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BIEBERBACH THEOREMS FOR SOLVABLE LIE GROUPS* 

KAREL DEKIMPEt, KYUNG BAI LEE*, AND FRANK RAYMOND^ 

1. Introduction. Let G be a Lie group and let Aut(G) be the group of con- 
tinuous automorphisms of G. The group Aff(G) is the semi-direct product Aff(G) = 
G xi Aut(G) with multiplication 

(a,Q)-(6,i8) = (a-a(6),ai9). 

It has a Lie group structure and acts on G by 

(a, a) • x = a • a(x) 

for all a: € G. With the linear connection on G defined by the left invariant vector 
fields, it is known that Aff(G) is the group of connection-preserving diffeomorphisms 
of G, see [KT] Proposition 2.1. 

TERMINOLOGY. In this paper we will use the term lattice of a Lie group G, to 
denote a discrete cocompact subgroup of G. Further, we will say that an automorphism 
a of a Lie group G is unipotent if and only if its differential da (in the automorphism 
group of the corresponding Lie algebra (&) is unipotent. Analogously we will speak of 
an element acting unipotently on a Lie group G. 

For G = IRn, the following three theorems have been proven by Bieberbach. See 
[W] or [C]: 

THEOREM I'. Let ir C Mn x 0(n) be a lattice. Then T = TT D Mn is a lattice of 
W1, and F has finite index in TT. 

THEOREM 2/. Let 7r,7r' C Mn xi 0(n) be lattices. Then every isomorphism 0 : 
TT -)■ TT' is a conjugation by an element ofRn x GL(n. R). 

THEOREM 3'. Under each torus Zn\En
; there are only finitely many flat mani- 

folds which are covered by the torus. 

All three Bieberbach theorems have been generalized to the situation where G 
is a simply connected, connected nilpotent Lie group ([Al], [LR2], [DIM], [D2]). It 
is therefore natural to investigate the situation for solvable G. Unfortunately, as an 
example in this paper will show, the first Bieberbach theorem causes problems, even for 
the class of solvable Lie groups of type (R), a class of groups sharing many properties 
with the class of nilpotent Lie groups. A connected solvable Lie group G is called of 
type (R) (or completely solvable) if ad(X) : 6 —> (3 has only real eigenvalues for each 
X E &. A connected solvable Lie group G is called of type (E) (or exponential) if 
exp : (3 —> G is surjective. Some important properties of such groups are listed below. 

Although we will show that there are problems in generalizing the first Bieberbach 
Theorem, we are able to show which Lie groups of type (E) allow a straightforward 
generalization of the first Bieberbach theorem (Theorem 1'). In this respect, we need 
the following definition. 
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DEFINITION 1. Let G be a connected, simply connected solvable Lie group with 
nilradical N. We say that G has the strong lattice property if for any torus 
T C Aut((jr) and for any lattice Y of G x T, there exists a lattice Y of G such that 
NnY = NC\Y. 

The main result of our paper can now be formulated as follows: 
THEOREM A. Let G be a connected, simply connected solvable Lie group of type 

(E) and let C be a compact subgroup of Aut(G). If G has the strong lattice property 
and if n C G x C is a lattice, then Y = TT fl G is a lattice of G, and Y has finite index 
in TT. 

REMARK 1. Obviously, Theorem A states that the first Bieberbach theorem gen- 
eralizes to a given Lie group G of type (E) if and only if G has the strong lattice 
property. 

To justify our interest in solvable groups of type (R) and (E), we now recall some 
properties of the groups. See [Gl], [G2] and [OV] for more details. 

(1) Abelian =>Nilpotent => type (R) =» type (E). 
(2) (Unique Lattice Isomorphism Extension Property) Let G and Gf be of type 

(R), and let Y and Y' be lattices of G and G7, respectively. Then any isomorphism 
from F to r" extends uniquely to an isomorphism of G onto G'. 

(3) If G is of type (E), then 
(a) for arbitrary X € (5, ad(X):0->0 has no pure imaginary eigenvalues. 
(b) for any g G G the operator Ad(g) has no eigenvalues of modulus 1 but 

different from 1. 
(c) the center of G is connected. 
(d) the maximal compact subgroup of G is the unique maximal torus contained 

in the center of G. 

