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POSITIVE DISKS WITH PRESCRIBED 
MEAN CURVATURE ON THE BOUNDARY* 

HONG JIAXINGt 

1. Introduction. By a positive disk we mean a positive curvature metric g = 
gijduldui, defined on the closed unit disk D = {(u1)2 + (u2)2 < 1}. In the sequel 
we always denote it by {D,g). Recently, there have been some papers devoted to 
the boundary value problems for isometric embedding of positive disks into B? with 
prescribed vertical component of position vector, for example, [PO] [DE] [H02] and 
[H03]. The present paper is devoted to the Neumann problem for isometric embedding 
of positive disks which is posed by Yau in [Y4]. Given a smooth positive disk (D,g) 
and a positive function h G Cco(dD)^ can we find a smooth surface 

(1.1) f:D^R3 such that dr2 = g 

with the prescribed mean curvature h on f(dD) 

Before describing our results, we first introduce an invariant related to umbilical points 
of surfaces in R3. Suppose that the given metric is of the form 

(1.2) g = Edx2 4- 2Fdxdy + Gdy2, (x, y) G D. 

Let f be a smooth isometric immersion of (D,g) with the second fundamental form 

(1.3) // = Ldx2 -b 2Mdxdy + Ndy2 for (x, y) G D 

DEFINITION. Iff is of no umbilical points on dD, with 

a = 2{EM - FL) + ^/-l{GL - EN) 

the winding number of a on dD is called the index of the umbilical points of the surface 
f and denoted by Index(f) or Index (a). 

Obviously, this definition makes sense since p is an umbilical point if and only if 
a{p) — 0. We shall show that the definition of the index of the umbilical points is 
coordinate-free and hence, an invariant of describing umbilical points of surfaces. 

The problem about the realization of a positive disk into R3 seems to have some 
obstructions. For details, refer to Gromov's counter example [GR] which is an analytic 
positive disk not admitting any C2 isometric immersion. On the other hand, to the 
author's knowledge the unique known sufficient condition for a smooth positive disk 
to be smoothly embedded into R3 is the geodesic curvature of the boundary positive. 
Therefore the following hypothesis for the solvability is natural. Assume that 

(1.4) {Dig) admits a smooth isometric immersion ro in R 

The main result of the present paper is as follows. 
THEOREM A. // (D,g) is a smooth positive disk satisfying (1-4)j then for any 

nonnegative integer n and arbitrary (n + 1) distinct points po € dD, pi,..., pn G D, 
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the problem (LI) admits two and only two solutions f in C00(D,R3) with prescribed 
mean curvature h on dD and moreover, 

one principal direction at po is tangent to dD, and at pk parallel to 

(1.5) that of ro, besides, Index(r) = n and H{pk) = Ho(pk),k = 1, ...7n 

where H and HQ are respectively the mean curvatures of f and ro provided that 

(1.6) ^=-l>4max on dD 

Besides, this solution is a convex surface if the geodesic curvature of dD is nonnegative 
and 

(1.7) (ff + v^2 - K) d<7r where 9 = Max^h]^, Vl^loo + {K-^IAK^} 

and d is the diameter of the given positive disk, A is the Laplacian with respect to the 
given metric. 

Throughout the present paper the uniqueness means unique up to a rigid motion 
in R3. It is worth pointing out two extreme cases. The first one involves the existence. 
Suppose that the given positive disk (D,g) is of positive constant curvature. Then it 
is easy to see that this positive disk admits a smooth isometric embedding fb in R3 

which is a simply connected region of the sphere. Under the present circumstance fb 
is totally umbilical and hence, the right hand side of (1.6) vanishes. Therefore we have 

THEOREM B. // (D,g) is of constant curvature and y/K < h G C00(dD), then 
(1.1) with (1.5) is always solvable for each nonnegative integer n and arbitrary (n + 1) 
distinct points po G dD,pi,, ..,pn G D. 

The second extreme case involves the nonexistence. If the given positive disk 
is radius symmetric, i.e., g = dr2 + G2(r)d62 0 < r < 1 where G G C^QO, 1]) and 
G(0) = 0, G'(0) = 1, G > 0 as r > 0. Then if Gr > -1, (D,g) has such a smooth 
isometric embedding in R3, 

(1.8) ro : x = G{r) cos 0, y = G[r) sin <9, z = - f  y/l - G2dr 
J r 

With its mean curvature i^o = HQ{T) we have 
THEOREM C. If H0{1) > y/K(l), then for arbitrary h G C00(dD) satisfying 

y/K(l) < h < HQ(1) the problem (LI) has no any C2 solution. 
It should be also pointed out that for this radius symmetric positive disk with 

the aid of Theorem A (1.1) with (1.5) always admits two and only two solutions in 
C^iD^R3) provided that C^idD) 3 h > 4Ho - 3VK as r = 1. 

The sketch of the present paper is as follows. In Section 2 the invariance of the 
index of umbilical points is discussed. In Section 3 the openness part of the method 
of continuity is given and in Section 4 and Section 5 the proofs for Theorem A and 
Theorem C are completed. 

2. The index of umbilical points. Let the smooth metric be given in the 
form of (1.2) and let r be its smooth isometric immersion with the second fundamental 
form (1.3). 

LEMMA 2.1. If a ^ 0 on dD, then the index of umbilical points of the surface, 
Index{(j) is coordinate-free. 
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Proof. We first use the isothermal coordinates of the induced metric of the surface, 
namely, g — E(dx2 + dy2), (x, y) G D for some smooth positive function E. Hence, in 
the present case, 

(2.1) a = 2ME + i(L - N)E ^OondD 

Suppose that there is a C1 diffeomorphism from (x, y) 9 D onto (^,77) G D and that in 
the new coordinates the first and second fundamental forms g = Ed^2 -{-2Fd^drj-{-Gdr]2, 
II = Ldt;2 + 2Md^dr] 4- iVdr?2 respectively, where 

(2.2) E = E{x2 + j/|), G = E^ + 2$ and F = E^x^ + ^y^) 

L = Lx^ + 2Mx^ + JVy|, JV = Lx2 + 2MxT]y71 + iV^ and 

(2.3) M = Lx^Xr) + M^y^ + x^^) + Nyzyq 

Consequently, by the definition, 

(2.4) cr = EJ(2A + iB) where J = det (?^l 

(2.5) A = (N- L)xm + M(a:| - j/|), 

B = (L- Ar)(x7?^ + x^^) + 2M{ye>yr) - x^x^) 

Expressing them in terms of matrix we have 

v /        X^myn-x^Xrj)    (pCrfVi ■¥xiyT1)J   x /        v 

Notice that det(T) = (x2^ +y|) (^^y^ — x^y^) equals zero nowhere on D. This implies 
that cr = EJ(2A 4- z5) vanishes nowhere on dD from (2.1) and hence, Index(a) is 
well defined. 

