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THE CLOSURE DIAGRAM FOR NILPOTENT ORBITS OF THE 
REAL FORM EIX OF E8* 

DRAGOMIR Z. BOKOVIC* 

Abstract. Let Oi and O2 be adjoint nilpotent orbits in a real semisimple Lie algebra. Write 
Oi > O2 if O2 is contained in the closure of 0\. This defines a partial order on the set of such orbits, 
known as the closure ordering. We determine this order for the noncompact nonsplit real form of 
the simple complex Lie algebra E%. 

1. Introduction. The closure diagrams for adjoint nilpotent orbits in noncom- 
pact real forms of F4 and G2 were determined in [9], for EQ in [10], and for the 
noncompact and nonsplit real forms of E7 in [11]. In this paper we handle the non- 
compact and nonsplit real form of E%. 

By 9 we denote a simple complex Lie algebra of type E%, by g0 the real form of 9 
of type EIX, and by G (respectively Go) the adjoint group of g (respectively g0). As 
usual, let 0o — £o©Po be a Cartan decomposition of $$, $ = £©p its complexification, 
and 0 the Cartan involution. Let a be the complex conjugation of g with respect to 
go, and let \) be a cr-stable Cartan subalgebra of £. Since go is of inner type, f) is also 
a Cartan subalgebra of g. 

Denote by M the nilpotent variety of g and set 

.A/R = ./Vng0,   M'i=J\fnp. 

Let K0 be the connected subgroup of G with Lie algebra t. It is known that the orbit 
spaces A/R/GQ and A/1/K0, equipped with the quotient topologies, are homeomorphic 
and that the Kostant-Sekiguchi bijection is a homeomorphism .A/R/GO -)• N'I/K

0
 (see 

[6, 1]). We can think of the closure diagram for adjoint nilpotent orbits in g0 as 
describing the topology of A/R/GQ (or, equivalently, J\fi/K0). 

Our main result is the closure diagram depicted in Figure 3. In order to construct 
this diagram and prove its correctness, it was necessary to perform extensive nontrivial 
computations. For this purpose, in addition to our own programs, we used heavily 
Maple [5] and, to a lesser extent, LiE [18]. 

2. Preliminaries. The closure diagram for adjoint nilpotent orbits in g was 
determined by Mizuno [14] and verified later by Beynon and Spaltenstein [2]. We 
give this diagram in Figures 1 and 2 where each node represents a G-orbit in Af and 
is labelled by the corresponding Bala-Carter symbol (see [6, 4]). This diagram is a 
modified form of the one given in [17, p. 249]. In our diagram, the orbits having the 
same dimension are positioned at the same level. Because of its length, the diagram 
is split into three pieces. The bottom and the top portions of the diagram are shown 
in Figure 1, while the middle part is shown separately in Figure 2. The dimensions 
of the orbits are indicated on the left of the diagrams. 
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The line in the diagram [17, p. 249] joining the nodes 2Ai and D^az) is redundant 
as the diagram contains the lines joining 2Ai to A^ + A2 and the one joining A^ + A2 
to Ajfe). (The Bala-Carter labels for the nodes As^), ^5+^2, 2^4 in [17, p. 249] 
are ^6(^2)5 E^{a^)1 Esiaj)^ respectively.) Consequently, we have omitted that line 
from our diagram. 

We remark that the closure diagram given in [4, p. 444] for this case has two 
errors: First, the line joining the nodes ^.3 and D^ai) should be replaced by a line 
joining As to As + Ai. Second, one should insert a new line joining the nodes Eg (be) 
and EQ + Ai. 

There are 70 adjoint nilpotent orbits in g (including the trivial orbit). The nonzero 
ones are listed in Table 1. The k-th orbit, i.e., the one that appears as the A;-th entry 
in Table 1, will be denoted by Ok. The second column of this table contains the Bala- 
Carter symbol of Ok, and the third one gives the weights of the weighted Dynkin 
diagram of Ok. The complex dimension of Ok is recorded in the last column. 

The nonzero Go-orbits in A/R, or equivalently the nonzero if0-orbits in A/i, were 
classified in [7] (see also [6]). We shall keep the same numbering for these orbits as 
in these two references. The i-th nontrivial Go-orbit in A/R will be denoted by OQ, 

and we denote by Ol the nontrivial K0-orbit in A/i that corresponds to OQ under the 
Kostant-Sekiguchi bijection. In the fourth and fifth columns of Table 1 we list the 
superscripts i of the orbits OQ (or, equivalently, Ol) which are contained in Ok. This 
depends on the type of the real form g0 of g (for the sake of completeness we have 
included also the split real form E VIII). For instance, if k — 4 then: 

E VIII:    e>4 n go = ol u 0%, o4 n p = Of U Of; 
EIX:      o4 n 50 = O6

0 u ol u o§,    o4 n p = of u Ol u of. 

Recall that a triple (E,H,F) in g is called a standard triple if [H, E] = 2E, 
{H,F] — -2F, [F,E] = H and E,H,F are nonzero. Such a triple is normal if also 
H G t and E, F G p. We denote the root system of (g, f}) by R, and choose a system 
of positive roots R+ C R and a base B = {a:; : 1 < i < 8} C R+ of R (see Figure 4 
in the Appendix). The simple roots ai G B are indexed as in [3]. 

Let us also introduce the subgroup K = {x G G : 0(x) = x}. Its identity compo- 
nent is the group K0 defined above. In the case that concerns us here, namely EIX, 
we have K = K0 (see [13]). 

We extend the enumeration of simple roots ai, 1 < i < 8, to the enumeration a;, 
1 < i < 120, of R^. It is the same as the one used in [8]. We have reproduced it in 
the Appendix. A negative root — ai will be also written as a-i. The coroot of ai is 
denoted by Hi G f). Note that H-i = —Hi. For a G R we let ga be the root space 
of a. A nonzero element Xa G ga is called a root vector of a. We assume that a root 
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vector Xi is fixed for each root a;, \i\ G {1,..., 120}. 
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JMai)+Ai 

DeicH) 

Figure 1: The bottom and top portions of 

the closure diagram of E$ 
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Figure 2: The middle part of the 

closure diagram of .Es 
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Table 1: Nonzero nilpotent adjoint orbits Ok in Eg 

565 

k Label «i(H) E VIII EIX dim 
T1 

Ax 00000001 1 1 58^ 
2 2Ai 10000000 2 2,3 92 
3 3^! 00000010 3 4,5 112 
4 A2 00000002 4,5 6,7,8 114 ! 
5 4ili 01000000 6 128 
6 Ai + Ai 10000001 7,8 9 136 
7 A2 + 2A1 00000100 9,10 10,11 146 
8 A3 10000002 11 12,13 148 
9 A2 + 3Ai 00100000 12,13 154 
10 2A2 20000000 14,15,16 14 156 

