
ASIAN J. MATH. © 2001 International Press 
Vol. 5, No. 3, pp. 535-560, September 2001 008 

A FOCUS ON FOCAL SURFACES* 

E. ARRONDOt, M. BERTOLINI*, AND C. TURRINI* 

Many classical problems in algebraic geometry have regained interest when tech- 
niques from differential geometry were introduced to study them. The modern foun- 
dations for this approach has been given by Griffiths and Harris in 6, who obtained in 
this way several classical and new results in algebraic geometry. More recently, this 
idea has been successfully followed by McCrory, Shifrin and Varley in 12 and 13 to 
study differential properties of hypersurfaces in IP3 and F4. In fact these two papers 
have greatly influenced the present work. 

In this spirit, the subject of this paper is the systematic study of focal surfaces 
of smooth congruences of lines in P3. This is indeed a clear example of a topic of 
differential nature in algebraic geometry. The study of such congruences has been 
very popular among classical algebraic geometers one century ago. Especially Fano 
has given many important contributions to this field. An essential ingredient in his 
work has been the focal surface of the congruence. This point of view has been retaken 
by modern algebraic geometers, such as Verra and Goldstein, and also by Ciliberto 
and Sernesi in higher dimension. 

What we find amazing in the papers by the classics is how much information they 
were able to provide about the focal surface of the known examples of congruences, 
in particular about its singular locus (and more especially about fundamental points). 
They seemed to have in mind some numerical relations that they never formulated 
explicitly. And even nowadays such kind of relations would require deep modern 
techniques, like multiple-point theory, but also this powerful machinery is not a priori 

enough since some generality conditions need to be satisfied. 
As a sample of this, the degree and class of the focal surface -the only invariants 

easy to compute- can be derived immediately from the Riemann-Hurwitz formula. 
However these invariants, even in the easiest examples (see Example 2.4 or Remarks 
after Corollary 4.7) seem to be wrong at a first glance. This is due to the existence 
of extra components of the focal surface or to the possibility that the focal surface 
counts with multiplicity, although this was never mentioned explicitly by the classics. 
Even in 5, these possibilities seem not to have been considered. 

The starting point of this work was to understand how the classics predicted 
the number of fundamental points of a congruence. We only know of one formula in 
the literature involving this number, which is however wrong (see Example 1.15 and 
the remark afterwards). So our first goal was to use modern techniques in order to 
rigorously obtain some of the classical results on the topic. Specifically, by regarding 
the focal surface of a congruence as a scheme, we reobtain its invariants (degree, class, 
class of its hyperplane section, sectional genus, and degrees of the nodal and cuspidal 
curves) and give them a precise sense. 

We also restrict our attention to congruences of bisecants to a curve, or flexes 
to a surface (since they are special cases in the work by Goldstein), or bitangents to 
a surface (since all the lines of a congruence are bitangent to the focal surface).  In 
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particular, we prove that no congruence of flexes to a smooth surface is smooth, and 
that a congruence of bitangents to a smooth surface is smooth if and only if the surface 
is a quartic not containing any line. Another important reason to study these types of 
congruences is that their focal surfaces have the unexpected or multiple components 
mentioned above. We give a precise geometrical description of these components and 
also conjecture that these congruences are the only ones for which the focal surface 
has such a behavior. 

In order to obtain all the above results, we combine a local differential analysis 
with global methods from intersection theory. In fact, we consider that many of the 
techniques we develop are interesting by themselves. 

In section §0, we give the basic definitions about congruences and their focal 
surfaces. In section §1, we obtain the classical invariants of the focal surface. The 
key new technique in this section is to use the construction given in 2 of varieties 
parametrizing infinitely close points of a given variety. 

In sections §2, §3 and §4 we obtain all the invariants of the congruences given by 
bisecants to a smooth curve or bitangents or flexes to a smooth surface in F3. In these 
sections we again adapt some natural constructions to our setting. For instance the 
constructions at the beginning of section §3 are clearly influenced by the ones in 12. 

Finally, section §5 is devoted to relate the behavior of congruences of bitangents 
to a smooth surface to the behavior of general congruences. We give there several 
examples and conjectures of what we expect to happen in general. 
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0. Notations and definitions. We will work over an algebrically closed field 
of characteristic zero. We will denote by G(l,3) the Grassmann variety of lines in 
P3. If / C P3 x G(l,3) is the incidence variety of pairs (x,L) such that a; is a point 
of the line L, then any of the projections pi and P2 provides / with a structure of 
projective bundle. In fact, / = P(fip3(2)) (where P will always mean for us the space 
of rank-one quotients), and the tautological quotient line bundle is just the pull-back 
of the hyperplane line bundle on G(l,3) (considered as a smooth quadric in P5). On 
the other hand, if we consider the Euler sequence on P3 

0 -» fip3(l)   "+ H0(P3, CV»(1)) <g> 0FS  ->  0p3(l)   -► 0 

and pull it back to / via pi and then push it down to G(l, 3) via P2 we get the universal 
exact sequence on G(l,3) 

(0.1) 0 -> 5* -> tf0(P3, Op3(l)) ® 0G(lf3) -> Q -> 0. 

Here 5 and Q are the rank-two universal vector bundles, and / can also be viewed as 
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Given a point x G P3, we define the alpha-plane associated to it as the set a(x) C 
G(l,3) of all lines in F3 passing through it. Similarly, given a plane II C P3, we 
define the beta-plane associated to it as the set /?(n) of all lines in P3 contained in 11. 
If x G 11, we will write il(x, 11) for the pencil of lines contained in the plane 11 and 
passing through the point x. 

By congruence we will mean a surface X C G(l,3). Any congruence X has a 
bidegree (a, 6), where a (called the order of the congruence) is the intersection number 
of X with an alpha-plane, and b (called the class of the congruence) is the intersection 
number with a beta-plane. Equivalently, b = C2(Q|X)J 

and a = C2(S|x) = ci(Q|x)2 - 
C2(Q\X). 

A congruence can be regarded (under the Pliicker embedding of (7(1,3)) as a 
surface contained in a smooth quadric of PD. In particular, we can define the sectional 
genus of a congruence as the genus of the curve obtained by intersecting the surface 
with a hyperplane of P5. We will usually denote it with g. 

A line in P3 can also be viewed as a line in the dual P3*, so that a congruence 
X C G(l,3) induces another congruence A"* C G(1,P3*), which we will call the 
dual congruence of X. It is clear that, if X has degree (a, b) then A** has bidegree 
(&, a). A congruence and its dual have the same sectional genus (in fact both Pliicker 
embeddings are naturally isomorphic). 

If we restrict the above projections pi and p2 to Ix '•= p^iX) then we get a 
map qx - Ix —> P3 which is generically a : 1 and a map px : Ix -* X. We have the 
following definitions: 

DEFINITION. A point x G P3 is a fundamental point of X if q^fa) is not a finite 
set. Dually, a fundamental plane of X is a fundamental point of A*, i.e. a plane 
containing infinitely many lines of the congruence. The focal locus of X is the branch 
locus (typically a surface) of qx. The elements of the focal locus are called focal points 
of X. Dually, a focal plane of A is a focal point of A*. Equivalently (5 Lemma 4.4), 
a focal point x G P3 is characterized by the fact that there exists a line L of the 
congruence such that the embedded tangent plane of A at the point represented by L 
meets the alpha-plane a(x) in at least a line of P5 (i.e. a pencil of lines of P3). This 
is in fact the definition of focal point given by Goldstein. 

If we write H and K respectively for the classes of the hyperplane section and 
the canonical divisor of A, and h for the class of the hyperplane section of P3, it is 
not difficult to see that ci(27x) = 2h — K - H, so that the class of the ramification 
locus of qx is 2h + K + H. In particular, we obtain from here the very well-known 
result that a general line L of a congruence contains two focal points xi, X2 (counted 
with multiplicity) such that (xi,L) and (x2,L) lie in the ramification locus of qx- 

DEFINITION. We will call a focal line L of a congruence a line of a congruence 
such that all of its points are focal. Again from 5 Lemma 4.4, this means that the 
embedded tangent plane of X at the point represented by L meets in a pencil all the 
alpha-planes a(x) for which x G L. Then, a line L is focal if and only if its embedded 
tangent plane is a beta-plane. 

Let AQ be the open set of non-focal lines of a congruence A. Then the restriction 
of the map p^H^o) -> XQ to the ramification locus of qx is finite (typically of degree 
two, but it could happen a priori that any line contains only one focal point counted 
twice). Hence, the branch locus of this restriction has at most two components. 

DEFINITION. We will call the strict focal surface of a congruence X the closure 
FQ of the reduced structure of the branch locus of p'^1(Xo) —>• P3. To distinguish from 
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this, we usually refer to the focal locus F (as a scheme) as the total focal surface. 

REMARKS. 1) We abused the notation in the above definition. First of all, XQ 

could be empty. As observed in the definition of focal line, this would imply that 
the embedded tangent plane of X at any point is a beta-plane. In this case, the 
congruence itself is a beta-plane (see for instance 5, Corollary 4.5.1). On the other 
hand, FQ could be either a point (and then X is an alpha-plane) or a curve, which 
would mean that X is the congruence of bisecants to that curve. As we will observe 
later, such a congruence is smooth only when the curve is a twisted cubic or an elliptic 
quart ic. 

2) It is not superfluous to take the reduced structure in the above definition. 
As we will see in Section 3, the focal locus can appear with high multiplicity for 
congruences of bitangents or flexes to a surface in P3. 

3) The total focal surface could have more components different from FQ when 
X \ XQ is a curve. Such a curve will have the property that its embedded tangent line 
at each point is contained in G(l,3), so that the corresponding extra components of 
the focal surface will be developable ruled surfaces or cones. The existence of these 
ruled surfaces seems not to have been considered by Goldstein. In fact, the number of 
components of the focal surface can be bigger than two, as will be shown in Example 
5.3. 

We end this section of background definitions and results by recalling a classical 
invariant for surfaces in P3 that we will use frequently: 

DEFINITION. If E C P3 is a surface, we will write /ii for the class of its hyperplane 
section. It is clear that a surface and its dual have the same invariant //i. 

