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A GENERALIZED INDEX THEOREM FOR MORSE-STURM 
SYSTEMS AND APPLICATIONS TO SEMI-RIEMANNIAN 

GEOMETRY* 

F. GIANNONlt, A. MASIELLO*, P. PICCIONE§, AND D. V. TAUSK^ 

Abstract. We prove an extension of the Index Theorem for Morse-Sturm systems of the form 
—V" + RV = 0, where R is symmetric with respect to a (non positive) symmetric bilinear form, 
and thus the corresponding differential operator is not self-adjoint. The result is then applied to the 
case of a Jacobi equation along a geodesic in a Lorentzian manifold, obtaining an extension of the 
Morse Index Theorem for Lorentzian geodesies with variable initial endpoints. Given a Lorentzian 
manifold (M.,g), we consider a geodesic 7 in A4 starting orthogonally to a smooth submanifold V of 
M. Under suitable hypotheses, satisfied, for instance, if (M,g) is stationary, the theorem gives an 
equality between the index of the second variation of the action functional / at 7 and the sum of the 
Maslov index of 7 with the index of the metric g on V. Under generic circumstances, the Maslov 
index of 7 is given by an algebraic count of the 'P-focal points along 7. Using the Maslov index, we 
obtain the global Morse relations for geodesies between two fixed points in a stationary Lorentzian 
manifold. 

1. Introduction. The goal of this paper is to prove an index theorem for Morse- 
Sturm systems of differential equations with coefficients that are symmetric with 
respect to an indefinite inner product of M71. The main motivation for this kind 
of investigation comes from semi-Riemannian geometry, where Morse-Sturm systems 
appear in the form of Jacobi equations for vector fields along geodesies. 

Let (M,g) be a semi-Riemannian manifold, V a smooth submanifold of M and 
7 : [0,1] H> M be a geodesic in M, with 7(0) G V and 7(0) G Tl{0)V^] set q = 7(1). 
The curve 7 is then a stationary point of the action functional 

-f1 
2 Jo 

defined in the space fl-piq of curves joining V and the point q in M- The index form 
/{7)-p} is the symmetric bilinear form given by the second variation of/, defined on the 
tangent space T7Q-ptq, which consists of vector fields V along 7 with V(0) £ T^^V 
and V(l) = 0. We recall the definition of I{-y,p}- 

(1 ^ Wi (^ w^=l0 kv^'v^ + 9(R^ F) i>w^ dt 

- Sm(V(0),W(0)), 

where V is the covariant derivative of the Levi-Civita connection of #, R is the 
curvature tensor of V and S^o) is the second fundamental form of V in the direction 
of 7(0). 
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One obtains an infinite dimensional Hilbertian structure in ft-p^ by requiring 
a Sobolev H1 -regularity for the curves in fi-p^; then, /{7,p} is a bounded bilinear 
symmetric form on the Hilbert space TyQ-p^. 

If (M, g) is Riemannian, i.e., if g is a positive definite metric tensor, the celebrated 
Morse Index Theorem (see for instance [7, Theorem 2.2], [17, Theorem 15.1], [19] ) 
states that the index of {{-y^}, which is the dimension of a maximal subspace of 
TjQ-p^ on which /{7,P} is negative definite, equals the geometric index igeom(7) of 7, 
which is the number of P-focal points along 7 counted with multiplicity. Such equality 
can also be given in terms of the multiplicity of the negative eigenvalues of the Jacobi 
differential operator, which is a self-adjoint operator representing the index form in 
the Hilbert space of square-integrable vector fields along 7. 

From the viewpoint of Calculus of Variations, the elements of TjQ-p^ are inter- 
preted as infinitesimal variations of 7, and the index of /{7}p} on TyQ-p^ is the number 
of essentially different directions in which 7 can be deformed in order to obtain a curve 
of shorter length. 

The theorem has been successively extended by Beem and Ehrlich to Lorentzian 
manifolds (see [2, 3]), i.e., manifolds endowed with a metric tensor g of index 1, in the 
case of causal (non spacelike) geodesies. For such an extension one only needs minor 
modifications to the original statement (and proof) of the theorem. Most notably one 
needs to consider the restriction of /{7,P} to the space Tyflp of vector fields along 7 
which are pointwise orthogonal to 7. With this restriction, which in the Riemannian 
case is totally ininfluent for the computation of the index of /{7,p}, one basically 
excludes the variations of 7 obtained by simple reparameterizations of 7. For timelike 
Lorentzian geodesies, the affine parameterization is the one that maximizes the value 
of the action functional, and thus the restriction to T^ft^^ has the effect of factoring 
out from Tyfl-p^q an infinite dimensional space on which I{7,v} 'ls negative definite, 
thus making the restricted I{7lv} i^o a form with finite index. 

For spacelike Lorentzian geodesies, or more in general for geodesic of any causal 
character in semi-Riemannian manifolds with metrics of index greater than or equal 
to two, there is no hope to extend the original formulation of the index theorem, due 
mainly to the following reasons: 

• the index of /{7,p} on both T7flpiq and T^Q,^^ is infinite; 
• the set of P-focal points along a geodesic may fail to be discrete, and there 

is no meaningful notion of geometric index; 
• the Jacobi differential operator is no longer self-adjoint. 

