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SCHRODINGER FLOW FOR MAPS INTO KAHLER MANIFOLDS* 

PETER Y. H. PANGt, HONG-YU WANG*, AND YOU-DE WANG§ 

Abstract. In this paper, we show that there exists a global Schrodinger flow for a map from 
the unit circle S1 into a Kahler manifold with constant holomorphic sectional curvature. Moreover, 
the Schrodinger flow obeys a conservative law. We also discuss the Schrodinger flow from a compact 
Riemann surface into a compact Kahler manifold and prove that the Cauchy problem admits a 
smooth local solution. 

1. Introduction. Recently, in [DW], Ding and Wang considered Schrodinger 
flows for maps into symplectic manifolds. Let (iV, a;, J, h) (sometimes denoted just by 
iV, (N, J) or (iV, J, h)) be a symplectic manifold equipped with a symplectic form u, 
an almost complex structure J, and the Riemannian metric fo(v) = ^{'^J')' Then, 
given a map UQ from a Riemannian manifold (M,g) into (N, J), the Schrodinger flow 
u(',t) : M —> N for UQ is defined by the Cauchy problem 

(i.i) ( S = J(u)r(u)' 

where r(u) is the tension field of u. In local coordinates, 

duP Bui 

where A is the Laplace-Beltrami operator on M with respect to the metric g and r^7 

are the Christoffel symbols of the target manifold iV. 
For the case where M = S1 and (iV, J, h) is a Kahler manifold, Ding and Wang 

[DW] discussed existence and uniqueness for (1.1). They proved that it admits a 
unique local smooth solution if UQ is smooth. Further, if (iV, J, h) is a compact 
Kahler manifold with constant sectional curvature K, the solution is in fact global 
and smooth. This follows from the conservative law 

it{Jsi\T(u)\US-?[fsi\Vu\US} = 0. 
dt 

We point out that if AT is a compact Kahler manifold with constant sectional curvature, 
then it is either a closed surface or a flat complex torus of higher dimension. 

We recall that the Heisenberg spin chain system (also called ferromagnetic spin 
chain system) is given by 

du 
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where u takes values in S2 C R3 and x denotes the cross product in R3. Zhou, Guo 
and Tan in [ZGT] showed that for smooth Cauchy data there exists a unique smooth 
solution for the Cauchy problem of the Heisenberg spin chain system from 51 into 
S2. In [W] and [Wl] Wang proved that there is a global weak solution for the Cauchy 
problem of the Heisenberg spin chain system (with or without external magnetic field) 
from any closed manifold into S2. We note that 

(i) J(u) = ux : TUS
2 —> TUS

2 is the standard complex structure on 52, and 
(ii) the tension field of the map u into S2 is given by r(u) = Au + |Vu\2u. 

Hence, 

u x Au — J(U)T(U), 

i.e., the Heisenberg spin chain system is in fact the Schrodinger flow into S2. The 
equivalence of the Heisenberg spin chain system to the Schrodinger flow can also be 
seen by applying the stereographic projection S2 —> C U {oo}. Using the above 
transformation to define z as the complex-valued representation for u, the Heisenberg 
spin chain system can be written as 

a*=,(A*-iTliF(v^ 
Also recall the nonlinear Schrodinger equation 

^+fe + 2K#|V = 0, 

where K ^ 0 is a constant. This equation, which has many applications such as 
nonlinear optics, has been widely studied, see e.g. [ZS]. In particular, the lattice non- 
linear Schrodinger equations with K = ±1 can be written respectively as Hamiltonian 
equations on S2 and the Lobachevskian plane, and thus represent respectively SU{2) 
and SU(1,1) magnetic models, see [FT] for details. Zakharov and Takhtajan in [ZT] 
and Lakshmanan in [L] pointed out that the Heisenberg spin chain system is gauge 
equivalent to the nonlinear Schrodinger equation with K = 1, thus establishing a deep 
relation between these two integrable systems. 

Recently, Chang, Shatah and Uhlenbeck [CSU] employed a generalized Hasimoto 
transformation to show that the nonlinear Schrodinger equations with K = ±1 are 
equivalent to the Schrodinger flows for maps from JR

1
 into S2 and H2 respectively. 

Moreover, they considered the following Cauchy problem for the Schodinger flow into 
a compact Riemannian surface: 

du 
i   -^ = J(U)T(U),      xeRm,   m = l,2; 

u(x,0) = wo (^)- 

By the Hasimoto transformation they showed that for m = 1 and smooth Cauchy data 
uo(x), the equation (1.2) admits a unique global smooth solution. For m — 2, they 
considered radially symmetric maps, and equivariant maps when the target surface has 
S1 symmetry, and proved global existence and uniqueness in the small energy case 
(see [CSU] for details). Independently, Ding in [D] pointed out that the nonlinear 
Schrodinger equation with /c = -1 is gauge equivalent to the the Schrodinger flow 
from R1 into H2. He approached that problem by an appropriate choice of Lax 
pair for the the nonlinear Schrodinger flow of maps from R1 into H2 according to 
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the dynamical behavior of an auxiliary linear problem for the nonlinear Schrodinger 
equation with K — -1 (see [D] for details). 

If (A7", J, h) is a complete Kahler manifold, it is well-known that we can always 
choose local complex coordinates in N so that the operation of J is just multiplication 
by i = >/—T. Then the Schrodinger flow from (M, g) into (iV, J, h) with small Cauchy 
data can be written as 

du 
— = i[Au + A(u,u)(du,du)], 
oz 
w(-,0) =uo :M —>Cn. 

Such Cauchy problems have been studied by Kenig et al in [KPV] and Hayashi and 
Hirata in [HH], when a special form of the nonlinear term A is assumed. For M = 
Rm and UQ having small size restriction, they proved short time and even global 
existence and uniqueness using Fourier transform and methods of harmonic analysis. 
More recently, in [KPV1] Kenig, Ponce and Vega considered the Cauchy problem for 
nonlinear Schrodinger equation of the form 

!dtu = iCu + P{u, Vxu,u, Vxu),     t G R,   x € Rn 

u{',0) =uo :Rn —>C, 

where u = u(x,t) is a complex valued function, X7xu = (dXlu, • • • ,dXnu), £ is a 
non-degenerate constant-coefflcient second order operator 

£ = ZX-ZX'     for some fce{l,---,n}, 
j<k j>k 

and P : C2n+2 —> C is a polynomial having no constant or linear terms, i.e., 

P(s)=P(*l,---,*2n+2)=       Y,      a"Za>        l°>2- 
lo<\a\<d 

They established that the above Cauchy problem is locally well-posed in appropriate 
Sobolev spaces without any size restriction on the data in any dimension (see [KPV1] 
and reference therein for more details). We note that the case C = A had been 
considered previously by Chihara [Ch], and refer the readers to [B] and [Cz] for the 
semilinear case P = P{u,u). In particular, Bourgain considered the initial value 
problem for the periodic nonlinear Schrodinger equation over Tn = Rn /Z71 as follows 

idtu + Au 4- u\u\v-2 = 0   (p > 3) 

with initial data 

u(x,G) = <j>{x). 

