/). 
i 

This is a well-defined trace (cf. [14], [30] for the proof). 

For completeness let us record the following result which is a stronger version of 
[25]: here by isomorphism we mean an isomorphism of unital algebras. 

THEOREM 4.8. Given a formal deformation Ah(M) of a compact symplectic 
manifold (M,UJ), there exists within the isomorphism class of A/l(M) a ^-product on 
C00(M)[[h]] such that the above trace has the form 

Tr(f) = const 
adimM)\(ih)idimM 

JM 

hdimM 

In the terminology of [5] this is a closed deformation. 
Proof. The canonical trace constructed above has the form 

/ -»■ c(h) f T(/)cA 
JM 

where n is half the dimension of M and T is a linear transformation acting on the 
space of smooth functions and of the form 

r(/) = /TCI), T(i) = i + 0(h) G c~(M)[[fi]]. 

What we need to find is a linear transformation 5 of smooth functions on M such 
that 

• / -> fM(T + hS)(f)u)n is a trace with respect to the original *-product 
• fiS(l) = l-r(l) 

Once this is done, the new product will be given by 

/ *ne™ 9 = (T + hS)((T + hS)-l(f) * (T + hSrHg)). 

By the uniqueness of the trace, the first condition above is equivalent to 

f (T + hS)(f)ojn = k f (T)(/)u/\ k = l + 0(h) 
JM JM 

i.e. 

(T* + hS*)cun = kT*Ljn 

where the adjoint * is taken with respect to the duality between smooth functions 
and 2n-forms given by integration: 

C^M) x n2n{M) 3 (/,i/) K>  f  fv. 
JM 
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In particular, we need to solve the equations 

sw = ^Arv1 = ^^T(i), 
n a 

subject to the condition 

We will ask for 5 of the form 

Since 

+ x, xer(M,TM). 

X*ujn - LXLun, 

the above equation for 5* reduces to 

Lxu n
_fcr(i)-i. 

ft 

Since the map 

Vect(M) 3 X -> ixun G ^"^M) 

is an isomorphism, a 2n-form on M is exact precisely when it is of the form Lx for 
some vector field X on M. In particular our equation has a solution for the constant 
k given by 

Jfe"1^] = [T(l)cjn] e ff2n(M,C[[fi]]), 

which is in 1 -+- ftC[[?i]] since T(l) is a formal power series with leading coefficient 1. 
The *new associated to this solution satisfies the claim of the theorem. 

5. Complex Symplectic Manifolds. Let M be a complex manifold. We will 
denote by OM the structure sheaf of holomorphic functions on M and by OOQ the 
sheaf of smooth functions on M. 

DEFINITION 5.1. A deformation quantization of a manifold M is a formal one 
parameter deformation of the structure sheaf OM, i-e- a sheaf of algebras A^- flat over 
C[[h]] together with an isomorphism of sheaves of algebras ip : A^ ®c[[ft]] C -> OM- 

The formula 

ii {f,9} = T[f,9} + n-Ali , 

where f and g are two local sections of OM and f, g are their respective lifts to 
A^; defines a Poisson structure on M called the Poisson structure associated to the 
deformation quantization A^. 

The deformation quantization A^ is called symplectic if the associated Poisson 
structure is nondegenerate. In this case M is symplectic, i.e., has a holomorphic 
symplectic form. In what follows we will only consider symplectic deformation quan- 
tizations, so assume that A^ is symplectic, and UJ denotes the associated symplectic 
structure on M. 
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Let us note first that, given a deformation A^ as above, ip induces locally an 
isomorphism of sheaves of C-vector spaces: 

Since locally there is no cohomology, this implies that there exist local isomorphisms 

of C[[/i]]-algebras with transition isomorphisms Guv = ^U^v1 0^ ^e form 

(5.1) Guv =id+ hD^v + h2D^v + ... . 

In the rest of this section we will work under following continuity condition. 

ASSUMPTION 5.2. Both the local products *u and the linear transformations D^v 

above are given by holomorphic (bi-)differential operators. 

5.1. Weyl bundle, Fedosov connection, etc.. Let us start with a few con- 
structions associated with complex symplectic manifolds which are analogous to the 
smooth case. 

Let Ah denote the Weyl algebra over C[[h]] of the standard symplectic structure 
(C2n,ujst), and set, just for this section, 

(5.2) 0 = {/r1/|/eA>1} 

with the Lie bracket given by the commutator in A^. We will denote by g the quotient 
Lie algebra DerAh. Note that sp(2n, C) is a subalgebra of g and that its adjoint action 
integrates to the action of G=Sp(2n, C) on g. 

