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CANONICAL KAHLER CLASSES* 

SANTIAGO R. SIMANCAt  AND LUISA D. STELLING* 

Abstract. On a compact complex manifold (M, J) of Kahler type, consider the functional 
defined by the square of the L2-norm of the scalar curvature with domain the space of Kahler 
metrics of fixed total volume. The infimum of this functional over metrics that represent a given 
class defines the energy of the class. We find the Euler-Lagrange equation for critical classes of this 
energy, and compute its Hessian at a critical class. We use these results to conclude that there exist 
a unique critical class for any del Pezzo surface as well as for any manifold with negative first Chern 
class. It follows that if the first Chern class is positive and not a critical class of the energy, it 
cannot be represented by an Einstein metric. We also draw some conclusions on the generic case of 
a manifold without holomorphic vector fields. 

1. Introduction. Let (M, J) be a compact complex manifold of Kahler type. 
We denote by 9JI the set of Kahler forms on (M, J), an open cone in the infinite- 
dimensional affine space of closed (1, l)-forms. We will identify the Kahler form u in 
Tl with the corresponding Kahler metric g. Then, if the complex dimension of (M, J) 
is n and u G 9Jt, the associated volume form is d^ := ujn/n\. 

It this context, it is quite natural to analyze the functional given by the square 
of the L2-norm of the scalar curvature of a metric, 

to 4  /   sldfiuj , 
JM 

taking DJl as its domain. However, this functional is homogeneous of degree n — 2 
and, in general, will not admit critical points without the specification of a suitable 
normalization for its domain. Calabi [2, 3] solved this problem by fixing a class 
Q E Hl'l{M, C) C H2{M, M) in the Kahler cone, and searching for critical metrics of 
the restriction of $ to 9Jfo = {UJ G 971:  [u;] = fi}: 

%    ^   R 

(L1) f      2 to    ^ s^d^. 
JM 

All metrics in WIQ have fixed volume fin/n!. Those which are critical points of $Q 

are called extremal, and their mere existence is far from being a settled issue to this 
date. 

On the other hand, we may also consider the set 9Jlv of Kahler metrics of fixed 
total volume vy and define the functional 

(L2) f      2 
JM 
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The value of the constant v is inessential to our considerations, and can be taken to 
be 1 if so desired. Critical points of (1.2) are a particular type of extremal metrics, 
that we termed strongly extremal in [12]. 

The energy $a(u) of an extremal Kahler metric cu that represents 0 is a contin- 
uous function of H, and may be calculated from a priori data. Its value, which we 
shall call the potential energy E(fl) of fi, is an optimal lower bound for the functional 
$ among metrics in JUfe. In other words, we have $Q(CJ) > J3(fl) for any Kahler 
metric LJ, and the equality is achieved only for those metrics in DJIQ that are extremal. 
As a function of the Kahler class, the potential energy involves only finitely many 
parameters, and is also homogeneous of degree n — 2. Interestingly enough, both $Q 

and E are scale-invariant on complex surfaces. 

In this paper we study the cohomology classes that are critical points of the 
potential energy E. The connection between these classes and the problem of finding 
extremal metrics is rather clear: the critical classes for E are the only ones that may 
be represented by strongly extremal metrics, critical points of the functional (1.2). 

The analysis of these classes is a delicate issue, as we cannot assume that the 
Kahler classes are extremal. In fact, we cannot even assume that any Kahler class is 
extremal, and that imposes some difficulties on the problem. We may easily uncover 
a relationship between E(Q) and a suitable function in the space of holomorphy 
potentials, the space of functions that give rise to holomorphic vector fields when 
raising the indices of their (^-derivatives. This suitable function is the L2-projection 
onto the space of holomorphy potentials of the scalar curvature of any Kahler metric 
that represents g. Therefore, the analysis of the Euler-Lagrange equations for E must 
be done through a careful study of the relationship between this projection and the 
Ricci curvature, and how these two quantities vary when deforming the cohomology 
class while infinitesimally preserving the volume. 