1. Numerical invariants of the focal surface of a smooth congru- 
ence. Along this section, X C G(l,3) will be a smooth congruence of lines in P3, 
H and K will be the hyperplane and canonical classes respectively, and F will be the 
total focal surface of X. 

In order to better understand the geometry and the numerical invariants of F (in 
particular //i), it is convenient to work in the complete flag variety of points, lines and 
planes rather than only in the incidence variety of points and lines. We consider then 

Ax := {(a:,L,n) G P3 x X x P3* | x G L C 11}. 

Let #13 : Ax -> J C P3 x P3* and #2 • Ax -> X be the obvious projections, J 
being the incidence variety of points and planes. Our goal is to directly obtain the 
focal variety in J, so that we construct simultaneously its dual. For this purpose, 
we analyze the ramification locus of #13. First, we observe that the map #2 factors 
Ax —> Ix^-^-X. The second morphism is the restriction of the projective bundle 
P2 :1 -+ G(l, 3), so that Ix = P(Q|X)J 

and the tautological line bundle is the pullback 
of the hyperplane section h of P3. Similarly, the first morphism is a projective bundle 
and Ax — P(p^5|x), and its tautological line bundle is the pullback of the hyperplane 
section /i* of P3*. From this, it is not difficult to compute the Chern classes of TAX : 

(1.1) ci {TAx) = 2h + 2h* - 2H - K 

C2{TAX) = h2+ 4hh* + /i*2 - 3hH - 3h*H - 2hK - 2h*K + 2H2 + 2HK + c2(Tx) 
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On the other hand, the Chern classes of the incidence variety J are: 

Ci(Tj) = 3/i + 3/i* 

C2(T/)=3/i2 + 10/i/i*+3/i*2 

Hence the class in Ax of the ramification locus R of #13 will be, using Porteous formula 
(R will be a surface, since Ax has dimension four, and J has dimension five), 

(1.2) [R] = 2hh* + hH + h*H + hK + h*K + 2H2 + 2HK 4- K2 - c2(Tx). 

Then, for a general line L in the congruence, one expects to find two elements 
(xi,L,ni), [xo,L,Ilo) in R, and it seems reasonable to think that #1, X2 are fo- 
cal points for X, that Hi, 112 are focal planes and that each Hi is the tangent plane 
of the focal surface at x; (it is a very well-known result that the set of focal planes is 
the dual of the focal surface). However, the last of the statements is not true, but Hi 
is the tangent plane of the focal surface at x^ and reciprocally n2 is the tangent plane 
at Xi. Let us check this in local coordinates. 

Fix an element (x, L, H) in R and choose coordinates 20,21,22? 23 hi P3 so that x 
is the point of coordinates (1 : 0 : 0 : 0), L is the line Z2 — 23 = 0 and H is the plane 
23 = 0. We can take u,v to be a system of parameters of X at L and assume that 
near L the lines of the congruence are given by the span of the rows of the matrix 

1    0    /    ff 
0    1    h    k 

where /, #, /i, k are regular functions in a neighborhood of L. We can take then a system 
of coordinates \,u,v,n for Ax near (x,L,n) to represent the point a;(A,u,u) = (1 : 
A : / + \h : g + \k) inside the above line L(u,v) and the plane n(u,?;,/i) containing 
them of equation Z3 + /1Z2 = (g + nf)*® + {k + fih)zi. On the other hand, we can 
take affine coordinates 01,02,03 to represent the point (1 : ai : 02 : 03) G P3 and 
affine coordinates UQ? ^1, ^2 to represent the plane 23 — U222 = UQZQ + uizi. We could 
remove one coordinate to work in J, locally defined as 03 — 1/202 = UQ + uiOi, but we 
prefer to keep the symmetry. Therefore a local expression for #13 is given by 

(A, u, v, fj) i-> (A, / 4- A/i, g 4- A*;, g + jdf, k + /ih, /z). 

Its Jacobian matrix is then 

1 h k 0 0 0 
0 fu + Xhu Qu + Afcu 9u + Vfu ku + iJ,hu 0 
0 fv + Xhv Qv + Mv 9v + IJ-fv kv + fj,hv 0 
0 0 0 f u 1 

We immediately see that this matrix has not maximal rank if and only if the two 
middle rows are linearly dependent. Since the four columns of this submatrix are 
linearly dependent, the local equations of R are: 

(1.3) 
Ju 4 A/iw 

JV   4   Ally 

gu 4 A/cu 

gV   4   A/Cy 
= 0 

(1.4) 9u + Vfu 
9v + fJ-fv 

= 0 
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(1.5) 
JV   +  Ally 

= 0 

Equation (1.3) means that the value of A is so that x(A, u, v) is a focal point in L(u, v), 
while (1.4) means that U(u,v,fj,) is a focal plane. For a "general" value of u,v there 
would be two possible values of A and /i, and (1.5) should be interpreted as a way of 
assigning to each of the two focal points in the line one of the two focal planes. The 

key observation is that, substracting (1.3) multiplied by hv kv 
and (1.4) multiplied 

by fu   hu 
fv hv 

one gets (1.5) multiplied by: 

(1.6) 
JU T* A/i^      ku      j-lflu 

JV     I     Ally Ky f-llly 
0. 

This means that (1.6) is the other way of assigning to each focal point a focal plane 
(and we want to prove that this is the "right" one). 

Assume now for simplicity that we chose L containing exactly two focal points 
x, xf and contained in two focal planes 11, IT. Then there are two corresponding local 
expressions A, A7 in terms of u, v verifying (1.3) and two local expressions /i, // verifying 
(1.4), and such that each of the pairs (A,/i) and (A',//) verify (1.5), while the pairs 
(A,//7) and (A7,//) verify (1.6). In particular, the assignement 

(Uj v) H-> (A, / + A/i, g + AA:) 

is a local parametrization of the focal surface near x. However, the tangent plane at it 
is not 11, but IT. Indeed, let //Q be the nonzero solution of (1.4) for u = v = 0. Then 
II7 = n(0,0,^o) has equation z^ + //Q^ = 0- To check that IT is tangent we need 
to show that, substituting the above parametrization in the equation of II7 we do not 
get linear terms. The substitution becomes Z3 + ii'0Z2 = g + AA: + fif0(f 4- A/i), and we 
need to check that the partial derivatives vanish at u = v = 0 (and hence also A = 0). 
These partial derivatives are: 

0u(O,O) + ^/tt(0,0) and ^(0,0) + ^fv(0,0) 

To check this vanishing we first observe that (1.3) for u = v — 0 implies that each 
vanishing implies the other. On the other hand, (1.6) implies that 

fu (0,0)   MO,O) 
^(0,0)   MO,O) Mo 

Mo,o)  0tt(o,o) 
Mo,o)   01,(0,0) 

From this it is easy to conclude that II7 is indeed the tangent plane. 
We can now use the above calculations to prove the following: 

PROPOSITION 1.7. Let X be a smooth congruence, let F be its total focal surface 
and consider F C Ax to be the closure of the set of elements (x, L, II) such that (x, L) 
is a ramification point of qx and U is the tangent plane to F at a smooth point x. 
Then: 

1) F is linked to R in the complete intersection of the pullbacks to Ax of the rami- 
fication loci of qx and qx*. In particular, the cycle class of F in Ax is 

[F] = 2hh* + hH + h*H + hK + h*K - H2 + C2(Tx)- 

2) The focal surface F has degree 2a+2g — 2 and, if it is reduced, has class 2b+2g — 2, 
^ = a + 6 + 4^-4 - Kx + 12x(Ox), sectional (geometric) genus 9g —8 —b + K^ 
and xiPp) =§g-6-a-b + K2x + 2x(Ox)- 
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Proof. The fact that F and R are linked is just the geometrical translation of the 
computations before the statement. In the previous section we proved that the class 
of the ramification locus of qx was 2h + H + K. By duality, the ramification locus of 
qx* will be 2h* + H + K. Multiplying these two classes and substracting the cycle 
class of R we complete the proof of 1). 

The degree, /xi and class of the focal surface are easy to obtain, by just multiplying 
the cycle class of F respectively by h2. hh* and ft* (we are also using the adjunction 
identity KH + H2 = 2g - 2 and the Noether formula C2(Tx) = 12x{Ox) - K2). To 
compute the other invariants we need to know the Hilbert polynomial of F. For this 
purpose, it is not enough to know the cycle class of F, but to use the fact that it is 
obtained by linkage inside a complete intersection M of divisors of classes 2h + H-\-K 
and 2ft* -{-H + K. This fact implies (see 14, Prop. 1.1) that there is an exact sequence 

Q^lM-*lR-> nomoAx {Op, OM) -> 0. 

Now the wanted invariants can be directly obtained from the coefficients of the poly- 
nomial xiupiTh)) G Q[T]. We will compute it from the above exact sequence. We 
first observe that, by adjunction and (1.1), LJM = ^Ax|M(2ft + 2ft* 4- 2H + 2K) ^ 
OM{4:H + 3K), so that 

HomoAx (Op, OM) * HomoAx (Op,uM)(-4,H - SK) 9* ujp(-4H - 3K). 

We then need to compute x(^M(Th + 4iJ + SK)), which is very easy since M is a 
complete intersection. On the other hand, from the construction of i?, there is an 
exact sequence 

0 -> TAX -> QlsTj -* lR(h + ft* + 2H + K) -> 0 

from where we can compute x{^R(Th + AH-\-3K)). With the Maple package Schubert 
one performs the computations and arrives to the wanted result. □ 

REMARKS. 1) The degree and class of the focal surface are very well-known 
and there are much simpler ways to compute them. In fact, all the other numerical 
invariants of the focal surface, except Hi, can be computed by just using the incidence 
variety point-line. And on the other hand, fix can also be computed by using that it 
is the class of X considered as a surface in F5 (see 15). Then /xi is nothing but the 
degree of C2(P1(Ox(l)), which is easily seen to be the value just computed. 