Let V denote the principal Sp(2n,C)-bundle of symplectic frames in the holomor- 
phic tangent bundle T = T1'0(M), with the complex structure induced in the obvious 
way from the complex structure on the complex Lie group G. We define Af1 -valued 
differential forms by 

(5.3) ftM(M, Ah) = (ttp>q(V)®An)basic. 

Note that d extends automatically to give an analogue of the Dolbeault complex 

(np>*(M,Ah),d) 

for all p. 
We denote by W the (holomorphic) V xs  ^^Q Ah and by G the gauge group of 

V 
fiberwise inner automorphisms of W. 

Let Vo be any Sp(2n,C)-connection of type (1,0) in W; locally 

Vo = <9 + ada  : SI™ -> W+1>q 

with a a sp(2n, C)-valued form of type (1,0) on M. 
Let A_i denote the canonical W_i-valued holomorphic one-form on M: 

i4_i : T 4 T* 4 W_i 

DEFINITION 5.3.    A Fedosov connection is a connection on W  of the form 

V = d + Vo + adA + adB, 
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where VQ is a connection on TM preserving both the complex and symplectic struc- 
ture, hence in a local symplectic frame of the form 

(5.4) d + a + ac; 

with au G n1(Cr,sp(n)), 

A = A_1+Ao + ... , AiGfi^MJi) 

and 

B = Bl+B2 + ... , BieSl0ll(M^i), 

which satisfies the flatness condition 

V2 = 0 

Note that the curvature V2 of a Fedosov connection splits into the components 
1. Vo^ + |[A,A]-0Gn2'o(M,Cp]]); 
2. dA + VoB + [A,J5] = 0 G fi^HMjCp]]); 
3. aB4-|[B,B]=rGn0'2(M,Cp]]), 

and it satisfies the Bianchi identity 

d(P + <f> + T) = [V, V2] - 0. 

THEOREM 5.4 (Classification of Fedosov connections). Let (M,a;) 6e a complex 
symplectic manifold such that the inclusion of sheaves CM —> OM induces a surjection 

H^MX) -►ff1(M,0). 

Let V anrf V be two g-valued Fedosov connections on the associated Weyl bundle 
W. Then V and V have the same curvature class in H2(M,C) if and only if there 
exists a C[[h]]-valued one-form a such that V and V + a are conjugate by a gauge 
transformation by an element ofT(M,expg>i). 

Proof Suppose first that V2 = (V')2. We will work by induction on n, where 

Vn = A_i + Vo + J4I    + ... + An+ 
d + Bi    + ... + £n + Bn+i 

So suppose that Vn = V^ + ^i<n a^, where an is the component of a in n10(M, A^)0 
fi01(M, Ajj+1). The fact that the curvature forms coincide implies the identities 

• [A-uAn+^^lA-uA'n+il + da™, 
• [A-UBn+2] - d(An+1) = [A-i,K+a] - dOO 4- ^a^, 
• 5(Bn+2 - B'n+2) = 0. 

Suppose first that n is even. Since ad>l_i is acyclic, we can find an xn+2 G 
r(M, A^+2) such that An+i — An+1 = [A-i,xn+2]- But then gauge transformation 
AdeXn+2 allows us to set An+i = An+1. Now the second equation implies that Bn+2 
and Bn+2 differ by a scalar-valued form ft which satisfies 0/3 = 0. By our assump- 

tion, there exists a h~^~C-valued section yn+2 and a d-closed scalar-valued one-form 
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an+i such that Pn+2 = dyn+2 + ^n+i- In particular, using gauge transformation 
k<\(exp(-yn+2)) we can assure that 

(V'jn+^Vn+i+a^+i. 

Suppose now that n is odd. 
Since ad^4_i is acyclic on Q}0(M,kh), the first identity implies that there exists 

a A^+2 -valued section xn+i such that 

Using gauge transformation Ad(exp{xn+2)) we can replace V by a connection for 
which the A-components agree up to the order n -f-1 up to the appropriate component 
of a. But then the second identity implies that that I?n+2 and Bn+2 differ by a scalar- 
valued one-form of odd degree and hence coincide. 

Since in the curvature of a Fedosov connection is gauge invariant, we proved that 
when the curvature forms coincide, the two connections are gauge equivalent up to a 
closed scalar-valued one-form. Since changing the connection by a scalar changes the 
total curvature by the corresponding exact two-form, the result follows. 