The classes represented by Kahler-Einstein metrics are all critical. Hence, for 
those manifolds where one could find a Kahler Einstein metric, the functional E has a 
critical class that is, up to a multiple, the first Chern class. But interestingly enough, 
there are cases where E does have critical classes that are not equal to the canonical 
one. In particular, by deriving the Hessian of E at a critical class, we prove that for 
any del Pezzo surface there exists a unique such class. This singles out cohomology 

classes in the manifolds CP2#CP2 and CP2#2QP2, respectively, which are not equal 
to the first Chern class and that minimize the functional E. The class in the first of 
these manifolds was proven to exist and to be unique in [6], using a direct approach 
based upon our knowledge that in this case every Kahler class is extremal. On the 
other hand, for the latter manifold the existence of that class was shown in [8], and 
our work gives the first proof of its uniqueness. Strong evidence of this uniqueness 
was given earlier in [9, 12]. 

Our Euler-Lagrange equation shows that if the first Chern class is not a critical 
class of E, it cannot be represented by an Einstein metric. Thus, for a Kahler manifold 
to carry Einstein metrics, its first Chern class must be a critical point of £?, and so 
this condition represents an obstruction to the existence of Einstein metrics. We do 
not know how this obstruction relates to others. But it becomes rather clear that 
critical classes of E play a significant role in those cases where the manifold (M, J) 
has a positive first Chern class and carries no Kahler Einstein metrics. 
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2. Extremal Metrics. The Kahler condition makes a metric quite special. Its 
scalar curvature may be calculated by the formula 

(2.1) surKn = 2npAuj^n-1\ 

where p is the Ricci form of a;, and since p/27r represents the First Chern class ci, 
assuming that M is compact, we get the relation 

Therefore, the average scalar curvature 

/ 
JM 

Sdflg 

(2.2) so = ^r = 47rn 

n! 

is a topological invariant. 
Acting on functions, the Laplace-Beltrami operator of g will be 

(2.3) A = d*d = 2d*d = -2gjI—^ , 

so we also have 

-    d2 

(2.4) s = -^g^gzj: logdet(^). 

Given a complex valued function /, we define the vector field Off by the iden- 
tity g{dff, -) = df. This is a vector field of type (1,0), and as such, it is rarely 
holomorphic. For that, we need to require that / be in the kernel of the operator 

(2.5) (dd*rdd*f = JA
2
/ + ^^VMV,/ + i(V7

S)VI/, 

where the adjoint, Ricci tensor r, scalar curvature s and other relevant quantities are 
those of the metric g. Every complex valued function / in the kernel of this operator 
is thus associated with a holomorphic vector field E = d#f, and since the operator is 
elliptic, the space of such functions is finite dimensional. The function /, determined 
up to a constant, is called the holomorphy potential of 5. A holomorphic vector field 
E is defined by a holomorphy potential / iff S vanishes at some point. 

The Ricci form of g may be written as 

(2.6) p = pH + iddipu , 

where pn is harmonic and ^ is L2-perpendicular to the constants. The function ^ 
so obtained is called the Ricci potential of the metric, and in terms of the Green's 
operator G and the projection so of 5 onto the constants, it can be written as ^ = 
-2G(s - so) = -2Gs. 

Let l)(M) be the complex Lie algebra of holomorphic vector fields of the complex 
manifold (M, J); by compactness of M, this is precisely the Lie algebra of the group 
of biholomorphism of (M, J). The Futaki character is defined to be the map 

tfi^M) xff^Af,] 

(2-7) <*/"=■ r,,n-  [ w,/, w„__9 /   =(G5)d//. ff(S,M)= f  ~(il>u,)d» = -2 f E 
JM JM 
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It is independent of the particular metric in the class [co] chosen to calculate it [5], 
and it is such that when applied to a holomorphic vector field of the form S = 9#/, 
it produces 

(2.8) ff(3)H) = - / /(s-so)dM. 
JM 

We now summarize some known facts about extremal metrics. A Kahler metric 
g is a critical point of §n if, and only if, the gradient of its scalar curvature is a real- 
holomorphic vector field. If M supports no non-trivial holomorphic vector fields, every 
extremal Kahler metric must have constant scalar curvature; in fact, in the presence 
of holomorphic vector fields, the Futaki character # measures the extent to which any 
such metric fails to be of constant scalar curvature. In that case, by (2.8) we have 
that 3(d#s, [u]) — —\\s — so||2. After Calabi's initial examples [2], many compact 
Kahler manifolds are now known which carry extremal metrics of non-constant scalar 
curvature [10, 11]. 