In the case of a geodesic 7 having only a finite number of ^-focal points, one can ask 
the question of whether there exists a natural subspace /C7 of T^Q-p^ with the property 
that the restriction of /{7,p} to /C7 has finite index, equal to the geometric index of 
7. However, also for this special case the question seems to have a negative answer, 
due to the fact that, while the index of a bilinear form has some (semi-)continuity 
properties, the geometric index is not stable by small perturbations. Indeed, one can 
produce examples where (isolated) 'P-focal points simply evaporate by arbitrary small 
perturbations of the metric (see [16]), or examples of a sequence jn of geodesies having 
a finite number of P-focal points converging to a geodesic 7 that has a continuum of 
P-focal points (see [12]). 

In order to prove an extension of the index theorem in semi-Riemannian geometry 
one needs to determine a natural subspace /C7 of the Hilbert space T^ftp^ with the 
properties that: 

• the index of the restriction of /{7JP} to 1C1 is finite; 
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• such index should be related to some geometrical properties of the geodesic 
7 and of the manifold V. 

A hint for the choice of such a space was given by recent studies (see [10, 14]) con- 
cerning the geodesical connectedness of Lorentzian manifolds (M,g) whose metric g 
is stationary, i.e., there exists a globally defined Killing timelike vector field on M. 
Given any such vector field Y on M, one has a conservation law for geodesies given 
by: 

(1.2) #0^,7) = c7 (constant). 

Considering the Hilbertian structure on Vt-p^, one proves that the set ftp of curves 
in ft-p5g satisfying (1.2) almost everywhere is a smooth submanifold of ft-p^, and that 
the critical points of the restriction of the action functional / to ftp are precisely 
the geodesies joining V and q in M. Given one such geodesic 7, the tangent space 
/C7 = T7ftp is the Hilbert subspace of T7ft-p?g consisting of those vector fields V 
along 7 that satisfy the linearization of (1.2). Using the Killing property of Y, the 
space /C7 can be described as: 

(1.3) /C7 = \y e T7ftp,, : g(VjV,Y) - g(V,V^Y) = CV (constant)}. 

Using compact embeddings of the Sobolev space i^1 into the space C0, one then 
proves that the restriction of the index form /{7?7?} to /C7 is represented by a self- 
adjoint operator, which is a compact perturbation of the identity. In particular, its 
index is finite. The definition of the space /C7 makes perfectly sense also in the case 
that Y is a timelike Jacobi field along 7, and also in this case we have finiteness of the 
index of the restriction of /{7,p} to /C7. Observe that the restriction of a Killing field 
along a geodesic is Jacobi, and thus this second construction is more general. This 
construction gives a solution for the first point mentioned in the program above; the 
next step is to give a geometrical interpretation of the value of the index of /{7,p} on 
/C7. 

Inspired by some techniques in Hamiltonian systems (see [1]), it has recently been 
defined the notion of Maslov index for a semi-Riemannian geodesic (see [12] and also 
[16]), which is an integer number given by a certain topological invariant. Under 
generic circumstances, the Maslov index can be computed as a sort of algebraic count 
of the multiplicities of the P-focal points. In particular, for Riemannian and causal 
Lorentzian geodesies it is always equal to the geometric index (see [16]). For spacelike 
Lorentzian geodesies, or more in general for all kinds of geodesies in semi-Riemannian 
manifolds with metric tensor of index greater or equal to two, the contribution of 
each V-iocdl point to the value of the index is an integer number, possibly zero or 
negative, called the signature of the "P-focal point, whose absolute value is less than 
or equal to the multiplicity of the 'P-focal point. Generically, the Maslov index of a 
semi-Riemannian geodesic is the sum of the signatures of its P-focal points, and this 
sum is in absolute value less than or equal to the geometric index of the geodesic. 
Besides the finiteness, a remarkable property of the Maslov index is its stability by 
small I perturbations (see [16]), due to its topological nature. 

In this sense, the Maslov index of a geodesic is a natural candidate for substituting 
the nbtion of geometric index for Riemannian and causal Lorentzian geodesies. 

The main result of the paper (Theorem 5.1 and its geometrical formulation Theo- 
rem 6.1) is that, if 7(1) is not a P-focal point along 7, then the index of the restriction 
of i{7/p} to K1 is equal to the sum of the Maslov index of 7 and the index of the 
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restriction of the Lorentzian metric g to T^^V. In particular, this number is indepen- 
dent on the choice of the vector field Y. To strengthen the analogy with the classical 
index Theorem, we remark that it was recently proven (see [1.6, Theorem 6.2.3]) that, 
under generic circumstances, the Maslov index of 7 is equal to the spectral index of 
7, which is computed as a sort of algebraic count of the (real) negative eigenvalues of 
the Jacobi differential operator. 

When comparing with the classical result of the Morse index theorem in Rieman- 
nian manifolds, we see that for non positive definite metrics some new phenomena 
appear: 

• if V is timelike at 7(0), i.e., if the restriction of g to Ty^V has positive 
index, then the initial value of the index of /{7,P} is strictly positive, hence 
even small portions of 7 are never local minimizers for the restricted action 
functional; 

• each P-focal point along 7 gives a contribution to the index which may be 
positive, negative or even null; 

• the multiplicity of the TMocal points is not stable by perturbations, and 
arbitrary small perturbations of a given geodesic may create or destroy focal 
points (see [16]). 

By a parallel trivialization of the tangent bundle of M along the geodesic 7, one can 
reformulate the entire theory in terms of Morse-Sturm-Liouville systems of differential 
equations in lRn. In this framework, the version of the Index Theorem discussed in 
this paper may be considered an extension of the Sturm Oscillation Theorem. 