Theorem 2' has been generalized to solvable Lie groups of type (R). 
THEOREM 2 [L; Theorem 3.1]. Let G be a connected, simply connected solvable 

Lie group of type (R), and C be a compact subgroup of Aut(G). Let TT, TT' C G XI C be 
lattices, which are finite extensions of lattices of G. Then every isomorphism 9 : TT -> 
TT' is a conjugation by an element of G x Aut(G). 

Note that in the above theorem, we need to assume that a generalization of 
Theorem 1/ is valid. 

In order to generalize Theorem 3' to a more general class of manifolds, we need 
a concept of "essential covering" for obvious reasons. A covering M —>■ Mf is called 
essential if no element of the deck transformation group is homotopic to the identity. 

THEOREM 3 [L; Theorem 5.2]. Let G be a connected, simply connected solvable 
Lie group of type (R), and Y be a lattice of G. Then there are only finitely many 
infra-solvmanifolds which are essentially covered by the solvmanifold Y\G. 

As already explained, the purpose of this paper is to study the possibility of 
extending Theorem V to solvable Lie groups. (We do not restrict our attention to 
groups of type (R), but we also consider groups of type (E)). In other words, we 
investigate the validity of the following statement: 

STATEMENT 1. Let G be a connected, simply connected solvable Lie group and let 
C be a compact subgroup of Aut(G). // TT C G X C is a lattice, then Y = TT D G is a 
lattice of G, and Y has finite index in TT. 

2. Generalizing the first Bieberbach theorem. In this section we will prove 
Theorem A. Before we can actually start the proof of this theorem, we need to establish 
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three technical lemmas which will be used later. The third lemma will use the setup 
of Auslander [A2]; Theorem 2. 

LEMMA 1. Let G be a connected, simply connected solvable Lie group of type (E) 
with nilradical N. Then N is maximal nilpotent in G. Consequently, the elements 
g G G acting unipotently on N (via conjugation in G) are precisely all the elements 
ofN. 

Proof. Let h be an element of G. The group generated by iV and h is nilpotent 
if and only if h acts unipotently on iV. As G/N is abelian this is equivalent to Ad(h) 
being unipotent (i.e. only has 1 as an eigenvalue). As Ad(h) = expadjog^^ (note that 
the exponential mapping is a bijection in our case, so log is well defined), this is in turn 
equivalent to adl0g(/l) being nilpotent. From this it now follows that for any element 
hf in the one parameter subgroup H passing through /i, adiog^) is nilpotent. This 
implies that the group NH is a connected, nilpotent normal subgroup of G, which 
must be a part of N and so h E N. D 

LEMMA 2. Let T be a torus and suppose that Ai is a lattice of W1 and A^ is a 
finitely generated subgroup ofW1 0 T. 

Let f : En 0 T -> GL(k, E) be a faithful continuous representation, such that Ai 
and A2 leave the same uniform lattice ofRk invariant, then A? HE71 is of finite index 
in A2. 

Proof. Without loss of generality, we can assume that Ai and A2 leave the stan- 
dard lattice Zk invariant (i.e. f(Ai) C GL(fc,Z), for i = 1,2). 

We consider the usual metric d on GL(A:, E) obtained by regarding GL(A;, E) as 
being a subspace of E^ , with the usual Euclidean metric. 

Pick any element 0-2 E A2, and consider the group A generated by Ai and 02- 
Then f{A) C GL(fc,Z). Since GL(fc,Z) is a lattice of GL(fc,R), f{A) is discrete. 
However, / is continuous and faithful so that the preimage of a discrete subset is 
discrete. Therefore, A is discrete in En 0 7". Since A\ is cocompact in En 0T already, 
A\ has finite index in A. In particular, the T-component of 02 E En 0 T has finite 
order. Since A2 is finitely generated, this shows that A2 fl En is of finite index in 
A2. □ 

LEMMA 3. Let G be a connected, simply connected solvable Lie group of type (E) 
with nilradical N and let C be a compact subgroup of Aut(G). Let TT be a lattice of 
G xi C. Denote by G* the identity component of the closure of TTG in G x C and let 
TT* = TT D G*. then 