Given a Kahler class O, there exists a holomorphic vector field XQ [4] obtained 
as the vector field defined by the holomorphy potential TT^S, the L2-projection of the 
scalar curvature s onto the space of holomorphy potentials. This vector field would 
coincide with dfsg if there were an extremal metric g representing 0. It is always 
independent of the metric g E Win used to calculate it. 

THEOREM 1. Let (M, J, VI) be a polarized Kahler manifold. A Kahler metric g £ 
DJIQ is extremal if, and only if, the gradient of its scalar curvature s is a holomorphic 
vector field: 

Ls = (dd#ydd#s = ^A2s + ^r^V^V^ + ^(VZs)Vz5 - 0. 

Furthermore, the Calabi energy has a lower bound -the potential energy of the class- 
which is a continuous function of Vt, 

(2.9) $QM > E(Sl) := s2
0^- - d(Xn^), 
nl 

and this lower bound is achieved if, and only if, the metric is extremal. 

3. Critical Classes. If a class Vt is represented by an extremal metric CJ, then 
^Q(UJ) = E(Vt). It is quite natural to attempt to identify the cohomology classes 
for which this occurs, but we are going to content ourselves with the study of those 
classes which are critical points of E. These are defined to be critical points of the 
restriction of E to the base of the Kahler cone. 

The potential energy function is given by 

and can be computed for any class in the entire Kahler cone. In order to ensure 
that E has critical points, we normalized this domain and restric our attention to the 
classes that represent Kahler metrics of fixed volume. 

Under the assumption that a critical class is represented by an extremal metric, 
one can easily write down the equation that the class must satisfy [12]. However, 
though the set of extremal classes is open [11] in the Kahler cone, little else is known 
about its complement, and we cannot at this point in time expect to say very much 
about critical classes presuming that they can be represented by extremal metrics. 



CANONICAL KAHLER CLASSES 589 

3.1. Holomorphic fields with holomorphy potentials. The isometry group 
of any extremal metric is a maximal compact subgroup of the identity component A 
of the biholomorphism group [3]. Any two such groups are conjugate [7]. Thus, up 
to biholomorphism, the search for extremal metrics can be carried out among those 
metrics which are invariant under the action of a maximal compact subgroup G of 
A. We may also search for critical classes of E among those that are represented by 
G-invariant Kahler metrics. 

Let (M, J) be any compact complex manifold of Kahler type. We assume it has 
complex dimension n. Let G be a maximal compact subgroup of the biholomorphism 
group of (M, J), and g be a Kahler metric on M, representing some Kahler class ft. 
Without loss of generality, we assume that g is G-invariant and consider the Hilbert 
space space L^ G of G-invariant real-valued functions of class L^. The space ^1,1(M) 
of ^-harmonic (1,1)-forms is G-invariant, and if the form a G ^^{M) is sufficiently 
small, the Kahler form 

CJ — UJ + a 

is G-invariant, and so will be its scalar curvature s. Let 3 C $ denote the center of g, 
the Lie algebra of G, and let 30 = 3 H go? where go C 0 is the ideal of Killing fields 
which have zeroes. For any G-invariant Kahler metric g on (M, J), each element of 
30 is of the form J^gf for a real-valued solution of (ddf)*ddgf — 0, and 30 precisely 
corresponds to the set of real solutions / which are invariant under G. 