The proof of the main result of the paper is based on a general method for 
computing the variation of the index of a smooth curve B(t) of symmetric bounded 
bilinear forms defined on a smooth family Tit of Hilbert spaces (Proposition 2.5). 
The jumps of the index function i(t) = ind(^(^)|^J occur at the instants where B(t) 
becomes singular, that correspond to the conjugate points. The value of the jump at a 
discontinuity point £0 is then proven to be equal to the signature of the corresponding 
conjugate point (Proposition 3.5), under the assumption that the derivative B'fo) be 
non degenerate on Kev(B(to)). Under these circumstances, such calculation gives the 
proof of the aimed index Theorem. 

Finally, we need to emphasize the fact that the stability of the Morse index and 
of the Maslov index (see [16]) plays a crucial role in the proof of our results. Namely, 
in order to employ the method described, we need to make a technical assumption 
concerning the non degeneracy of the restriction of g to suitable subspaces. Such 
assumption, which holds generically, is needed to guarantee the finiteness of the set 
of conjugate points and it is the core of the proof of Proposition 2.5, where we show 
how to compute the jump of the index function at each conjugate point. The proof 
of the general case is then given using a perturbation argument, which is based on the 
observation that both the Morse index and the Maslov index of a semi-Riemannian 
geodesic do not change by small C0-perturbations of the data. 

Some examples and applications of the theory developed are discussed in the 
final part of the paper. In particular, under a suitable completeness assumption, we 
obtain the global Morse relations for geodesies with fixed endpoints in a stationary 
Lorentzian manifold (Theorem 7.2). 

For a standard static Lorentzian manifold, the Morse relations have been proven 
in [4] using the Morse index of the energy functional restricted to the set of curves 
satisfying the constraint (1.2); the same kind of relations have been proven in [9] in 
the more general case of a standard stationary metric in a manifold with (possibly 
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non smooth) convex boundary. 

2. Abstract Results in Functional Analysis. Given Banach spaces Ei and 
#2, we denote by C(Ei, E2) the set of all bounded linear operators from Ei to E2 and 
by B(Ei,E2,lR) the set of all bounded bilinear maps from Ei x E2 to JR. If Ei = 
E2 = E, we also set C(E) = C(E,E) and B{E,R) = B(E,E,M)', by Bsym(E,M) we 
mean the set of symmetric bounded bilinear maps on E. 

We give some general definitions concerning symmetric bilinear forms for later 
use. 

DEFINITION 2.1. Let V be any real vector space and B : V x V H-» 1R a symmetric 
bilinear form. The negative type number for index,) n-[B) of B is the possibly infinite 
number defined by 

(2.1) n-(B) — sup < dim(W) : W subspace ofV on which B is negative definite >. 

The positive type number n+(B) is given by n+(B) = n-(—B); if at least one of 
these two numbers is finite, the signature sgn(B) is defined by: 

sgn(B)=n+(B)-n-(B). 

The kernel of B, Ker(B), is the set of vectors v E V such that B(v,w) = 0 for all 
w E V; the degeneracy dgn(B) of B is the (possibly infinite) dimension ofKer(B). 

If V = V+ 0 VL, where B is positive semidefinite on V+ and negative definite on 
V_, then n_(J5) = dim(V_); for, obviously n_(J5) > dim(y_) and every subspace 5 on 
which B is negative definite satisfies S Pi V+ = {0}, and therefore dim(5) < dim(VL). 
Moreover, if in addition B is positive definite on V+, then Ker(jB) = {0}. Namely, if 
v = v+ ■+ V- E Ker(jB), with v+ E V+ and V-. E VL, then, by considering the equality 
—JB(V+,V-) = B(v+,v+) = B{v-,v-), we get v+ — V- = 0. A simple density 
argument shows that if the symmetric bilinear form B is continuous with respect to 
some norm in the vector space V, then its index does not change when one extends 
B to the Banach space completion of V. 

If V is finite dimensional, then the numbers n+(B), n-(B) and dgn(B) are re- 
spectively the number of I's, — 1's and 0's in the canonical form of B as given by the 
Sylvester's Inertia Theorem. In this case, n+(B) +n-(B) is equal to the codimension 
of Ker(B), and it is also called the rank of .B, rk(B). 

Given a Hilbert space ti with inner product (•,•), to any bounded bilinear form 
B : H x H >-» M by Riesz's theorem there corresponds a bounded linear operator 
TB : H H> K, which is related to B by: 

(2.2) B(x,y) = (TB(x),y),    Vx^yEU. 

We say that TB is the linear operator associated to B with respect to the inner 
product (•,•). Clearly, B is symmetric if and only if TB is self-adjoint. We say that 
B is non degenerate if TB is injective; B will be said to be strongly non degenerate 
if TB is an isomorphism. If TB is a Fredholm operator of index 0, i.e., if TB is a 
compact perturbation of an isomorphism, then, by the Fredholm's Alternative, B is 
non degenerate if and only if it is strongly non degenerate. Observe that the strong 
non degeneracy is stable by small perturbations, since the set of isomorphisms of T-L 
is open in C{T-i). 
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We now give a criterion for the differentiability of curves in Banach spaces. We 
start with a definition 

DEFINITION 2.2. Let E and EQ be real Banach spaces. A subset $ C C(E,Eo) is 
said to be separating for E if for all x G E\ {0} there exists (j) 6 $ such that (f)(x) ^ 0. 