Since the winding number is invariant under the homotopy preserving cr 7^ 0 on 
dD, we can make such a homotopy TA, A G [0,1] 

(2.7)       ^=**, v$=ix'yy+y
v)xxt - ^TF1- 

A A        (^4% "^ XriVr)) x J 
(2-8) Xr7  - ^J   Vr)  - 2   ,   ^2 *Xrl +  -2   ,   ^2 X^ 

dj c      \     ^ fi *^p      I     •*' ft 

Replace y^ and y^ by ?/| and y^ in (2.6) and then denote T by T\. Set {Ax^Bx)1 = 

TA(M, L - TV)* and ^A = EJ{2Ax 4- y/^Bx). Evidently, cri = 5 and TA is continuous 
in D x [0,1]. Moreover, 

det(TA) = [x\ + (^A)2] {x^ - x^) ^OonD 

Therefore Index(ax) is also well defined for each A G [0,1] and furthermore, 
Index(ai) = Index(CTQ). With |^|2 = re? 4-2/? we have 

Ao\=zT(    M    \=l    (xl-m*x^ \U^x^xri 

\ — 2(1 4- (T^-prJ^s^     i^p (x^ — x^) 
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Construct another homotopy in such a way that first by the rotation we find (C^^A) 

€ C0(D x [0,1]) subject to (co-do) = (x^x^), (ci.di) = (1,0) Jixj-hx^) and (Px+cPx 

= (xl+x*). Set 

(V
C

A ~ LDTF^A) LDTP^^ 

2 

-2(1 + ^prJcAdA    Jlj^icl-di), 

and define (iA,i?A)* = ^(M, L-N)1. Similarly det(fA) ^ 0 on JD. By the homotopy 
invariance we have 

(2.9) Index(a) = Index(ao) 

= /ndea; j^J^ + a^pM + ^T^{L - N)]\ 

= Index {[2M + i{L - N)}} 

Comparison (2.9) with (2.1) soon completes the proof for the present lemma. 
Now let us look at some surfaces. 
Index(a) — 0. Consider the surface 

(2.10) z = x2 + 2y2 

Then 

E = 1 4- 4x2
: F = 8xy, G=l + 16y2 

L=-^-,M = 0,N=-£- where Do = y/l + 4x2 + 16y2 

DQ DQ 

It is easy to see GL — EN — — 2 at x = y = 0 and hence, GL — NE < 0 near p = (0,0). 
Therefore for the given surface Br: (x,y,x2 -\- 2y2)1 x

2 -f- y2 < r2 where r is sufficiently 
small, the index of umbilical points on dBr, Index (a) = 0. 

Index (a) = 2. Consider the surface 

z = ^(x2+y2)+ax2y2 (a > -) 

Then 

£7 = 1 + x2(l + 2ay2)2,F = xy(l + 2aa:2)(l + 2ay2),G = 1 + y2(l + 2ax2)2 

1 + 2a2/2        = 4ax7/ 1 + 2QX
2 

A)     ' ^o ' ^o 

where Do = \/l + x2(l + 2ay2)2 + 2/2(l + 2ax2)2, (x,y) = (0,0) is an isolated umbil- 
ical point if a > 1/4 and 

Index(a) = /ndex[(4a - l)xy + i(2a + l)(y2 - x2)] 

= Index(x2 — y2 + 22x2/) = 2 as a > - 
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LEMMA 2.2. // the revolution surface f: z = f{^r2), r = \Jx2 -f y1 < 1 has no 
umbilical point at r = 1, ^/zen Index(r) = —2 

Proof. A computation yields 

£ = 1 + (/OV.F - (f')2xy,G = 1 + (Z')2?/2 

L=r±r^_ M=z.f"*v N = f'+f"v2 

Do      ' Do  ' D0 

where i^o = >/! +(/O2^2 + J/2)- So 

(7 = -L {[/" _ (//)3](2a:y + i(x2 - y2)} and /ndex(a) = -2 

since its mean curvature H ^ \[K implies /" — (Z')3 ^ 0 as r = 1. 

3. Perturbation of the boundary value problem. Let g = Qijduxdv? be 
a positive disk. Sometimes denote -u1 and u1 by "1" and "2" or by u and v. Let 
r be a smooth solution to the problem (1.1) and let its second fundamental form 
// = Ldu1 + 2Mdudv + Ndv2. Then L, M and iV satisfy the Gauss-Codazzi equations 

(3.1) L2 - M1 - r}2L - (r2
2 - r^M + T^AT = o 

(3.2) M2 - iVi - r^L - (r2
2 - r{2)M + r?2iv = o 

(3.3) LN-M2 = Kdetigij) = if |^| 

Next we try to put the Gauss-Codazzi equation in a complex form. Introduce the 
complex derivatives 

dz = -^{du - V::idv),dz = -^(du + V^dy) 

Solving N from (3.3) and substituting it into (3.1) (3.2) we can get a 2X2 elliptic 
system. Introduce the complex Riemann invariants, as one has done in the case of the 
hyperbolic system (for negative Gaussian curvature) 

(3.4) w=-M+iym 

Obviously, 

We claim that W satisfies the following first order complex equation: 

(3.5) W2 + WWx = F(W, W,g) in D 

where 

w-w. 
+ -^—[92(In ^/K\i\) + W0,(111 y/K\iJ\)] 

Indeed, 

W2 = -M2 + (fWlhi. WL2 arid m = WiW + W-MX- (^m.j 
1J 1J ±j J_/ 



478 J. HONG 

Combining (3.1)(3.3) with the last two expressions we can obtain (3.5) at once. By 
the definition of the complex derivatives inserting du = dz + dz and dv — i( dz — dz) 
into (3.5). Then it is reduced to the following form 

(3.6) W-z = ii{W)Wz + F{W, W, g) 

where 

i + W F (3.7) ^=i^_andi^=_.  r 

-W i-W 

It is easy to see |/i| < 1 as long as K\g\ > 0 and \/JL\ is strictly less than one if M,L 
and 1/L are finite. 