11 2A2 + Ai 10000010 17 15 162 
12 ^3 + ^1 00000101 18 16,17 164 
13 D4{ai) 00000020 19,20 18,19,20 166 

i 14 D4 00000022 21 21,22 168 
15 2A2 + 2Ai 00001000 22 168 
16 A3 + 2Ai 00100001 23 172 
17 DA(ai) + Ai 01000010 24,25 176 
18 A3 + A2 10000100 26,27,28 23 178 
19 AA 20000002 29,30 24,25 180 
20 A3 + A2 + Aj 00010000 31,32 182 
21 D4 + A1 01000012 33 184 
22 D4(ai) + A2 02000000 34,35,36 184 
23 A4+A! 10000101 37,38 26 188 
24 2A3 10001000 39 188 
25 As(ai) 10000102 40,41 27 190 
26 A4 + 2Ai 00010001 42,43.44 192 
27 A4 + A2 00000200 45,46 28 194 
28 A5 20000101 47 29 196 
29 I>5(Ol) + Ai 00010002 48,49 196 
30 A4 + A2 + Ai 00100100 50 196 
31 r'4 + A2 02000002 51,52.53 198 
32 S6(03) 20000020 54.55 30,31 198 
33 I?5 20000022 56 32,33 200 
34 A4 +A3 00010010 57 200 
35 As + A! 10010001 58 202 
36 I>5(ai) + A2 00100101 59 202 
37 DM 01100010 60.61 204 
38 £:6(a3)+Ai 10001010 62,63 204 
39 S7(a5) 00010100 64,65 206 
40 Ds + Ai 10001012 66 208 ■ 
41 SsM 00002000 67,68,69 208 
42 Ae 20000200 70,71 34 210 

1 43 i?6(Ol) 01100012 72,73 210 
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Table 1:  (continued) 

k Label a AH) E VIII EIX dim 
44 A6 + Ai 10010100 74 212 
45 Ejiai) 00010102 75,76 212 
46 E6(ai) 20000202 77,78 35 214 
47 D5 + A2 00002002 79,80,81 214 
48 Ee 20000222 82 36 216 
49 D6 21100012 83 216 
50 D7{a2) 10010101 84,85 216 
51 A7 10010110 86 218 
52 Esia^ + Ai 10010102 87,88 218 
53 E7(a3) 20010102 89,90 220 
54 E8(b2) 00020002 91,92 220 
55 iMai) 20002002 93,94,95 222 
56 Es + Ai 10010122 96 222 
57 E7(a2) 01101022 97 224 
58 EM 00020020 98,99 224 
59 D7 21101101 100 226 
60 Esih) 00020022 101,102 226 
61 E7(ai) 21101022 103 228 
62 Es(a5) 20020020 104,105 228 
63 E8(b4) 20020022 106,107 230 
64 E7 21101222 108 232 
65 Esiai) 20020202 109,110 232 
66 E8(a3) 20020222 111,112 234 
67 S8(a2) 22202022 113 236 
68 S8(0l) 22202222 114 238 
69 E8 22222222 115 240 

By adjoining the negative of the highest root: ao = —#120 = ^-120 to B we 
obtain the so-called extended base Be = B U {ao}. Let RQ be the root system of (E, ()) 
where we view RQ as a subsystem of R. We set RQ = JRQ D R+ and denote by BQ the 
unique base of RQ contained in RQ . It turns out that BQ C Be. Explicitly we have: 

EVIII:     £0 = {ao,a2,a3,a4,a55a6,a7,a:8}, 
EIX:        £0 = {ao,ai,a2,a3,a4,a5,a6,a7}. 

Given a if 0-orbit Ol C Afi, we can choose a normal triple (E, H, F) such that 
E G Of, H £ f), and a(H) > 0 for all a G BQ. The integers a(H) for a e BQ 

determine uniquely H and, consequently, also the orbit Ol- 

As in [7], in the case EIX we set (see Figure 4) 

The technique developed in [9] to find the closure diagrams is especially convenient 
for real forms of inner type and will be employed in this paper. The closure diagram 
for the case EIX is given in Figure 3. 
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Table 2: Representatives of the nonzero nilpotent ff-orbits 01 in p 

w) El Type 

10 
11 

12 
12 
13 

13 

13 

14 
14 
18 

19 

19 

23 

25 
27 

28 

9 
10 
11 
12 
13 
14 
15 

16 
17 
18 

19 

20 

21 
22 
23 

24 

25 

26 

27 
28 

29 

0000001 1 
1000000 2 
0000010 0 
0000001 3 
1000001 1 
0000000 4 

0000002 2 
2000000 0 

1100000 1 
1000010 2 
0001000 0 
1000002 4 
0000012 2 
0000020 0 
1000011 1 

1000011 3 
1000003 1 
0000020 4 

0000004 0 

2000002 2 

0000004 8 
2000004 4 
0110001 2 

4000000 4 

2000020 0 

1010011 1 

0110003 4 
0002000 0 

1000031 3 

x_8 
(X_8) + (X_74) 
(Xns) + (X_8) 
(X-xs) + (X_68) + (ALioi) 
(Xi19) + (X_i5).+ (A-_68) 
X_8 + ^-119 
(X_8) + (X_74) + (X_104) + (X-118) 
(X119) + (X_15) + (X_68) + (X_1o1) 
Xioi + X_8 

(Xioi) + (X119) + (X-is) + (X_68) 
(Xns + -X'_42) + (X_47) 
(Xns + X_68) + (X_47) + (X_8l) 
(Xno + X-36) + (Xu3) + (X--o0) 
^119 + -X'_74 + X-IQI 

X-QS + -X"ll8 + ^-101 
(Xge + X_22) + (XLI2 + X-G2) 
(X107 + X-47) + (X117 + X-gl) 
HX.68) 
(X-73   + Xll8   + X_98)   +   (X-74) 

(X_47 + X104 + Xsi) + (-X'lis) 
Xns + ^"-101 + ^-68 + X-74 
(X_68 + Xns + X_ioi) + (X_79) 
HX-102) 
X-15 + X74 4- X104 + XLQI 

(X_22 + ^74 + X-G2) + (^104) 
+ (Xli8) 

(X74 + ^"-22) + (-X'l04 + X-Q7) 
+ (-^118 + X-QS) 

(X-47 + X104 + -X"-8i) + {Xns) 
+ (X_74) 
X_74 + Xn9 + X-104 + X_ii8 

X104 + -X'-lOl + -X"ll8 + X-74 
(X_65 + X114 + X_87) 
+ (Xii2 + X_74) 
X101 + X_47 + X_ii2 + Xn9 
(X_47 + X101 + X_8l) + 

(X_ioo + XHQ + X-no) 

^101 + -X'-47 "+" ^96 + ^-68 
{XQQ + X-QS 4- A"ii2) + 
(X_54 + X101 + A-77) 
(X104 + ^"-65 + XiOo 4- Ar_74) 
+ (X_73) 
X114 -h X_98 4- X-79 4- X112 + Xi 
{X102 + X_56 4- X94 4- Ar_67) 
+ (Xio7 4- A_78) 
X-73 4- Age 4- A_74 4- Xn2 + X- 

13 

2Ai 
2Ai 
3Ai 
3Ai 
A2 
(4Ai)" 
(4Ai)" 
A2 

(W 
A2 + A1 
A2 + 2Ai 
A2 + 2A1 

A3 
A3 
2.42 
2A2 + Ax 

A3 + A1 
DM 
(A3 + 2A1)" 

D4(ai) 
(A3-+2A1)" 

SAo 

(A3+ 2 Ax) 

D4 

D4 
A3 + A2 

A4 

2A3 

A4 

2A3 

A4 +Ai 
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Table 2:  (continued) 

k i hm El Type 
32 30 2000022 2 (X-73 + XQQ + X-74 + Xm + X-gg) 