We now prove the following: 

LEMMA 2.3. Let E, EQ be real Banach spaces and F, G :[a,b]y-+ E be fixed maps, 
with G continuous. Let $ C C(E, EQ) be a separating set for E; assume that for each 
(f) G $ the composition (j>oF : [a, b] H-> FQ is of class C1, and that {(j)oF)'{i) = (j)oG(t) 
for all t G [a, 6].  Then, F is a map of class C1, and F'(t) = G(t) for all t G [a, b]. 

Proof Fix t G [a, 6]; we have to prove that F'(£) = G(t). We claim that the 
following equality holds: 

(2.3) F(t + h) - F(t) = /       G(s) ds. 

It follows easily by applying each element (f) G $ to both sides of (2.3) and using the 
separating property of $. Denoting by || • || the norm of F, it follows: 

F(t + h)-FW_G{t) 
h 

< 
-1      rt+h 

-J       \\G{s)-G{t)\\ds 

the continuity of G concludes the argument. D 
In the next proposition and its corollary we exhibit a method to compute the 

variation of the index of a curve of symmetric bilinear forms. We want to leave the 
domains of the forms variable, and we use the following notion of a C1 -curve of closed 
subspaces of a Hilbert space: 

DEFINITION 2.4. Let K be a Hilbert space, I C M an interval and {V^tei be 
a family of closed subspaces ofH. We say that {Vt}tei ^s a C1-family of subspaces 
if for all to £ I there exists a C1-curve a :]to — e,to +e[nl *-> C(H) and a closed 
subspace V C H such that a(t) is an isomorphism and a(t)(Vt) = V for all t. 

We will call the maps a appearing in Definition 2.4 the local trivializations of the 
family {Vt}teI. 

In the following Proposition we study how the index of a smooth curve B(t) of 
symmetric bilinear forms varies after passing through a degenerate instant £o- We need 
a technical assumption on the map B(to), which must be represented by a compact 
perturbation of a positive operator. 

PROPOSITION 2.5. Let % be a real Hilbert space with inner product (•,•), and let 
B : [£o,£o + r] »-> Bsym(H,^), r > 0, be a map of class C1. Let {Vt}te[tQ,to+r} be 
a C1 -family of closed subspaces ofT-L, and denote by B(t) the restriction of B(t) to 
Vt xVt. Assume that the following three hypotheses are satisfied: 

1. B(to) is represented by an operator of the form L-\-K, with L : Vt0 »-> Vt0 a 
positive isomorphism and K : VtQ i-> VtQ a (self-adjoint) compact operator; 

2. the restriction B of the derivative Bf(to) to Kev(B(to)) x Ker(F(£o)) is non 
degenerate 

3. Kev(B(to)) CKer(B(*o)). 
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Then, for t > to sufficiently close to to, B(t) is non degenerate, and we have: 

(2.4) n-.(B(t)) =n-(B(*o)) +n_(5), 

all the terms of the above equality being finite natural numbers. 

Proof By possibly passing to a smaller r, we can assume the existence of a C1- 
curve a(t) of isomorphisms of H such that a(t) carries Vt to a fixed subspace V of H. 
We can now replace each B(i) by the push-forward B(i)(a(i)~1-,a(t)'~1'), and each 
Vt by V. Such replacements will not affect the hypotheses of the Proposition, nor 
the quantities involved in the equality (2.4). For instance, thanks to the hypothesis 
3, the index of the restriction of B'(to) to Kev(B(to)) does not change; namely, for 

V,W e Ker^oXa^o)-1 • ^o)"1 • )bxp), it is: 

^^(aW-^^W-1^)!^^^^)^^)-1^^^)-1^) 

t2'5)       +E(*0)(Aa(t)-1V,a(M^ 
= B'(to)(a(to)-1V,a(to)-1W). 

We can therefore assume without loss of generality that Vt = 7i and B(t) = B(t) 
for all t. Moreover, we observe here that, by a convenient choice of the Hilbert space 
inner product onT-L, we can assume that B(to) = B(to) is represented by a compact 
perturbation of the identity of H, Id + K. 

Now, the subspace N = Ker(Z?(£o)) is the eigenspace of K corresponding to the 
eigenvalue —1, hence it is finite dimensional. 

We start considering the case that B(to) is positive semi-definite on H and that 
B is positive definite on N. In this case, the thesis means that B(t) is positive definite 
on H for t > to sufficiently close to £o- 

Let S be any closed complementary subspace of N in H] clearly B(to) is positive 
definite on S. We claim that there exists a positive constant Co such that, for t 
sufficiently close to to, it is: 

(2.6) B(t)[x,x] > co,    Vx e S with ||x|| = 1. 

Namely, for t = to, the inequality (2.6) follows from the fact that the restriction of 
B(to) to S is of the form ((Id + K)-, •) for some compact operator K : S \-> S.  In 
this case, CQ may be chosen to be the least eigenvalue of Id + K. The continuity of B 
concludes the proof of the claim. 