Let us deal with the boundary condition of the prescribed mean curvature h. 
Since 

GL - 2MF + iV^ 
mean curvature = — 

= L 

2|0| 
G-2^F+^E L x   ^  L- 

iyfK 

<yr-w)y/\g\ 

namely, 

{G + F(yv + W) + \Wf E\ 

(3.8) G + F(W + W) + |W|2 E = -z^i-^L(W - W) 

Under the isothermal coordinates the boundary condition is of the form 

(3.9) 1 + \Wf + i-j=z{yv -W)=§ondD 

Furthermore in the present case F in the right hand side of (3.6) is subject to 

(3.10) F{W,W,g)\w^ = -l-dz\nK 

Now we proceed to deal with the linearized problem of (3.6) (3.9). Suppose that 
the given surface f is a smooth solution to the problem (1.1). By the definition of W 
in (3.4) and /x in (3.7) we have |//| < /J,O < 1 on D for some constant /AQ. And the 
linearized problem of (3.6) (3.9) is as follows 

(3.11) V-z = fi(W)Vz +AV + BV + FomD 

with 

(3.12) Re{aV} = ho, as \z\ = 1 where a = i-j= - W 

and A, B are smooth functions depending only on the first and second fundamental 
forms of the surface f. In view of (3.9), a direct computation gives 

h2 

(3.13) M2 - — - 1 > 0 on dD if h > VK on dD 
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Therefore the winding number of cr along dD, Index(a) is well defined. On the other 
hand, by the definition of W, we have 

( L + JV      VKE1 _ M     . {L2-LN + 2M2\ 
\27KE        L~f~ L^l       2LVKE       J 

Since L, y/K and E are positive, it turns out 

Index{a) = Index {2M + i{L - N)} 

This is nothing else but the index of umbilical points of the surface f introduced in 
Section 1. If Index (a) = n, it is easy to see az~n = \a\ exp (y/^l(Arga — nO)) on 
dD where (Arga — n6) is a smooth function on dD. Since |cr| ^ 0, then without loss 
generality we may assume that a — zn, otherwise smoothly extend the domain of |cr| 
and (Arga — n6) to D by preserving |cr| ^ 0, A change of unknown function V to V 
\(j\ exp (—\f^l(Arg(j — n6)) gives this situation. Now we are faced with the following 
boundary value problem (3.11) with 

(3.14) Re(z-nV) = ho 

By the Vekua's theory the solution of (3.11) with (3.14) is of the form 

(3.15) V = T(f) + r(ho) + Hz) 

Here 

(3.16) T(ho) = frf   Zio^T'^) = ic^" + E (c^2n"" - ^zk) 
^Kl JdD       t — Z  t k=Q 

with complex constants c^, k = 0,1, ...,n and cn real, and 

(3.17) Tf = --f 
n JD 

/(c) + z2n+im 
d(AdC 

[C-z 1-Cz 

TT JD       1-tz 

is a bounded operator from LP(D) into W1,P(D) for all p G (l,oo) and moreover, 
dzTf — f. Therefore, / satisfies the following integral equation 

(3.18) f-n{dzTf}-ATf-BTf 

=Fo 4- fi [dzT(h0) + dz(f>(z)} + A[T(ho) + 0] + B[T(ho) + 0] 

An important observation for this integral equation is, as an operator in L2(D), 

(3.19) A2=    sup    ^y^<l 
/EL2(L>)      ||/|| 

(for details, see [V] ) and with Ap the norm of operators in LP(D) by the convexity of 
logAp in p and the fact that \fi\oo is strictly less than one we know 

(3.20) Apl/^loo < 1 for some p > 2 close to 2 

Hence, the principal part of (3.18) is contractive and (3.18) can be reduced to a 
Fredholm operator in LP(D). In the present section, unless otherwise statement, p 
always satisfies (3.20). 
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LEMMA 3.1. Let A, B and fi be bounded measurable functions and \fji\oo < 1. 
Then if Index (a) = n G Z^ then the homogeneous problem of (3.11) (3.14) has no 
nontrivial solutions in Wl,p{D) satisfying V(po) = 0 and in addition, V(pk) = 0, 
k = l,...,n if n > 1 for arbitrary po € dD and distinct pk 6 D. 

Proof. If V is a solutions mentioned in this lemma. By the Vekua's theory [V] 
(also see Lemma 4.1 in the present paper) we can find two functions (/>,(€ Wl'p(R2) 
respectively satisfying 

V 
(3.21) fa = /x02 4- [A + B—] in D and Imcj) = 0 on dD 

(3.22) Q = Kz in D 

where (" is a homemorphism from D onto D with ((0) = 0 and C(Po) = Po (also see 
[A]) and moreover, both of (/> and C are analytic outside disk. It is evidently that Vi = 
V exp(—(/>) satisfies (3.22) in D and a direct computation gives, as the function of £, 
Vi is analytic in D and continuous on D. Furthermore from (3.14) we have 

(3.23) Re (z-ne+^Vi(C)) = Re (CnAiVi(0)) = 0 on dD 

where Ai = e+^(Cs/z)n. It is easy to see, as the function of C, Index(Xi) = 0 on dD 
since £ is a homemorphism, preserving the origin and po. (3.23) tells us, for some 
function q(() analytic in D and continuous on D satisfying Imq = n(arg(C) — arg(^)) 
on dD, ReiC^e^^Vi) = 0 on a.D. Hence, 

n-l 

e^^Vi = e^(Oye-^ = icnC + ^ (c/bC
2n"fe - ckCk) on 5 

fc=0 

Without loss of generality we may assume pi = 0 and po = (1,0). Hence V(pi) = 0 
implies CQ = 0 and 

n-l 

(3.24) 2cn + ^(cfc-cfc)=0 
ife=i 

n-l 

(3.25) icnp^ + X) (c^S?-* - cfci4) = 0, m = 2,..., n 
k=l 

n-l 

(3.26) icn (pm)"n + Y^ {Ck (Pm)~{2n~k) - ck (Pm)~k) = 0, m = 2,..., n 
A;=l 

View of (3.24) (3.25) (3.26) as a linear algebraic equations with the unknowns ci,..., 
cn_i, icn, —cn_i, — cn_27 •••> —ci. It is easy to see that the matrix of the coefficients 
is nothing else but the Vandermonde determinate composed of l,p2 , ...,Pn jfe)-1, 
•••> (Pn)_1- Since ^ 7^ Pk' and p^ G -D for all k > 1, ci = C3 =,.., = cn — 0 follows 
immediately. This proves V = 0 and completes the proof of the present lemma. 