In [B] Bourgain obtained local and global results on the well-posedness of the above 
initial value problem in one and several space dimensions for initial data 0 G Ha(Tn) 
for essentially optimal a. 

In this paper, we consider the Schodinger flow from 51 into a complete Kahler 
manifold with constant holomorphic sectional curvature. Examples of such manifolds 
include complex projective space CPn with the Fubini-Study metric, and complex hy- 
perbolic space CHn with the Bergmann metric and its compact quotients by isometric 
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cocompact lattice groups. We will derive a new conservative law for the solutions of 
the Cauchy problem. 

THEOREM 1. Let M = S1 and (iV, J, h) be a compact Kdhler manifold with con- 
stant holomorphic sectional curvature K. If u is a smooth solution of the Schrodinger 
flow from S1 into N, then u obeys the following conservative law: 

iij^US-^j^US}^ 
dt  js 

Using the above conservative law, we can prove the following two theorems: 

THEOREM 2. Let (iV, J, h) be a compact Kdhler manifold with constant holomor- 
phic sectional curvature and let UQ : S1 —> N be a smooth map. Then, the Cauchy 
problem for the Schrodinger flow from S1 into N with the Cauchy data UQ admits a 
unique global smooth solution. 

THEOREM 3. The Cauchy problem for the Schrodinger flow from S1 into complex 
hyperbolic space CHn (with the Bergmann metric) with smooth Cauchy data UQ admits 
a unique global smooth solution. 

Finally, in this paper, we consider 2-dimensional Schrodinger flows, i.e., where M 
is a Riemann surface. We have the following local existence and uniqueness result: 

THEOREM 4. Let M be a closed Riemann surface and N a compact Kdhler man- 
ifold with nonpositive sectional curvature. Let UQ be a smooth map from M into N. 
Then, the Cauchy problem for the Schrodinger flow from M into N with Cauchy data 
UQ admits a unique local smooth solution. 

The key step for proving the local existence and uniqueness is to establish a re- 
lation between the Sobolev norms of du and the tension field T(U), and then adopt 
a Landau-Lifshitz type equation to approximate the Schrodinger flow equation. To 
contrast our results with those obtained in [KPV1], we remark that the term contain- 
ing the first order derivatives in the Schrodinger flow equation cannot be expressed 
as a polynomial in general. For instance, the Schrodinger flow into the Poincare disk, 
which is equivalent to the anisotropic ferromagnetic system, is given by the equation 

= i{Az + 2£~oM2^(V2)2}, 

where z(x,t) E {z G C : \z\ < 1}. Thus, the Fourier analysis methods of [KPV1] do 
not seem to be applicable. We also note that our method can be employed to prove 
the local existence of the inhomogeneous Schrodinger flow from a compact manifold 
into a compact Kahler manifold. This has been treated in a separate paper [PWW]. 

This paper is organized as follows: In Section 2, we recall some facts and notations 
in differential geometry, and establish some relations on the Sobolev norms. In Section 
3, we prove the conservative law (Theorem 1) and use it to prove global existence and 
uniqueness (Theorems 2 and 3). Section 4 is devoted to proving Theorem 4. 

A note on notation. We shall use the symbol C generically to denote certain 
scalar-valued terms in the estimates to be derived in the remainder of the paper. We 
will, however, normally specify the objects/quantities on which these terms depend, by 
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means of arguments to C. For example, the symbol C(M, iV) shall denote a constant 
depending only on the manifolds M and AT, whereas the symbol C{\\T(U)\\L2,E(U)) 

shall denote a smooth scalar-valued function depending on the quantities ||r(u)||L2 
and E(u). Thus, the latter C is not necessarily a constant but may vary with u. Also, 
unless otherwise specified, C shall be assumed to depend on its arguments smoothly. 

Acknowledgement.   We would like to thank Wei-Yue Ding for his valuable 
comments and suggestions, and especially for his interest in the conservative law. 

2.  Some Geometric and Analytic Preliminaries. Let TT : E —> M be a 
Riemannian vector bundle over a Riemannian manifold M. Then, for p — 1,2, • • •, 
dim(M), we have the bundles APT*M 0 E —> M over M whose smooth sections 
constitute the sets r(ApT*M 0 E). On APT*M 0 E, we have the induced metric 

(si, S2> =       ^2      (si(e*!, • • •, eip), 82(6^, • • •, eip))E, 
ii<i2<'--<ip 

where {ej} is a local orthonormal frame of TM. This induces an inner product on 
r(ApT*M 0 E) as follows: 

(S1,S2) =   /    (S1,S2) 
JM 

-dM. 
M 

The space L2(M, Apr*M 0 E) is the completion of r(ApT*M 0 E) with respect to 
the above inner product (•,•). Analogously, we may also define the Sobolev spaces 
Hk>r(M,ApT*M 0 E) (see Appendix in [DK] for details) as follows: Let V be the 
covariant differential induced by the metric on APT*M 0 E, then the bundle-valued 
Sobolev spaces Hk'r(M,ApT*M®E) are defined by taking completions with respect 
to the norms 

lslkr 

where 

IV^I = (V---V5,V---V$)3. 

i times     i times 

In the case where M is a compact Riemannian manifold, we recall two standard results 
on Sobolev spaces, namely, the Rellich theorem and Sobolev imbedding theorem. Also, 
in the rest of the paper, we shall use the short-hand notation V; for Vei where {e*} 
is a local orthonormal frame of TM. 

On the other hand, it is well-known that a compact Riemannian manifold iV 
can be isometrically embedded into a Euclidean space Rd for some positive integer 
d > dim(N). Hence, one can define the Sobolev spaces WkiP(M,N) = {g : g e 
Wk'p(M,Rd)ig(x) G iV for a.e. x G M}. These spaces are sometimes called Sobolev 
spaces of maps. Our main task in this section is to establish some relations between 
the norms of the Sobolev spaces of maps and the bundle-valued Sobolev spaces. 

In terms of the covariant exterior differential operator d : T(APT*M 0 E) —)■ 
r(AP+1T*M 0 E) defined by 

d5(Xo,---,Xp) = (-l)fc(Vxll«)(^o,---,Xifc,.-.,Xp), 
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and its formal adjoint 5 : r(A*T*M 0 E) —> T^^T^M 0 E) defined by 

8s{Xi1'-- ,Xp_i) = -(Vis)(e;,Xi,---,Xp_i), 

where XQ, XI, • • •, Xp G r(TM), the Hodge-Laplace operator is given by 

Atf = dJ + (Jd. 