The restriction of ker(<9<9~J*<9d<j to L^j_4 Q depends smoothly on the G-invariant 
metric g. Indeed, choose a basis {Xi,... ,Xm} for 30, and, for each (1, l)-form x on 

(M, J), consider the set of functions 

Po(x)    =    1 
P^X)    =    2iGgd*g((JXJ+iXJ)Jx),    i = l,...,m 

where Gg is the Green's operator of the metric g. 
If OJ is the Kahler form of a G-invariant metric <?, then the pjfaYs are real-valued 

and constitute a basis of keT(ddf)*ddg. The map a F-» PJ(UJ + a) is, for each j, a 
bounded linear map i31'1(M) -> Ll+3 G> With respect to the background L2 inner 
product, let 

(3-1) {/£,•••,/*ro} 

be the orthonormal set extracted from {pjfa)} by the Gram-Schmidt procedure. The 
set {/^}^Lo ls a basis of the vector space of real holomorphy potentials. We then let 

^ • LkG -> LkG 

m 

(3-2) u^^f^L^fi 
3=0 

denote the associated projector. By the regularity of the functions {pi,... ,pm}, 
this projection can be defined on ^^+, Q for j = 0, 1, 2, 3, and the map a H-> TT^ G 

End(Ll+jG) = 0 L\+^G is smooth on a suitable neighborhood of the origin in 
jj1'1^). ' 
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This projection can be defined at the level of (1, l)-forms. Indeed, let us denote 
by AJ/JJ the space of real forms of type (1,1), invariant under G and of class L\. Then, 
given any G-invariant metric g, there exists a unique continuous linear map 

(3.3) 11^ : Afc+2^ H- Ak'+2iG , 

which intertwines the trace and the projection map TT^ in (3.2), and such that rj — UQV 

is cohomologous to zero for all rj £ A^2jG. Once again, where defined, the map 

a i-> n^+Q, from L%+/kG to End(A^2 G) is smooth. 
The operators TT and 11 can also be defined when varying the metric u while 

preserving its Kahler class, that is to say, when considering deformations of the form 
CJ = oj + iddtp, ip G ^^+4, k > n. In this case, a metric LJ is extremal if and only if 
5 = TT&S, or equivalently, if and only if p = II^p. For arbitrary G-invariant metrics 
one only has 

p = lip + iddip , 

where 

Gg the Green's operator of g. The extremality condition implies that ^ is a constant. 
Notice that we have the identity 

(3.4) TTSUJ
71
 = 2nnpALjn-1, 

and since lip represents the same cohomology class as that represented by p, we obtain 
that 

(3.5) / TTS d/i = TT^TTTCI • [u]71-1 477 

3.2. The equation for critical classes. Given any Kahler metric oo repre- 
senting the class 0, we have that XQ = dfitgS, where TT^ is the L2-inner product 
projection onto the space of holomorphy potentials. The dimension of this space is 
independent of g, and the constants are always part of it. By (2.9), it follows that 

EiSl) = J(irgsg)
2diig . 

We proceed to compute the variation of this functional along a curve fit represented 
by a one-parameter family of Kahler metrics ut whose tangent vector at at ut is a 
^-harmonic (l,l)-form. This curve is assumed to start at u when t = 0. Using the 
sub-index t to denote the corresponding geometric quantity associated to the metric 
'ut, we obtain that 

_d 
df 

/j n 

{ntSt)(-r(7rtSt))diJ,t + / (7r£5t)
2(^, at)tdp£. 

Let us assume first that ivtSt is a constant (that may depend upon t). Since 

dnt = (1 + t(u, a) + 0(t2))dfi = (1 + 0(t2))dfi, 



CANONICAL KAHLER CLASSES 591 

by (3.5) we would then conclude that 

A<jr 

irtStfiu{M) = 7 -rd • [utr-1 + 0(t2), 
(n- 1)! 

where nu(M) is the u-volume of M. Taking the derivative and setting t = 0, we 
obtain that 

/ ^7rtSt^^7rtSt^d^t 1*=°- ~27rs / (nP>a)dM = -2 / 7r5(np,a)d^, 

and so 

(3.6) ^U"*]) \t=o=-4 [™(np,a)d[jL+ j(ns)2(uj,a) d/x, 

where the geometric quantities in the right side are those of the metric CJ = WQ . 
We would like to prove a similar result even when TT^ is not constant. Observe 

that 

—E{[ujt])    =    2 / (7rtst)(^{7rtst))dnt + / {nstfi^t^^td/it 

=    2     {iTtSt){7rtSt + 7rtSt)dijit + / {7rtSt)2(iOt^t)td^ 

=    2     {7rtSt){At(ut,at)t - 2(pt,at)t)dfjLt + 2 / (7rtSt){7rtst)dfit 

+ / (7rtSt)2(oJt,ut)tdlJ<t. 