(1) TT* has finite index in TT, 

(2) G* is solvable, 
(3) the nilradical N* of G* coincides with N and 
(4) TT* fl N = TT fl iV is a lattice of N. 
Proof. The first claim is obvious. Theorem 1 of [A2] states that G* is solvable, 

explaining our second statement. Since G* /G is a compact solvable Lie group, G*/G = 
T is abelian, thus G* = G xi T and the commutator subgroup of G*, [G*,G*] is 
contained in G. Since N is a characteristic subgroup of G, it is normal in G* and 
hence N C N*. Moreover, as N is maximal nilpotent in G (Lemma 1), G fl N* = iV. 
It follows that the canonical map JV*/iV -> G*/G = T is faithful. Therefore, N*/N 
is compact, and so we can write N* — N • T* for some torus T* C G*. (We note 
here that in the proof of Theorem 2 in [A2], Auslander seems to claim that N*/N is 
compact, also in case G is not of type (E). However, as Example 1 will show this need 
not be true.) By (1) and (3)(d) of the properties of a completely solvable Lie group, 
T* is in the center of iV* so that the action of T* on iV is trivial, and iV* splits as a 
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direct product N* =N xT*. 
We claim that T* is trivial. For any t G T*, x G N and y G G, 

[*, y] ■ a; • [t, y]"1 = ^r1 (y'1 • x • y^y^r1 

= ^(y"1 • rr • y)y~lt~l 

(since y'1 - x • y E N and t acts trivially on iV) 

= x. 

This shows that [t, y] lies in the centralizer of N. However, [t, y] G [N*, G] C iV* nG = 
iV. Consequently, [t, y] lies in the center of JV. We have 

[tp,v] = [t,v]p£N 

for all p G N. Thus, for any t e T* of finite order, we must have [t, y] = 1. However, the 
set of torsion elements is dense in T*. Therefore, [t,G] = 1 for all t G T*, i.e. T* acts 
trivially on G. As T* is a compact subgroup, it is conjugated inside G* to a subgroup 
of (the maximal compact group) T. Let g* G G* be such that g*T*g~l C T. It is easy 
to check that g*T*g~1 also acts trivially on G. But as g*T*g~l C T C Aut(G), the 
group g*T*g~1, and so also T*, has to be trivial. 

This shows that N = TV* is the maximal normal nilpotent analytic subgroup of 
G*. Then, [G*,G*] C iV, and G*/N is abelian and isomorphic to the direct sum 
T 0 (G/N). By the Theorem in §5 of Mostow [M], TT • N is closed in G*. Therefore, 

TT n TV = TT n N* 

is a lattice in N. D 
Proof of Theorem A. We can now prove Theorem A, using the notations and the 

results of the lemmas above. 
As G has the strong lattice property there is a lattice A of G with the property 

that 
AniV = 7r*nAr = A= a lattice of the nilradical iV of G. 

Denote Ax = A/(A fl N) C G/N and A2 = 7r*/(7r* n iV) C (G x T)/JV. There is an 
induced action of (G x T)/Ar on each factor group /yi(N)/ji+i(N) = E^1' inducing a 
continuous representation /« : (G x T)/N —>- GL(A:i, M). 

Moreover, the representation /^ is such that both .Ai and A2 leave the lattice 
(An7;(A0)/(An7;+i(A0) of 7i(N)/li+1(N) fixed. 

Now, the representation (where c denotes the nilpotency class of N) 

/ = /i©/2e---©/c: (Gxr)/iV->GL(&i,E)e---©GL(fcc,K) C GL(fci + • • • + fcc,R) 

is a representation of (G x T)/N. We claim that this representation is faithful. We 
postpone however the proof of this claim until the end. 

As Ai and A2 leave the same lattice of MAl+",+A:c invariant, Lemma 2 implies 
that G H TT* is of finite index in TT* , which finishes the proof, provided we can show 
that / is a faithful representation of (G x T)/N = G/N © T. 

For any element g G G, we will use g to denote its image in G/N. Now, let g 
and t be such that f(gt) = 1. As g and £ commute, we have that f(gt) = f(g)f(t) = 
f(t)f(g). The eigenvalues of f(t) are all of modulus 1 and those of f(g) are equal 
to 1 or of modulus different from 1 (property (3)(b) of groups of type (E) mentioned 
above). But as the eigenvalues of f(gt) (which are all supposed to be one) are obtained 
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by multiplying the eigenvalues of f(g) and f(t) (as they commute), we must have that 
the eigenvalues of f(g) are all equal to one. Now, Lemma 1 implies that g e N or 
that g = 1. 