It is well-known that A# is a self-adjoint, positive semi-definite elliptic operator, and 
the following Weitzenbock formula holds: 

PROPOSITION 2.1. For any s e T(h?T*M ® £7), 

A//5 = -As + 5, 

w/iere A = — V*V is the Laplace-Beltrami operator and 

S(X1,---,Xp) = (-l)k(R(ei,Xk)s)(ei,X1,---,Xk,---,Xp). 

Here, Ri'-,-) is the curvature operator associated to the induced connection on the 
vector bundle APT*M 0 E. 

Let / : M —> N be a smooth map and regard df € r(T*M ® f*TN). We note 
that 

d(d/)(X1,X2)    = (Vx.d/)^) - (V^d/XXx) 

P-1) =^iX2(/)-^ax1(/) 

where Ax1X2{f) 'IS ^e second fundamental form of / which is symmetric.   On the 
other hand, we have (see [EL]) 

S(df) = -(Vid/)(ei) = -tracegVdu = -r(/). 

Hence, r(/) = 0 is equivalent to the harmonicity of the r(/*TyV)-valued 1-form df. 
In other words, / is a harmonic map if and only if Ajf(df) = 0. 

The energy of the map / is defined by 

EU) = \I Nf\2dM. 
M 

To describe the tension field of /, one usually adopts local frames on M and AT. Let 
{ei} be a local orthonormal frame on M and {e*} its dual frame. Let {ea} be a local 
orthonormal frame on iV. Then, with respect to the above frames, df — /f e* 0 ea, 
and r(/) = Vifo where fo = f?eQ = f*ei. 

From the Weitzenbock formula we can easily derive: 

PROPOSITION 2.2. Let M be a closed Riemannian manifold and N a complete 
Riemannian manifold with nonpositive sectional curvature. For a smooth map u : 
M —> N, there exists a constant C{M) such that 

[  \Vdu\2dM<  I  \T{u)\2dM + C(M)E(u). 
JM JM 
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In particular, if M has nonnegative Ricci curvature, then 

[  \Wdu\2dM< [  |r(^)|2dM. 
JM J M 

Proof. We note that 

S(X)    =-(R(euX)df)ei 

= -lir"(/*ei,/,X)/*ei + URicM(X), ^   '   ' rsNff 0.   f   v\-F 0.\   f   r>A„M 

where KN(', •) is the sectional curvature operator of AT, RicM{•) is the Ricci curvature 
operator of M, and /* is the tangent map from TM to TAT. Thus, by Proposition 2.1 
with p = 1 and s = df, 

Ae(/)    =<A(#),d/> + |A(/)|2 

= -(AH(df),df} + \Vdf\2 + &&<*&), M 

Since the sectional curvature of iV is nonpositive, i.e., (KN(f*ei, f*ej)f*ei, f*ej) < 0, 
we get 

(2.3) Ae(/) > -(AH(d/),d/> + |Vd/|2 + (URicM{ei), f^). 

The result now follows by integrating the two sides of (2.3) over M and noting 5{du) = 
-T{U). 

In the following two results, (A7", h) is regarded as an isometrically embedded 
submanifold in the Euclidean space Rd. For convenience, we denote || • ||c0(M,JR

d) and 
II * \\wk'P{M,Rd) by || • ||c0 and || • \\wk'-p respectively. A word of caution on notations: 
we use V to denote both the covariant derivative induced by the Riemannian metric 
on M and the covariant differential on (g)pT*M 0 u*TN induced by the Riemannian 
metrics on M and A7", with the distinction given by the context. In the former case, 
for any smooth map u : M —> N, its tangent map du is equal to Vw; both notations 
will be used. 

PROPOSITION 2.3. Let M be a closed Riemann surface and N a compact Rieman- 
nian manifold with nonpositive sectional curvature. For a smooth map u : M —> N, 
there exists a constant C(M, N) such that 

\\du\\W2., < C(M,N){(E(u) + v^M + l)(||Vr(u)||Ja + ||Vr(u)||L2) + C(E(u))}. 

In particular, if M has nonnegative Ricci curvature, then 

\\du\\w^ < C(M,N){(E(u) + v^W)l|Vr(«)|||2 + \\VT(U)\\L, + C(E(u))}. 

Proof. We first discuss the case where M has nonnegative Ricci curvature. From 
the identity 

/   (T(u),T(u))dM = -      {^iT{u),u^ei)dM, 
JM JM 
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we get 

i _ 

(2.4) / (r(M),r(ti))dM < ( f  |Vr(u)|2 dM)    ( [  \du\2 dM) 
JM \JM J   \JM ) 

As r(^) is a semilinear elliptic operator with a square term in the first order deriva- 
tives, by standard elliptic theory, for any p > 1, we have 

(2.5) Hdulki- < C(M,N){\\T{U)\\LV + ||du|||2p}. 

By the Kato inequality and Sobolev imbedding theorem, we have 

||r(«)||L,    <C(M){||V|r(u)|||La + ||r(u)||L2} 
1 ' ) <C(M){||VT(«)||i2 + ||r(«)|U2} 

and 

||d«||iai,    <C(M){||V|d«|||ia + ||dU||i2} 
l'J <C(M){||Vdtt||i2 + ||d«||ia}. 

Combining (2.4)-(2.7), and using Proposition 2.2, we obtain 

IHI^.P    < C(M,iV){||Vr(U)||L2 + ||r(u)||La + ||Vd«||22 + ||^|||2} 

(2.8) < C(M, JV){||Vr(u)||L2 + ||r(U)||2L2 + ||T(„)||L2 + ||du||i2} 

< C(M,7V){(1 + ||dU|U3)l|Vr(«)||L2 + ||r(«)||L8 + ||dU|||2}. 

Hence, for p > 2, the last inequality in (2.8) and the Sobolev imbedding theorem for 
functions imply that 

(2.9) ||du||co < C(M, N){(1 + ||du|Ua)l|Vr(«)|Ua + ||r(«)||La + ||d«|||2}. 

From (2.9) and (2.4) we deduce that 

lldullco    < C(M, N){(1 + ||dtt||ia)||Vr(u)||ia + ||d«|Ua + ||du||£2} 
('    ' =C(M,N){(1 + ^E^))\\VT(U)\\L,+V^U) + E(U)}. 

Similarly, by standard elliptic regularity theory, 

||du||w».2    <^(M,iV){||Vr(u)||L2 + ||du||L2 + [/' \Vdu\2\du\2dM]i}, 
JM 

< C(M,N){\\VT(U)\\L2 + \\du\\L2 + ||Vdu||L2||du||co} 

< C(M,iNr){||Vr(«)||La + ||du||La + ||T(«)||La||du||co}. 