We set: 

(2.7) ci=   inf  B,(to)[y,y}>0. 
yGN 

M = l 

Since B is C1, it is easy to see that, for t sufficiently close to to, it is: 

(2.8) B(t)[y,y}>^cl(t-to),    Vy G N, \\y\\ = 1, 

so that B(t) is positive definite on both N and 5 for t sufficiently close to to. We 
want to show that, if t > to is sufficiently close to ^ then for all x G S\ {0} and 
y G N \ {0}, B(t) is positive definite on the two dimensional subspace of H generated 
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by x and y. By the positivity on S and iV, it suffices to prove that, for t > to is 
sufficiently close to to, the following inequality holds: 

(2.9) B{t)[x,y]2<B(t)[x,x].B(t)\y,y], 

for all x G 5, y £ N, x,y ^ 0. Obviously, we can assume ||a:|| = \\y\\ — 1. As B(to) 
vanishes on N x S and B is of class C1, there exists C2 > 0 such that, for all t > to is 
sufficiently close to to, we have: 

(2.10) \B(t)[x,y]\ <C2'(t-to), 

for all xeS,yeN with ||a?|| = \\y\\ = 1. By (2.7), (2.8) and (2.10), for all t > to is 
sufficiently close to to we get: 

B(t)[x,y)2 <c2
2(t- to)2 < ^coa (t - to) < B(t)[x,x] • B(t)\y,y], 

for all x € 5, y € iV with \\x\\ = ||y|| = 1. This yields (2.9) and concludes the first 
part of the proof. 

For the general case, we use the spectral decomposition of K to write an orthogo- 
nal decomposition H = 5+ 05_ 0iV, where B(to) is positive definite on 5+ and nega- 
tive definite on 5_; observe that 5- is finite dimensional, and n-(B(to)) — dim(5_). 
Moreover, we write N = N+&N-, where B'fo) is positive definite on N+ and negative 
definite on A^_. We then apply the result proven in the first part of the proof to the 
restriction of B(t) to 5+©A^+ once, and again to the restriction of —B(t) to SLsiVL1. 
The conclusion follows by observing that B(t) is positive definite on 5+ © N+ and 
negative definite on 5_ © iV_, which implies that n-(B(t)) = dim(S,_ © 7V_) for t 
sufficiently close to to. Clearly, this also implies that B(t) is non degenerate. □ 

Although we will not need it, we observe that, for t sufficiently close to to, the 
bilinear map B(t) is actually strongly non degenerate, as it follows easily from Fred- 
holm's Alternative. We also observe that the assumption that the bilinear map B(to) 
be represented by a compact perturbation of a positive operator cannot be removed 
from the statement of Proposition 2.5; it is easy to give examples where the hypothesis 
is not satisfied and the thesis of Proposition 2.5 does not hold. 

REMARK 2.6. It is important to emphasize that the conclusion of Proposition 2.5 
does not hold if the assumption of nondegeneracy for the derivative Bf(to) is not 
satisfied, and this is trivially checked. Besides, unless the Hilbert space 7{ is one- 
dimensional, it is very unlikely that the conclusion of Proposition 2.5 can be extended 
if one only makes a non degeneracy assumption for some higher order derivative 
B^k\to) on Ker(B(to))', to understand this, we consider the following example. Let 
Bi(t) and i^M be the symmetric bilinear forms on M2 represented with respect to 
the canonical basis by the following matrices: 

(2.ii)      BIW=(.? iU), *(*)=(£; 

Clearly, £o = 0 is an isolated singularity for both Bi ad B2, and Ker(i?i(0)) = 
Ker(l?2(0)) = M- ei, where ei is the first vector of the canonical basis of M2. The 

1 observe that S- © N- has finite dimension, hence it is trivial that the restriction of —B(t) to 
S- ® /V_ is represented by a compact perturbation of a positive isomorphism, say the identity, and 
the first part of the proof applies. 



A GENERALIZED INDEX THEOREM IN SEMI-RIEMANNIAN GEOMETRY 449 

derivatives Bf
1(0) and ^(0) vanish on M • ei; moreover, the restrictions of Bi(t) and 

B2(t) on 1R - ei coincide for all t. However, the change of value of the functions 
n-(Bi(i)) and n_(£?2(£)) passing from a negative to a positive value of t is different: 

n-(Bi(*)) = 1,    n_(B2(*)) = 0,    for t < 0, 
n_(Bi(*))=0,    n_(JB2(*))=0,    for t > 0. 

REMARK 2.7. Observe that, under the hypotheses of Proposition 2.5, if B(t) is 
non degenerate for t in some interval /, then the function i(t) — n-(B(t)) is constant 
on /. We also observe that Proposition 2.5 can be applied to a backwards reparam- 
eterization of the curve B(t) to obtain information about the value of n-(B(t)) for 
t < to sufficiently close to to- Namely, if one considers the curve of bilinear maps 
S{t) = B(to - t), we have 5(0) = B(to), ^'(O) = -B'^o), and the equality (2.4) tells 
us that, for r > 0 sufficiently small, it is: 

n-(5(to " r)) = n_(5(r)) - n-(B(to)) + n-(-fl) 

= n-(B(*o))-l-n+(B). 

We also have the following immediate corollary, which gives us a way to compute 
the total change of index of a differentiable curve of symmetric bilinear forms when 
passing through a degenerate instant: 

COROLLARY 2.8. Let B : [to-r,to+r} h-» BsymC^iR) and {Vt}te[to_ryto+^ satisfy 
the same hypotheses of Proposition 2.5. Then, in the notations of Proposition 2.5, 
for e > 0 small enough, we have: 

(2.13) n-(B(to -£)) -n-(B(to + e)) = sgn(B). 

Proof Use Proposition 2.5 twice, once to i?|[io>£0+r] and once to a backwards 
reparameterization of B|^0_r^0] (see Remark 2.7). D 

We conclude the section by showing a method that will be used later to produce 
C1 -families of closed subspaces of a Hilbert space: 

LEMMA 2.9. Let I C 1R be an interval, Ti^Ti be Hilbert spaces and F : I *-> 
£(%,%) be a Cl-map such that each F(t) is surjective. Then, the family Vt = 
Ker(F(t)) is a C1-family of closed subspaces ofH. 