+ (X104) 

(^5+^)" 

32 31 0000040 4 (X-79 + Xge + X-G$ + X112 + X-102) 

+(X-ioi) 
XQQ -f X-74 + X112 + XL14 + ^"-101 
+X113 

(^5 +A1)" 

E6{a3) 

33 32 2000024 4 X104 + ^"-lOl + X-74 + -^96 + X112 D5 

33 33 4000004 8 Xns + ^"-101 + X104 + X_79 + X-102 D5 

42 34 0002020 0 X102 + X-77 + X94 + X_68 + ^96 
+x_79 

Ae 

46 35 4000040 4 X_84 + -^96 + X-J3 + Xioi + X-QZ 
+X112 + ^"-99 
Xge + X_73 + XiOl + Xxos + X_102 
+-^104 

(A7)" 

48 36 4000044 8 Xge + X-ioi + X_79 + XWA + -X'-102 
+X112 

E6 

For any integer j we define: 

and 

gH(0,j) = {X€t:[H,X]=jX}, 

QH(l,j) = {Xep:[H,X}=jX}, 

j>i 

Let Q// be the parabolic subgroup of K0 with Lie algebra 

j>0 

3. Statement of the main result. Recall that g0 is assumed to be of type 
EIX. Hence K = (E7 x SL2)/^2, where E7 is simply connected and Z2 is the diagonal 
central subgroup of order 2. (By Z^ we denote a cyclic group of order A:.) There are 
exactly 36 nontrivial if-orbits in Afii denoted by Ol, 1 < i < 36. We choose a normal 
triple (E^H^F1) with E* G 0[, H* G f), and such that ^(iJ') > 0 for 1 < j < 8. 
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Table 3: Root spaces in gff,(l,2) and Ps^1) 

Indices of roots 
l"1 

2 I -8, -15, -22, -29, -36, -42, -43, -50, -56, -62, -68, -74; 
3 118,119,-8,-15; 
4 I -15,-22,-29,-36,-42,-43,-47,-50,-54,-56,-60,-62,-65,-67, 

-68, -72, -73, -77, -78, -81, -83, -86, -87, -90, -94, -98, -101; -8 
5 I 119,-15,-22,-29,-36,-42,-43,-50,-56,-62,-68;-8 
6 | -8,-15,-22,-29,-36,-42,-43,-47,-50,-54,-56,-60,-62,-65, 

-67, -68, -72, -73, -74, -77, -78, -79, -81, -83, -84, -86, -87, • 
-90, -91, -92, -94, -95, -96, -98, -99, -100, -101, -102, -103, -104, 
-105, -106, -107, -108, -109, -110, -111, -112, -113, -114, 
-115, -116, -117, -118, -119; 
119, -15, -22, -29, -36, -42, -43, -47, -50, -54, -56, -60, -62, 
-65, -67, -68, -72, -73, -77, -78, -81, -83, -86, -87,-90, -94, 
-98,-101;-8 
101,104,107,109, 111, 113,114,115,116,117,118,119, -8, -15, 
-22, -29, -36, -42, -43, -50, -56, -62, -68, -74; 

9 | 113,115,116,117,118,119,-42,-47,-50,-56,-62,-68,-74; 
-8,-15,-22,-29,-36,-43 

10 | 118,119,-47,-54,-60,-65,-67,-68,-72,-74,-77,-81; 
-22, -29, -36, -42, -43, -50, -56, -62, -8, -15 

11 | 110,111,112,113,114,115,-36,-42,-43,-47,-50,-54; 
116,117,118,119, -8, -15, -22, -29 

12 | 119,-74,-101;-47,-54,-60,-65,-67,-72,-73,-77,-78,-81, 
-83, -86, -87, -90, -94, -98, -15, -22, -29, -36, -42, -43, -50, 
-56,-62,-68,-8 

13 | 118,-68,-73,-78,-83,-86,-87,-90,-94,-98,-101;-22,-29, 
-36, -42, -43, -47, -50, -54, -56, -60, -62, -65, -67, -72, -77, 
-81,119, -15, -f 

14 | 96,100,103,105,106,107,108,109,110,111,112,113,114, 
115,116,117, -22, -29, -36, -42, -43, -47, -50, -54, -56, -60, 
-62, -65, -67, -72, -77, -81; 118,119, -8, -15 

15 | 107,109,111,113,114,115,116,117,-47,-54,-60,-65,-67, 
-68, -72, -77, -81; 118, -22, -29, -36, -42, -43, -50, -56, 
-62,119,-15,-8 

16 | 118,-73,-74,-78,-83,-86,-87,-90,-94,-98; 119,-47,-54, 
-60, -65, -67, -68, -72, -77, -81, -22, -29, -36, -42, -43, 
-50, -56, -62, -15, -i 

17 | 104,107,109,111,113,114,115,116,117,118,-47,-54,-60, 
-65, -67, -72, -73, -77, -78, -81, -83, -86, -87, -90, -94, -98; 
-15, -22, -29, -36, -42, -43, -50, -56, -62, -68,119, -8 

18 | 118,119,-68,-73,-74,-78,-79,-83,-84,-86,-87,-88,-90, 
-91, -92, -94, -95, -98, -99, -101, -102, -104; -22, -29, -36, -42, 
-43, -47, -50, -54, -56, -60, -62, -65, -67, -72, -77, -81, -8, -15 
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Table 3:  (continued) 

Indices of roots 
19 74,79,84,88,91,92,95,96,99,100,102,103,104,105,106, 

107,108,109,110, 111, 112,113,114,115,116,117,118, -15, -22, 
-29, -36, -42, -43, -47, -50, -54, -56, -60, -62, -65, -67, -68, -72, 
-73, -77, -78, -81, -83, -86, -87, -90, -94, -98, -101; 119, -8 

20 104,107,109, 111, 113,114,115,116,117,118, -47, -54, -60, 
-65, -67, -72, -73, -74, -77, -78, -81, -83, -86, -87, -90, -94, -98; 
119, -15, -22, -29, -36, -42, -43, -50, -56, -62, -68, -8 

21 119, -74, -79, -84, -88, -91, -92, -95, -96, -99, -100, -102, 
-103, -104, -105, -106, -107, -108, -109, -110, -111, -112, -113, 
-114, -115, -116, -117, -118; -15, -22, -29, -36, -42, -43, -47, 
-50, -54, -56, -60, -62, -65, -67, -68, -72, -73, 
-77, -78, -81, -83, -86, -87, -90, -94, -98, -101, -8 

22 104,107,109, 111, 113,114,115,116,117,118, -74, -101; -47, 
-54, -60, -65, -67, -72, -73, -77, -78, -81, -83, -86, -87, -90, -94, 
-98,119, -15, -22, -29, -36, -42, -43, -50, -56, -62, -68, -8 

23 112,113,114, -65, -72, -74, -77, -78, -79, -83, -87; 115,116, 
117,118, -50, -54, -56, -60, -62, -67, -68, -73,119, -42, 
-43, -47, -15, -22, -29, -36, -8 