Prom (2.4), (2.10) and the preceding inequality we conclude that 

(2.11) \\du\\W2,2 < C(M,N){(E(u) + v^M)l|Vr(«)||J2 + ||Vr(«)||L2 + C(E(u))}. 

For the general case, a modification of the above arguments yields 

\\du\\W2,2 <    C(M,N){(E(u) + y/E{uj)\\VT(v>"* L* 

+(E(u) + s/W) + 1)||VT(U)||L2 + C(E(u))}, 
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from which the desired inequality follows. 

PROPOSITION 2.4.   With the same assumptions as in Proposition 2.3, for k > 1, 
there exist constants C{M, N) such that 

lldtill^+i.2 < C(M, A0||A*T(u)|Ua + C2fc+1(||VAfc-1r(U)||L2, • • •, ||VT(«)||L3, E{U)), 

and 

\\du\\W2k+.,2<C{M,N)\\V\kT{u)\\L. +C2fc+2(||Afcr(«)ll^, •••,||Vr(u)||L3, £;(«)). 

Proof. Denoting the second fundamental form of the isometric embedding N C Rd 

by A%„. the tension field can be written as 

Without loss of generality, we may assume that M is a flat torus, i.e., M = Tm. 
We proceed by induction.   For k = 1, with respect to the natural local frame 

By a direct computation, we have 

(2.12) (V4r(«))a = ^K(«)} + ^^(^{^(ti)}, 

and 

8 ~        dv*    ~ 
(2.13) (M*))*    = fel{(Vir(u)r} + —^.(^{(V^tijr} 

= A2wd 4- Pi (dw, Vdu) + P2 (dw) * V2du, 

where P^ are polynomials with matrix (or vector) values and 

P2{du) * V2du- Pi1t2t3(dw)Vi1 Vi2Vi3u 

for ii,22,^3  €  {1,2} (here we have suppressed reference to the a-th component). 
Applying the Sobolev imbedding theorem and Proposition 2.3 to (2.13), we see that 

\\Pi(dti, Vdu)\\L, < C(||VT(u)||La>E(u)), 

and 

||P2(d^)*V2H|L2<C(||Vr(u)||L2,E(u)). 

Hence, by standard elliptic theory, 

(2.14) \\du\\w3a <C(M,N)\\AT(U)\\L2 +C(\\VT(U)\\L2,E(U)). 
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When k > 1, with respect to the natural local frame {^Ar}, 

AkT(u) = (AkT(u))&-^E. 

Similarly to (2.12), we have 

(2.15) 
= A^1 p, + Pl(du, Vdu,■■■, V2kdu) + P^du) * V2k+1du, 

where 

P^du) * V2*+1dti = P'hia...iak+3mVhVi» ■ ■ ■ Vi2fc+1^+2 

for ii, 22, • • •, i2k+2 € {1,2}. We leave the details of the induction step to the reader. 

We end the section with the following proposition concerning the interpolation 
inequality (see [Au]): 

PROPOSITION 2.5. Let E —> M be a Riemannian vector bundle over a closed 
Riemannian manifold with dimM = m. For s G r(.E), there exists a constant C(M), 
which does not depend on E, such that 

(2.16) l|V*|Up<C(M)||V3||Srl.,|H|i70, 

where 

- = -+a +  1-a)-, 
p      m \r      mj q 

for all a in the interval | < a < 1 for which p is nonnegative. 

Proof We begin by establishing the interpolation inequality 

(2.17) HVslli, <(V^+|p- 2|)|M|L,||V2*||L,) 

where i = ^ + r • First, suppose p > 2. Then, for s € TIE), we have 

VidVsl"-2^, Vi*)) - |V5|P + |Vsr2(s, As) 
(2.18) +(p - 2)|VSp-4(5, ViaXViVj-a, Vjs). 

Integrating the above identity over M, we get 

f  - /   (s,As)dM, iip = 2, 

\\Vs\\pLP = 1   - [ (s,As)\Vs\p-2dM 
JM 

+{2-p)f \Vs\lp-A(s,Vis)(ViVjs,Vjs)dM,       ifp>2. 
v JM 

Noting that |As|2 < ra|V2s|2 and \(s, Vi5)(ViV>7-5, V^)! < |V2s||V5|2|5|, we get 

l|V^P <(>/m+|p-2|) /  \V2s\\Vsr2\s\dM. 
JM 
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As- = - + ^, (2.17) now follows from the Holder inequality. 

When 1 < p < 2, the proof is similar, but a little more delicate (see [Au]). 
To complete the proof of Proposition 2.5, we need to discuss the the following 

two cases: 
Case 1: r < m. The desired inequality for a = 1 is just the Sobolev imbedding 

theorem, while for a = i, it reduces to (2.17). Hence we can deduce the required 
inequality for | < a < 1. Indeed, by the Holder inequality, for p G [r,g], 

ML* < IMIMMliT0, 

where a(± - l) = l - l. It follows that for ± = l - — v r        q'        p        q p r        m 

l|VS||iP<||VS||^||VS||^, 

where ~ = z/- + (1 — v)^. On the other hand, applying (2.17) we have 

\\Vs\\lP<C(m,p)\\s\\L,\\V2s\\Lr, 

where - = - + ^. Hence, combining the last two inequalities and using the Sobolev 
imbedding theorem we obtain that 

l|VS||LP<C(m)p)|Hli1r)||Va||W 

where a(I - i - I) = I - -L - I. 

Case 2: r > m. Applying the interpolation inequality to the function |Vs| we 
obtain that 

||Vs||L, < C(M){||V|VS|||1. + ||Vs||M^||Vs||i76, 

where ^=:^+6(i-^-i)>0 and 0 < b < 1. By Kato inequality, it follows that 

(2.19) l|VS|Up<C7(M)||VS||W||Vs||i;6. 

By using (2.17) again, we have 

(2.20) l|VS||L<C(M,p)||s|M|V2
5|U,, 

where | = | + ^. Substituting (2.20) into (2.19), it follows that by a direct compu- 
tation that 

(2.21) l|VS|UP<C(M)||VS||V,||S||[;a) 

where 

11 f1       2\       /, x1 

p      m \r     mj q 

This is the desired result. 
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3. One-Dimensional Global Schrodinger Flow. In this section we discuss 
the global existence of smooth solutions for the Cauchy problem of the Schrodinger 
flow into a Kahler manifold with constant holomorphic sectional curvature. We shall 
refer to the following local existence result about one-dimensional Schrodinger flows 
from [DW]. 