2) The computations previous to the proof of the above proposition show that, 
for a general line L of a congruence X, there are exactly two pencils Q(xi,Ili) and 
n(x2,n2) (given by the two branch points of qis on L) that are tangent to X at the 
point represented by L. Hence the embedded tangent plane of X (as a surface in P5) 
at L is the one generated by these two pencils. However, the tangent plane at xi of 
the focal surface F is n2 and reciprocally. 

PROPOSITION 1.8. Let X be a smooth congruence, and let F be its total focal 
surface. Assuming that the only one-dimensional singular locus of F consists of a 
nodal curve D and a cuspidal curve C, then 

deg(D) = 2a2 - 10a + 46 + 4ag + 2g2 - Ug + 32 - 4K% + l2x(Ox) 

deg(C) = 3a - 3b + ISg - 18 + 3K2
X - 12x(0x). 

Proof The underlying idea is quite simple, although it requires a precise con- 
struction of some technical complexity. We just want to study when the fibers of the 
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map qx : Ix -* ^3 contain three infinitely close points (to find the cusps) or two 
pairs of infinitely close points (to find the nodes). We will consider more generally 
the projection TT : IP3 x X —>• P3 and apply to it a theory of infinitely close points of 
its fibers (which will be just infinitely close points in X). To avoid some technical 
difficulties, we will reduce to the case of cuspidal points. Note that, since we know 
from Prop. 1.7 the geometric genus of the hyperplane section of F, the degree of the 
nodal curve can be computed at once if we know the degree of the cupidal curve (just 
apply the Pliicker formula to a hyperplane section of F). 

So we want to find a variety parametrizing sets of three infinitely close points in 
the fibers of TT, to find their the subset C of those who are in fact on X. We will 
follow the construction of 2. Clearly, the variety parametrizing pairs of infinitely close 
points in the fibers of TT is nothing but lP(fip3Xx/p3) = P3 x ^(^x) ='• P3 x D^. Let 
/i : D1X -» X be the structure projection and write Li for the tautological line 
bundle of D1X. Now the variety parametrizing sets of three infinitely close points in 
the fiber of TT is given by P3 x D2X1 where D2X := P(Gr), G being the rank-two vector 
bundle on D1X defined as a push-forward in the following commutative diagram of 
exact sequences: 

0    ->    ftnix/x®Li    -► 

(1.9) 0    ->    MDIX/X®^    -> 

0 0 
I 4 

fWx —>• £i -»•    0 
4- 1 

^.D1* -> G -»•   0 
; I 

^D^X/X = ^DlX/X 

I i 
0 0 

(see 2 for more details). Let /2 : D2X -> D1X denote the structure projection and let 
Z/2 be the tautological line bundle on D2X. We are now going to try to restrict the 
above construction to X, having in mind that we are not only looking for infinitely 
close points whose support is in the fiber of qx: we need the infinitesimal information 
defined by these points to be also in the fiber of qx - 

The first step is conceptually easy. Since we want the infinitely close points to 
be supported on the fiber of qx, it suffices to restrict the above construction to Ix 
rather than working on the whole P3 x X. Observe that the inclusion Ix C P3 x X 
is induced by projectivizing the quotient of bundles in the restriction to X of the 
universal sequence (0.1). Hence, Ix is defined in P3 x X as the zero locus of the 
natural section of 7r*S\x ® Op3(l). In particular, the class of Ix inside P3 x X is given 
(we will omit to write pullbacks when they are clear) by 

(1.10) [Ix] = h2 + hH + c2(7r*5|X). 

Keep the same notations for the above construction restricted to Ix and let us 
see now when an element of (1 x fi)~l(Ix) C P3 x D^^X corresponds to a pair of 
infinitely close points contained as a scheme in the fiber of qx. Those elements will 
be characterized by the fact that the universal quotient (1 x /i)*^p3xx/p3 -> Li 
factors through (1 x fi)*ftix. This means that the composed map Njx,F3xX -* 

(1 x /i)*fip3xx/p3 ->• Li is zero. 
Since Ix was defined as the zero locus of a section of TT**?^ &) (9p3(l), then 

its normal bundle Njx/p3Xx is isomorphic to p*xS\x 0 0p3(l).   Hence, the wanted 
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subset X' C (1 x fi)~l{Ix) C F3 x DlX is defined as the zero locus of a section of 
(1 x fi)*{p*xS\x ® Op3(l)) 0 Li, and its class inside (1 x /i)-1(ix) is then: 

(1.11) [X'} = ci(Li)2 + 2ci(Li)h + ci(Li)ff + h2 + hH + c2(5). 

We restrict to that subset and again abuse the notation by not changing it after 
the restriction. Our final step is to identify inside (1 x f2)~1(X,) C P3 x D2X the 
subset X" of those infinitely closed points in the fiber of qx> The apparently new 
problem is that now D2X is not the projectivization of a cotangent bundle, but of 
its quotient G defined in (1.9). However this is not a problem, since the reasoning is 
exactly as above. Indeed, we have now a universal epimorphism (1 x f2)*G -> L2 on 
(1 x /2)~1(X/), and again X" is the locus for which the natural composition 

Nx'/{ixh)-^ix) -* fyix/s)-1^') -> I1 x hYG -» L2 

is zero. Hence X" is the zero locus of a section of (1 x /2)*((1 x fiy(q*xS\x®Of>z(l))® 
Li) (8) I/2, and its class in (1 x f2)~1(X') is then 

(1.12) [X"] = ci(L2)
2 + 2ci(Li)ci(L2) + 2c1(L2)/i + c^^H 

+ci(L1)
2 + 2c1(Li)ft + ciCLOff + h2 + hH + c2(5|X). 

We finally observe that the expressions (1.10). (1.11) and (1.12) can be lifted to 
classes in F3 x D2X, so that the degree of the cuspidal curve can be computed by 
intersecting there these three classes and the class ft of a hyperplane in F3. Now to 
finish the proof we use Schubert once more. D 

REMARKS. 1) If at the end of the above proof we multiply by H instead of ft, 
we would get the degree of the ruled surface consisting of those lines such that one 
of its two focal points is a cusp in the focal surface. This number turns out to be 
4a+ 46+ 12g— 12, and was already known by the classics (see 18 §13 or 16 page 197). 
In fact, they also knew how to compute the degree invariants of the nodal and cuspidal 
curves. Of course, they computed all these invariants in terms of other invariants, as 
for instance /ii, instead of the "modern" invariants that we use. 

2) The above proposition is valid if X has not a curve of fundamental points. This 
hypothesis is hidden in the statement, since a fundamental point produces a singular 
point on the focal surface whose singularity is neither a node nor a cusp. In fact, a 
fundamental curve produces in the set X" defined in the above proof a component of 
dimension two. However, smooth congruences with a fundamental curve are classified 
(see 1). 

3) The same kind of observation can be made when we have a finite number of 
fundamental points. The set X" contains the cones formed by the lines of the con- 
gruence through any fundamental point. These cones do not count when intersecting 
with the class ft, so they do not affect to the formula of deg C. However, the formula 
in part 1) of the remark takes also account of the sum of the degrees of these cones. 

Let us now apply these remarks to some examples. 

EXAMPLE 1.13 (See also Example 5.5 below). The complete intersection of 
G(l,3) with a general hyperplane and a general quadric produces a congruence of 
bidegree (2,2) and g — 1, in particular without cuspidal curve. As a surface in F5, 
it is the surface given by the polarized pair (jB/p1>...?p5F

2,3L — E\ — ... — £5), i.e. by 
the linear system of plane cubics through five points. Therefore, the congruence con- 
tains sixteen lines of F5, which correspond to sixteen pencils of lines of F2. Hence the 
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congruence contains sixteen fundamental points (and sixteen fundamental planes) and 
the degree of the corresponding cone at each of them is one. In fact, the formula in 
1) yields 16, and hence Remark 3) proves that there are no more fundamental points 
(or fundamental planes). 

EXAMPLE 1.14. As a second example, we can consider the congruence X of 
bidegree (2,3) which is the Del Pezzo surface (i.e. g = 1) given by the polarized pair 
(£?/pl5...5p4P

2,3L — Ei — ... — E4), i.e. by the linear system of plane cubics through four 
points. It is known, and easy to verify, that such a Del Pezzo surface contains exactly 
ten lines (the four exceptional lines and the six lines joining the four base points) and 
five pencils of conies (the four pencils given by the lines in P3 through one base point 
and the pencil given by the conies through the base points). This implies that the 
congruence has 15 fundamental points and 10 fundamental planes in P3. Indeed the 
ten lines give rise to ten fundamental points and ten fundamental planes. Moreover 
each pencil of conies contains at least one conic which is contained in an alpha-plane. 
Let us prove this fact for instance for the pencil \L — Ei\ (for the others the proof 
is the same). Since the image of Ei in G(l,3) is a line, in particular it is contained 
in an alpha-plane, so that there is a section of S\x vanishing on Ei, i.e. a section of 
S\x(-Ei). Since.C2(5|x(—^i)) = 0, it follows easily that there is an exact sequence 

0 -» Ox(Ei) -► S\x "> Ox(3L - 2Ei - E2 - E3 - E4) -> 0. 

From this it follows that h?(S\x{—L + Ei)) = 1, and hence any conic in \L — Ei\ is 
contained in the zero locus of a section of Sjx- But observe that h0(S\x) — 5, so 
that exactly a hyperplane inside H0(S\x) corresponds to alpha-planes. This means 
that at least one section corresponding to an alpha-plane vanishes on a a conic of the 
pencil, as wanted. Applying now Remark 3) we see that the degree of the ruled surface 
generated by the lines throught the fundamental points is 20 (since the bidegree is 
(2,3) there is no cuspidal curve). Since we have found ten cones of degree one and 
five cones of degree two, there are no more fundamental points in the congruence. 