Proof. We exhibit local trivializations for the family {X>t}t€j. For t — to G /, the 
map F{t) maps the orthogonal complement V^ isomorphically onto %] by continuity, 
this also holds for t sufficiently close to to- This implies that we have a direct sum 
decomposition H = Vt © V^ and the projection TT^ onto Vt is given by: 

n = l&-{F{t)\vt)-
1oF{t). 

t0 

Obviously, 11-> TT^ is C1. For t sufficiently close to £o5 we define a(t) to be the inverse 
of the isomorphism: 

(7rteid):PioeP^Ae^. 

Such a map a gives the required local trivialization for the family {Vt}t£i. □ 



450 F. GIANNONI, A. MASIELLO, P. PICCIONE, AND D. TAUSK 

3. Morse—Sturm Systems and the Index Theorem for positive definite 
metrics.. Motivated by a geometric problem, we introduce a set of data (#,i?, P, S) 
for the Morse-Sturm problem as follows. Let's consider the system of differential 
equations in lRn: 

(3.1) J"(t)=R(t)[J(t)),    te[o,i] 

with initial conditions: 

(3.2) J(0) G P,     /(O) + S[J(0)] G P^, 

where: 
• g is a (fixed) nondegenerate symmetric bilinear form on IRn; 

• P : [0,1] *-»• £(lRn,]Rn) is a continuous map of"g-symmetric linear maps on 
lRn, i.e., g(R(t)[x],y) = g(x,R(t)[y]) for all x,y G iRn; 

• P is a subspace of Mn on which g is non degenerate, and P1- denotes the 
orthogonal space of P with respect to g; 2 

• S : P »->» P is a ^-symmetric linear map. 
In some of the statements proven in this section, we will assume that R is indeed a 
map of class C1. Nevertheless, some perturbation arguments presented in the next 
section will allow us to prove our main results in the general case of a continuous map 
P. 

A solution for the differential equation (3.1) satisfying the initial conditions (3.2) 
will be called a (P, 5)-solution; we denote by Jf the set of all (P, 5)-solutions: 

(3.3) jr= JJ: [0,1] ^ lRn : J satisfies (3.1) and (3.2) j. 

Observe that J is an n-dimensional vector space. For all t G [0,1], we define §[t] by: 

(3.4) $[t]={j(t): JGj}, 

and we say that to G]0,1] is a (P, S)-focal instant if there exists a non zero J G JT 
such that J(to) = 0. Clearly, this is equivalent to requiring that S[to] ^ lRn. The 
multiplicity /i(£o) 0f a (P, £)-focal instant to is the codimension of JJ^o] in lRn, or 
equivalently, the dimension of JJ^o]"1- The signature sgn(to) of to is defined as the 
signature of the restriction of the bilinear form g to the space JT^o]"1' 

(3-5) sgn(*o) =sgn(^|J[to]±). 

The (P, 5)-focal instants coincide with the set of zeroes of the function r(t) = det( Ji (£), 
J2OO, •.. , Jn(t)), where Ji,... , Jn is a basis of JT. If R(t) is real analytic, then also 
r(t) is real analytic on [0,1], hence its zeroes are isolated (observe that r(t) cannot 
be identically zero, see Proposition 3.1). In [16, Proposition 2.5.1] some sufficient 
conditions for the discreteness of the (P, 5)-focal instants are given. More precisely, 
the following result is proven: 

PROPOSITION 3.1. Let to be a (P,S)-focal instant. If g is non degenerate on 
S[to] (or equivalently on jr[£o]~Lyl then there are no other {P1S)-focal instants in some 

2henceforth, the symbol _L will mean orthogonality with respect to g. 
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neighborhood of to. Moreover, there are no (P, S)-focal instants in some neighborhood 
of to = 0. D 

A proof of Proposition 3.1 can also be deduced from some results that will be 
presented in the rest of this section (see Remark 3.6). 

An easy calculation shows that, for Ji, J2 € Jf, the following equality holds: 

(3.6) 9(J[{t),Mt))=g{Ji(t)tJ^t)),    V* e [0,1]. 

Namely, we use (3.1) to show that the difference #(J{, J2) — giJi^J^) 'ls constant, and 
(3.2) to see that this constant is zero. Formula (3.6) and an easy dimension counting 
argument shows that, for t G [0,1]: 

(3.7) Sit]1- = {j'(t) : J E S, J(t) = 0}. 

Namely, from (3.6) it follows easily the inclusion of the term on the right hand side 
into Jf^]-1; conversely, it is easy to see that the dimension of the space on the right 
hand side of (3.7) is equal to /j,(t) = din^JT^]-1-), which proves (3.7). 

Moreover, we introduce the following analytical framework. 
Let if1([a, &],JRm) denote the Sobolev space of all absolutely continuous M171- 

valued maps on [a, b] with square integrable derivative; Hp([a, 6], M171) will denote the 
subspace of iI1([a,6],iRm) consisting of those V such that V(a) G P and V(b) = 0. 
Moreover, HQ ([a, b],Mm) is the subspace of H1 ([a, b],]Rm) given by the V's such that 
V(a) = V{b) = 0. 

For t G]0,1], we set Tit = Hp([0,t], JRn) and H = Hi; we define the isomorphisms 

(3.8) ipt:H^Hu    with    ipt(V){s) = V(s) = v(^),    se[0,t]. 