So, assume that f(t) = 1. This means that the automorphism t E Aut(Gr) restricts 
to a unipotent automorphism of N. As t also acts trivially on G/N, the action of t 
on G is unipotent. However, the only element of T acting unipotently on G is the 
identity element, showing that / is faithful. D 

THEOREM B. Let G be a connected, simply connected solvable Lie group of type 
(E) with nilradical N, and let G/N = En. Let p : En -> Out(iV) be the canonical 
representation. Assume: 

The centralizer of p(Wl) in Out (AT) has trivial maximal torus. 
Then Statement 1 holds for this G and hence G has the strong lattice property. 

Proof. In Lemma 3, N = N*. Since G*/iV is connected abelian, G*/N = W1 0T, 
where T is a torus. On the other hand, G/N — Mn. Consider the natural represen- 
tation p* : G*IN = Rn 0 T -► Out(iV). This restricts to p : G/N = Rn -» Out(iV). 
Then p(En) commutes with p*{T). Since P*|T is injective, T must be trivial by the 
hypothesis. This shows that G* = G. By Lemma 3 (1), Y — ir* = TT n G has finite 
index in TT. By Remark 1, G has the strong lattice property. 

REMARK 2. Suppose there is a counter-example to the Statement 1. Then one 
can find a subgroup TT* of TT, of finite index, such that the image of TT* in C has 
positive dimensional closure which is a torus. This implies that the centralizer of 
p(Wl) in Out (AT) has non-trivial maximal torus, violating the condition of Theorem 
B. 

3. Some examples of "bad" Lie groups. Below, we will list two examples 
of simply connected, connected solvable Lie groups G, for which the generalization of 
the first Bieberbach theorem (Theorem A) does not hold. The first example is easy, 
but consists of a Lie group which is not of type (E), while the second, slightly more 
sophisticated example consists of a Lie group of type (R). 

Example 1. There is an example in [Al], pp. 589-590, of dimension 5, where 
the first Bieberbach theorem does not hold. Here is a 3-dimensional example. Let 
G = E2 x M be the universal covering group of £0(2) = E2 x SO(2). Therefore t E E 
acts on E2 by 

_ /    cos27r£    sin27r^ 
y - sin 2i:t    cos 27r£ 

This solvable Lie group G is not of type (E). Let C — SO(2), act on E2 in the standard 
way; that is, e27rz< E C acts via the matrix ^. These two actions of E and C on E2 

commute with each other, so, there is an action of C on G. Let to E E be an irrational. 
Clearly, the element 

7=(^o,e-2^0)EGxG 

acts on E2 trivially. The ^0 part acts as the element of G, and the e~27TltQ part from 
C undoes it. Take a lattice Z2 = (21,22) of ^2 and let it act as left translations. 
Consider the subgroup generated by Z2 and 7: 

TT = (2i,Z2,7)    C    G XI C. 

Then TT is isomorphic to Z3 and acts properly discontinuously on our G. It is obvious 
that TT does not contain any lattice of G of finite index. Note that the image of TT in 
C is dense. 
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In this example TV* = E3, namely, it consists of all elements of the form 
((x,y,z),e-27ri2), with x,y,z E M, while iV = E2. It follows that N*/N 9* E. This 
shows that Lemma 3 is not valid for solvable Lie groups not being of type (E). 

Look at the representation E -> Aut(E2) = GL(2,E). It has image SO(2), and 
its centralizer contains SO(2) itself. Thus the requirement in Theorem B is trivially 
not satisfied. 

Example 2. Now, we give an example of a Lie group of type (R) for which the 
first Bieberbach theorem is not valid. 

Consider the following matrix in GL(4, Z): 

A = 
/0 

0 
0 

V-i 

0 
1 
0 
1 

0\ 
0 
1 
l) 

This matrix has as characteristic polynomial z4 - z3 - x2 - x + 1, having two real 
roots 

and two complex roots 

ri,r2 = ^ (WvT3±\/2\/l3-2) 

7*3,7*4 = 1 ■Vl3±iy2Vl3 + 2 

for which following hold: 
(1) ri r2 = 1, and rs = rj, so r^ is of modulus 1. 
(2) rs is not a root of unity. 