EXAMPLE 1.15. In this last example, we consider the congruence of bidegree (3,3) 
and g — 2 which is the rational surface given by the polarized pair (i?/plv<.)p7P

2,4L — 
2Ei — E2 —... — £7), i.e. by the linear system of plane quartics with a fixed double point 
and through other six points. Such a Castelnuovo surface contains twelve lines (the six 
exceptional lines corresponding to simple points, and the six lines joining the double 
point with the other six ones) and 32 conies (the one corresponding to the double 
base point, the 15 corresponding to the lines joining two simple base points, the 15 
corresponding to conies through the double point and other four simple points, and the 
one corresponding to the cubic with a double point in the double base point and passing 
through the other base points). Fano shows (4, pages 154-155) that besides the twelve 
fundamental points coming from the twelve lines of the congruence, there can be other 
fundamental points (vertex of cones corresponding to conies lying in alpha-planes) or 
not, depending on the projective embedding. Specifically the Castelnuovo surface is 
the complete intersection of the cubic Segre threefold and a smooth hyperquadric in 
P5. It is hence contained in a three-dimensional linear system of hyperquadrics. Each 
smooth quadric in the system can be viewed as a Grassmannian. While for a general 
quadric we do not get extra fundamental points, for particular ones we can get one, 
two or three new fundamental points. 

REMARK. As shown in the previous example, the number of the fundamental 
points of a congruence does not depend only on its invariants, in particular it is 
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meaningless to look for a formula giving the contribution of the fundamental points 
only in terms of the bidegree, of the sectional genus and of other usual invariants of 
the surface. This fact seems not to be considered by Roth who gives a formula (16, 
page 198) to compute the degree p2 of the scroll of lines of P3 consisting of those lines 
such that one of its two focal points is a node in the focal surface. Such a formula, 
when applied to a congruence of bidegree (a, b) with a < 3, hence without nodal curve, 
should give the number of fundamental points. However the formula for p2 given by 
Roth fails for several congruences (and not only for the above example). 

2. Congruence of the bisecants to a space curve. In this section we describe 
the congruences of the chords of a smooth irreducible skew curve F in P3. 

Let F be a curve in P3 and denote by X C G(l, 3) the congruence of the bisecants 
to F. Throughout this section F will be assumed to be smooth, irreducible and not 
contained in a plane. We will also write d for the degree of F and p for its genus. 

It is known (see 7 Theor. 2.5) that X is singular unless F is a rational cubic or an 
elliptic quartic curve. So, from now on, being mostly interested in the case of smooth 
congruences, we could confine ourself to consider the case of these two curves, but we 
prefer to study a more general situation. 

PROPOSITION 2.1. Let F be as above. Then the congruence X of bisecants to 
F has bidegree (a, b) — (|(<i — l)(d — 2) — p, ^d(d — 1)) and sectional genus g = 
!(d-2)(d-3 + 2p). 

Proof. The congruence is naturally parametrized by the second symmetric prod- 
uct Z — F^2) of F. We will regard Z as the quotient of F x F under the standard 
involution. Let L be the line bundle giving the embedding of F into P3, and write Zq 
and Z/2 for the corresponding pullbacks of L to F x F via the two natural projections. 
If D denotes the diagonal of F x F, there is an epimorphism Li 0 L2 ->■ OD(L). Its 
kernel is invariant under the involution of F x F hence it is the pullback of a rank-two 
vector bundle Q on Z (the so-called secant bundle). This vector bundle is the one 
that gives the map from Z to G(l,3) whose image is the congruence X. 

In the intersection ring of Z consider the following classes: P will represent the 
class of pairs containing a fixed point of F, and A will be the diagonal class, i.e. 
the image of D. We recall the following intersection numbers: P • P = P • A = 1, 
A-A = 2(2-2p). 

With this notation, the Chern classes of Q are ci(Q) = dP - |A and C2(Q) = 
^d(d — 1)). From this one can readily obtain the bidegree by using that a = Ci(Q)2 — 
C2{Q) and b = C2(Q). Notice that this bidegree could also be obtained by simple 
geometric arguments. 

In order to obtain the sectional genus of X we need to obtain the canonical class 
of Z. This can be easily done since F x F is a double cover of Z ramified along the 
diagonal. We then have that numerically Kz = (2 - 2p)P + |A and from here the 
wanted equality for g follows. D 

REMARK. In the same way it is easy to find the rest of the invariants for Z. In 
particular, K2

Z = 4p2 - 13p + 9 and x(Oz) = UP - l)(p - 2). 

DEFINITION. Let F be as above and consider two distinct points x, y of it. The 
chord < x, y > through x and y is said to be stationary if the tangent lines tx and ty 
to F, at x and y respectively, are incident. 

Denote by T(x,y) the tangent plane to the congruence X at the point corre- 
sponding to a chord < x,y >. It is quite easy to verify that, if the chord < x,y > is 
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stationary, then the plane T(x)y) is contained in the Grassmannian G(l,3), actually 
it is the beta-plane generated by tx and ty, as we will show in the following (probably 
well known) lemmas. 

LEMMA 2.2. Let T be as above and let C be the Chow complex of lines intersecting 
F. Let x be a point ofT, consider a line L passing through x, denote by tx the tangent 
line of F at x, and by 11 the plane generated by L and tx. Then the corresponding 
branch of C is smooth at the point represented by L if and only if L is different from 
tx. Moreover, in this case the embedded tangent space of this branch of C at L is 
generated by the alpha-plane a(x) and the beta-plane /3(n). 

Proof This is just an easy local computation. Choose coordinates ZQ, ZI,Z2,ZS in 
IP3 so that the point x becomes (1:0:0:0) and the tangent line tx is Z2 = Z3 = 0. 
Working in the open affine set ZQ = 1, we can parametrize T locally at x (which is now 
the origin) by ^ = *,z2 = f(t),z3 = g(t) with /(0) = g(0) = /'(O) - #'(0) = 0. Let L 
be the line passing through x and through the point of coordinates (0 : ai : 0,2 : as), 
and assuming ai ^ 0, put ai = 1,02 = u,as = v. Then a local parametrization in 
the open subset {poi 7^ 0} C G(l,3) of the corresponding branch of H at the point 
represented by L is given by 

(t,u,v) y-> (^02,^03,^12,^13) = (u,v,ut- f(t),vt-g(t)) 

Hence, the corresponding branch of H at L is smooth if and only if (u,v) 7^ (0,0), 
i.e., if and only if L is different from the tangent line at x. In this case, the embedded 
tangent space of H at L has (affine) parametric equations 

fpoi=l 

P02 =u + \ 

P03 =V + fl 

P12 =vu 

Pis =vv 

, P23 =0 

i.e. it is the projective plane vpi2 - upis = P23 — 0, which is generated by the alpha- 
plane a(x) (of equations P12 = pis = P23 — 0) and the beta-plane /?(!!) (of equations 
VP02 - upos = vpi2 - upi3 =p23 = 0). U 

LEMMA 2.3. Let F be as above and X the congruence of bisecants to F. Let L 
be line having exactly two intersection points x and y with F. Then L represents a 
smooth point of X if and only if it is different from both tx and ty. In this case, denote 
by T{x the plane generated by L and tx and by Uy the plane generated by L and ty, 
then the embedded tangent space to X at L is generated by the pencils Q(x,ILy) and 
n(y,nx). 

Proof In fact, locally at L the congruence X is the complete intersection of the 
two branches of the Chow complex of F corresponding to the points x and y. Hence, 
L is a smooth point of X if and only if the two branches are smooth at L and their 
embedded tangent spaces are different. This, due to Lemma 2.2, happens if and only 
if L is neither tx nor ty and x ^ y. If this is the case, the embedded tangent plane of 
X at L will be the intersection of the embedded tangent spaces of the two branches, 
which, due to Lemma 2.2, gives the thesis. 
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REMARK. The Lemma above immediately implies that, if the chord L =< x, y > 
is stationary, then the plane T(x, y) is contained in the Grassmannian G(l, 3): actually 
it is the bet a-plane l3(Iix) = ^(H^). Since a curve has in general a one-dimensional 
family of stationary bisecants, the corresponding congruence of bisecants will have a 
focal surface, even if one would expect the focal locus to be just the curve F. 

From Propositions 2.1 and 1.7, it follows that the degree of the (total) focal surface 
must be 2(d — 3)(d — 1 4- p), which coincides with the degree of the ruled surface of 
stationary bisecants to F (see 9, Remark 5.2). The twisted cubic is the only curve in 
P3 without stationary bisecants, so we study next in detail the only other example of 
smooth congruence of bisecants. 

EXAMPLE 2.4. Let X be the congruence of bisecants to an elliptic quartic curve 
F C F3. It is then known that X is a smooth congruence of bidegree (2,6) and 
sectional genus g — 3. The strict focal "surface" FQ will be F, while F consists of 
the four quadric cones containing F. Indeed it is easy to see that a bisecant to F 
is stationary if and only if it is contained in one of the quadric cones containing F. 
Observe that we then obtain the expected degree eight for the focal surface of X. 

3. Congruences of bitangents and flexes to a smooth surface in P3: 
global study. Let E C F3 be a surface of degree d, that we will assume, unless 
otherwise specified, to be smooth. In fact we will also sometimes assume £ to be 
general enough, so that, for & > 4, its Picard group will be generated by the hyperplane 
section. Following the ideas of 12 and 21, we consider the projective bundle p : Y = 
P(ns(2)) -> E. Any point of Y can be regarded as a pair (x,L), where x is a point of 
E and L is a tangent line to E at x. Therefore there is a map ip : Y —> G(l, 3). In fact 
the twist in the projective bundle was chosen so that the tautological line bundle of Y 
became the pull-back of the hyperplane section of G(l, 3). Let us write OY(£) for the 
tautological line bundle on Y and Oy {h) for the pull-back via p of the hyperplane line 
bundle of E C P3. In terms of vector bundles, the map ip is defined by the rank-two 
vector bundle Q on Y defined as a push-forward in the commutative diagram: 

0 0 
I 1 

0   ->   fty/S(£-/l)   ->        p*ns(h) -> OyW-h)     -»•     0 
H                 ; 1 

(3.1) o ->  nY/s(e-h)  -> p*(pi(os(m -> Q          -»   0 
l I 

0Y(h) = CM/*) 
I 4- 
0 0 

Here the top horizontal sequence is the universal sequence on the projective bundle 
Y tensored with Oy (—h) and the middle vertical sequence is the pull-back of the one 
defining the bundle of principal parts of 0^(1). The map (p is precisely defined by the 
composed epimorphism H0(F3,OFs(l)) ® Oy -> p*(P1(0E(l))) -> Q. The following 
closed surfaces of Y will play an important role in the sequel: 

Y' := {(x, L) G Y  \  £ is a parabolic point of E} 

Yi := {(#, L) E Y  |  L is a bitangent line of E} 

Y2 := {(#, L) E Y  I  L is an inflection line of E}. 
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Of course, all the above sets are defined as a closure (for the definition of parabolic 
point, see for instance 12). 