From the above argument it is easy to fix the constants Ck in (3.16) such that 

Im{z-nV(po)} = /o, V(Pi) = Zi,..., V(pn) = ln 

where lo E R1, /1,..., ^n are given constants and moreover, uniquely 

(3.27) ci = Li(lib,r(/)(pjb),5(Ao)(P*)l* = 0,l,...,n),i = 0,l,...,n 

where L^ are some linear combinations of lk,T(f)(pie),B(ho)(pk),k = 0,1, ...,n. 
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LEMMA 3.2. If FQ G L
P
(D), ho = 70(A) where h G Wl^(D) and 70 is the trace 

operator, and the constants Ck are as mentioned in (3.27), then (3.11) (3.14) always 
admits a solution V GW1,P(D) and moreover, 

(3.28) \\V\\wi,P{D) < C I \\h\\Wi,P{D) + ||Fo||Lp(D) + J2 l^l f 
I k=o      J 

/or some constant C depending only on \A\oo, \B\oo and 1/(1 — |/x|oo)' 
Proof. Notice that T and F are respectively the bounded operators from LP(D) 

and W^CD) into Whp(D). (3.20) guarantees (3.18) of Fredholm type. Now its 
solvability is equivalent to the uniqueness of solutions to the homogeneous equation. 
If / G Lp{D) is a solution of (3.18) for FQ = 0, ho = 0 and lk = 0, k = 0,1, ...,n, it 
follows that 

n-l 

(3.29) F = T/ + 2cnzn + Y,(c*z2n~k - ^zk) 
k=0 

satisfies the homogeneous problem of (3.11) (3.14). On the other hand, by the con- 
struction of Ck it follows V(po) = 0, V(pk) = 0, A: = 1, ..n. Thus Lemma 3.1 tells us V 
identically zero. In view of the fact that dV/dz = /, we know / and all constants Ck 
also identically zero. This proves the uniqueness of solution to (3.18) in LP(D). (3.28) 
is an immediate consequence of the compact argument. This ends the proof for the 
present lemma. 

We shall prove the main theorem of the present paper by the method of continuity. 
Consider an one-parameter family of smooth positive disks. 

gx = Ex(du2 + dv2), (u,v) G D for some £A G ^([O, l^C00^)) 

Assume that 

(3.30) Kx>~ onD for all A G [0,1] 
G 

Let hx e CHfO,!], C^idD)) satisfy 

(3.31) hx > \fK~x on dD 

Denote by Wx the corresponding complex Riemann invariants of the solution to the 
problem (1.1) for (J5, gx). Set 

(3.32) 5 = {A G [0,1]| for gx the problem (1.1) has a smooth solution rx 

satisfying Wx{Vk) — ijfe(A) for some lk G C^O, 1], k = 0,1, ...,n 

to be specified and IndexiyVx -.—1) — n\ 
yKx 

Of course /Q could not be arbitrary and must be compatibility with the prescribed 
mean curvature hx- 

THEOREM 3.3.  The set S is open. 
Proof. Suppose that AQ G 5, namely, there is a smooth solution r to the problem 

(1.1) satisfying (3.32). Denote the corresponding complex Riemann invariants by W 
satisfying (3.6) (3.9) for #Ao and hxQ as well as (3.32). Now we try to find such 
kind solution W -f eV to the problem (1.1) for gx and hx- Then V satisfies the 
problem (3.11) (3.12) for FQ - eQ(€,\W,W,V,V){V,V) -HT^A Fo(A,W) and ho = 
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e~1SXh(X) — |e|y|2 where dX = X — XQ and Q is a quadratic form of V and V smoothly 
depending on u^v and its arguments, Fo,ho are also some smooth functions of u,v 
and its arguments. From (3.32) we can find all the constants ZOJ'I> •••Jn in (3.27) and 
finally reduce to the integral equation of V in (3.18). It is easy to find the solution 
(/,y) to (3.15) and (3.18). Indeed, to put each (/, V) G LP(D) X W^iD) in the 
right hand side of (3.15) and (3.18), the special choice of all constants and by means 
of Lemma 3.2 we can get a solution (f,V) € 27(£>) x Wl>p(D) to (3.15) (3.18). 
Taking e = y/\\ — Ao| and using Lemma 3.2 we can prove this map to be defined in 
the unit ball of LP(D) x WliP(D) into itself and contractive if e = y/\X — Ao| is very 
small. Therefore the fixed point (/, V) is just the required solution. The theorem on 
the regularity of solutions to the Riemann-Hilbert problem tells us (/, V) 6 C00(D). 
From the obtained complex Riemann invariants VF+eV, one can find the corresponding 
coefficients of the second fundamental form, L, M and TV which certainly satisfy the 
Gauss-Codazzi equations. An application of the fundamental theorem on Differential 
Geometry gives the expected solutions to (1.1) with (3.32) if |A — Ao| is very small. 

LEMMA 3.4. For all A € 5, the mean curvature of the corresponding solutions f 

(3.33) H < max (j/iU Vl^U + l^-MoolA^I 

where A is the Laplacian operator with respect to the metric g. 
Proof. Suppose that the mean curvature H attains its maximum at some point 

p*. Then if p* G dD, then (3.33) is trivial and if p* G D, by [P. pp89 Theorem 1] and 
also by [Y3] we know H(p*) bounded above by the second part of the right hand side 
of (3.33). This ends the proof for the present lemma. 

4. Several lemmas. This section intends to deal with the a priori estimates 
for the bounds of the solutions |rAU+a where A G S. The difficulties come from the 
occurrence of umbilical points near dD. We must show that H2 — K has a positive 
lower bound for all f\ where A G S near dD. Before doing so we introduce some 
lemmas. 