PROPOSITION 3.1. [DW] IfM^S1 and (N, J, h) is a complete Kahler manifold, 
then the Cauchy problem (LI) of the Schrodinger flow for maps from S1 into N 
with Cauchy data UQ G C00(S1,N) has a unique smooth solution on S1 x [0,T), 
for some T G (0, oo]. Furthermore, the energy is conserved along the solution, i.e., 
E{u(x,t)) = E{uo{x)). 

As remarked earlier, the conservative law (Theorem 1) is essential in proving 
global existence. We now give the proof of Theorem 1 which will then be exploited 
to prove Theorems 2 and 3. 

Proof of Theorem 1. For ease of notation, we denote du/dt and du/dx by u 
and u' respectively, and write Vw ,d_^ = V* and VM ,^_^ = Vx. Since u satisfies 
u = J{U)T(U), and VJ = 0 as (iV, J, K) is a Kahler manifold, using the formula (see 
[H]) V11\/1 xv! — V^Va;^ 4- R(v!)U)u'i where i2(-, •)• denotes the Riemannian curvature 
tensor of N, we have 

= f (w,Vt(J(u)Vcc^^,))^ 
(3.1) Jsl 

= f (u,Vt(J(u))Vxu
f)dS+ f (u,J(u)VtVxu'))dS 

Js1 Js1 

= /   (Va-u, J(u)Vxu) dS + /   {u,J(u)R{u\u)u')dS. 
Js1 Js1 

The first integral on the right hand side of the above equality vanishes since 

(Vxu, J(u)Vxu)    - h(Vxu, J(u)Vxu) 

= UJ(VXU:J
2
(U)VXU) 

= -uj(Vxii, Vxu)  = 0. 

As (iV, J, h) has constant holomorphic sectional curvature K, for any tangent vectors 
X,y, Z and W, the following identity holds true (see [KN]): 

(3.2) R(X, Y, Z, W) =^{h(X, Z)h{Y, W) - h(X, W)h(Y1 Z) + h{X, JZ)h{Y, JW) 

-h(X, JW)h(Y: JZ) + 2h{X1 JY)h(Z, JW)}. 

Since the complex structure J commutes with the Riemannian curvature operator 

R(X,Y)oJ = JoR(X,Y), 
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it follows from (3.2) that 

(u,J(u)R(u',u)u')    =    (R{u',u)Ju',u) 

(3.3) =    ^{-(u'^faJu') - (u', Ju){u, JV) 

+2(u/,Ju)(Ju,,Jw)} 

=   K{u',u){u\Ju). 

Thus, 

(3.4) \^f |r(ti)|2d5= f K(u',u)(u',Ju)dS. 
2dtJSi JSi 

On the other hand, by [DW], we know that 

-/ \u'\4dS   = f lu'fiuWtu^dS 
1 d_ 

\u'\2(u',Vxu)dS 
/,' 

(3.5) =-/ {|w/|2<Va.M/,Ti> + 2<w/,ii)(w,,VxM,)}d5 
Js1 

= - I {K|2(r(ix),Jr(W))+2«^)(ix,,r(u))}d5 

-2/ {u',u)(u',Ju)dS. 

Combining (3.4) and (3.5), we conclude that 

This completes the proof of Theorem 1. 

Proof of Theorem 2. With Proposition 3.1 at hand, it remains to extend the local 
solution into a global one. For this, the proof proceeds similarly as in [DW] with 
Theorem 1 replacing Proposition 3.2 in [DW]. The issue of uniqueness has also been 
addressed in [DW]. 

Proof of Theorem 3.   By Proposition 3.1, a maximal local smooth solution u 
defined on S1 x [0,Tmax) exists for the Cauchy problem of the Schrodinger flow. 

To prove global existence, we consider the quantity 

= sup{ / 
ses1 Jo 

du 
~di 

dt}. 

First, we note that CHn is a Hermitian symmetric manifold and thus its curvature 
tensor is parallel, i.e., Vi? = 0. Then, by the integrability of the complex structure 
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J, we have 

V* VXT(U)    =    VxVtr(u) + R(u', U)T(U) 

=   Vx(VxVtu' + R(u',u)u')+R{u',u)T(u) 
=    Vx\7xVxu + R(\7xu

f, u)uf + R(u', Vxu)u' 
+R{u',u)Vxu' + R{U',U)T(U) 

=    VxVxVxu + R(T(U), JT(U))U' + R(u\ JVXT{U))U' 

+2R(U',U)T(U). 

Thus, 

ljjsi(VxT(u),VxT(u))dS 

=       [   {VxT{u),VtVxT(u))dS 

= ■    [ (VxT(u),VxVxVxJ(u)T(u))dS 

+ 1   (R(T(u),jT(u))u',VxT(u))dS 

+ /   (#« JVXT(U))U' + ZRiu', U)T(U), VXT(U)) dS 

<    Co/ {Kllr^plV.r^l + KPlV.rHI2}^, 
Js1 

where Co is a constant which is independent of u. By Kato inequality, 

f   IVslu'lfdS^  /   |Vau
,|2d5= /"   |r(w)|2dS, 

Js1 Js1 Js1 

(3.7) 

and 

is1 

By the Sobolev imbedding theorem, 

f   \Vx\T(u)\\2dS< [   \VxT(u)\2dS. 
Js1 Js1 

(3.8) Hu'l&o < CiS1^ f   |V.KH2 d5 + £(u)} 

and 

(3.9) ||r(«)||^o<C(51){/   \Vx\T(u)\\2dS+ f  |r(u)|2d5}. 

Combining the last four inequalities, we get 

(3.10) IKI^O < C(51){ f   \T{U)\
2
 dS + E(u)} 

and 

(3.11) IkHl^o <C(51){/   \VxT(u)\2dS+ [   \T(u)\2dS}. 
Js1 Js1 
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Substituting (3.10) and (3.11) into the last term on the right hand side of (3.7), in 
view of the fact E(u(t)) = E(uo) and using the Holder inequality, we have 

/ {KI|T(U)|
2
|VXT(U)| + luf |VZT(U)|

2
} dS 

< ll^)llco|Kllco||r(^)||L2||Vxr(^)|U2 + \\u%0 [ \X7xT(u)\2dS 
Js1 

(3.12) <    CiS'mMu^^u'llco + lluTco) f \VxT(u)\2dS + \\r(u)\\U\uf\\co} 

< C^mrMWl, [ |Vxr(^)|2d5+||r(W)||i24-V^MII^)||i2} 

< C(S\\\T(UO)\\L*AM\\L*){ [ |Var(ii)|2dS + l}. 