PROPOSITION 3.2. The classes ofY',Yi,Y2 in the Picard group ofY are: [Yl] - 
4(d - 2)/i, [Yi] = (d + 2)(d - 3)* - 4(d - 3)ft and [Fs] = 2^ + (d - 4)A. 

Proof. The surface F' is just the pullback via p of the parabolic curve on E, where 
it has class 4(d — 2)/i, as shown in 12 (anyway, the idea is that the parabolic curve is 
defined by the Hessian matrix to be singular). 

The class of Yi is computed in 21 Prop. 3.14 for d = 4. We essentially reproduce 
here Welters' ideas. Since its class is not so crutial, we chose the simplest but least 
general of his proofs. 

If S is sufficiently general and d > 4, then the Picard group of Y is generated by 
the classes of (, and h. Hence the class of Yi will be of the form mt + nh. The first 
integer m is in fact the degree of the projection Yi —>• E, hence it is the number of 
tangents at a general point of x G E that are tangent to E at another point. 

To compute this number, consider H the tangent plane to E at x and let C be the 
intersection of E with H. Hence C is a plane curve of degree d with one ordinary node 
at a: (hence of geometric genus 2 ) anc* rn 'ls t^ie numt)er of lines which are tangent 
to C outside x and pass through x. In other words, m is the number of branch points 
of the (d — 2) : 1 morphism C —)• P1 defined by the projection from x. From Hurwitz 
theorem one immediately gets m = (d 4- 2)(d - 3). 

To compute n we can use the fact that the class of the congruence of bitangents 
to E is l/2d(d — 2)(d — 3)(d 4- 3) (the number of bitangents of a general plane curve 
of degree d). Since the map Yi —> G(l, 3) (restriction of tp) is a double cover of such a 
congruence, it follows that C2{QY1) = d(d — 2)(d — 3)(d + 3). This Chern class can be 
computed (with the help of the Maple package Schubert) from diagram (3.1) in terms 
of n, and making it equal to the second term one gets the required value of n. 

The class of Y2 can be computed in a more direct way. First we recall that 
inflectional tangent vectors to E are those in the kernel of the second fundamental 
form // : Symm2T^ —>• N^. Here, iV^ = Oj:(d) is the normal bundle of E. Hence we 
are looking at the points of E for which the section of Symm2(Qj:)(d) corresponding 
to // is zero. Regarding this section as a section of Symm2(ft,z(2))(d — 4), we see 
from the projection formula that this corresponds to a section of OY(2£ + (d — 4)/i), 
whose zero locus is precisely Y2. D 

Let us write Xi = ip(Yi) and ty = y?|y;. for i — 1,2. Then Xi is the congruence 
of bitangents of E and X2 is the congruence of inflectional lines of E. They both are 
contained in the complex W, := <p(Y) of lines tangent to E. What makes this approach 
so different among these two congruences is that, while the map <pi : Yi —> Xi is a 
double cover, the map (^2 • Y2 —> X2 is birational (in both cases, the map tpi is finite 
as long as E does not contain any line). Hence we can easily compute the bidegree 
of both congruences, but it will be possible only for X2 to compute all its invariants. 
As remarked in 21 page 30, the map <pi is branched over the curve of hyperflexes; the 
study of such a curve would certainly allow to compute all the invariants of Xi from 
the ones of Yi. We will use however a different way (see Proposition 3.5 below), which 
is more elegant and will also allow us to remove the genericity hypothesis for E. 

PROPOSITION 3.3. The congruence Xi has bidegree (|d(d-l)(d-2)(d-3), |d(d- 
2)(d-3)(d+3); while the bidegree of X2 is (d(d—l)(d—2),3d(d-2)) and the sectional 
(geometric) genus g — 5d3 — 18d2 + 14d + 1. Moreover, the congruence X2 is never 
smooth. 
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Proof. The map pi, as a map to G(l,3), is given by the rank-two vector bundle 
QYi- Since ipi is a double cover, then the class of Xi is |c2(Qy1), and in fact we have 
already seen (or rather impose) in the proof of Prop. 3.2 that this is |d(d — 2)(d — 
3)(d + 3). Analogously, its order is Kc^QyJ2 - C2{QY1)) = |d(d-l)(d-2)(d-3), 
as easily computed again with the help of the Maple package Schubert. 

In a similar but easier way, since ip2 is now birational, the class of X2 is just 
b = C2(Qy2) = 3d(d — 2) (which in fact corresponds to the number of flexes of a general 
plane curve of degree d) while its order is a = CI(<5Y2)

2
-C2(QY2) = d(d— l)(d—2). On 

the other hand, assume now that X2 is smooth. Hence, if E does not contain any line, 
the map <p2 : Y2 —> G(l,3) is necessarily an immersion, and the double-point formula 
for it would yield a2 + b2 — C2(N) = 0, where N is the cokernel of the bundle inclusion 
TY2 -* ^*T,

G(lj3). But taking into account that (p*TG(li3) = 5y2 0 Qy2 (where 5y2 is 
the dual of the kernel of a natural epimorphism Oy* -> Qy2, and in fact the pull-back 
to Y2 of the universal bundle S on G(l, 3)), with the help once more of the Schubert 
package we get that the double-point formula reads 

d(d - 3)(d4 - 3d3 + 13d2 - 48d + 40) = 0 

which is absurd if d ^ 3. The case d = 3 (or more generally when E contains a line) is 
treated separately in the following lemma. All the invariants of X2 (in particular the 
sectional genus) are computed using the isomorphism with Y2 and the fact that Y2 is 
a smooth divisor of Y of a known class. D 

LEMMA 3.4. If L is a line contained in E; then the corresponding point of X2 is 
singular of multiplicity 3(d — 2). 

Proof Let us consider the point PL G X2 corresponding to the line L C E. By 
abuse of notation, let us still call L to ^^

1
(PL)- In other words, we are identifying 

L with the curve in Y2 which contracts to PL- Since ^2 is birational, the multiplicity 
of PL will be precisely minus the self-intersection of L in I2. By adjunction we have 
L2+Ky2L = —2, so it is enough to prove that .Ky2I/ = 3d—8. But this is an immediate 
consequence of the equality i^y2 = Ci(£)y|y2) — (2£ + (d — 4)/i) = (3d — 8)/i|y2, since 
we can then compute -fcry2Z/ as the intersection in Y of (3d — 8) ft- with L. D 

REMARK. A similar statement was proved in 21 (1.1) and (1.2) for the congruence 
Xi of bitangents in case d = 4. 

PROPOSITION 3.5. The congruence Xi of bitangents to a smooth surface E C P3 

of degree d is smooth only for d = 4. The geometric genus of its hyperplane section is 
g = d5 - |d4 - f d3 + 60d2 - 36d+ 1. 

Proof The idea is to work on the Hilbert scheme T — Hilb2!?3 parametrizing 
(unordered) couples of points of P3 (and then study the subset of those that produce 
a bitangent line to E). Since two points (possibly infinitely close) determine a line, 
there is a map q : T ->• G(l,3). On the other hand, the set of pairs of points on a 
fixed line is a P2, parametrized by the quadratic forms (up to a constant) on the line. 
Therefore, the map q endows T with a projective bundle structure T — ^(Symm^Q*). 
In this projective bundle we have the universal quadratic form given by the bundle 
inclusion 

OT(-I) M> q*Symm2Q 

which assigns at each couple of points the quadratic form (defined on the line spanned 
by them) vanishing on those points.  We can similarly construct from this a bundle 
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inclusion 
OT(-2) -> q*SymmAQ 

which corresponds for every couple to the quartic forms vanishing doubly at each of 
the points of the couple. The multiplication of {d — 4)-forms by this universal form 
determines then another bundle inclusion i which defines the bundle R as a cokernel: 

0 -> q*Symmd-4Q (8) OT{-2)-^q*SymmdQ ->R-^0 

A surface E C P3 of degree d corresponds to a section OG(I,3) -* SymmdQ, and 
we are interested in the locus at which the pull-back of this section lies in the image 
of i. In other words, the zero locus of the corresponding section of R (obtained as 
the composition OT -> q*SymmdQ —> R) is the set Xi of couples of points of E such 
that the line defined by them is tangent at those points. The congruence Xi is the 
image by q of Xi. If Xi is smooth (and E does not contain any line), then p defines 
in fact an isomorphism between Xi and Xi, so everything reduces to computing the 
invariants of Xi. This is easily done by using that Xi is defined as the zero locus of 
the rank-four vector bundle R, of which we can compute its Chern classes from the 
exact sequence defining it. 

To be honest, there is a technical problem that cannot be completely solved by 
using the package Schubert: the Chern classes of a symmetric power of a bundle can 
be computed only for a fixed exponent, but not depending on a parameter d. We 
write the exact result we need in Lemma 3.6 below, so that the interested reader 
can reproduce from it all our calculations. These calculations will provide easily the 
sectional genus (from the product of the canonical class of Xi and the pull-back of 
the hyperplane section of G(l,3)), as well as the rest of the invariants. In particular, 
one gets that, if TV is the normal bundle of Xi in G(l,3), then a2 + b2 - C2(N) = 
|d(d - 4)(d6 - 4d5 + 2d4 - 20d3 + 9d2 + 396d - 540). Hence Xx is only smooth for 
d = 4. D 

LEMMA 3.6. Let Q be a rank-two vector bundle on a smooth variety and let ci, C2 
be its Chern classes.  Then a symmetric power of Q has Chern classes: 

c1(SymmdQ) =-d(d+ l)ci 

C2(SymmdQ)=^-d(d-l)(d+l)(3d + 2)c2 + ld(d+l)(d + 2)c2 

c3(SymmdQ) =^d2{d - \)(d - 2){d + l)2cf + ±-d2{d - l)(d + 2)(d + l)ciC2 
4o 1^ 

cl{SymmdQ) =-^—d{d - l)(d - 2)(d - Z){d + l)(15d3 + IM2 - lOd - 8)cJ 
1570 

+ =Ld(d - l)(d - 2)(d + 2)(d + l)(15d2 - 5d - I2)c\C2 

+ 3^d(d-l)(d-2)(d+l)(5d+12)4 

Proof. This is just a straightforward (but terribly annoying) calculation using the 
splitting principle. D 

4. Congruences of bitangents and flexes to a smooth surface in P3: 
local study. In this section we analyze when a bitangent or inflectional line to a 
surface becomes a focal line of the corresponding congruence. We will find then that 
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in both types of congruences we always get at least one component of the focal surface 
made out of focal lines. On the other hand, we will observe that the surface S will 
have a big multiplicity as a component of the focal surface. We will finally check that 
these two atypical situations are reflected in the formula for the degree of the focal 
surface, which can be derived from the invariants of the congruences computed in the 
previous section. 