There is a matrix P £ GL(4,1) such that 

RA.P-1 = = M1M2 

where the eigenvalues of ( ,1    ,    ) are r^ and r^. Note that Mi and M2 commute. 
\0z    04/ 

We can define both M{ and M^ for a real parameter t. We remark that Ml+2k7T — M|. 
Define 

ip : E -> GL(4, E) : t ^ P"1 AffP 

and 
ip : 51 == E/(27rZ) -> GL(4, E) : t H-> P^M^P. 

It is obvious that G — E4 xi E, where E acts on E4, via (p, is a solvable Lie group of 
type (R). Let S1 = E/(27rZ) be the compact group of automorphisms of G which is 
defined by taking t(x,y) = (rp(t){x),y), V* G M/(27rZ), Vx G R4,Vy G E. 

Now, the group T = Z4 xi Z, where 1 G Z acts on Z4 as A, can be embedded into 
G xi S1, by mapping (21,22) *-* ((21,22),22), V21 G Z4 and 22 G Z. In this way T is 
realized as a lattice of G XJ S1 without F n G = Z4 being a lattice of G. 

Look at the representation E -> Aut(E4) = GL(4, E). It has image E generated 
by Mi, and its centralizer contains SO(2) rotating the remaining 2-dimensional factors 
of E4. Thus the requirement in Theorem B is not satisfied. □ 
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4. A class of "nice" Lie groups. Although Theorem A and B give us a 
necessary and sufficient condition for a Lie group of type (R) to admit a Bieberbach 
theory, they do not provide concrete criteria to check whether or not a given Lie 
group allows a generalization of the first Bieberbach theorem. Therefore, we describe 
in this section a substantial class of Lie groups of type (R), satisfying the conditions 
of Theorem A. 

DEFINITION 2. Let G be a connected, simply connected solvable Lie group of type 
(R), with nilradical N. Then G is said to be strongly filtered if and only if there 
exists a filtration of closed analytic, characteristic subgroups Ni of N: 

l = NoCN1CN2CN3C...CNc = N 

with Ni/Ni-i = R^ , for all i G {1,2,... , c} and such that 
(1) IfT is a lattice of N then (m Ni)/(rn iV;-i) is a lattice in Ni/N^i for all 

;E{1,2,...,C}. 

(2) the matrix representing the action of any element ofG/N on a factor Ni/Ni-i 
is unipotent or has only positive real eigenvalues, each of multiplicity one. 

REMARK 3. If N is a connected and simply connected nilpotent Lie group, then 
both the upper central series and the lower central series of N satisfy property (1) of 
the definition above. As property (2) is trivially satisfied in this case, N is strongly 
filtered. 

Example 3. Let H be the three dimensional Heisenberg group consisting of ma- 
/l x z\ 

trices of the form I o i y 1, with x,y,z £ E. There is an automorphism (pi of H which 
\o o 1/ 

is given by: 

/110\ /120\ /100\ /110\ /101\ /101 
<p1(oio) = [oii},<pi[oiij = [oii)  and <£i[oioJ = (oio 

Vooi/       Vooi/ Vooi/       Vooi/ Vooi/       Vooi 

This automorphism induces a commutative diagram 

1  > Z(H) ^ R  > H  ► H/Z(H) £ R2   ► 1 

1= i- iC!) 
1  > Z(H) s R  > H  > H/Z(H) = R2   > 1 

It follows that there is a morphism ip : R —>• Aut(iiZ'), with <^(1) = ipi. Moreover, the 
resulting group H x^ R is a Lie group of type (R). Now, we define for all positive 
integers &, the following Lie group of type (R): Gk = R^ x (H x^ R). 

As both the upper and the lower central series of the nilradical of a Lie group 
of type (R) satisfy the first criterion of the definition of a strongly filtered group, we 
focus on these filtrations of the nilradical N — Rfc x H of Gk- 

The lower central series of iV is 1 C R (= [iV, N] = [if, H]) C iV, 
with iV/R ^ R^"^2.  Note that the action of an element of Gk/N (^ R) on R**2 is 
not unipotent and has an eigenvalue 1 which is of multiplicity k.  So, if k > 1, this 
filtration of iV, does not satisfy the second property of the definition of a strongly 
filtered group. 