Here we have used the inequality 

/   |r(n)|2^< /   \T(uo)\2dS+ [   K|4d5,   for any * G [0,Tmax), 
Js1 Js1 Js1 

which is a consequence of the conservative law in Theorem 1, viz 

f   \T(u)\2dS+ [   \u'(t)\4dS= f   |r(wo)|2d5+ /   K|4d5. 
Js1 Js1 Js1 Js1 

As the holomorphic sectional curvature of CHn with the Bergmann metric is equal 
to —4, the inequality (3.7) implies that 

(3.13) < C(S\ ||r(t4o)|U», \K\\L*){ f |V,r(u)|2 dS + 1} 
Js1 

= C(S\ UTMIIL*, KIIL«){ / IV^I2 dS + 1}. 
Js1 

By the Gronwall inequality, 

(3.14) / \Vxu(t)\2 dS<(l + HVrMlli*)exp(Ct) - 1, 
Js1 

where C = C(51, ||T(UO)||L
2

> II^OIU
4
) depends only on UQ and S1. Similarly, for k > 1, 

/   \Aku\2dS <Ci(£,Mo), 
Js1 

and 

f   \VxA
ku\2dS<C2(t,k,uo), 

where Ci (t, k, UQ) and C2 (t, fc, WQ) are independent of the image set ^(S1 x [0, Tmax)) C 
N. By the Sobolev imbedding theorem and (3.14), it follows that 

ll«(*)llco(si) < CiS'Hil + ||Vr(Uo)|||2) exp (Ct) - 1} 
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for any te [0,Tmax). 
Suppose Tmax < oo, then 

"max ^ C(Tmax) < 00. 

This indicates that the image set of u is contained in some compact subset ft C CHn. 
In this case, for a small a > 0, consider the Cauchy problem 

(3.15) <   ft=J{v)T(v)' 
v(x,0) =u(x,Tm3iX-a). 

As in [DW], we can show that there exists a positive real number To, which depends 
on Q but not on <T, such that (3.15) admits a local smooth solution v on S1 x [0,To). 
Thus u can be extended to S1 x [0,Tmax 4-To — a). By the uniqeness theorem given 
in [DW], we know that v(x, t) = u(x, Tmax -a + t) for any t G [0,To) so the extended 
u is still the solution for the Cauchy problem of the Schrodinger flow. Choose a small 
enough so that 

This contradicts the fact that Tmax is maximal. Thus Tmax must be oo and the proof 
of Theorem 3 is complete. 

We end this section by recalling that the complex hyperbolic space CHn is a rank 
one symmetric space of noncompact type. Its ball model is given by (Bn,gi)) where 
Bn = {z e Cn : \z\ < 1} and 

9b = T^H^ ^{ii + T^W)dWidWj 

is the Bergmann metric. It is well-known that CHn with the Bergmann metric is a 
complete Kahler manifold with holomorphic sectional curvature -4 (see e.g. [KN]). 
In particular, any compact Kahler manifold with constant negative holomorphic sec- 
tional curvature — K must be a compact quotient of (CHn, dsx) modulo an isometric 
cocompact lattice group where dsK = ^Qb- 

4. Two-Dimensional Local Schrodinger Flow. In this section we consider 
Schrodinger flows defined on Riemann surfaces, and establish local existence for the 
Cauchy problem. As in [DW], our strategy is to consider approximate equations of 
Landau-Lifshitz type: 

(4 1) <   -^=eT(u) + J{u)T{u), 

u(x,0) = uo(x), 

where 0 < e < 1. By the results in [Am] (see also [GW]), there exists a unique local 
smooth solution for the Cauchy problem (4.1) on M x [OjT7). Also, it is well-known 
that the energy functional is decreasing (see e.g. [DW]), i.e., for a solution u of (4.1), 

E(u) < E(uo). 

Hereafter, we shall assume that N is embedded isometrically into the Euclidean space 
Rd. 
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The key step for proving Theorem 4 is to establish some a priori estimates for 
u(x, t) which hold uniformly for small e < 1. To do this, we need the following result 
whose proof will be relegated to the end of the paper: 

PROPOSITION 4.1. Let M be a closed Riemann surface and N a compact Kdhler 
manifold with nonpositive sectional curvature. Ifu is a smooth solution of the Cauchy 
problem (4.1), then there exists a positive T, which does not depend on 0 < e < 1, 
such that the following estimates hold uniformly for 0 < e < 1: 

sup    f  \AkT(u)\2dM <C(k,T,uo), 
EfCT) JM te[0,T)JM 

and 

sup   /  |VA*r(M)|2dM <C(ifc,r,tio). 
te[o,T) JM 

With Proposition 4.1 at hand, Theorem 4 follows immediately. 

Proof of Theorem 4- By Proposition 4.1, for each 0 < e < 1, the problem (4.1) 
admits a unique smooth solution u£ on M x [0,T) where T does not depend on e. 
Note that, for any k, 

sup    f  \AkT(u£)\2dM <C(k,T,uo) < oo, 
=ro,T) JM te[0,T)J M 

and 

sup    f \VAkT{u£)\2dM < C(k,T,uo) < oo. 
te[o,T) JM 

Now letting e -» 0, it follows from the Sobolev imbedding theorem that there 
exists a function u(x,t) defined on M x [0,T) such that, for any T" < T and any 
k>l, 

\\U£  - 'W||C2fc,fc(Mx[0)T//]5jRd)   —► 0, 

where || • ||c2fc'fc(Mx[o,T//],i?d) denotes the parabolic Holder norm. Furthermore, u(x,i) 
satisfies (1.1). This completes the proof of Theorem 4. 

In order to prove Proposition 4.1, the following two lemmas are needed: 

LEMMA 4.2. Let M be a closed Riemann surface and N a compact Kdhler man- 
ifold with nonpositive sectional curvature. If u is a smooth solution of the Cauchy 
problem (4-1), then there exists a positive T, which is independent of 0 < e < 1, such 
that the following inequality holds uniformly for 0 < e < 1; 

sup    f  \VT(u)\2dM <C(T,uo). 
:6fO,T) JM t6[0,T) JM 

Proof. For ease of notation, denote ^ by u, and u*ei by Ui. As VJ = 0, by a 
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direct calculation, 

4CltJM JM IM JM 

(4.2) - / (V^, VtVi(er(Ti) + J{U)T{U))) dM 
JM 

= / {eiViiiiVtViVjUj) + (ViitiJMVtViVjUjfidM. 
JM IM 

By the commutation relation of covariant derivatives, we have the following formula: 

VtViVjUj    =    \7iX7tVjUj -h R(ui, u)VjUj 

-   'ViVjVtUj + Vi(R(uj,u)uj) + R{ui,u)VjUj 

=    ViWjVjU + R(ui,u)S/jUj + R^ViUj^ujUj 

+R(uj,Viu)uj + R(uj,u)ViUj + (ViR)(uj,u)uj. 