24 101,104,107,109, 111, 113,114,115,116,117,118,119, -47, 
-54, -60, -65, -67, -72, -73, -77, -78, -79, -81, -83, -84, -86, 
-87, -88, -90, -91, -92, -94, -95, -96, -98, -99, -100, -102, 
-103, -105, -106, -108, -110, -112; -8, -15, -22, -29, 
-36, -42, -43, -50, -56, -62, -68, -74 

25 96,100,101,103,104,105,106,108,110,112, -47, -54, -60, 
-65, -67, -68, -72, -74, -77, -81; 107,109, 111, 113, 
114,115,116,117, -22, -29, -36, -42, -43, 
-50, -56, -62,118,119, -8, -15 

26 104,105,108,110,112, -65, -72, -73, -74, -77, -81; 107,109, 
111, 113, -47, -54, -60, -67, -68,114,115,116,117, -43, -50, 
-56, -62,118, -22, -29, -36, -42,119, -15, -8 

27 112,113,114, -74, -79, -98, -101; 115,116,117,118, -81, 
-86, -90, -94, -65, -72, -77, -78, -83, -87, -50, -54, -56, -60, 
-62, -67, -68, -73,119, -42, -43, -47, -15, -22, -29, -36, -8 

28 94,98,99,101,102,103,104,105,106,107,108,109, -56, -60, 
-62, -65, -67, -68, -72, -73, -74, -78, -79, -84; 110, 111, 112, 
113,114,115, -36, -42, -43, -47, -50, -54,116,117,118, 
119,-8,-15,-22,-29 

29 96,100,103,105,106,108,110,112, -73, -74, -78, -83, -86, 
-87, -90, -94, -98; 107,109, 111, 113,114,115,116,117, -68, 
-47, -54, -60, -65, -67, -72, -77, -81,118, -22, -29, -36, 
-42, -43, -50, -56, -62,119, -15, -8 

30 96,100,103,104,105,106,108,110,112, -73, -74, -78, -83, 
-86, -87, -90, -94, -98; 107,109, 111, 113,114,115,116,117, 
-47, -54, -60, -65, -67, -68, -72, -77, -81,118, -22, -29, 
-36, -42, -43, -50, -56, -62,119, -15, -8 
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Table 3:  (continued) 

Indices of roots 
31 

32 

33 

34 

35 

36 

96,100,103,105,106,107,108,109,110, 111, 112,113,114, 
115,116,117, -68, -73, -74, -78, -79, -83, -84, -86, -87, -88, 
-90, -91, -92, -94, -95, -98, -99, -101, -102, -104; 118, 
119, -22, -29, -36, -42, -43, -47, -50, -54, -56, -60, -62, 
-65, -67, -72, -77, -81, -8, -15 
96,100,103,104,105,106,108,110,112, -74, -101; 107, 
109, 111, 113,114,115,116,117, -73, -78, -83, -86, -87, -90, 
-94, -98,118, -47, -54, -60, -65, -67, -68, -72, -77, -81, 
-22, -29, -36, -42, -43, -50, -56, -62,119, -15, -8 
104,107,109, 111, 113,114,115,116,117,118, -79, -84, -88, 
-91, -92, -95, -96, -99, -100, -101, -102, -103, -105, -106, -108, 
-110, -112; 119, -47, -54, -60, -65, -67, -72, -73, -74, 
-77, -78, -81, -83, -86, -87, -90, -94, -98, -15, -22, -29, 
-36, -42, -43, -50, -56, -62, -68, -8 
94,96,98,99,100,101,102,104, -68, -73, -74, -77, -78, -79, 
-81, -84; 103,105,106,107,108,109, -56, -60, -62, -65, -67, 
-72,110, 111, 112,113,114,115, -36, -42, -43, -47, -50, 
-54,116,117, -22, -29,118,119, -8, -15 
96,100,101,103,104,105,106,108,110,112, -73, -78, -79, 
-83, -84, -86, -87, -88, -90, -91, -92, -94, -95, -98, -99, -102; 
107,109, 111, 113,114,115,116,117, -47, -54, -60, -65, -67, 
-68, -72, -74, -77, -81,118,119, -22, -29, -36, -42, 
-43, -50, -56, -62, -8, -15 
96,100,103,104,105,106,108,110,112, -79, -84, -88, -91, 
-92, -95, -99, -101, -102; 107,109, 111, 113,114,115,116, 
117, -73, -74, -78, -83, -86, -87, -90, -94, -98,118, -47, -54, 
-60, -65, -67, -68, -72, -77, -81,119, -22, -29, -36, -42, 
-43,-50,-56,-62,-15,-8 

These 36 if-orbits are listed in Table 2. For each i G {1,..., 36} we record in the 
first column the integer k for which Ol C Ok. In the third column we list the integers 
(3i(Hl), 1 < j < 8. They determine uniquely the element Hl G f). Since fc is of type 
E7 -f Ai and {(5i : 1 < i < 7} is a base for this £7, we separate the last integer 
l3g(Hl) from the first seven. In the fourth column we give a representative E1 G Ol. 
In each case, El G 3/^(1,2) and E1 is a sum of root vectors. The last column gives 
the type of the representative El (to be defined below). In some cases we give several 
representatives of different types. 

A subalgebra of g is called regular if it is normalized by a Cartan subalgebra of 
g. We shall say that a regular subalgebra of g is standard if it is normalized by f). 
Of course, every regular subalgebra is G-conjugate to a standard one. Most of the 
time, two isomorphic regular semisimple subalgebras are G-conjugate but there are 5 
exceptions: 

4^i, A3+.2A1, 2.A3, A5 + A1, A7. 
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In each of the exceptional cases there are two G-conjugacy classes, say (^Ai)' and 
(4^4i)//, and similarly in other cases. As mentioned in [8], the subalgebras (X)' are 
Levi subalgebras while (X)" are not. 

20     19 

20     19 

Figure 3: The closure diagram of adjoint nilpotent orbits of E IX 

In most cases, the representative El £ 01 is the sum of root vectors for simple 
roots of a standard regular semisimple subalgebra and the type of El is, by definition, 
the type of that subalgebra (up to G-conjugacy). If this is not the case, then the type 
of El is the Bala-Carter symbol of the orbit Ok containing OJ. 

In Table 3 we list, for each z, the indices k of the roots a — otk for which %a C 
)p2(H

l). We list first those indices for which tf* C 9^(1,2) and separate them by a 
semi-colon from the indices for which %a C p^H1). 

THEOREM 3.1. Let g0 be of type EIX. Then the closure ordering of the nilpotent 
K-orbits in p is as given in Figure 3. 

The horizontal dotted lines indicate that the if-orbits joined by these lines are 
contained in the same G-orbit. The numbers on the left hand side of the diagram are 
the complex dimensions of the orbits on that level. 
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Table 4: Elements E € p2(Hi) n €>{ 
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Type E 
X_8 

(X.is) + (X. 

(Xng) + (X- 

2,3 

4,5 

5 

6,7 

7,8 

12 

10 

9 
10 
11 
12 

13,15 
14 
18 

16,17 
15 
17 

18,20 
19,20 

21 
22 
24 
22 
25 

22,23 
33 
27 
24 
25 
27 
26 
27 
28 
29 
31 
30 

30,31 
32 
34 
32 
33 
35 
36 
35 
36 

1 
2 
3 
4 
5 
6 
7 
8 
9 
9 

10 
10 
11 
12 
13 
14 
15 
16 
17 
18 
18 
18 
19 
19 
20 
21 
22 
23 
23 
24 
25 
26 
26 
26 
27 
28 
29 
30 
30 
31 

31 

32 

33 

34 

35 

2Ai 

2Ai 

3A! 