Here we have made use of the fact that TT is a projection operator, and of a fairly well 
known formula for the variation of s^. 

Since the form a^ is Ut harmonic, the inner-product (c^, at)t is a constant (which 
may depend upon t) and its Laplacian is therefore zero. Thus, 

—E([LUt]) = -4 / (ntSt)(puOit)tdfjLt + 2     (7rtst)(7rtSt)dfit + / (TTtSt)2(^t^t)tdpt^ 

and so, when ^ = 0, we obtain 

(3.7) ^M lt=o= -4 [(7rs)(p,a)dn + 2 [(7rs){7rs)dp+ j(ITS)
2
(LO,a)dp. 

We proceed to compute the term involving TT in further detail. And for this, we make 
a rather judicious choice of basis for the space of holomorphy potentials. Something 
similar had been done in [11]. 

Recall that ntSt is assumed not to be a constant. Let us take a basis {Xi,... , Xm} 
for 30 such that JXi + iXi = d^irs, where TT and s are the projection operator and 
scalar curvature of to. Applying the procedure of §3.1 to the metric ujt = cu + ta, we 
obtain a family of ^-dependent potentials Pjfat) = 2iGgdg((JXj + iX^—lut), from 
which we obtain an cj-orthonormal set of functions {/°f,... ,/^}. With this choice, 

/°t = (MM))-1/2, while 

rl Pl(0Jt) 
JUJt llpl(wt)ll' 
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where pi(ut) — 2iGgdg((JXi + iXi)-Jut). Notice that pi(uo) = ITS - SQ, where 5o is 

the cj-average of s, and that — pi(a)t) \t=o= 2iGgdg(d
:^7TS_la). Since flt belongs to 

the range of TT^ and is perpendicular to s for j > 1, we see that 

ns = so + (f*t,s)tit, 

and, therefore, 

(3-8) ^ |t=o s = {fl |t=o,s>/i0 + (/^.^/i , 

so, by (3.2), we obtain 

(vs^sdfj, = (/i   |t=o,s)(/]0,7rs) + (fL,s)(flt \t=o,irs). 
/< 

An elementary calculation shows that this is equal to (pi,s — ITS + 2so).   We then 
conclude that 

(3.9) / (TTSJTT-Sd/Lt =     (s-7rs)2iGgd*g(d
:^7rs_ia)dfi. 

If to were an extremal metric, s = TTS and the integrand of this expression will be 
zero identically. As there are Kahler manifolds with classes that cannot be represented 
by extremal metrics, this is too stringent a condition to assume. Plugging (3.9) into 
(3.7), we obtain 

d_ 
~dt 

E{{u + ta]) |t=o    =    -4 l(7rs)(p,a)diJL + 4ti j (s - 7rs)(Ggd*(d#7rs Ja)dfi 

+ I (iTs)2{u,a)diJL, 

for any g harmonic (1, l)-form a. Using this property of a, integration by parts, the 
self-adjointness of Qg, and dualizing d , we rewrite the second integral to obtain 

E([(JJ + tot\) |t=o    =    —4 / (7r5)(p, a)dp, — 4 / 7rs(iddGg (s - TTS), a)dp, 

/ (7r5)2(a;,Qf)d/i. 

But 

(3.10) p + zaaG5 (5 - ITS) = Ugp. 

Therefore, 

(3.11) ^E([u> + ta]) \t=o= -4 [{7rs)(np,a)dp+ j\KS)
2
(U>,a)dp,. 

that coincides with the earlier expression (3.6), obtained under the assumption that 
TTS was a constant. 