Combining (4.2) and (4.3), we obtain that, for small e, 

~f \Vu\2dM    <    -e [ (Au,Au)dM + C(M,N){[ (\Vu\\T(u)\2\du\ 
^dtJM JM JM 

+ |Vw||r(ii)||dw||VdM| + |^|2|V^|2 + |Vw||du|3|^|) dM} 
(4.4) r r r 

<    -s     (Au,Au)dM + C(M,N)\      (|^|3|^||V^| 
JM ^JM 

+ \Vu\{\Vdu\2\du\ + \Vu\\du\2}) dM}. 

Here we have used \T(U)\
2
 < C(M,N)\Vdu\2 and 

/ (Viii, J(u)(ViVj V») dM = - I   (Aii, J(u)Au) dM = 0. 
J M JM 

From (2.10), we have the estimate 

\\du\\co <C(M,N,E(uo)){(J  \X7T(u)\2dMY + VW)}- 

Upon differentiating the two sides of (4.1), 

S/ii = £VT{U) + J(U)VT(U), 

and as (Vr(w), J(U)VT{U)) = 0, we have 

|VU|
2
 = (1+£

2
)|VT(U)|

2
. 

Thus, it follows that 
i 

(4.5) lldulbo < C(f^2
){[jM WufdM^ 2 + y/Wfi}. 

By Propositions 2.3 and 2.5 and using (2.4), 

||Vdu|||4    < C{M,N){\\du\\2wiA + ||du||t.} 

< C{M,N){\\du\\2wlA + ||d«|||2(||Vd«||L2 + v^M)} 

(4.6)                   < C7(M,^){||du||2wl.4 + ||dtx||i2(||r(ti)|U2 + C/BM)} 

< C(M,JV){||dU||J,2,2||d«||!a + ||d«||3i2(||r(U)||L2 + C^Wo))} 

< C(M,N,E(U)){\\VT(U)\\L3 + ||Vr(ti)||l2 + !}§. 
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Next, we use (2.4) and (4.5)-(4.6) (see also (2.6)) to estimate the last term on 
the right hand side of (4.4). By the Holder inequality, we obtain that 

/ |V?i|{|H3H + \Vdu\2\du\ + \Vu\\du\2}dM 
JM 

(4.7)    <    ||d«||?,.(||d«||co||«||La||V«||L2 + ||Vti||ia + ||du||co||VdU||i4||Vti||ia 

<    C(M, N,E(uo))mu\\t2 + ||Vu||J9 + (||V«||L2 + ||Vu||l2 + 1)1} 

=   F(\\Vu\\h). 

Thus, by (4.4) and (4.7), 

|l|V«||la<F(||V«||i2). 

It follows from the last inequality that, for 0 < e < 1. 

^l|Vr(«)||i, < -L, 

<F(2||VT(«)||i2) = F(||Vr(U)||i2), 

(4.8) ^||Vr(«)||i2 < T_-5F((H-e
2)||Vr(U)||i2) 

since 

|V«|2 = (l+£2)|Vr(u)|2. 

We note that F( •) depends on M, A^ and E{uo), and not on e. 
Consider now the initial value problem for the ordinary differential equation 

q{0)= [ |VT(UO)|
2
 dM. 

JM 

It is easy to see that this initial value problem has a local smooth solution. Hence, 
by the comparison principle of ordinary differential equations, there exists a positive 
real number T, which does not depend on e, such that on [0, T) 

sup    /    |VT(I 
E[O,T) JM 

where C(T,uo) is independent of e. This finishes the proof of Lemma 4.2. 

sup    /   \VT{u)\zdM<C{T,uo), 

LEMMA 4.3. Under the same assumptions as in Lemma 4-2, let u be a smooth 
solution of the Cauchy problem (4-1)• Then the following estimate holds for t G [0, T) 
uniformly for 0 < e < 1 and k > 1 ; 

||V*+1du||£,2 < \\du\\Wk+i,2 + C(\\du\\wk,2,\\X7T(u)\\L2,E(u0)). 

Proof Using the estimate 

\\du\\co{M,R*) < C(||Vr(w)||L2,£;(wo)) 

and the expression of Vk+1du in a local coordinate chart, the proof proceeds as that 
of Proposition 2.4. We will omit the details. 
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We complete this paper with the proof of Proposition 4.1. 

Proof of Proposition 4-1- The proof proceeds by induction. First, we consider the 
case of k = 1. We compute 

2dtJM 
dM 

M 

(4.9) =     / {VjVju^tViVi^dM 
JM 

=    / {e(Au, V*AT(U)} + (VjVji, J(t*)VtV*ViT(u))} dM. 
JM 

Now, we note that 

=    ViVtViTiu) + R(uuu)ViT(u) 

(4.10) =    Vi Vi Vtr(ti) + Vi{R{uh U)T{U)) + iJ(wi, tk) Vir(u) 

=    ViViVjVj-u + ViVi^wj,^-) + Vi(jR(wi,u)r(w)) 

+iJ(ui,w)Vir(Tx). 

Also, as in (4.3), we have 

(4 -m Vt(i?(iii,u)r(u)) =    R(T(U),U)T(U) + R(uuViu)T{u) 
1 '    j +iJ(tii,Ti)Vir(ix) + (ViiJ)(iii,A)r(w), 

and 

=    Vi{('ViR)(uj,u)uj •+- R(ViUj,u)uj + R(uj,Viu)uj + it!(uj,?i)VjUj} 

=    R(AUJIU)UJ H- R(ViUj, Viu)Uj; + R{ViUj,u)ViUj 

+R(V iUj ,V iu)uj 4- R(UJ,AU)UJ 4- i?(wj, Viu)ViUj 

-i-R(\7iUj,u)ViUj + R(uj,Viu)ViUj + R{UJ,U)AUJ + (ViWiR)(uj1u)uj 

+2(VijR)(ViWi,t/)wi + 2(ViR)(uj,Viii)uj + 2(ViR)(uj,u)ViUj. 

Substituting (4.10)-(4.12) into (4.9) and using the estimate 

lldtillco < C(M,iV){||Vr(^)||L2 + x/EM} < C(r,iio), 

we obtain that 

-£/ \Au\2dM + 2e [ \VAu\2dM 
dtjM JM 

(4.13) =    C(M,N,T,uo) ( / |T(U)||AU|{|T(U)|
2
 + |Vr(w)| + |V2dw|}dM 

4- / |A?i|{|Au| + |Vr(u)[|V^| + |V^|2|r(w)| + |V^|2 + |V^|}^Ml. 