We prove first a series of local results about tangent spaces that will be useful 
later on. 

LEMMA 4.1. Let E be a surface in P3 and let H be the complex of lines tangent 
to S. 

a) If x is a smooth point ofY,, 11 = Tx5] the tangent plane of E at x, and L a line 
contained in 11 passing through x, then the corresponding branch of T-L is smooth 
at the point represented by L if and only if the intersection multiplicity at x of L 
and E is exactly two. Moreover, in this case the embedded tangent space of this 
branch of % at L is generated by the alpha-plane a(x) and the beta-plane 13(11). 

b) The surface Y2 is singular at the points (x, L) for which x is a parabolic point 
(and hence L is the unique asymptotic line at x). 

Proof This is just based on a tedious local computation to study the differential 
of (p at the point (x,L). Choose coordinates ZQ,ZI,Z2,ZS in P3 so that the point x 
becomes (1:0:0:0), the plane 11 has equation Z3 = 0 and the line L is Z2 = 23 = 0. 
Working in the open affine set {ZQ = 1}, we can parametrize E locally at x (which is 
now the origin) by Zs = /(zi, Z2). Hence a local parametrization of the corresponding 
branch of 1-L at the point represented by L is given by assigning to local parameters 
A, it, v the line generated by the rows of the matrix 

(A^ (I    u    v     f(u,v) 
1     ; V0    1    A    /u + Ajy 

(fu and fv denoting the partial derivatives of f with respect to u and v respectively). 
In this way, the Plucker coordinates of this line in the open affine set of G(l, 3) given 
by {poi = 1} are: 

P02 =A 

P03 -fu + A/v 

P12 =Xu - v 

Pi3=ufu + \ufv - / 

(These are therefore local equations for cp at (x,L)). The Jacobian matrix with respect 
to A, u, v is then 

fu 

We now specialize to the point represented by L (i.e. A = u = v = 0) taking into 
account that /u(0,0) = /v(0,0) = 0 (since 2:3 = 0 is the tangent plane at p) and get 
the matrix 

10 0     0\ 
0    /ut*(0,0)     0     0 

,0 /ttl,(o,o) -1 oy 

1     /„ u                          ufv 

0     fuu + Xfuv A       fu + Ufuu + \fv + \fuv 
0     fuv + Xfvv -1                  Ufuv + \ufvv - fv 
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Hence, the corresponding branch of % at L is smooth if and only if /^(0,0) ^ 0, 
which is clearly equivalent to the fact that L meets £ with multiplicity exactly two. 
In this case, the tangent space of H at L (in the embedded tangent space of G(l,3) 
at L, which is P23 = 0) has equation pis = 0. Hence the embedded tangent space of 
% at L is pis = P23 = 0, which is generated by the alpha-plane a{x) (of equations 
P\2 - Pis = P23 = 0) and the beta-plane /?(n) (of equations pos = P13 = P23 = 0). 
This proves a) 

As for b), with the same coordinates as above, the equation of Y^ is /uU + 2/m,A + 
/T/I/A

2
 =0. If a; is parabolic and L is the unique asymptotic line at x, then /ww(0,0) = 

/uv(0> 0) = 0. Hence, the equation of I2 does not have linear monomials and therefore 
the point (x, I/) is singular. D 

LEMMA 4.3. Let E be a surface in P3 and Xi the congruence of bitangents to E. 
a) Let L be line having exactly two tangency points x and y with E (x and y being 

smooth). Then L represents a smooth point of Xi if and only if the intersection 
multiplicity of L and E at both x and y is two. In this case, the embedded tangent 
space to Xi at L is generated by the pencils ^(XjTyY,) and fi^T^E). 

b) Let L be a line of Xi having only one tangency point with E. Then L an E 
has intersection multiplicity at least four at the contact point. Moreover, if the 
intersection multiplicity is exactly four, then the line L is a smooth point of Xi 
and is not contained in the focal surface, if the contact point is not parabolic. 

Proof. To prove a), we first observe that L represents to a double point of the 
complex of tangents H, whose branches correspond to the image by ip of the points 
(x,L) and (y,L). In fact, locally at L the congruence Xi is the complete intersection 
of these two branches. Hence, L will be a smooth point of Xi if and only if the 
two branches are smooth at L and their embedded tangent spaces are different. This 
second statement is always true since x ^ y. Therefore, by Lemma 4.1, L is smooth if 
and only if the intersection multiplicity of L and E at both x and y is two. If this is the 
case, the embedded tangent plane of Xi at L will be the intersection of the embedded 
tangent spaces of the two branches. Using again Lemma 4.1 and the fact that x ^ y, 
the intersection with G(l,3) of the embedded tangent spaces of the two branches of 
n, which are a(x) U ^(T^E) and a(y) U 0{TyE) is either fl(x,TyE) U Q(y,TxE) (if 
TXE ^ Tyll) or ^(TajS) (if T^E = T^E). In either case, a) follows. This fact could 
also be deduced from the second remark after Prop. 1.7. 

As for b), let L be a line of the congruence with only one tangency point x with 
E. From the bundle construction in the proof of Proposition 3.5, the equation of E 
restricted to L is divisible by four times the equation of x (the universal quadratic 
form on L is the form vanishing twice at x, so that its square vanishes four times). 
Hence the intersection multiplicity of L and E is at least four at x. 

Now we assume that L and E have intersection multiplicity four at x and choose 
coordinates as in the proof of Lemma 4.1 (so that x has afhne coordinates (0,0,0), L 
is the line 22 = £3 = 0 and the tangent plane of E at x is z^ =0). We can assume the 
local equation of E at x is 

£3 =/(^i, 22) = aiZiZ2 + a2zl -I- 03^1^2 + a^zizl 4- a$zl 

+ zl 4- aQzlz2 + a7zlz% + a%zizl + a^z^ + ... 
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The line of affine Pliicker coordinates P02, Pos ? P12, Pis is then the one of affine equations 

Z2 =-pi2 +P02Z1 

Z3 =-pi3+P03Zl 

That line will be in the congruence Xi if and only if the above substitution in the 
polynomial P(zi, 2:2,^3) = — Z3 + /(^i,^) has two double roots. But we now observe 
that 

^(21,002 +P03^15Pl2 +Pl3Zl) 

= (Pis + «2P?2 - a5P?2 + agPjk) 

+ (-P03 - aiPl2 + ^4^12 - 2a2P02Pl2 + 3a5P02P?2 - ^8012 - 4a9P02P?2)^l 

+(^1^02 - a3pi2 + 02^02 + a7P2i2 - 2a4Po2Pi2 + 6a9Po2Pi2 - 3a5P02Pl2 + 3a8po2P?2)^i 

+(03^02 - a6Pi2 + a4Po2 - 2«7Po2Pi2 4- 05^02 - 3a8Po2Pi2 - 4a9Po2Pi2)^? 

+ (1 + a6po2 + a7P02 + a8P02 + a9P02)zl + ' ■ • 

The main point now is the technical Lemma 4.4, which we state and prove after 
the end of this proof. That technical lemma implies that Xi is defined locally at L by 
two polynomials whose linear parts are P13 and —pos — a>iPi2- Hence, Xi is smooth at 
L, and the embedded tangent space at that point is P13 = P23 — P03 +aiPi2 — 0, which 
clearly is not contained in G(l,3), if 01 ^ 0, i.e. if x is not a parabolic point. (This 
tangent plane can be viewed as the only plane in the pencil determined by a(x) and 
/^(TajE) which contains the infinitely close line to L in the quadric 2:3 = aiZ1Z2 + a2Z%, 
which is the osculating quadric to E at x). D 

LEMMA 4.4. Let Ad be the projective space of nonzero polynomials (up to multi- 
plication by a nonzero constant) in K[T] of degree at most d (for a fixed d > A) and let 
Bd be the subset of polynomials with a factor of degree four which is a perfect square. 
Let the coordinates (bo : ... : bd) define the polynomial bo + ... -f bdXd 6 Ad. Then, 
locally at a polynomial XAP (with P(0) ^ 0 and P square-free), Bd is defined by two 

affine equations in K\bo, • • • , &4 • • • , bd\ whose linear parts are bo and bi. 

Proof. We start with the easy case in which d — 4. Then we can work in the 
affine space of monic polynomials, and the polynomial 60 + ^1-^ + 62X2 4- &3X3 + X4 

is in B if and only if it the square of a polynomial CQ + C\X 4- X2. Therefore one gets 
the relations: 

bo =Co 

b\ =2coCi 

62 =2co + c? 

bz =2ci 

From the last two equations one can obtain Co and c\ as polynomials in bo, 61 without 
constant term, and substituting in the first two equations one gets the wanted local 
equations, with linear terms bo and b\. 

For a general d, we consider the obvious multiplication map 

^ : -A4 x Ad-\ -> Ad. 