For each t G]0,1], we introduce the index form It on Ht, which is the symmetric 
bilinear form given by: 

(3.9) 

It(V,W) = f [g(V'(s),W'(s)) + g(R(s)[V(s)],W(s))} da-g{S[V(0)],W(0)). 
Jo 

REMARK 3.2. If g is positive definite, then one can consider the following Hilbert 
space inner product on Ht- 

(V,W)Ht= I g(V'(s),W\s))&s. 
Jo 

The bilinear form It is written as the sum of (•, ')y_t and a bilinear form which is contin- 
uous with respect to the C0-topology. By the compact embedding of i^1([0, t],lRn) in 
C0([0,t],IRn) (see [6]), one obtains immediately that It is of the form ((Id + if)-, ')nt 
for some compact operator K on Ht- 

Finally, for all t G]0,1], let It be the symmetric bilinear form on H obtained by 
the pull-back of It by ipt, namely: 

(3.10) it = It(vt;<Pt'). 
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Explicitly, for V, W € H we have: 

it{v,w) 

-ff(S[F(0)],W(0)). 

ds 

Integration by parts in (3.9) and the Fundamental Lemma of Calculus of Variations 
show that 

(3.12) Ker(/t) = {J|[0it] : J € J, J{t) = o}; 

from (3.7) and (3.12) for each t E]0,1] we then get an isomorphism 

(3.13) 
fa : Ker(/t) H—>   S^ 

V     ^ V'(t). 

We set 

(3.14) Aft = Ker(/t) C H; 

obviously, y< gives an isomorphism between Ker(/f) and Aft. 

PROPOSITION 3.3. Suppose that R is a map of class C1.  Then, the map 

]o,i]Bt^iteBsym(H,m) 

is of class Cl. Moreover, the map ]0,1] 9 11-> Ct = t ■ It has a C1 -extension to [0,1], 
with 

(3.15) Co(V,Wr)= /   ^'H.^'^dw,    V,WeH. 
Jo 

Proof. Substituting u = s/t in (3.11), we get the following expression for If. 

(3.16) 
it(y,w) = f 

Jo 

-g(S[Vm,W(0)). 

Differentiating (3.16) with respect to t we get 

1 

g(V'(u), W'iu)) + tg(R(tu)[V(u)l W(u)) du 

(3.17) 

d .   .    . f1 

It(V,W) = 
Jo dt t2 g(V'(u), W'iu)) + g(R(tu)[V(u)], W(u)) du 

+ t f ug(R'(tu)[V(u)},W(u))du. 
Jo 

We now apply Lemma 2.3 to F(t) = It, G(t) is the right hand side of equality (3.17), 
E = Bsym(n, R), Eo = R and $ = {4>y # : V, W € H}, where 

4>y^(B) = B(V,W),    BeBsym(H,R). 
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It is easy to check that G is continuous, by the continuity of R and R!', and clearly $ 
is separating for E, which concludes the first part of the proof. 

From (3.16) we compute easily: 

Ct{V,W)=l   [g(V'(u), W'(u)) + t2g(R(tu)[V(u)},W(u)) 
(3.18) JO 

-t-g(S[Vm,Wm, 

du 

for all t G [0,1]. Its regularity is established analogously applying Lemma 2.3. D 
We have the following immediate Corollary: 

COROLLARY 3.4. For t > 0 small enough, It is strongly non degenerate on Tit- 
Moreover, if g is positive definite in lRn, then It is positive definite for t small enough. 

Proof. For t > 0, It is strongly non degenerate (positive) if and only if Ct is 
strongly non degenerate (positive). From (3.15), Co is strongly non degenerate because 
g is non degenerate; by continuity, Ct is also strongly non degenerate for t > 0 small 
enough. 

If g is positive definite, then Co is a Hilbert space inner product, and therefore it 
is positive definite and away from 0. By continuity, Ct is positive definite for t small 
enough. D 

We now pass to the study of the signature of /'(£) on J\ft. For this, we consider 
the push-forward of /'(£) through the isomorphism: 

fa o <pt : Mt *—> $1^ 

given by the composition: 

/'(^((^o^rs^o^r1.), 
where the maps (ft and ipt axe defined in (3.8) and (3.13). 

We have the following: 

PROPOSITION 3.5. Suppose that R is a map of class C1. For t E]0,1], the 
isomorphism fa 0 ft carries the restriction of I'{t) to N't into the restriction of —g to 

Proof. Let t G ]0,1] and V,W £ Aft be fixed; observe that V and W are maps of 
class C3, because they are affine reparameterizations of solutions to (3.1); they satisfy 
the following differential equations: 

(3.19)  IV" (!) . R(s) [v (f)],   IW (f) . JK.) [*(J)].      Se [0,«]. 

We differentiate (3.11) with respect to t and, observing that V^l) = W'(l) — 0, we 
obtain: 

(3.20) 

^kv,w)^g(v'{i),w'ii))-l^9(v'(f),w>(f)) d, 
s 

F 

- jf ? [»(fiWi" (?) •*(!))+9 {*•* (?) ■*' (f))] <■■ 
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Using (3.19), we eliminate from (3.20) the terms involving the operator R, and we 
get: 

(3.21) 
s w, *) 4 ^'(D, ^(.» - 2 jf! [^ {f (f), *• (i)) 

^(7(1), W(l)) = -^(^ o ^(F),^ o ^(W)). 

dt 

t2 

ds 

This concludes the proof. D 

REMARK 3.6. If ^o is a (P, 5)-focal instant for which g is non degenerate on 
J[£o]j then Proposition 2.5 and Proposition 3.5 imply that It, and hence It, is non 
degenerate for t ^ to sufficiently close to £o- Moreover, by Corollary 3.4 there are no 
(P, 5)-focal instants near t = 0. So, we obtain an alternative proof of Proposition 3.1. 