LEMMA 4.1. If n G C00(D) and \fi\oo < 1, then there is a ((z) G C00^) which 
is homeomorphism from D onto D with ("(0) =0 and satisfies 

(4.1) C* = K* in D 

Moreover, its inverse map z = z(£) is in C00(D) and H^CIIP > II-^IIP ^ C for some 
p > 2 and some constant C depending only on 1/(1 — |/i|oo)- 

Proof. This is a result due to [V]. For convenience of readers the proof is given 
here. First of all we assume fi G C00(R2) with supp /J, C D. Let us look for such 
solutions of the form 

(4.2) <; = z + Tof-(Tofm 

where To is the Vekua's operator mentioned in (3.17) and £ satisfies 

(4.3) f = fiUf + fimLp{R2) 

where 11 = dzTo. From the assumption l^loo < 1 and the properties of operator 11 
it is easy to see that (4.3) admits a solution / G LP(R2) where p G (2,2 + e) for 
some positive constant e and |/i|oo||n||p < (1 + |/i|oo)/2. Hence ||/||p < 2/ (1 — |/i|oo) 
and C G W1,P(D), ||-DCIIP is controlled by 1/(1 - |/i|oo)- On the other hand, since 
£ = z(l + 0(1/|2:|)) as z t-> oo, it follows that for each point Co G C1, C — Co ^ 0 in 
R2\Br(0) if r is sufficiently large and the winding number of £ - Co on dBr(0) equals 
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one. By the argument principle on the generalized analytic function there is only one 
null point in £?r(0). So ( is homeomorphic from R2 onto R2. By the regularity theory 
on Beltrami equation we know £ 6 C(X>(R2) and DC, ^ 0 in R2. Thus we have proved ( 
diffeomorphic from D onto C(-^)- Composition a conformal mapping with £ soon gives 
a diffeomorphism from D onto D, satisfying all the statement of the present lemma 
for £. Let us now estimate the norm of its inverse map z — z(Q in W1'P{D). A direct 
computation gives 

(4.4) z-Q = -M*(C))*c 

Therefore z = C + Toh + 0(C) where h = -/x^ e C00(D) and 0 analytic in #2. 
Combining (4.2) with (4.4) tells us 0(C) bounded in the whole complex plane. This 
implies 0(C) is the constant — To/i(0). Inserting z into (4.3) we have 

(4.5) h = -n(z{0)tLh - ti(z{0) ^ Lp(£>) 

Analogously we can soon get, as a function of £, z — 2(C) G W1,P(Z)) and ||Z^^||p < 
2/(1-Hoc)- 

Finally a limit procedure will soon complete the proof for the present lemma. 
Now let us consider a special problem 

(4.6) Ws= I^WZ in D with \W\ = 1 on dD 

(4.7) W(po) =i(ov - i) 

(4.8) Index(W) = n, and FFfe) = f, fc = 1,2,..., n 

where |C| < 1 and po G dD, p& G -D, fc = 1, 2, ...n are distinct. 
LEMMA 4.2. Suppose that JU is a smooth function of W,W,z, z and sup |/i| < 

^ < 1 where the supremum is taken over all \z\ < 1 and |W| < 1 /or some constant q. 
Then (4-6) with (4-7)(4-8) always admits a unique solution in C00(D). 

Proof It suffices to prove Lemma 4.2 for the case W(po) = i. Replace /J, by t/j,. 
Then at t — 0 we have a unique analytic solution 

Mm W -J    =cia  Z-px     Z-P2 Z-pn 

l-tW l~PiZl-p2Z        1-pnZ 

Choose the constant a so that W(po) = i. It is easy to see that the following set 

(4.10) A = {t G [0,1]|(4.6) - (4.8) have a solution in C00(5)} 

is not empty. By the same argument as that in proving Theorem 3.3 we can see 
A open. By the maximum principle \W\oo < 1 for each solution W to (4.6)-(4.8). 
Hence l/^oo < q < 1. Suppose that C = Ct(z) and z = zt(C) are the homeomorphism 
mentioned in Lemma 4.1 for tfi. It is evident that Ct(z) (zt(0) are equicontinuous for 
all t G A. Set Ct(Pk) = Pk{t)' It is easy to see that there is a positive constant £i 
independent of t G A such that |pjfe(£)| < 1 — Si. Since W is analytic in £ G D, it 
follows that W has the explicit formula 

w-S _.teC-C(pi(<)) C-^PaW)    C-C(Pn(*)) (411)  ^- = e - 
^'   ' i-ZW        i-C(Pi(*))Ci-C(P2(0)C'"i-C(Pn(*))C 

Therefore there is another positive constant S also independent of t G A such that 
1^1 > | as |C| > 1 - S. With 0 - \W\2 we have 

(4.12) 0a- = -^J- in Z)\55 with 0 = 1 on <9D ss 0 
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and 

(4.13) W< = | 

Now with the aid of Lemma 3.2 the interior estimates for the equation (4.6) yields, 
with Ds/2 = {p€ D\dis(p,dD) > 8/2} 

(4.14) \\D2W\\LP{D5/2) < Cp and |^W|c^/2) < Ca 

for each p € [2,+oo) and a € (0,1) and some constants Cp, Ca depending only on 
1/(1-Hoc) and |/i|i 

Now we are in the position to deal with the estimates in D\Ds. An application of 
the De Giorge' iteration to (4.12) with (4.13) and (4.14) soon bounds the Holder norm 
of (j) in C^(D\Ds) for some positive constant /? depending only on 1/(1 — g) and hence, 
bounds the Lp- norms over D\Ds for D(j) as a function of ( for each p £ (2,+oo). 
Pulling back to the original z we have controlled the Lp—norm of DW over D for some 
p > 2 close to 2 like in (3.20) and hence, the norm of W in Ca(D) where a = 1 — 2/p. 
Finally by differentiation of (4.6) and using the explicit formula (3.15) (3.18) without 
difficulty we can bound all the following norms 

\\DkW\\LPiD) < Ckp and \DkW\ca{D) < Cka 

for each p £ (2, +oo) and each a £ (0,1) and for some constants Ckp and C^aunder 
control. This proves A closed. 