3Ai 

A2 

A2 

A2 + A1 

A2 + A1 

A2 + 2A1 

A2 + 2Ai 

A2 + 2A1 

A3 

As 

2A2 

2A2 + Ax 

As + Ai 

As + Ai 

(A3+ 2 A,)" 

04 (ai) 
(AS+2A,)" 
(^3+2^)" 
(A3+ 2 Ax)" 

(As+ 2 A,)" 

DA 

D4 

A3 + A2 

A3 + A2 

Ai 

A4 

A4 + A1 

A^ + Ai 

A4 + Ax 

D5 (01) 

A4 + A2 
A5 

(As + At)" 

(A5 + Ax)" 

•Ee(as) 
(4,+Ax)" 

Ds 

D5 

A6 

-87) 

•99) 

(Xn9) + (X_15) 

(X_15) + (X_68) + (X_1oi) 
(X119) + (X_15) + (X_68) 

X-74 4- X_ioi 

(X119) + (X_47) + (X_68) + (X_81) 

X113 + X-42 

(Xns + X_68) + (X_47) 

(X113+X_42) + (X_47) 

(X119+X_74) + (X_47) + (X_81) 

(X118+^-68) + (X_47) + (X_81) 

(X114+X_47) + (X113) + (X_50) 
X119 + X_74 + X-ioi 

X_86 + ^118 + X-S7 
(Xns + X-67) + (X114 + X-es) 

(X113 + X_67) + (X114 + X_65) + (X_ 

(X-se + Xus + X-sr) + (X-74) 

(X-77 + X114 -f X-yg) + (Xus) 

(X_88 + Xng + X_95) + (X_86) + (X__ 

Xus + -X"-101 + X-68 + X-74 

(X_73 + Xus + X-QS) + (X_84) + {X-wj 

(Xus 4- X-ioi 4- X114) 4- (X-SQ) + (X-so) 

(X_54 4- X104 4- X-77) 4- (Xge) 4- (X112) 

(X-77 4- XLI4 4- X-ys) 4- (Xns) 4- (X_74) 

X_79 4" ^104 + X-101 + X-i02 

Xns -f X_ioi 4- -Xm 4- ^-74 

(X_65 4" X114 4" X_87) + (X113 4- X-jg) 

(XQQ + X_68 + X112) + (X101 + X-54) 

Xns 4- X-79 4- X-98 4- X114 

^104 + X-65 4- X105 4- X_74 

(X114 4- X-QS 4- -X"ii2 4" X-.74) 4- (X_73) 

(X104 + X-QS 4- X105 4- X-74) 4- (X_73) 

(X112 4" X_74 + XQQ 4" X-ss) + (X-54) 

X114 + ^-98 4- X-79 4- -X'll2 4- ^113 

(Xios 4- X_74 4- Xios 4- X-73) + (^104 4- X-QS) 

X-73 + Xge 4- X-74 4" -X"ii2 4" X-QS 

(X-73 4- X96 4- X-74 4- -X"ii2 4- X-gs) 4- (X104) 

(X96 4- X_68 4- X94 4- X_77 4- X102) 4- (X-54) 

XQQ 4- X_74 4- X112 4- -X'114 4- X-IQI + Xns 

(X-79 4- X107 4- X_ioi 4- Xni 4- X_io2) 4- (X_ 

X112 4- X_i02 4" X_73 4" XQQ + XIQI 

Xns 4- X_ioi 4- X'104 4- X_79 4- X- 

Xn2 4- X_98 + XIQI 4- X_73 4" XQQ 

-ia   . 102 

-xux   , 7S + XQQ-\- X-84 

-84 4- X104 4- X-99 4- X112 4- X-98 
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4. Proof of the main result. Let i,j be a pair of nodes in the diagram of 
Figure 3, with i above j, which are joined by a solid line. We prove that 01 > 0{ 
by showing that (){ meets p2(#z) (see [9, Theorem 3.1]). In Table 4 we list all such 
pairs i,j (with j ^ 0) and for each of them provide an element E E p2(^) H 0{. We 
also indicate the type of E. 

The fact that E £ p2(Hl) can be checked by using Table 3. In most cases the 
verification of the claim that E 6 0{ is straightforward: This element belongs to 
%Hj (1,2) and, being of the right type, is in fact a generic element for the action of the 
centralizer ZK(H^). This argument is not applicable when (i,j) is one of the following 
pairs: 

(33,21),    (25,23),    (27,26),     (29,26), 
(34,30),    (35,32),    (35,34). 

Since O18 fl p = Of3 (see Table 1), we conclude that in the case (25,23) we 
must have E G Oj3. A similar argument is applicable to the pairs (27,26), (29,26), 
and (35,34). The remaining three pairs (33,21), (34,30), and (35,32) require a more 
elaborate argument. 

Let us consider in detail the pair (33,21). In this case 

E = X-yg + X104 + X-ioi + X-102 

is a standard principal nilpotent element of type D4. Hence 

EeOunp = Of U Of 

and we have to show that in fact E £ Of. We do this by finding a normal triple 
(E1, iJ, F) inside the standard regular simple subalgebra of type D\ having {a-79,0:104, 
a_ioi,a_io2} as a base for its root system. The element H is given by 

H = 6#-79 + 10#io4 + 6iJ-ioi + 6#_io2 

= -2(2^1 + 5#2 + 6#3 + 10#4 + 9#5 + 8#6 + 5tf7 + 4#8). 

We do not need to compute F but we remark that 

F G (^79^-1045^101,^102). 

Next we compute 

OLm{H) = 4,0,0,0,0, -4,4,-6    (1 < m < 8) 

and deduce that 

/?m(#)=4,0,0,0,0,-4,4,-6    (l<m<8). 

Finally by applying a suitable element w of the Weyl group of (6, f)) to H we obtain 
the element H' = w(H) such that 

0m(H') = 0,0,0,0,0,0,4,8    (1 < m < 8). 
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By looking up Table 2, we conclude that indeed E e 0\l. 

The argument is similar in the other two cases. We only state that for the pair 
(34,30) we have 

OLm(H) = 2,2, -4,2,0,0,4,-8    (1 < m < 8), 

and for (35,32) 

am{H) = -2,-2,4,0,0,6,-6,8    (1 < m < 8). 

By inspection of Figure 3, we see that in order to complete the proof of the 
theorem it suffices to show that Ol ^ 0[ when (i,j) is one of the following pairs: 

(6,3),       (14,4),      (34,6), 

(4.1) (21,11),    (15,13),    (19,16), 

(24,19),    (35,21),    (33,28). 

This assertion is valid for the pair (15,13) because O}5 C O11, Oj3 C O8, and 
QII j£ QS ^see Table 1 and Figure 1). Another proof of this fact will be given below. 

Let V = Q be the adjoint g-module (of dimension 248). It can be equipped with 
the Z2-grading V = Vb © Vi, where Vb = t and Vi = p. Thus dim VQ = 136, and 
dimVi = 112. We introduce the integers 

di(j,fe) =dimVinkevp{Ek)j 

where i = 0,1] j > 1; 1 </i:<36, and p = ad is the adjoint representation of g on V. 
They are easy to compute and are displayed in Table 5. 