THEOREM 2. Let ft be a cohomology class that is represented by a Kahler metric g, 
assumed to be invariant under the maximal compact subgroup G of the biholomorphism 
group of (M, J).  Then ft is critical class if and only if 

/   {*g8g){ngP,<xWg =$ 
J M 
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for any trace-free harmonic (1,1)-form a. In this expression, p is the Ricci form of 
the metric g, TT is the L2 projection (3.2) onto the space of holomorphy potentials, and 
H is its version (3.3) at the level of (1,1)-forms. 

Proof By (3.11), if we further assume that a is a trace-free form, we have that 

7 P 

—E([uj + ta}) |t=o=-4 /(7r5)(n^a)d/x, 

proving the desired critical class equation. D 
The following result is now obvious. Its significance makes it worthwhile to state 

it separately. 

COROLLARY 3. For the first Chern class to be represented by an Einstein metric, 
it must be a critical class of E. 

Before continuing any further, let us compute the Hodge star of the (1, l)-form 
lip. We know that 

*P= n7 TTT-PA 

2(n-l)!     r     (n-2)! 

On the other hand, since for any primitive (1, l)-form 7 we have that [14] 

*7==    7A(n-2)!' 

then we find that 

.„,,        A/   w"-1           ,        ojn-2 

*^/ = -2   (n-l)!-^/A(n-2)! 

Therefore, by (3.10), we obtain that 

—                                    ITS     CJ71-1 

^TTn  —   .1. n    1     M./i^r)/0'    f n          TT o\   —                                                   TTr.A 
wn-2 

H       H        ~^g^ j       2 (n-1)!        ^     (71-2)!' 

The expression above may be used to re-write the first variational formula (3.11) 
in a more convenient manner. We get 

d f L)Jn~^ f Ldn~2 

-E([uj + ta])\t=o=- J (ITS)
2 Aa + Aj(7vs)UpA A a. 

We now use this result to calculate the Hessian of the potential energy E at 
a critical class ft. We do so by representing the class by a Kahler metric CJ, and 
considering deformations of the class of the form [c*^] = [CJ + tfi] where /3 is a trace- 
free cj-harmonic (l,l)-form. We insert this curve into the first variational formula, 
and compute the t derivative of the result at t = 0. Since (CJ, a) = 0, we obtain: 

= Tt (4 f M*** A (^T A a - S^? (Si)! A a) t_0 

M Up A   "_       A 0 A a - j (TTS)2 A   ^_       A p A a . 
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By (3.10) we may obtain the Taylor series expansion of UtPt- Indeed, we know 
that pt — p-\- 0{t2) and, since (1 - TT)

2
 = 1 — TT, we have that 

Jltpt = Up + tidd (G(l - 7r)s - 2G(1 - 7r)7r5 + G(l - TT)^ + 0{t2). 

By (3.8) we have 

*S=(f1,S)f1+{f1,8)f1, 

where 

This implies that 

df1 
df1      _£}__    Pi     f     ■ 
dt       INI      \\pi\\3JPlPl- 

■ I pi (s — 27TS + 2so)dp, .   ,    Pi 

and, therefore, (1 — 7r)7r5 = 0 because both pi and pi are holomorphy potentials. 
Since /? has zero trace, we also have that G = —GAG. Therefore, after a small 
simplification, we obtain that 

(3.12) ntpt=np + tiddG(-2(np,/3) + 2ir(p,p))+0(t2). 

By (3.4), we see that 

di*tSt)=2(d-^,«)-2(np,p). 
dt V     dt 

Hence, using (3.12), we obtain 

dt -MP,P) 

and that allows us to work out the first integral in the right side of the expression for 
D2E[u]([a], [/?]). Indeed, by computing the inner product with holomorphy potentials, 
we can easily show that 7r(p,/?) = 7r(np,/?), and, therefore, the integral in question is 
nothing but 8(7r(IIp,/?),7r(np,a)). 