REMARK 5.5. A more precise statement given by the above proof is the following. 
Let 

0(n)=   Yl   0i + I]&+   Y,  Ti 

i<n—1 i<n z<n-f-l 

Suppose that we are given two Fedosov connections V and V . If their curvatures 
0, 0' satisfy #(n) = 0', s then there exists a Fedosov connection V" which is gauge 
equivalent to V7 such that V'/N = V'/^. 

5.2. The structure of formal deformations. 

THEOREM 5.6. Given a symplectic deformation of M there exists a Fedosov 
connection V on the Weyl bundle W such that the sheaf A^- is isomorphic to the 
sheaf 

U -> KerVlno^h) 

Proof As a direct consequence of our assumption, the local product *£/ extends 
to give a graded algebra structure to the Dolbault complex 

where functions of z only (i.e. antiholomorphic) and the differentials dz are central 
and the d operator acts as an odd derivation with square zero. Moreover both product 
and d commute with the action of the transition functions Guv and so these local 
complexes glue together to give a resolution of the sheaf of algebras A^ of the form 

(5.5) Ah^iVj). 

The sheaves V1 are locally isomorphic and hence isomorphic to the fine sheaf 
fi0'i(M, C[[h]]). Using this isomorphism we get on O0'*(M, C[[h]]) the following struc- 
tures. 
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1. A structure of a graded algebra with an associative product * given by bid- 
ifferential operators constructed out of the vector fields of type (1,0) (i.e. a 
T10-deformation). 

2. An odd derivation (with respect to the deformed product *) d   satisfying 

9,l = 5 + 0(ft)  and  (S^)2 = 0. 

Once we have the ^^-deformation of the sheaf (ft0,*(M)[[ft]], d ), the construc- 
tion of the jet-bundle, the associated Grothendieck connection VG and the identifica- 
tion of the jet bundle with the Weyl bundle ft**(M, W) associated to UJ goes through 

word for word as in the smooth case. Since d acts as a derivation, it lifts to a deriva- 
tion V01 of the jet bundle which commutes with the Grothendieck connection and 
has square zero. In particular, the image of VG + V01 under the isomorphism of the 
jet bundle with the Weyl bundle defines a Fedosov connection on fr*(M, W) with 
required properties. 

For the ease of the reader we will sketch a more explicit construction of the 
Fedosov connection below. 

(i) Local jet bundles. 
For a local coordinate neighbourhood ([/, zi,... , Z2n) we set 

Jetetf = 17xq[fi]][[2i,... ^hn]]- 

We will denote (holomorphic) sections of the jet bundle by functions /(z, £), i.e. a for- 
mal power series in the (commuting) formal variables Zi with coefficients holomorphic 
functions in z^ For any holomorphic function F we put 

For any holomorphic differential operator D — Y^Pai2)®^ Pu^ 

5 = £>«(*+ !)£>? 

The section zi corresponds to the functional on holomorphic differential operators 
given by 

Ophoi(U) BD^DziU=oeOu- 

The *J7 product is according to our assumption given by an expression of the form 

f*u9 = Yl
F^z'h)dzfd^9 

and we set, for the jets (j>, ip on U, 

The Grothendieck connection is in our local coordinates given by the expression 

i 

(ii) Global jet bundle 
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Given a transformation G : C?t/[[fi]] -> Ot/[[fi]] of the form 

{Gf){z) = Y,T^h)d"f^ 
we define its jet by 

Let now, for a point m in [/, 

<t>u : C[[h]}[[z}} -> Jetsm 

be the isomorphism provided by the coordinates {zf} in U. Then we glue the local 
jet bundles using the transition functions 

^je^Guv)^ : Jetsu\unv -> Jetsv/lt/nv- 

It is immediate from the construction that we get a bundle Jets (A) of algebras on 
M (i.e. the local products *u define a global product), carrying a flat connection VQ 

of the form 9+derivation. Since both the transition functions and the product are 
given locally by holomorphic differential operators, we get the associated complex of 
sheaves of algebras. 

(fi*'*(M,Je*5A),VG +d) 

(in) The Fedosov connection 
Locally the definition of Weyl bundle gives isomorphisms 

Jetsu -> Wjy 

with a £ rhoi(U,exipg>i). Using completeness of W in the filtration of g, these local 
isomorphisms give rise to an isomorphism of the associated smooth vector bundles 

n*'*(.,Je*s(A)) -+n*'*(.,A;i). 

Under this isomorphism VG + d gives a Fedosov connection V^ such that 

AM ~KerVFtao,o. 

As a corollary we get the following result. 