A polynomial as in the statement is the image of a (X4, P), and we can assume P to 
have constant term equal to 1.  As before, we take the obvious affine coordinates in 
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Ci,.. .Cd-4 in Ad-4 and c/o,rfi,^2,^3 near P and X4. Observe that X4 becomes the 
origin, but P can have arbitrary coordinates cio,... , ^-4,0. The map ^ is defined in 
these affine sets by: 

bo =do 

h =cido + di 

62 =C2do + Cidi + (^2 

63 ^csdo + C2di +C1d2+d3 

64 =€4^0 + Csdi + C2rf2 + cids + 1 

65 =C5(io -f" C^di + 03^2 4- C2<i2 + Ci 

6rf_4 =Cd_4<io + Cd-^di + Crf_6G?2 + ^-7^3 + Cd_8 

6d_3 =Cd_4di + cd-sd2 + Cd-edi 4- Cd_7 

6d-2 =crf_4d2 + Q-sds + Cd-e 

6d-l =Cd_4d3 + Cd_5 

^d -Cd-4 

We can work on the open affine 64 = 1 and divide the rest of the coordinates by the 
above expression for 64. It is not difficult to check that the Jacobian matrix of ip with 
respect to do^di,d2,ds,ci,... ,Cd-A at (0,0,0,0,cio,.. • ,Cd-4,o) is lower triangular 
with 1's in the diagonal (just observe that dividing by 64 does not change that much 
the aspect of the matrix). Therefore tp is locally an isomorphism. Our hypothesis 
implies that (X4

:P) is the only element of B4 x Ad-4 whose image is X4P. We 
therefore get a local isomorphism between B4 x Ad-4 and Bd- From what we already 
proved for d = 4, the tangent space of B4 at X4 is given by do = di = 0. Looking at 
the differential of ip we then conclude that the tangent space of Bd at X4P is defined 
by bo = bi = 0, as wanted. □ 

COROLLARY 4.5. If d > 5, the congruence Xi has a singular curve consisting 
of bitangent lines to £ having multiplicity three at one of the tangency points. The 
degree of this curve in (7(1,3) is d(d — 3)(d — 4)(<i2 + 6d — 4). 

Proof. The first statement follows at once from Lemma 4.3. The degree of the 
curve can be found, for instance, in 17, art. 598 (pages 286-287). To see a modern 
proof, a simple way would be the following. Observe that a pair (x, L) G Yi will belong 
also to Y2 if and only if either the multiplicity of intersection of L and E at x is at least 
three (when there is another tangency point) or the intersection multiplicity is at least 
four (when there is only one tangency point). The second possibility produces a curve, 
whose degree in G(l, 3) is given in Corollary 4.7 below. Once this degree is subtracted 

from the intersection [liJ^K in ^ ^e remaining degree is 2d(d—?>)(d-4)(d2+§d—4). 
But, as the proof of Lemma 4.1 shows, the points of Y2 are in the ramification locus 
of ip : Y -* G(l, 3), so that the above degree is counted twice. D 

LEMMA 4.6. Let E be a surface in IP3 and X2 the congruence of inflectional lines 

to E. 
a) If L is an inflectional line to E at a non-parabolic point x, then L represents a 

smooth point of X2 if and only if the intersection multiplicity of L and E at x is 
exactly three. In this situation, L is never contained in the focal locus of X2, and 

the ramification index of Ix^ -^ P3 a^ {xi L) ^s two. 



A FOCUS ON FOCAL SURFACES 555 

b) If L is an inflectional line to S at a parabolic point x and the intersection multi- 
plicity of L and E at x is exactly three, then L represents a smooth point of X2 
and the embedded tangent plane of X2 at L is the beta-plane ^(T^E). 

Proof. In order to prove a), let us choose coordinates as in Lemma 4.1. Since 
x is not parabolic, we can also assume that the other asymptotic line of E at x = 
(1 : 0 : 0 : 0) is zi + Z2 = Z3 = 0 (this apparently strange choice is made in order to 
guarantee that -A- below has a Taylor expansion). In other words, there is a local 
affine parametrization of S at x given by 

(21,22,23) = (u,v,f(u,v)) = (u,v,uv + v2 +aou3 + aiu2v + a2uv2 + asv3 + ...) 

(where + ... means that we are omitting terms of higher degree). The asymptotic 
lines at a point parametrized by (u,v) are given as the span of the rows of matrix 
(4.2), where A is one of the roots of the equation fuu + 2fuvX + fvvX

2 = 0. Taking 
into account that 

fuu =6aou + 2aiv + ... 

fuv =1 + 2aiu + 2a2V + ... 

fvv =2 + 2a2U + 603^; + ... 

and using the Taylor expressions y/1 + z — 1 + \z 4-... and ^j = ^ — \z + to 
find a determination of A in the above equation, one finds that the asymptotic lines 
are locally parametrized by the rows of the matrix: 

1    u v uv + v2 + ao^3 + aiu2v 4- a2uv2 4- a^v3 + .. 
0    1    -3aot£ - aiv + ... v + (ai — 6ao)uv + (02 — 2ai)v2 + ... 

This gives a local affine parametrization of X2: 

P02 = - 3aou -f aiv + ... 

P03 =v + (ai - Qao)uv + (02 - 2ai)v2 + ... 

p12 = - v - 3aou2 — aiuv + ... 

Pis = — v   — 6aou   — 6aou v — 2aiuv   — a^v   + ... 

which must be an isomorphism at smooth points of X2. Hence, looking at the linear 
part, L represents a smooth point if and only if ao ^ 0, i.e. if and only if the line 
L does not meet E with multiplicity greater than or equal to four. In this case, the 
embedded tangent plane is then pos + pn = P13 = P23 = 0, which is not contained in 
G(l,3). (This tangent plane can be interpreted as at the end of the proof of Lemma 
4.3). 

To compute the ramification index of Ix2 -> P3, at (x,L), just observe that the 
alpha-plane a(x) is given, in the above local coordinates of G(l,3), by the equations 
P12 — P\3 — 0- Look at the above value of these coordinates in the local parametriza- 
tion of X2 and using that ao ^ 0, we obtain a curvilinear scheme of degree three 
supported at (x,L). Therefore, the ramification index is two. This completes the 
proof of a). 

Statement b) is proved in a similar way, but observing now that, since we are in 
the ramification locus of p|y2, u, v is not a system of parameters for X2 at L. Anyway, 
take coordinates as in Lemma 4.1 or a), and we can assume that our / takes now the 
form 

f(u, v) — v2 4- CLQU
3
 4- aiu2v 4- a2uv2 4- a^v3 + ... 
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The new coordinate we have to choose now will be w, where 

w2 = fuv - fuufvv = -12aou - Aaiv + ... 

Since by hypothesis ao 7^ 0, we can take v, w as a system of parameters and substitute 
u = -f£;v + ... in /, fu, fvifuu, fuv, fw. In particular, we get 

x      -fuv + w      a\ - 3aoa2    ,  1 

Jvv a0 ^ 

We get now a local parametrization for X2 (substituting in (4.2)): 

a? — 3aoa2        1 
£02= V+-W + ... 

ao 2 
Pos =terms of degree  > 2 

Pi2=-v + ... 

p13 =:terms of degree  > 2 

This shows that L represents a smooth point of X2 and its embedded tangent plane 
is p03 — pis — pzs = 0. i.e. the beta-plane /3(TXI}). U 

COROLLARY 4.7. If d> 4, the congruence X2 has a singular curve consisting of 
the closure of non-parabolic inflectional lines meeting E with multiplicity at least four. 
The degree of this curve in 0(1,3) is 2d(d — 3)(3o? — 2). 

Proof The first statement is an immediate corollary of Lemma 4.6. The degree 
of the curve can be found in 17, art. 597 (page 286). An alternative way of computing 
this degree is to use the construction in the proof of 3.5. The universal quadratic form 
can be also viewed as a map q*Q*(—l) —> Q, so that its determinant (whose zeros 
correspond to the pairs of coincident points) is a section of (/\2 Q)®2(2). Intersecting 
Xi with that class and the class of a hyperplane one gets the wanted number. Of 
course, a better way would be to work directly on F(Symm4Q*). U 

REMARKS. 1) From the invariants of the congruence of bitangents Xi found in 
Props. 3.3 and 3.5, the degree of the (total) focal surface F of Xi must be d(d — 
3)(2d3 + 2d2 - 35<i+ 26). Clearly, the strict focal surface FQ is E. As already noticed 
in the proof of Prop. 3.2, the map Yi -» E has degree (d+2)(d —3), so that FQ counts 
with multiplicity (d + 2)(d — 3) in F. Therefore, F has still some extra components 
of total degree 2d(d - 3)(d3 + d2 - 18d + 12). 

2) Similarly, from the invariants of the congruence X2 of flexes to E found in 
Prop. 3.3, the degree of the total focal surface F of X2 is 2d(6d2 - 2Id + 16). The 
strict total surface is again E. Since through a general point of E there are two 
asymptotic lines and the ramification at each of them is two (see Lemma 4.6), E now 
counts with multiplicity four. Hence, the extra components of F have total degree 
2d(6d2-21d+14). 

The following propositions will explain where these extra components come from. 

PROPOSITION 4.8. Let E be a general surface E C P3 of degree d and let Xi C 
G(l,3) be the congruence of bitangents to E. Then there are two curves of Xi all of 
whose lines are entirely contained in the (total) focal surface F of Xi: The singular 
curve of Corollary 4-5 and the curve of stationary bitangents to E (i.e. bitangents 
such that the tangent plane to E at the two tangency points is the same). Moreover, 
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the degree of the ruled surface consisting of such stationary bitangents has degree 
d{d-2)(d-3)(d2+2d-4). 

Proof Let L be a bitangent tangent to E. If there is only one tangency point, by 
Lemma 4.3 then L has intersection multiplicity at least four at the contact point and, 
if this multiplicity is exactly four, then L not contained in the focal locus. But, if E 
is general, the set of lines with intersection multiplicity at least five at some point of 
E should be finite (and there would be precisely 5d(d — 4)(7d— 12) such lines). Hence 
there is no curve of focal lines whose general element is tangent at two infinitely close 
points. 

Assume now that that there are two different tangency points an, x^. Suppose 
first that L has intersection multiplicity at least three at some of the points. Then, 
by Lemma 4.3, L is a cuspidal point of Xi. Therefore, for any point x G L, the line 
counts at least twice as a line of the congruence passing through x, which means that 
L is entirely contained in the focal locus. 