Now let us prove the uniqueness. Suppose that there are two solutions to (4.6)- 
(4.8), Wi, W2- Instead of // by tji by means of the method of continuity previously 
done we can find two solutions Wi(*), W^*) £ C([0,1], C00^)) with W^l) = Wi 
i = 1,2. Since at t = 0, the problem (4.6) with (4.7) (4.8) is of the uniqueness, i.e., 
Wi(0) = W2{0) and AW = W^t) - W2(t) satisfies 

(AWOs - tVL(yV1)(AW)z + tAx{AW) + tA2(bW) in D with 

(4.15) ReiyVxAW) = ^|A1^|2, and A^(po) = 0, AWfe) = 0, Jb - 1,2, ...,n 

In view of the fact that /ndea^VFi) = n, a similar argument in proving Lemma 3.1 
using the contraction mapping principle soon yields AW = 0 as t £ [0, £o] for some 
positive constant £o- Step by step we can arrive at t = 1 and conclude that W^i(l) — 
W2(l) — Wx—W^ identically zero. This completes the proof for the present lemma. 

Now scaling the given metric g we have, in the isothermal coordinates, 

(4.16) Q\ = X2E2(Xu,Xv)(du2 +dv2),(u,v) £ D 

Smoothly extend the domain of the given prescribed mean curvature h to D such that 

(4.17) -JL - 1 > 4 max{-^ - 1} as \u\ = A for all A £ [0,1] 
y/K \u\=X    y/K 

and 

where iiTo and Wo are respectively the mean curvature and the complex Riemann 
invariants of fo. This is possible by the hypothesis (1.6). Now we can fix the constants 
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h in (3.32) 
Wx(pk) = lk = Wo(\pk) k = l,...,n 

and 

(4.19) Wx(po) = i 
h(Xp0)    ^   \h?(\po) _l 

y/K&Po)      V K^Xp^ 
where po = (1,0) 

LEMMA 4.3. For each n e Z+ = {0,1,..,} there is a constant AQ and Wi(X) G 
C,1([0,1],C00(5)) i = 1,2 ty/iic/i are ^/ie complex Riemann invariants of the solutions 
to the problem (1.1) for (D,g\) A G (0, AQ] i*n£/i the prescribed mean curvature h(Xu) 
on dD and satisfying (3.32) (4-19) and moreover, at X — 0, {Wi — ay/^Vj/y/a2 — 1 
tuztfi cr = h(Qi)lyjK(G) are the solutions mentioned in Lemma 4-2. 

Proof Let us focus our attention on (3.6). In the present case, the corresponding 
F subject to 

\i-W\\F(W,W,gx)\<XC(\W\3 + l) 

(4.20) |i-W|2|^WW,^)|,|^(W,W7pA)|<AC'(|W|3 + l) 

for some constant C independent of A and W ,W. Similarly, by (3.9) the boundary 
condition is of the form 

(4.21) 1 + \W\2 - 2   ^A?/)   ImW = 0ondD 
\/K(Xu) 

When A = 0, (4.21) is reduced to \W - oi\2 = o2 - 1 on dD with a = h(0)/y/K{0). 
Consequently, if still denote (W — aVj/^/a2 — 1 by W, then W is a solution to the 
following problem 

(4.22) dzW = vWo2 - IW + a2)52W in D with jW^I = 1 on dD 

W(po) = ii, /ndex(W) = n 

and 

(4.23) W(Pk) = ^^ =e, * = !,...,„ 

(4.18) guarantees |f | < 1. It suffices to deal with the case W(po) = i. In view of (3.7), 
if \W\ < 1, it turns out, Im[ai 4- Vcr2 - IW] > a - yju2 - 1 and 

//(Va2 - IW + a*) =  ^ =-T=n 

and hence, 

lrt^^^I^y+^e.<l-(
4<'-^^^, 
((7 + 1 + Vcr   - 1) 

Now the requirements in Lemma 4.2 are satisfied and the problem (4.22) (4.23) always 
admits a unique solution in C00(D). Pulling back to the original W we have that when 
A = 0, for each n G Z+ (3.6) with (3.9) admits a unique smooth solution satisfying 
(4.8) and ImW > 0 on D. 

When A > 0, in view of (4.20) and using the contraction mapping principle one can 
obtain that there is a positive constants AQ such that for all A G [0, AQ] the problem 
(3.6) with (4.21)(3.32)(4.19) admits a smooth solution W = W(X) and moreover, 
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W(X) is in C1([0, Ao],C00(5)) and hence, ImW(X) > Co for some positive constant 
CQ if Ao is small enough. This ends the proof of the present lemma. 

5. Existence and uniqueness. This section intends to complete the proof of 
the main theorem in the present paper. Let us first derive an equation satisfied by 
-§= — 1. Under the isothermal coordinates, from (3.8) we have 

H l + \W\2+i(W-W) ^w/x_        W i 

^/K -I(W-W) ^-i{W - W) 

It is easy to see |$|2 = -5= — 1 and a direct computation yields 

^ ' ' z 2[-i{W - W)]3/2 

and 

AWx-i(W-i)fiWx-i(W-i)F    ,        ,     .,   -     TTr     .x 

(5.3) $z = 2[-i(W-W)]^      ^^ ^ = 7(2W " ^ " Z) 

Solving Wz from (5.3) we obtain 

(5.4) Wz = ff^yj.8^ ^*» + •■(W - OA*.] + ^ 

for some smooth function R of W, W, F and F in question which is also bounded since 

ii      \W-i\ \W-i\ 

for some constant gf depending only on 1/mini^, and 6 in (1.7) since ImW is strictly 
positive. Combining (5.2) with (5.4) provides 

(5.6) ** = Qi*z+Q2** + # 

where 

(5.7,     o^.y-'l-"!1.. ft-^-o, n"12-11 
|A|2 - |/i|2|^ - i|2' ^ v ' |A|2 - \fi\2\W - i|2 

and R is another bounded smooth function of W, W, F and F in question. Now let 
us show 

(5.8) \Qi\oo + \Q2\oo<qi <1 

for some constant qi depending only on 1/miniif, and 6 in (1.7).   Indeed, by the 
definition in (5.5) 

, >l(i-M2) +N(i-H2)    ,, , (i-H2)N(i-NH) 
l«il +1^1 < i_|s|2H2 - W +       i _ \S\2M2  

^l + (1HMl)^™ = i-|(i-H)(i-W) 

This implies that we can take qi = 1 — |(1 — |^|00)(1 — g) < 1. 
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LEMMA 5.1. Suppose that W is a smooth solution to the problem (3.6)(3.9) and 
that there are two positive constants d and 5 such that 

(5.9) -^=-l>dfor all u2 + v2 > 1 - S2 

yK 

Then\\D2W\\p < Cp for all p G (2,+oo) and\DW\a ,\DH\a < Ca for each a G (0,1) 
where Cp and Ca depending only on l/minK, 1/d, 1/5, 9 in (1.7), \g\2, \K\2 omd 
\h\,. 