In order to study the second integral in the expression defining D2
E[UJ]([Q], [/?]), 

we use (3.12) to see that 

ffi^    =    zddG(-2(np,(3) + 27r(pJ)) 

=   ;<93G(-2(1 - 7r)(p,/?) - 2((3,iddG(l - ir)s)) . 

Since G<9* <9* (TTSQ) is a holomorphy potential, we have that 

4 /\irs)d(UfP^ A ,""     , Aa = 8 f(^iddG(l - 7r)s)Gd*d*{irsa)dp, 
J dt (n-2)! J 

and this is zero because Gd*d*((3Gd*d*(irsa)) is also a holomorphy potential. 

THEOREM 4.   Let fi, be a critical cohomology class of the energy functional E, 
represented by a Kdhler metric g that is invariant under a maximal compact subgroup 
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G of the biholomorphism group of (M, J). Then the Hessian of E at ft in the direction 
of trace-free harmonic (1,1) -forms a and fi, is given by 

-4(n - 2)(n - 3)! [{ITS) ({Up)o,A(a A /3))d/z. 

Here TT is the L2 projection (3.2) onto the space of holomorphy potentials, U is its 
version (3.3) at the level of (1,1)-forms, p is the Ricci form of the metric, (Iip)o is 
the trace-free component of Up, and A(a A/?) is the contraction of a A/? by the Kdhler 
form. 

Proof We have seen that 

7r(Up, P)*(np, a)dn + 4 J (TTS) Up A —-— A p A a 

,n-2 

-/(7rs)2A(^2)TAMa' 

and so the result follows if we show that 

(irsyilpA   " AffAa    =    -^- y M2(a,/?)dM 

-(n - 2)(n - 3)! J(TTS) ((np)o, A(o A 0))d/*. 

We may easily show that 

(^n-3   \            n — 2 
aApA-, —    = (a,/?)u; + 7, 

(n-3)!y             n 

where 7 is a trace-free (1,1)-form. Therefore, 

^n-3 n_2 ^n-l ^n-2 

(n-3)! n    K  '^'(n-l)!      ' (n - 2)! ' 

Let L be the operator dual to A. We know that [A, Lr] = ^^ ^(n — q — r + l)Lr_1P(?, 
Pq the projection onto the g-component of a covector. Repeated application of this 
identity in the expression above leads to the conclusion that 

7 = -(n - 2)(n - 3)!A(a A /?) + ecu , 

for some scalar c. Consequently, 

J(7Ts)IipA J_3)! A/3Aa    =    y^) (up^faAPA-^—— jj dp 

J{7rs)2(a,l3W + J(irs)((np)o,<y)dn, 
n-2 

2n 

and the desired result follows from the expression above for 7 because its a;-component 
does not contribute to the last integral on the right. □ 
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4. Existence and Uniqueness of Critical Classes. Let us observe that for 
any Kahler metric g, the holomorphic vector field X = df-KgS only depends upon the 
cohomology class of the metric and not upon its particular representative. Since the 
projection onto the constants of ITS and s coincide, if g is any other metric representing 
the same class as that represented by g, then X = d^TTgSg and, by the invariance of 
the Futaki character (2.7), we then have that 

$(X,  [Q])    =   -W^gSg   -   S0||2 = -     / KgSgiSg   -   SQ)  dflg 
JM 

= - 7rgSg(Sg-S0)dfIg 
JM 

=    -       ngSgivgSg -So)dfj,g 
JM 

=    -\\7rgsg -5o||2 = S^X, [a;]). 

Therefore, if for some Kahler metric g we have TTgSg a constant, the same will be 
true of any other metric g representing the same cohomology class as that of g, and 
iigSg — TTgSg. This observation leads to some special properties exhibited by critical 
classes of E. 

PROPOSITION 5. Let H be a critical class for E, and assume that g is a Kahler 
representative such that ns is a non-zero constant. Then, this also holds for any 
Kahler representative of 0, and furthermore, 

so CJ is in the canonical class, which therefore must have a sign. If TTS is the constant 
zero, the same result is true if we assume that the canonical class is zero. 