By applying [9, Theorem 4.1] and using Table 5, we see that Ol ^ Ol when (i,j) 
is one of the following pairs. 

(6,3), (11,4), (6,5), (23,6), (12,11), 

(4.2) (19,12), (23,12), (15,13), (19,16), (18,17), 

(23,19), (21,20), (31,21), (34,21), (24,22), 

(28,22), (28,24), (34,32), (34,33). 

In particular this means that the pairs (6,3), (15,13), and (19,16) from (4.1) have 
been taken care of. 

The remaining six pairs in the list (4.1) are handled by using the theory of pre- 
homogeneous vector spaces (PV) [15, 16]. 
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Table 5: The integers di(j,k) for the adjoint module of E8 equipped with 
a Z2-gradation 

k doU,k); j = 1,2,... d1(j,ky,j = l,2,... 
1 107 136 83 111 112 
2 90 134 136 66 100 112 
3 90 126 136 66 108 112 
4 80 134 135 136 56 83 111 112 
5 80 118 135 136 56 99 111 112 
6 79 134 135 135 136 55 56 111 112 
7 79 108 135 136 55 82 111 111 112 
8 79 102 135 135 136 55 88 111 112 
9 68 102 129 135 136 44 87 105 112 

10 63 100 125 135 136 39 80 101 110 112 
11 63 96 125 133 136 39 84 101 112 
12 62 90 107 134 135 136 38 55 83 100 111 111 112 
13 62 82 107 126 135 136 38 63 83 108 111 111 112 
14 58 84 122 126 136 34 72 98 108 112 
15 55 84 115 126 135 136 31 71 91 108 111 112 
16 54 82 107 126 134 136 30 62 83 100 110 111 112 
17 54 82 107 118 134 136 30 62 83 108 110 111 112 
18 53 82 107 125 134 136 29 54 83 92 110 110 112 
19 53 82 107 109 134 136 29 54 83 108 110 110 112 
20 53 75 107 118 134 135 136 29 61 83 99 110 111 112 
21 52 80 80 107 107 134 134 135 28 28 56 56 83 83 110 110 111 

135 136 111 112 
22 52 64 80 91 107 118 134 135 28 44 56 72 83 99 110 110 111 

135 136 111 112 
23 47 70 102 117 129 134 136 23 59 78 98 105 111 112 
24 46 68 90 101 123 134 135 135 136 22 44 66 88 99 100 111 112 
25 46 60 90 101 123 126 135 135 136 22 52 66 88 99 108 111 112 
26 42 60 89 101 120 126 134 135 136 18 51 65 88 96 108 110 112 
27 41 58 80 91 107 118 129 134 17 43 56 72 83 98 105 110 111 

135 136 111 112 
28 39 54 87 96 117 122 133 133 136 15 48 63 84 93 104 109 112 
29 38 50 73 84 106 116 124 126 14 37 49 72 82 97 100 108 110 

134 136 111 112 
30 37 50 73 84 106 109 124 126 13 36 49 71 82 97 100 108 110 

134 135 136 111 112 
31 37 50 73 83 106 116 124 126 13 36 49 72 82 90 100 108 110 

134 136 110 112 
32 36 48 63 74 89 92 107 109 124 12 27 39 54 65 80 83 98 100 108 

126 134 135 135 136 110 110 111 111 112 
33 36 48 63 74 89 100 107 117 124 12 27 39 54 65 72 83 90 100 100 

134 134 135 135 136 110 110 111 111 112 
34 31 38 63 69 90 96 114 115 125 7 32 39 60 66 84 90 100 101 108 

126 133 133 136 109 112 
35 29 34 55 59 80 84 98 101 115 118 5 26 31 52 56 70 74 88 91 98 101 

125 126 133 134 135 135 136 108 109 110 111 112 
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Table 5:  (continued) 

577 

k db(j,*);i = i,2,... diO'.fc); 7 = 1,2,... 
36 28 32 46 49 63 66 80 83 97 100 

107 109 116 118 125 126 133 134 
134 135 135 136 

4 18 22 36 39 53 56 70 73 80 83 
90 92 99 101 108 109 109 110 
110 111 111 112 

In order to determine the closure of an orbit Of we shall employ the following recursive 
procedure. The centralizer Z = ZK(Hk) is a connected reductive subgroup of AT which 
can be easily determined from the integers (3i{Hk) given in Table 2. Furthermore Z is a 
Levi factor of the parabolic subgroup QHk oiK. The centralizer of Ek in Z is reductive, 
and consequently the PV (Z, 0^(1,2)) is regular [15]. Hence the singular set S of 
this PV is a union of irreducible conical hypersurfaces 5^ defined by equations fi — 0, 
where the /^'s are the basic relative invariants of this PV. One knows how to compute 
the number m of the basic relative invariants [16, Proposition 4]. In particular, m 
cannot exceed the length of 0#fc(l,2) as a Z-module. In all cases that we encounter 
below m is actually equal to the length of this module. The pair (QHkiP2(Hk)) is 

also a PV and its singular set is the union of the hypersurfaces Si — Si + p3(H
k). In 

most cases each of the hypersurfaces Si contains a dense open QHk -orbit and we are 
able to identify the if-orbit that contains this QHk -orbit. Then the closure of Ok is 
the union of Of and the closures of K-orbits (of smaller dimension) which contain a 
dense open subset of one of the hypersurfaces Si. 

We start with the pair (14,4). The PV (ZK(H
U

),QHIA(1, 2)) is irreducible and 
its singular set 5 is an irreducible hypersurface. The singular set of (Q//^^(#14)) 
is the irreducible hypersurface 5 = 5 + p3(H

14). The element 

E = (Xll4 + X_47) + (Xll3) + (X-50) 

belongs to p2(H
14) fi O}1 (see Table 4). A computation shows that QH

14
 ' E has 

dimension 35. As p2(i?14) has dimension 36, this orbit is dense in 5. Consequently 

op = ol4uop:. 
By (4.2) we know that Oj1 ? Of, and so Oj4 ? Of. 

Next we consider the pair (24,19). The argument is similar to the one used 
above. The singular set 5 of (ZK{H

24
),QH24(1,2)) is the union of two irreducible 

hypersurfaces 5i and 52- The singular set of (Qff24,p2(iir24)) is also the union of two 
irreducible hypersurface 5^ = 5;+p3(ijr24). Let Ei and E2 be the elements from Table 
4 in the rows with i - 24 and j = 23,18. Hence Ei belongs to p2(#24) H Of3 and E2 
to p2(iir24) fl 0{s. A computation shows that the orbits QH

14
 ' Ei have dimension 55. 

As p2(H24) has dimension 56, these orbits are dense in Si. Consequently 

cf = of4uopuop. 
By (4.2) we know that O23 > Oj9, and so O24 > O}9. 