Proof. Lemma 3.4 provides the bound for the mean curvature and hence, the 
bounds of |W|OOJ 1/|W — W^. By means of the technique of cutoff functions we 
can easily obtain the interior estimates for solutions to (3.6) (3.9).   namely, with 

(5.10) \\D2W\\hnDsn) < Cp and \DW\ca^s/2) < Ca 

for each p G [2,+oo) and a G (0,1) and some constants Cp, Ca under control. Now 
we proceed to deal with the estimates near the boundary. Set (j> = -j= — 1 = |3>|2. An 
differentiation yields 

(5.11) 02 = $5$ + $$5 and ^ = ($ + *Q2)** + *(9i*z + *fl 

Solving $z from the second part of (5.11) and its conjugate we have 

(      , ,   = ^($ + §Q2) - feQQ! + l^l2(^Qi - RQ2) - $2R 
[ '   ) z |$ + $Q2|2-|$|2|Qi|2 

Differentiation of the first equation of (5.11) using (5.6) gives 

(5.13) ^ = |^|2 - |^|2 + dz(*z*) + %(***) 

where i^i is a polynomial of $z and $5 up to second degree with bounded coefficients. 
In getting the last expression we have used (5.4). Inserting (5.12) into (5.13) we derive 
the equation for </>. 

(5.14) m = +„ + 2Redz .^WWiP - l*l2l^l2 - *'«»> " *.l*l^ 
|* + *Q2|2-|$|2IOil2 

= R2{<t>z,<t>z)iriD/Ds 

where i?2 is also a polynomial of </>z and (f>s up to second degree with bounded coeffi- 
cients since 

(5.15)      |$ + #Q2|
2 - m2\Qi\2 > |$|2(1 -\Qi\- IO2I)2 > c/2(l - gi)2 in D/D5 

Notice that (5.14) is uniformly elliptic since 

(? + rf) (|$ + $Q2|
2 + I^PlQil2 - 2i?e($2Q2) - 2|$|2|Q2|

2) 
-2ile^-i7?)

2(|$|2g1)] 

>(^2 + r?2)|$|2 (1 + |Qi|2 + \Q2\2 - 2|Qi| - 2|Q2|
2) 

>d(l - qx)2^2 +772) for all ^,17 € iZ1 

Using the De Giorge iteration soon gives the Holder estimates of <f> in Ca((D/Ds)) for 
some positive a depending only on the quantities mentioned in the present lemma. 
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Combining the Lp theory for elliptic boundary value problem with (5.10) and the 
Nirenberg's inequality we can soon obtain 

\\D2^\\LP{D,DS)  <CP 

for each p G (2, +oo) and some constant Cp under control. Now in view of (5.4) (5.10) 
(5.12) (5.15) the present lemma is readily proved. 

The proof for Theorem C. Let ro be radius symmetric and of no umbilical 
points on dD. Then Lemma 2.2 tells us the umbilical point index of ro equal to -2. 
Denote its mean curvature and complex Riemann invariant by HQ and WQ. Suppose 
that there is a C3 solution to problem (1.1) with the prescribed mean curvature h on 
dD. Denote its corresponding mean curvature and complex Riemann invariant by H 
and W. Set A$ = *(Wo) - $(W). Then from (5.6) it follows that 

(5.16) (A$)* = Qi(A$)z + Q2(A#)2- + i?i(Wo -W)+ #2(^0 - W) in D 

for some bounded functions Ri and i?2- 
Now we are going to express (WQ — W) in terms of A$. Notice that with $ = 

{W-i)ly/-i{W-W) 

(5.17) $ - $0 = [*w]{W - Wo) + [**>}(& - Wo) 

where [$w] = fQ $W(\W + (1 - A)WQ, XW + (1 — X)Wo)dX and so on. It is easy to see 

Re[<bw] = 36i + 62 and Re[<&w] = bi - 62 

where 

25/2 J0 

dX 

[MmW + (1 - X)ImWo]1/2 

dX 

[XlmW + (1 - A)/mWo]3/2 

Moreover, both of bi and 62 have positively bounds from both sides. Hence 

(5.18) |[<M| > i and }M < 1 - ^ since Im[$w] = -Im^] 

for some constant C under control. Solving W — WQ from (5.17) we have 

(5.19) W - WQ = 
IM2 - |[^]l2 

Obviously the coefficients of (<£ — $o) an<i (^ ~ *o) are bounded by (5.18). Inserting 
(5.19) into (5.16) one can get 

(A^-Q^AS), +Q2(A#)2- + ,41(A$) +^2(A#) in D 

where A11A2 are bounded from both sides.  The theory on the generalized analytic 
functions tells us 

(5.20) (A*)=x(C)expi2i 

where £ is a Holder continuous homeomorphism from the unit disk onto itself, con- 
structed in Lemma 4.1 and 

(5.21) iii = T *+*
(*-*») 

($-$o)J 
where Re(Ri) — 0 on dD 
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From 

A$|> |*(Wo)|- l*^)! > J-^-l- x -=-l>0ondD 

it follows that the winding number Index(x) — Index(/!\$) = Index($(Wo)) = 
Index(Wo — i)= Index(fo) = —2. This contradicts to the fact that x is analytic in 
the unit disk and Theorem C is proved. 