Proof. By the critical condition of Theorem 2, we must have that (p, a) — 0 for 
any g-trace-free harmonic (l,l)-form a. The form lip is harmonic, and its Lefschetz 
decomposition will be 

with po a harmonic trace-free form. Hence, (lip, po) = (Po,Po) = 0, proving that 
po = 0. Consequently, 

and since the cohomology class of Up is that of ci, the results follows for g. 
If g is another metric representing the same cohomology class as that represented 

by g, the desired result for II^p^ follows from the remark preceding the statement of 
the Proposition. 

Finally, if TTgSg — 0, since lip represents the first Chern class, the assumption 
implies that lip = 0. This completes the proof. D 

Generically, a complex manifold carries no holomorphic vector field other than 
the trivial one. Therefore, if such a manifold is of Kahler type, any representative g of 
a critical class of the energy functional E will necessarily have -KgSg constant. If this 
constant is not zero, the proposition above implies that the critical class is the first 
Chern class, which therefore must have a sign, either positive or negative depending 
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upon the sign of TTgSg. This imposes a topological condition on the complex manifold 
(M,J). 

COROLLARY 6. Let (M, J) be a complex manifold of Kdhler type without non- 
trivial holomorphic vector fields. Assume that the first Chern class ci = ci(M, J) does 
not have a sign. Then, the only critical classes of the energy functional E, if any, are 
those represented by metrics whose Ricci tensors have harmonic components that are 
trace-free. 

THEOREM 7. Let (M, J) be a compact manifold of Kdhler type. Suppose that 
ci = ci(M, J) < 0. Then the energy functional E has only one critical class, and that 
class is the first Chern class Q . 

Proof. When ci < 0, the manifold does not carry holomorphic vector fields other 
than the trivial one. Therefore, for any Kahler metric g, we must have ns a constant, 
and by (3.5), this constant is not zero. The cohomology class of an Einstein metric is 
a critical class of E, and by Aubin-Yau result [1, 15], the canonical class of (M, J) can 
be represented by a unique Einstein metric. So E has critical points. The uniqueness 
follows from Proposition 5. D 

THEOREM 8. Let (M, J) be any del Pezzo surface. Then the energy functional E 
admits one an only one critical class, that coincides with the canonical class except 

for the cases CP2#CP2 and CP2#2QP2. 
Proof By the Hessian formula for E, all critical classes are local minima. If there 

were more than one critical class, there would have to be a critical class that is either 
degenerate or a local maximum, contradicting this fact. 

Now, by Tian's work [13], each del Pezzo surface of the form CP2#£;CP2, 3 < 
k < 8, admits an Einstein metric. Hence, in those cases E has the canonical class as 
its only critical point. On the other hand, both CP2 and CP1 x CP1 are Einstein. So 
the statement is also true for these two del Pezzo surfaces as well. 

 o 
On CP2#CP every Kahler class is extremal. Using this fact, we have verified 

earlier [6] by an explicit calculation that the energy functional E admits a unique 
critical class. 

For CP2#2CP2, LeBrun [8] has proven that E admits a critical class. □ 
This result provides the first proof of the uniqueness of the critical class on 

CP2#2CP found by LeBrun [8]. Numerical evidence for that was given in [9], and 
the result proven in [12] under the strong assumption that all critical classes were ex- 
tremal. The fact that this property holds remains an open problem, and we strongly 
believe that to be the case for this particular manifold. 

Notice that the one point and two points blow up of CP2 are exceptional in that 
the critical class is not ci. In the first case, we have proven [6] directly that the 
extremal metric representing the critical class is conformally equivalent to the Page 
metric. As for the LeBrun's class on the two points blow up, if it were represented by 
an extremal metric, such a metric will necessarily have positive scalar curvature. The 
main theorem in [12] —on complex surfaces, a critical point of (1.2) is, away from the 
locus of its scalar curvature, conformally equivalent to an Einstein metric— would 
then imply that it can be conformally deformed to an Einstein metric of constant 
positive curvature.   We conjecture this to be the case, fact that will follow if we 

 2 
merely verify that the critical class of the functional E in CP2#2CP   is extremal. 
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