The upper central series of iV is 1 C Rfc+1 (= Z(N) = Rk x Z(H)) C N, 
with N/Rk+1  S R2.   Now, the action of Gk/N on Rk+l is unipotent, while each 
non-identity element of G/N acts on R2 via an automorphism having two different 
eigenvalues.   This implies that the upper central series of Gk satisfies the second 
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criterion of the definition of a strongly filtered group, which allows us to conclude that 
all groups Gk are strongly filtered. 

THEOREM C.  Let G be strongly filtered, then G has the strong lattice property. 

Before we are able to prove this theorem, we need to establish one more lemma 
LEMMA 4. Let Zn c Mn ® T, where T is a torus, be a lattice such that the image 

Zn C En © T -> T is dense in T. Let f : W1 © T -> GL(fc, E) be a representation such 
that f(x,l) is unipotent or has only positive real eigenvalues, all being of multiplicity 
one, for all x E Mn. //Zn leaves a lattice ofRk invariant, then the T action on Rk is 
trivial 

Proof. The elements f(l,t) (t E T) all have eigenvalues which are of modulus one. 
As T commutes with Rn it is known that the eigenvalues of f(x,t) can be obtained 
as the product of the eigenvalues of f(x, 1) and f(l,t) (in some order). 

Now, consider any element 7 = (x7,£y) E Zn. We claim that /(1,£7) has only 
eigenvalues which are roots of unity. Indeed, suppose first that the action of f(x, 1) 
only has positive real eigenvalues of multiplicity one. If z is a complex eigenvalue 
of /(:E7,iy), then also z, the complex conjugate of z, is an eigenvalue of /(x7,&y). 
However, as the eigenvalues of /(x7, £7) are obtained by multiplying the eigenvalues of 
f(x1,1) with the eigenvalues of /(I, £7), all these eigenvalues have a different modulus. 
This implies that z = z E M. But this implies in turn that /(1,£7) has only 1 or —1 
as eigenvalues. 

Now, suppose that the action of /(x7,l) is unipotent, then all eigenvalues of 
f(x1^t1) are of modulus 1. As f(x1,t1) fixes a lattice of R*, the matrix f(x1,t1) is 
conjugated, inside GL(A;,M), to a matrix in GL(k,Z), which has of course the same 
eigenvalues. Now [ST]; Lemma 11.6 implies that all eigenvalues of /(x7,ty), which 
are the same as the eigenvalues of /(I, £7) are roots of unity. 

As Zn is finitely generated, there is a subgroup of finite index in Zn, for which 
the elements (a:7,t7) are such that the eigenvalues of /(l,i7) are all 1. As this set of 
ty's is still dense in T, it follows that the eigenvalues of /(I, t) for all elements ofteT 
must be 1. This means that T acts unipotently on Rk. However, the only unipotent 
action of T on M^ is the trivial action, which finishes the proof of the lemma. □ 

Proof of Theorem C. Let T be a torus in Aut(Gf) and choose a lattice TT in G x T. 
As before, we let G* be the identity component of the closure of TTG in G x T and we 
let TT* = G* H TT. We know that G* = G x T' for some torus T' C Aut(G) and by 
Lemma 3, we have that 

(1) TT* is of finite index in TT, 

(2) the nilradical of G* coincides with the nilradical N of G and 
(3) TT* fl N = TT H TV is a lattice of iV. 

We will show that T" is the trivial group. Suppose that 

1 = iVo C Ni C A^2 C N3 C ... C iVc = N 

is the filtration satisfying the properties of the definition of a strongly filtered Lie 
group of type (R). As 7r*/(7r* n AT) is a lattice of G/N x T', it follows from Lemma 
4 that T' acts trivially on any quotient Ni/Ni-i (1 < i < c). Therefore, X" acts 
unipotently on iV. However, as said before, this implies that the action of X" on N is 
trivial. This combined with the fact that Tf acts trivially on G/N = Rn implies that 
X" acts trivially on G. But as T' C Aut(G), this implies that X' is trivial. 

Hence G = G* and TT* = T = TT fl G itself is a lattice of G, with T fl iV = TT n iV. 
This completes the proof of the theorem. □ 
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REMARK 4. If G is a nilpotent connected and simply connected Lie group, the 
conditions of the above theorem are automatically satisfied. 
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