The proof for Theorem A. Suppose that there is a smooth isometric immer- 
sion fo of the given positive disk. Denote its mean curvature by HQ- By the hypothesis 
on the given prescribed mean curvature (1.6) one can find an extension of h in C00{D), 
still denoted by h, subject to (4.17)(4.18). Let the given metric g\ be defined in (4.16). 
Consider the problem (1.1) for (Dyg\) with the prescribed mean curvature h(Xu) on 
dD and the subsidiary condition (3.32) (4.19). Theorem 3.3 and Lemma 4.3 tell us 
that the following set 

(5.22) A = {A G [AQ, 1]| (1.1) has a solution in C00^) with (3.23)(4.19)} 

is open as well as not empty for some AQ > 0. 
In what follows we shall prove A close. Evidently, fo(Xu) is a smooth isometric 

immersion of (D.g\) as A > 0. Denote the complex Riemann invariants of fo by 
WQ. It is easy to see WQ{\U) being the complex Riemann invariants of r^Xu). As 
A € A, denote the corresponding solution and complex Riemann invariants by f and 
W. Analogously, set $(W) = $, *(Wo) = $o. Lemma 3.4 tells us |W|oo, 1/ImW 
and l^loobounded above by a constant C independent of A. Now we are in a position 
to show that for some two positive constants d and S independent of A, 

(5.23) -*L _ i = |$|2 > d2 as u2 + v2 > 1 - 52 

With $ - $o = A$ using (5.6) we have 

0s(A*) - Qidz{A$) + Q2d-Z(A$) + ^(AS) in D 

for some function Ai uniformly bounded.   A similar argument gives (5.20) for A$. 
From 

\W - 

>0ondD 

it follows that 

Index($) = Index(W — i) = Index(W 7=^) ~ n 

Distinguish two cases. 
Case a. n = 0, Since |* - $o| > |*| - |*o| > 0 on dD by (4.17), it turns out 

Index(x) = Index ($) = 0, By the analyticity of x we know x of no null points in D. 
Hence, an application of the maximum principle to x noting |<I>|2 = -^== — 1 yields 

(5.24) \x\ > min |* - $o| > (1 + 6o)(max |$o| + Co) in D 
dD ~ dD 
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for some positive constant CQ. Consequently, for some a 6 (0,1), 

(5.25) |$(9)| ^IxllexpiJil - |$o| > [1 - ^(1 - l^nCl+ eo)(max|$o|+ eo) 
ou 

- [1 +(72(1-|g|)] max |$o| > -eo(niax|$o| + eo) as \q\ > 1 - 8 
dD Z dD 

for some small positive 5 independent of A. In getting (5.25) we have used the following 
property of Ri from (5.21), i.e., ||£)i2i||p < Cp, p > 2, close to 2 and for some constant 
Cp independent of A. By the definition of $ (5.23) is readily proved for the case n = 0. 

Case b. n > 0. Under the present circumstance Index(x) = n > 0 and x is of n 
null points in D. Notice that $(pk) = ^oiPk), k = 1,2, ..,77,. Set 

C-C(Pi(i))  C-CfoW)     C-C(Pn(t)) Xo = e*a 

1 - C(Pl(t))C 1 - C(P2(*))C""1 " C(Pn(*))C 

where C is constructed in Lemma 4.1. Then xo is analytic in £. Since Index(x) = n, 
by the Blaschke decomposition we have x = X0X1 where Xi is also analytic and no 
null points in D. By the maximum principle it turns out 

(5.26) |xi(p)| >min(|*|-|*o|) > (1 + eo)(max|$o| + Co) for all p e D 
dD dD 

In view of the explicit formula of Xo we know |xo(p)| > [1 — CS] as \p\ > 1 — S for 
another positive constant 6 independent of A. Now we can conclude that 

I*(P)I > |expiJi(xoXi)|-|*o| 
> (1 - CS)(1 - CSa)(l + eo)(max |$o| + Co) - (1 + CS) max |$o| 

dD dD 

> -eo(max |$o| + eo) as |p| > 1 - S 

if S is sufficiently small. So (5.23) follows immediately. 
The remaindering part of the proof for the closeness can be directly completed 

by means of Lemma 5.1 without difficulties. 
The proof for the uniqueness. Suppose that (1.1) with (1.5) admits at least three 

solutions. Then without loss of generality we may assume that there are at least two 
solutions fi G C00(D,R3) i = 1,2 such that their corresponding complex Riemann 
invariants satisfy 

h h2 

(5.28) Wi = -= + *y — - 1 at po = (1,0) 

Extend the prescribed mean curvature h subject to (4.17) (4.18). Scaling the metric g 
by #A like (4.16). Consider the set (5.22) for Ao = 0 and evidently, A = 1 E A. Let us 
study the continuation from A = ltoA = 0. In a similar argument in proving the exis- 
tence of Lemma 4.3 and by means of the previous arguments of proving openness and 
closeness of set S we can find two families of solutions Wi(A) G C1 ([0,1], C00{D, R3)) 
i — 1, 2. The uniqueness of solutions to the problem (4.6)-(4.8) tells us VFi(0) = ^(O). 
And with the aid of the contraction mapping principle it follows that W\ (A) = W2 (A) 
and hence, ri(A) = ^(A) as A G (0.A*] for some positive A*. Then repeated finite 
same arguments we can easily deduce ri(l) = 7^(1). This completes the proof by 
contradiction. 

Now we proceed to deal with the proof for the last part of Theorem A. Let us 
focus our attention on the spherical map from r into S2. If it is diffeomorphic, then r 
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is a convex surface and an embedding from D into R3. Since f has positive curvature, 
it follows that its spherical map is an immersion into S2. Suppose that there are two 
points <7i,(/2 ^ D whose the images of the spherical map of f(qi) and ffe) coincide 
with each other and without less of generality, we may assume that the image is just 
the unit vector of the z axis, k. By the hypothesis that the geodesic curvature of 
dD is nonnegative, one can find an arc length parameterized geodesic 7(5) connecting 
'y(O) = f(qi) and j(l) = rfa). Denote the image of the spherical map along 7(5) 
by n(s). Then for each s G [0,/], without loss of generality, we may assume s < 1/2 
(otherwise I — s < 1/2), 

< f  {H+VH2 -K\ds 

< ^ max {9 + V02 - K} < I 

This implies that the images of the spherical map of 7(5), s G [0,1] is contained in the 
below hemisphere. Noting that the Gauss curvature of f is positive everywhere we 
can see the vertical component of r, 2(7(5)) = z(s) satisfying 

(5.29) zss >0sG (0,/) 

On the other hand k is the normal to f at 7(0) and 7(0 and hence, zs(0) = zs(l) = 0. 
this contradicts to (5.29) and proves the previous claim. This ends the proof for the 
main theorem. 
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