Let us now consider the pair (21,11). The argument is similar to the one used 
above but we have to use it several times.   We shall indicate only the main steps. 
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The singular set of (Qif2i,p2(ii/'21)) is the union of two irreducible hyper surf aces. 
Let Ei be the element from Table 4 in the row with i = 21, j = 18 and let E2 — 
X_8 + X_74 H-X_io4 +X_ii8. The orbits QH^ 

mEi are dense in the two hypersurfaces. 
As E2 has type (44i)", it belongs (see Table 2) to one of the orbits Of, £>[, Of. We 
have also computed the dimension of the orbit G • E2. Since this dimension is 114, 
we obtain another proof (see Table 1) that E2 belongs to one of the three if-orbits 
mentioned above. (By embedding E2 in a suitable normal triple one can show that 
in fact it belongs to Of.) As Ei G 0{8 and Op" D Of U 0[ U Of, we conclude that 

(4.3) 0^=0J1U0}*. 

The singular set of (QH
18

IP2(H
18

)) is a^so ^e union of two irreducible hyper- 
surfaces. Let Es (resp. E4) be the element from Table 4 in the row with i = 18, 
j — 16 (resp. % — 18, j — 12). Then a computation shows that the orbits Q#i8 • £3 
and Q#i8 • E± have co-dimension 1 in p2(#18), and so they are dense in the two 
hypersurfaces. Consequently 

(4.4) Op = Of U Op U Op. 

We now claim that 

(4.5) Op^O^UOp. 

The argument in this case is more complicated and we shall provide more details. As 
a Zx(iir16)-module, £#16(1,2) is the direct sum of two 1-dimensional modules (Xng) 
and (X_74), and the 8-dimensional simple module 

(X_98, X_94, X-go, ^-87, -^-86> -^-83, ^-78, ^"-73)• 

This PV has 3 basic relative invariants: 

/1(X)=a,     f2(X)=b,     MX)=cj-di + eh-fg, 

where 

X = aXns + 6X_74 + cX_98 + dX-g^ + eX_9o + fX^i + ^^-86 

+ /lX_83 + iX_78 + i-X"_73. 

If we set /;(Z) = ^(X) for Z = X 4- F with X G 0^16(1,2) and y G p3(iJ16), then 
we obtain the basic relative invariants of (<2#i6,p2(#16)).  The elements E[ defined 
by 

El — (X_74 + X119) + (X_73) + (X-gg), 

E2 = X_86 + Xiis + X_87, 

^3 = (*118 + ^-98) + (X_47) + (X_74)5 

belong to the hypersurfaces Si defined by fi(Z) — 0 and their QH
IQ-orbits are dense 

in these hypersurfaces. This follows from the fact that each of these three orbits has 
co-dimension 1 in )p2(H

1®). From Table 4 we see that E^ G Oj3. Both E[ and E'^ have 
type A2 + 2^41 and so they belong either to 0\Q or 0\l. It is important to show that 
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they both belong to Oj0. This can be shown by embedding, say, £[ into a principal 
normal triple (E'1,H, F[) of A2 + 2Ai. An example of such a computation was given 
in the beginning of this proof. We omit most of the details but we point out that 
H € J) has the following labels: 

am(H) =2,0,0,0,0,-1,2,-4    (l<m<8). 

In the case of E'^, the corresponding labels are 

am{H) = 2,1, -2,0,0,2, -1, -3    (1 < m < 8). 

As (9i3 > O}0, our claim is proved. 

The singular set of (Qiyi3,p2(iJ
13)) is the union of two irreducible hypersurfaces. 

Let E4 be the element from Table 4 in the row with i = 13, j = 10 and let £5 = 
X_68 4- X_ioi + XnQ + -X"_i5. A computation shows that the orbits Qm* ' E'4 and 
QH13 -£5 have co-dimension 1 in p2(#13)5 an(i so are dense in these two hypersurfaces. 
The element El

4 belongs to 01° (see Table 4). The element £5 has type (4Ai)" and 
is contained in 9^7(1,2). Consequently it belongs to (9j[. Hence 

(4.6) Op = Ol3uOp. 

Since O}2 ^ O}1 by (4.2), it follows from (4.3-6) that Ofi ^ QII^ 

We move now to the pair (33,28). The singular set of (QH
33

 1 P'li^33)) is the union 
of three irreducible hypersurfaces. Let Ei and Eo be the elements from Table 4 in 
the rows with i = 33 and j = 21 and j = 31, respectively. Let 

£■3 = (^-78 + -X'llS + -^-94) + {X-79 + X104 + ^-102)- 

A computation shows that each of the orbits Q//21 • Ei has co-dimension 1 in p2(jy33) 
and so is dense in one of these hypersurfaces. Clearly, JBI G O21 and E2 G Of1. Since 
E3 has type 2A3 and belongs to 9^24(1,2), it follows that it belongs to Oj4. Hence 

(4.7) dp = 0?3uOfruOfr. 

The singular set of (QH
31

 ? p2(^31)) is ^he union of two irreducible hypersurfaces. 
Let E4 (resp. E5) be the element from Table 4 in the row with i = 31, j = 27 (resp. 
i = 31, j = 29). Then a computation shows that the orbits QH

18
 ' E4 and QH

18
 ' E^ 

have co-dimension 1 in p2(i?31), and so they are dense in these two hypersurfaces. 
Consequently 

(4.8) Ofr = 0?1UOpUOp. 

The Zx(if29)-module £#29(1,2) is a direct sum of the 1-dimensional module 
(X_74) and two nonisomorphic simple 8-dimensional modules: 

Vs = (X_73,X_78,X_835^-865 A"_87,X_90,X_94,X_98), 

Ws = (-X"ii2, -X'llOj ^1085 -^1065 -^105, -^1037 -^100: -^96)• 
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The singular set of (<2//29,p2(iI
29)) is the union of three irreducible hypersurfaces Si 

(i = 1,2,3). Let £[ be the element from Table 4 in the row with i = 29 and j = 10. 
Further, let 

^2 — (-X"-73 + Xge + X_74 + Xns) + (X-QS), 

E3 = X-JS + XgQ + X112 + Xuz + X-n + X_ ■98- 

A computation shows that the orbits QH™ - El have co-dimension 1 in p2(iJ
29)5 and 

so are dense in the three hypersurfaces. Note that the elements £[ and E2 are both 
of type A4 + Ai and so belong to Oj6 (see Table 1). However the closures of their 
QH29-orbits are two different hypersurface, say 5i and 52- This follows from the 
observation that the Vs-component of E,

1, namely X-gg, is not generic in the module 
Vs while that of E^ namely X-j^ + X_98, is. (The situation is just the opposite for 
the Ws -components.) It is not obvious to which if-orbit the element E^ belongs. But 
a computation shows that the orbit G • E^ has dimension 166, and so (see Table 1) 
E3 belongs to one of the orbits C^8, (9j9, Oj0. Consequently, the closure of the orbit 
QH29 • Ef

3 is the third hypersurface S3. As the orbits Ol for i = 18,19,20, and 26 
have dimensions less then that of Oj8, we conclude that Of9 ^ Of8. Now (4.7) and 
(4.8) imply that Of3 ? Of. 

In connection with this case, we make an interesting observation. Consider the 
G-orbits O28 and O21 with Bala-Carter labels A5 and ^4 + ^2, respectively. By Table 
1 we have 

pno28 = o?9,   pno27 = c??8. 

Our observation is that 

Of } Of 

although (see Figure 2) 

O28 > O21. 

The same phenomenon was observed in our previous paper [11]. 