THEOREM 5.7. Let (M,UJ) be a complex symplectic manifold for which the map 
iir1(M, C) —> H

1
(M\OM) is surjective. Two formal deformations of (M,LJ) with 

the same cohomology class of the curvature of the associated Fedosov connection are 
isomorphic. 

Proof. Since by above a formal deformation of (M, oo) is automatically of the form 

U -> ^erV|Q0(t/jArl) 

for some Fedosov connection, the result follows from theorem 5.4 

COROLLARY 5.8 (local structure of deformations). Any formal deformation of a 
complex symplectic structure is locally isomorphic to the sheaf of holomorphic func- 
tions on an open subset ofC2n endowed with the Weyl product. 
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Proof. Since any formal deformation comes from a Fedosov connection and is 
uniquely determined by its curvature class, it is locally isomorphic to the deforma- 
tion of C2n with its standard symplectic structure and with respect to any Fedosov 
connection. Let complex coordinates in C2n, (21,771,... ,zn)r}n) be such that 

to = 2^.dzi A dr)i 

The expression 

V = d - {ih)-1 ^^(fiidzi - Zidr)i) 
i 

gives a Fedosov connection, and flat sections of the Weyl bundle are given by 

^(^ + £,77 + 77) 

where / is a holomorphic function in a small polydisc. But this is precisely the Weyl 
deformation of C2n. 

5.3. Construction of Fedosov connections. Let (M,CJ) be a complex mani- 
fold with a holomorphic symplectic structure such that the maps 

(5.6) Hi{M,C)-+Hi{M,OM)\ i = l,2 

are surjective. Fix a splitting 

(5.7) H2{M) ^ ^(jWtM)) 0 #0'2(M) 

where Fpft*'*(M) = ft^'* is the Hodge filtration. 

THEOREM 5.9. Under the assumption above, let a G j^u + H2(F1Ql*^(M))[[h]]. 
There exists unique element r G /ii^0,2(M)[[/i]] such thata + r is a characteristic class 
of a Fedosov connection. 

Proof. 
LEMMA 5.10.   The embedding 

(n*'*(M,cp]]),a -+ (ft*»*(M,fl),a+ adA^) 

is a quasi-isomorphism. In particular, the subcomplex J2P+q odd(^P,*(^'^) Z5 acyc^c 

with respect to d + adA-i. 
Proof. The lemma is implied by the fact that the differential adA_i is acyclic in 

positive degrees, and its cohomology in degree zero is ft0'*(M)[[/l]]. 
Now suppose we are given an element (iti)-1^ + 6 + cj) of 

((ih)-lu+n20(M, C[[/i]]))en11 (M, C[[h}}) representing a class in H2(F1n2(M, C[[fi]]). 
The construction of the Fedosov connection precedes by induction over the grad- 

ing of the Lie algebra g just as in the smooth case. 
1. The flatness of V gives the following equations for the pair (AQ , i?i): 

(5.8) VoA-1 + [A-i,i4o] = 0 

(5.9) aj4o + [4-i,2?i] = 0o 

(5.10) dBx = 0 
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Because of lemma 5.10, this system of equations has a solution (Ao,Bi). 
2. Given (;Ao,2?i), we want to find (Ai,.^) satisfying the equations 

(5.11) [A-1,Ai] + i[Vo + Ao,Vo + 4o] = eo, 

(5.12) [5, Ai] + [Vo + Ao^B1] + [A-x,^] = 0, 

(5.13) dB2 + ±[B1,B1]=T2 

The Bianchi identity for VQ + adA-i + ad^4o implies that (|[Vo + AQ, VQ + ^4o] - 
0o> [Vo + A),Bi], ^[Bi,Bi]) is a 9 + adyl_i-cocycle. By lemma 5.10, the Dolbeault 
cohomology class of T2 for which (5.11-5.13) has a solution (Ai, B2) exists and is 
unique. 

Now, assume that we have already constructed the terms A^n-i-, -#<2n> and 
r<2n. One has 

(5.14) [A-i, A2n] + [Vo + AQ,A2n-i] + ... = 0, 

(5.15) [5, A2n] + [A-l, ^2n+l] + [VQ + A), ^2n] + . . . = 02n, 

(5.16) 5B2n+l+[Bl,B2n] + ...=0 

By Bianchi identity for the connection Vo + A<2n-i + B<2n, and by lemma 5.10, this 
system has a solution (-A2n,#2n+i- Now one has 

(5.17) [^-l,i42n+l] + [Vo+i4o,A2n] + ... = »2n, 

(5.18) [5,i42n+l] + [i4_i,B2n+2] + [Vo + Ao,^2n+l] + . • • = 0, 

(5.19) dB2n+l + [£i,£2n] + ... = T2n+2 

By Bianchi identity for the connection VQ +^4<2n + ^<2n+i5 and by lemma 5.10, there 
exists unique Dolbeault class T2n+2 for which the system (5.17-5.19) has a solution 

(^2n5^2n+l). 
It remains to show that the cohomology classes T2n+2 depend only on the coho- 

mology classes of 9<2n-2 and 02n (and not on the choices of Ai, Bi). But this follows 
immediately from remark 5.5. 