Thus, by using the Holder inequality on the integral terms on the right hand side of 
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(4.13), it follows that 

C(M,iV,T,uo){ / |r(u)||Au|{|r(u)|2 + |VT(U)| + \V2du\}dM 
JM 

+ /  |Au|{|A«| + |VT(u)||Vdu| + \Vdu\2\T(u)\ + \Vdu\2 + \Viu\}dM} 
(4.14) JM 

<    C(M, N,T,U0){\\AU\\12\\T(U)\\IS + ||r(«)||co||VT(«)|Ua||A«||L3 

+\\T(u)\\co\\V2du\\L4Au\\L. + ||Au||2L2 + ||A«|U2||Vd«||co||Vr(«)||ia 

+||A«||L2(||Vd«||i6 + ||Vdu||co||Vdu||t2 + ||Vu||L2)}. 

By the interpolation inequality, we have 

(4.15) \\r(u)\\Le < C*(M,iY)||r(U)|||1,2||T(W)|||2. 

The Sobolev imbedding theorem and Proposition 2.4 imply that 

(4.16) ||T(ii)||co < C{\\AT(U)\\L2+C(M,N)(\\VT(U)\\L2,E(UO))}, 

and 

(4.17) HVduHco < C(M,N){\\AT(U)\\L2 + C(\\VT(U)\\L2,E(U0))}. 

Further, by Lemma 4.3 and Proposition 2.3, 

\\du\\H2.2    < \\du\\W2,2 + C'(\\VT(u)\\L2,E(u0)) 

<C(\\VT(U)\\L2,E(U0)) = C(T,U0). 

Using this esimate, the Kato inequality and Propsition 2.5, we obtain that 

||Vdu||L6    <C(M,JV){||Vdu|Ua + ||V|Vd«|||L2}i||Vd«||J2 

< C(M,iV){||Vdu||L2 + ||V2du||L2}§||Vdu||*a 

(418) <C(M,iV)||dU|||2,2||VdU||*2 

<C(M,N,\\VT(U)\\L2,E(UO)) 

<C(T,uo). 

Finally, substituting (2.4), (4.15)-(4.18) into (4.14), we get 

£■ f  \Au\2dM = -2e[  \VAu\2dM + C(T,uo){f  |Au|2dM + l}. 
dt JM JM JM 

It follows that 

| Au|2 dM < C(T, uo) < oo,     te [0, T), / 
JM lM 

and hence 

/  |Ar(u)|2cZM < C(T,t£o) < oo,     te [0,T). 
JM 

For the induction step, assuming 

\AkT(u)\2dM < C(Jb,r,ixo),     * e [0,T) / 
JM 
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for k > 1, we would like to prove 

sup    f  |VAfcr(u)|2dM<C(A;,T,wo). 
te[o,T) JM 

As before, we consider 

— /" \V/\ku\2dM 
2dtJM

] ' 

(4.19)    =    / (ViAku,VtViA
ku)dM 

JM 

=    f {e(ViA*«, VtViAkT(u)) + (ViA^u, J(«)VtVjA*T(u)>} dM. 
JM 

It is not difficult to see from the commutation relation of covariant derivatives as in 
the previous argument that 

(4 20) V«V<A*T^ =   S VP1 • • • Vp,o ^(Vi, • • • ViM u, Vh ■ ■ ■ Vjs2 u)Vkl ■ ■ ■ VA33 u 
' +ViA

k+1u, 

where so + si + S2 + S3 = 2k + 3, and up to a permutation 

(pir-'iPao^i,--- ,*si,ii,--- ,js2,ki,---,kS3) = (i,li,li,- ■ ■ ,lk+i,lk+i),   li — 1 or 2. 

We can rewrite (4.20) as 

ViViAfcr(u)    =    ViAk+1u + R{uj,ViAku)uj + Ql{du,Vdu,V2k+1du) 
( '    ' +Q2(du1Vdu,---,V2kdu), 

where Qi, Q2 are multilinear vector-valued functions and 

|Q2(d«,Vd«,-",V2*+1du)| 

(4.22)     j C{N)\\72du\2\du\ + V(\du\,\X7du\,\V2du\), k = l, 

~ \ C(7V)|V2A:dti|r(|du|, |Vd«|, |V2du|) + P(\du\, ■■■, IV^-^ti)),    k > 1, 

for some positive multilinear functions V and V. Thus, from (4.21) and (4.22) we 
have 

\{ViA
ku,J(u)VtViAkT(u))\ 

( '    '     <    \{ViA
ku,J{u){R(uj,ViA

ku)uj + Q1(du,Vdu,V2k+1du)})\ 

+\(ViAku, J(w)Q2(dw, Vdu, • • •, V2fcdM))|. 

When k = 1, applying Lemma 4.3, Proposition 2.4 and the Sobolev imbedding theo- 
rem, we obtain from (4.19) and (4.23) that 

:/|VAu|2 

>JM 

\jtnv^uM 
< -e f \A2u\2 dM + C(N, UQ) f {|VAu|2 + |VAu||V3du| 

(4.24) JM JM 

+|VAw||V2du|2 + |VAfcw|^(|dw|,|Vdw|,|V2du|)}dM 

< si \A2u\2 dM + C{N, MO) / I VAu|2 dM + C{M, N, UQ). 
JM JM 
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When k > 1, by using Proposition 2.4, Lemma 4.3 and the Sobolev imbedding theo- 
rem, the following two inequalities follow: 

/ {V{\du\, • • ■, IV2*"1**!)}2 dM    < C{N, \\uo\\W2k+2,2) 
J M 

< C{N, \\AkT(u0)\\L2, ■ ■ ■, ||VT(iio)|U3,£(«<))), 

and 

||7"(|d«|, |W«|, |V2dW|)||co    < C{N, ||uo||ir».») 

< C(iV, ||AMUO)||L2, • • •, ||VT(IIO)IU», E(UO)). 

Therefore, by a direct calculation, we deduce from (4.19) and (4.23) that 

<    -e[ \Ak+1u\2dM + C(N,uo) f {|VA&i|2 + \VAku\\V2k+2u\ 
(4.25) JM JM 

+|VAA^||V2A:+1u| + \VAku\P(\dul • • •, IV2*5"1^!)} dM 

<    -e[ \Ak+1u\2dM + C(N,uo) [ \X?Aku\2dM + C{M,N,u0), 
JM JM 

where C(N,uo) and C(M,N,uo) depend on E(uo), \\T{UO)\\L^ ''', \\&kT{uo)\\L2. By 
the Gronwall inequality the required estimate follows from (4.24) or (4.25). Similarly, 
we can also deduce 

(4.26) sup    /  |Afc+1r(u)|2cZM<C(fc + l,r,wo), 
tG[0,T) JM 

where C{k + l,T,uo) depends on E(uo)} ||r(^o)||L2, * • •, HA^^r^oJIU2- This com- 
pletes the proof of Proposition 4.1. 
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