We next consider the pair (34,6) from the list (4.1). The proof in this case is 
quite different from the ones above. (A similar proof was used in our paper [10].) 
The idea is to construct a closed subset of p which contains Of but not 0\. We 
begin by observing that, as a if-module, p is isomorphic to V <8> W where V is the 
56-dimensional simple module for E7 and W is the 2-dimensional simple module for 
SL2. Furthermore, p = p+ 0 p- where p+ resp. p_ is the subspace spanned by the 
positive resp. negative root spaces in p. Both p+ and p_ are isomorphic to V as 
Ey-modules. We shall identify V with p+. An explicit Er-isomorphism tp : p+ -> p- 

is given by ip(X) = [X-.i2o,X]. 

Let TT : p ->• p+ be the projector with kernel p_. Note that TT commutes with the 
action of E7. Any Z G p can be written uniquely as Z = X + ip(Y) with X, Y G p+. 
The orbit SL2 • Z consists of all vectors 

(aX + bY) + <p(cX + dY) 
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with ad — bc=l. Hence 

K(SL2-Z) = (X,Y)\{0}. 

The pair (E7 x GLijp"^), where GLi is the maximal torus of the SL2 factor of K 
leaving p+ and p- invariant, is a regular PV (see [15, p. 147]). This PV was studied 
by S.J. Haris in [12]. The singular set is the hypersurface S = p+ \ Oj and consists 
of 4 orbits. Let E G Of* be the representative from Table 2 and write E = X 4- <p{Y) 
where 

X = XLO2 H- -^94 + ^96,      ^00 =:' -X"-77 + ^-68 + X- 79- 

We have 

7r(SL2 • E) C {X,Y) C (X^,-^945-^96,-^1005^93,^95) C S. 

The last inclusion follows from the fact that the (E7 x GLi)-orbit of the element 

^102 H~ ^94 + ^96 + ^100 + ^93 + ^95 

has dimension 55 and the observation that this orbit contains all linear combinations 
of the root vectors X102, -^94? -^96 > Xioo, X93, X95 with all coefficients nonzero. 

Hence 7r(0?4) C S and so Of4 C S + p". Thus Of1 C 5 + p" and consequently 
0?£Op, i.e., Of4? Of. 

It remains to consider the pair (35,21) from the list (4.2). The singular set of 
(Q//35,p2(iI35)) is the union of three irreducible hyper surf aces. Let Ei and E2 be the 
elements from Table 4 in the rows with i = 35 and j = 34 and j = 32, respectively. 
Let 

Es = (X_84 + -^96 + ^-73 + X-QS) + (X-99). 

A computation shows that each of the orbits QHSS • Ei has co-dimension 1 in p2(£r35) 
and so is dense in one of the hyper surf aces. Clearly, E1 G Of4 and E2 € Of2. Since 
E3 has type (A5 + ^i)", it follows that it belongs to either Of0 or Of1. (One can 
show that it belongs to (931, but we do not need this fact.) Hence 

Of = C>35 U Of4 U Of. 

Since O?4 > O?1 by (4.2), it remains to show that O32 > O?1. The ZK{H32)- 
module £#32(1,2) is a direct sum of three 1-dimensional modules (X104), (X-74), 
(X_ioi), and the 8-dimensional simple module 

Vg = (X96,Xioo,^103,^105,^1065^1085^1105^112)- 

We shall write an arbitrary element Z G p2(i/
32) as Z — X + Y where X G £#32(1,2), 

F Gp3(#32),and 

X — aXge + bXiw + 0X103 + ^^105 + d Xioe + c Xios 

+6/-X'iio + a!Xii2 + WX104 4- vX-u + ifX_ioi. 
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The basic relative invariants of (<2if32,p2(iJ
32)) are given by: 

h{Z)=u,    MZ) = v,    f3(Z) = w, 
U(Z)=aa' -bb' + cc' -dd'. 

The singular set 5 of this PV is the union of the three hyperplanes Si : fi(Z) = 0, 
i = 1,2,3, and the irreducible quadric 54 : ftiZ) = 0. Let Ei, E3j and E4 be 
the elements from Table 4 listed in the rows with i = 32 and j = 31,30, and 27, 
respectively. It is easy to check that Ei G Sj is true if and only iij = i. A computation 
shows that the QH32-orbit through Ei has co-dimension 1 in p2(H

32) and so this orbit 
is dense in Si (i = 1,3,4). The situation with the hyperplane £2 is quite different. 
The group Q#32 has no open dense orbit in this hyperplane. A computation shows 
that the maximum dimension of an QH^

2-orbit in £2 is 45 while 52 has dimension 47. 
The maximum dimension of an orbit K • Z for Z G 52 is 83 and so all these orbits are 
contained in the closure of Of1 (see Figure 3). Consequently, 

Now (4.2) implies that Of2 > O?1. 

5. Appendix. The simple roots a*, 1 < i < 8, are numbered as in Figure 4. 

ai as      04      as 

Pi Pz /?4  ft 

a2 * >fh 

OLQ Oil 

A, /?7 

as       ao = a_i2o 
—o o 

ft 

Figure 4: The extended base of E% and a base of 6 

In Table 6 we give our enumeration of the positive roots of E%. This enumeration 
is the same as in our paper [8]. 

Table 6: Positive roots of Es 

i           ai i ai i Oi i OLi 

1 10000000 31 10111100 61 01122210 91 12232221 
2 01000000 32 01121000 62 01122111 92 11233221 
3 00100000 33 01111100 63 11232100 93 12343210 
4 00010000 34 01011110 64 11222110 94 12243211 
5 00001000 35 00111110 65 11221111 95 12233221 j 
6 00000100 36 00011111 66 11122210 96 11233321 
7 00000010 37 11121000 67 11122111 97 22343210 
8 00000001 38 11111100 68 01122211 98 12343211 
9 10100000 39 10111110 69 12232100 99 12243221 j 
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Table 6: (continued) 

i Oi i Qi i "i i (Xi 

10 01010000 40 01121100 70 11232110 100 12233321 
11 00110000 41 01111110 71 11222210 101 22343211 
12 00011000 42 01011111 72 11222111 102 12343221 
13 00001100 43 00111111 73 11122211 103 12243321 
14 00000110 44 11221000 74 01122221 104 22343221 
15 00000011 45 11121100 75 12232110 105 12343321 
16 10110000 46 11111110 76 11232210 106 12244321 
17 01110000 47 10111111 77 11232111 107 22343321 
18 01011000 48 01122100 78 11222211 108 12344321 
19 00111000 49 01121110 79 11122221 109 22344321 
20 00011100 50 01111111 80 12232210 110 12354321 
21 00001110 51 11221100 81 12232111 111 22354321 
22 00000111 52 11122100 82 11233210 112 13354321 
23 11110000 53 11121110 83 11232211 113 23354321 
24 10111000 54 11111111 84 11222221 114 22454321 
25 01111000 55 01122110 85 12233210 115 23454321 
26 01011100 56 01121111 86 12232211 116 23464321 
27 00111100 57 11222100 87 11233211 117 23465321 
28 00011110 58 11221110 88 11232221 118 23465421 
29 00001111 59 11122110 89 12243210 119 23465431 
30 11111000 60 11121111 90 12233211 120 23465432 
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