THEOREM 5.11. Let (M,UJ) be a complex symplectic manifold such that the maps 

(5.20) ir(M,C) -> fP(M,0M); i = l,2 

are surjective. The set of isomorphism classes of formal deformations of (M,UJ) is in 
bijective correspondence with H2(F1Q*i*(M),d)[[h]]. Moreover there exists a family 
of smooth (nonlinear) maps: 

(5.21) Tn : {JJ^fi^CAf),<*)}" ^H
2
(M,OM)) 

such that the characteristic class of the deformation associated to ao + hai + ... is 
given by the sum 

(5.22) - + ^ nnK + Tn(ao,... , an-i)). 
ih n 

The associated formal deformation of the sheaf of algebras of holomorphic functions 
is locally isomorphic to the Weyl deformation of holomorphic functions on an open 
polydisc in CdimM. 

Proof. Follows immediately from combining theorems 5.6, 5.9, and 5.4. 
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6.  Index Theorems. 

6.1. The trace density. Let A^- be a deformation of a symplectic Lie alge- 
broid E with characteristic class 0. Recall that for any unital algebra A over C 
the Hochschild complex (C*(A, A), 6) is defined, along with the negative cyclic com- 
plex CC~(A) = (C*(A, A)[[u]],b + uB) and the periodic cyclic complex CCf r(A) = 
(C*(A, A^u"1 ,u]],b + uB) where u is a formal parameter of degree -2; Cn(A,A) = 
A <g> (A/Cl)0n; b : Cn{A, A) -> Cn-i(A,A) is the Hochschild differential, and B : 
Cn(A,A) -)- Cnu.i(.4,A) is the cyclic differential (cf. [25]). 

Let n = TjdimjE. In this subsection, we construct the trace density maps 

(6.1) / : C*(Ah(M)) ^ (En2n-*(M)((h)),0) 

(6.2) »* : CC:(A^M)) -> (En2n-*(M)m)M,d) 
(6.3) / : CCf^A^M)) -> (£;n2n-*(M)((/i))[tx-1,w]],d) 

The construction is as follows. Let fT be the completion of the space of differential 
forms on Rn at 0. This is a module over g = DerA^ whose action is induced by the 
homomorphism of reduction modulo h 

0->Ham(En) 

where Ham(Mn) is the algebra of formal Hamiltonian vector fields. Therefore 

(6.4) L* = Hom(CC7(A/l),02n-*) 

is a complex of g-modules. 
In [3], we constructed the canonical element ^ of degree zero in L*. The image 

of }ih under the Gelfand-Fuks map (definition 4.5) induces a map of sheaves 

(6.5) En*M(cc-(kh)) -> En*M(to2n-*)m) 

Since the sheaves EniI(CC-{Ah)) and CC-(A^), resp. £;^^(a2n-*)((^)) and 
^M~*((^))' are quasi-isomorphic, one gets the map (6.2). To get the map (6.1), 
one puts u = 0, and to get the map (6.3), one localizes with respect to u. Cf. [3] for 
details, including the explicit definition of the module L*. 

6.2. Index theorem for symplectic Lie algebroids. Define the C[|/u]]-linear 
continuous morphism 

M: CC?r(Ah)^(En*M[[u]},ud) 

as the projection 

CCrr(Ak)->C7Crr(CS) 

followed by the Connes' quasi-isomorphism 

ao <8>... 0 av i-> — aodai ... dav 
pi 

Let 

j:(En2^[[u}id)^(Enu^Ud) 
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be the morphism of complexes given by 

j(upa)=up+k-na 

for a £ Eft>PM-  Let A(E) be the A class of a U(n)-bundle obtained by reducing the 
structure group to its maximal compact subgroup. Finally, by 

i: n*M -»■ BtrMm) 

we denote the composition of the map i : Cl*M -> EQ*M conjugate to the anchor map 
p with the embedding En*M ^ EOllI((h)) 

THEOREM 6.1. 

jo^ = Y,up(A(E)edhP(iof,) 

Proof. Follows immediately from the Riemann-Roch for periodic cyclic cochains 
[3]. 
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