So we assume that L is simply tangent at xi and X2, and let Hi, 112 be the 
respective embedded tangent planes to E. Obviously the line L (and hence also the 
points xi and X2) is contained in both Hi and 112. Then, by Lemma 4.3, the tangent 
plane to Xi (as a surface in IP5) at the point represented by L is generated by the 
pencils f^xi,!^) and n(x2,ni). Therefore, it is clear that this plane is contained in 
G(l, 3) (and is in fact a beta-plane) if and only if Hi =112. 

Finally, the degree of the ruled surface of stationary bitangents can be found in 
17, art. 613 (page 305). D 

REMARK. Observe that Xi possesses another singular curve, namely the curve 
of tritangent lines. This is a curve of degree |d(d — 3)(d - 4)(d - 5)(<i2 -f 3d - 2), from 
17, art. 599, pages 287-288. However, it is a triple nodal curve (while the curve of 
Corollary 4.5 is a cuspidal curve). This is what makes that its lines are not properly 
focal lines. 

PROPOSITION 4.9. Let E be a general surface E C F3 of degree d and let X2 be 
the congruences of flexes to E. Then there are two curves of X2 all of whose lines are 
entirely contained in the (total) focal surface F of X2: The singular curve of Corollary 
4-7 and the curve of parabolic inflectional lines to E. Moreover, the degree of the ruled 
surface of parabolic inflectional lines to E has degree 2d(d — 2) (3d — 4). 

Proof. By Lemma 4.6, a curve consisting of focal lines such that its general 
element is non-parabolic must be the singular curve of asymptotic lines with intersec- 
tion multiplicity at least four. As in the previous Proposition 4.8, that curve clearly 
consists of focal lines. 

Assume now that a general line of such a curve is parabolic. By Lemma 4.6, a 
general point of such a curve (i.e. a line having intersection multiplicity three at the 
tangency point) is a focal line. The degree of the ruled surface of asymptotic lines at 
parabolic points can be obtained as follows (of course, it can also be found in 17, art. 
576, Ex. 3, page 255): 

We observe from Lemma 4.1 that the surface Y2 is double along its intersection 
with the surface Y' (of pairs (x,L) E Y with x parabolic). Therefore, the degree of 
their set-theoretical intersection will be IP^F7^. From Prop. 3.2, an easy calculation 
shows that the wanted degree is 2d(d - 4) (3d - 4). □ 

5.    Smooth congruences of bitangents to arbitrary surfaces in P3. In 
the previous section we dealt with congruences of bitangents and flexes to smooth 



558 E. ARRONDO, M. BERTOLINI, AND C. TURRINI 

surfaces and, with the only exception of the bitangents to a smooth quartic surface, 
we always got singular congruences. However, our scope is to find smooth congruences. 
On the other hand, we have seen that all lines of a smooth congruence are bitangent 
to their focal surface, which is in general very singular. So it is natural to study 
congruences of bitangents to arbitrary surfaces in F3, hoping to then understand any 
smooth congruence. The main problem is thus how to compute the invariants of such a 
congruence. The bidegree is not difficult to find. We will give it when the singularitites 
of S and E* are not too bad: 

LEMMA 5.1. Let E c IP3 be a surface of degree d, class d*, class of the hyperplane 
section fii, ordinary nodal curve of degree 8, ordinary cuspidal curve of degree K and 
no other singular curves. Assume the same hypothesis for the singular locus of the dual 
surface holds, and let 5* be the number of bitangent planes through a point and K* the 
number of inflectional planes through a point. Then the bidegree of the congruence X of 
bitangents to E is (a,b) with a = |(/if — 3^*)4-4o?*— 5f2i andb = ^(/^ — 3K)+4d—5/ii. 

Proof The class b is the number of lines of X in a general plane of F3, i.e. the 
number of bitangents of a general hyperplane section of E. This hyperplane section 
has degree d, class /ii, S nodes and K cusps. Then, from Pliicker formulas (see for 
instance 20, V§8.2) we get that d = ^i(/ii — 1) — 2b — 3z, K = 3/J,I(/J,I — 2) — 66 — &i 
(where i is the number of flexes of the curve). From this we immediately get the 
wanted value for b. The value of a is obtained by duality. D 

We start now a series of examples to try to illustrate what the general situation 
should be. 

EXAMPLE 5.2. The hypothesis on the dual of E is really needed. For instance, 
consider the tangent developable of a twisted cubic C. This is a a quartic surface E 
whose singular locus is C, which appears as a cuspidal locus. Hence, d — 4, fix = 3 
(its hyperplane section is a rational quartic with three cusps, so its dual is a nodal 
cubic), (5 = 0 and K = 3. Then we get b = 1 (in fact, as we remarked, the dual of 
the hyperplane section of E has one node). But /s* = 5* = d* — 0, since E* is a 
curve. Then the formula for a is not valid (fortunately, because the corresponding 
value would be a — — — , negative and not an integer!). The correct value can be 
computed as follows. 

Let L be a bitangent line with tangency points xi and X2. Then obviously L 
is the intersection of the tangent planes T^E and TX2E. But the converse is also 
true. Take two planes Hi, n2 tangent to E. Since E is developable, they are tangent 
respectively along lines Li, L2. Let L be the intersection of Hi and n2. Then L meets 
Li in a point xi and meets L2 in a point X2. It is now clear that L is a bitangent 
line with contact points xi and X2> With this description, the dual congruence will 
be the congruence of bisecants to the dual E* (which is a twisted cubic). This dual 
congruence has bidegree (1,3), so that our congruence has bidegree (3,1). Its total 
focal surface has degree four (and a cuspidal curve), so it is precisely E (contrary to 
the situation for a smooth surface in F3, as we have seen in Prop. 4.8). Hence the 
congruence is the set of bitangents to its focal surface (total or strict). This is not 
going to be however the situation for a "general" congruence. 

EXAMPLE 5.3. The above example shows that the dual of the congruence of 
bisecants to a twisted cubic behaves nicely with respect to is focal surface. So it is 
natural to see what happens to the congruence X dual of the other smooth congruence 
of bisecants, namely the bisecants to an elliptic quartic C.   Then X has bidegree 
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(a, b) = (6,2) and sectional genus g = 3. Hence, the total focal surface has degree 16. 
On the other hand, reasoning as in the previous example, X will be the congruence 
of bitangents to the dual C*, which is a tangent developable of degree 8 and cuspidal 
curve of degree 12 (corresponding to the osculating planes of C*). Since the hyperplane 
section has genus one, it follows easily that S has a nodal curve of degree 5 = 8 and 
hence /ii = 4. What happens now is that the total focal surface is twice S = C* (and 
therefore no formula for the invariants of the focal surface is valid anymore). Indeed, 
given a general point x G S, there are two bitangents to S with tangency points 
at x and another point. Summing up, the congruence of bitangents to the (strict) 
focal surface coincide with the congruence X itself, but the (total) focal surface of the 
congruence is not S as a scheme, but only as a set. 

EXAMPLE 5.4. We have observed (Prop. 3.5 or Corollary 4.5) that the only 
smooth congruence of bitangents to a smooth surface in P3 is the congruence of bide- 
gree (12,28) of bitangents to a smooth quartic S C F3. By duality, we also have a 
smooth congruence X of bidegree (28,12) consisting of the bitangents to the dual E*. 
This is a surface in F3 of degree 36, a nodal curve of degree 480 and cuspidal curve of 
degree 96. As in the dual case, this counts six times in the total focal surface (since 
through a general point of it there pass six lines that are tangent at that point and 
another one). But the total focal surface has degree 216, so that there are no other 
components. Hence this congruence verifies the same property with respect to the 
focal surface as the one in the previous example. 

EXAMPLE 5.5. Consider in G(l,3) the congruence X obtained in Example 1.13, 
which has bidegree (2,2) and sectional genus g = 1. It is then a very classical result 
that the focal surface is the so-called Kummer's surface, a quartic surface with sixteen 
nodes, corresponding to the sixteen fundamental points of X (see for Example 8 
for a thorough study of this surface). However, the congruence of bisecants to the 
Kummer's surface (which should have bidegree (12, 28)) splits as sixteen beta-planes 
(corresponding to the singular planes) and six congruences of bidegree (2,2) as above. 

We conjecture that the general situation should be like the above example (except 
for the existence of fundamental points). In other words, a "general congruence" 
should have an irreducible reduced focal surface (i.e. the total focal surface coincides 
with the strict focal surface), and the congruence of bitangents to the focal surface 
splits as the original congruence plus another congruence (in general irreducible). 
Observe that the fact that the congruence of bitangents to F splits implies that one 
does not need to expect to have excedentary components for the focal surface (as it 
should happen for the congruence of all bitangents to a surface, as remarked in Prop. 
4.8). Now we explicitly state our conjectures: 

CONJECTURE 5.6. If the total focal surface of a smooth congruence X is not 
irreducible, then either X is the congruence of secant lines to a curve in F3 (hence 
necessarily the one in Example 2.4), or a congruence of bitangents to a surface in F3 

or a congruence of flexes to a surface in F3. 

CONJECTURE 5.7. // the total focal surface of a smooth congruence X is not 
reduced, the either X is the congruence of bitangents to a surface in F3 or a congruence 
of flexes to a surface in F3. 

These conjectures can be strengthen with the three following ones: 
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CONJECTURE 5.8. If the congruence of bitangents to a surface E C F3 is smooth, 
then either S is a smooth quartic surface, or its dual (see Example 5.4) or the tangent 
developable of a twisted cubic (see Example 5.2) or the one in Example 5.3. 

CONJECTURE 5.9. There is no smooth congruence of flexes to any surface in P3. 
More generally, there are no congruences of the third class of Goldstein classification. 

CONJECTURE 5.10. Let X be a smooth congruence and let FQ be its strict focal 
surface. Then X coincides with the congruence of bitangents to FQ only in the case of 
Examples 5.2, 5.3, 5.4 or its dual (12,28) of bitangents to a smooth quartic surface. 
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