As a corollary to Proposition 2.5 and Proposition 3.5, we obtain the classical 
Morse-Sturm Oscillation Theorem: 

COROLLARY 3.7. Suppose that R is a map of class C1. If g is positive definite 
in IRn, then the following equality holds: 

(3.22) n_(Ji)=   Y.  A*(*)- 
te]o,i[ 

Proof. Let t® G]0,1] be fixed. By Remark 3.2, Jio is represented by a compact 
perturbation of the identity map with respect to some suitably chosen Hilbert space 
inner product on %. By Proposition 3.3, / is of class C1, and we are under the 
hypotheses of Proposition 2.5. If £o < 1, applying Corollary 2.8 and Proposition 3.5, 
we obtain that the integer valued function i{t) = n_(/i) is constant around £o if £o 
is not a (P, 5')-focal instant, whereas it has a jump of exactly ^(£o) at £o if ^o is a 
(P, 5)-focal. If t is small enough, by Corollary 3.4, it is n-(It) = 0, and this concludes 
the proof in the case that £o = 1 is not (P, S,)-focal. 
Applying Proposition 2.5 to backwards reparameterizations of It (see Remark 2.7), 

we see that the map i(t) is indeed a left-continuous function on ]0,1], and therefore 
n_(/i) = n_(/i_e) for e > 0 small enough. With this observation the proof is 
concluded. D 

4. The Index Theorem for non positive definite metrics. In this section 
we aim at a generalization of the result of Corollary 3.7 to the case of non positive 
definite metrics g. As we have observed, for a general metric g the left-hand side of the 
equality (3.22) is infinite; on the other hand, the sum appearing in the right-hand side 
of (3.22) may lose sense, due the fact that there may be an infinity of focal instants. 

For the beginning, we will consider only the case of Morse-Sturm systems hav- 
ing a finite number of (P, 5)-focal instants. We will see that this assumption holds 
generically, i.e., for almost all choices of the data P, P, S in (3.1) and (3.2). The 
conclusion for the general case will be obtained by perturbation arguments, discussed 
in Section 5. As to the finiteness of the index, we want to consider the restriction of 
Ii to a suitable subspace ICofH that ought to be small enough to yield finiteness of 
the index, but large enough to retain the relevant information about the differential 
problem. Actually, in order to use the techniques of Section 3 to compute the evolu- 
tion of the index function i(t), we need to determine a whole family /Q of subspaces 
of 7-lt with the required properties. 
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Having a concrete example in mind, we axiomatize the following set of properties 
for the family /Q. 

DEFINITION 4.1. For each t €]0,1], let Kt be a closed subspace of Tit and let 

JCt — (^^(/Q). The family {lCt}te]o,i] Z5 called an admissible family of subspaces for 
the Morse-Sturm Problem (3.1) and (3.2) if the following conditions are satisfied: 

1. the family {/Q} admits an extension to t = 0, denoted by /Co, which makes it 
a C1-family of closed subspaces on the interval [0,1]; 

2. for t 6)0,1], the restriction of the index form It to Kt is represented by a 
linear operator which is the sum of a positive self-adjoint isomorphism of Kt 
and a compact (self-adjoint) operator on Kt; 

3. the restriction of the bilinear form Co (see formula (3.15),) to KQ is non degen- 
erate, and it is represented by the sum of a positive self-adjoint isomorphism 
and a compact (self-adjoint) operator on KQ; 

4. for t E]0,1], the kernel of the restriction of It to Kt is equal to the kernel of 
It in Kt (see formula (3.12)). 

The condition 2 of Definition 4.1 implies that, for each t G]0,1] there exists a 
Hilbert space inner product on Kt under which the bilinear form It is represented by 
a compact perturbation of the identity map on Kt. By condition 3, the same is true for 
the bilinear map Co on /Co- In particular, by the condition 1 and by Proposition 3.3, 
we are allowed to use the result of Proposition 2.5 and of Corollary 2.8 to the bilinear 
forms It and Ct on Kt. Observe that the hypothesis 3 of Proposition 2.5 for the family 
of closed subspaces Kt is satisfied thanks to the axioms 3 and 4 of Definition 4.1. 

The axioms satisfied by an admissible family of subspaces for the Morse-Sturm 
problem constitute the hypotheses of a generalization of Corollary 3.7. Recalling 
the definition (3.5) of the signature sgn(t) of a (P, 5)-focal instant t, we prove the 
following: 

THEOREM 4.2. Let {Kt}te]o,i] be an admissible family of subspaces for the Morse- 
Sturm problem (3.1) and (3.2), with R of class C1, and assume that the restriction 
of g to §[t] is non degenerate for all t E]0,1].  Then, we have the following equality: 

(4.1) MAki) =n-(Co\jt0)+   Yl   sSn(t)-n-(g\m±). 
te}o,i[ 

Proof. As in the proof of Corollary 3.7, we study the evolution of the function 
i(t) = n-(It\fc ) when t runs from 0 to 1; observe that z(l) = n_(/i|^: ) = n_(/i|x;1). 
Observe that, by the axiom 4 of Definition 4.1, the (P, 5)-focal instants coincide with 
the instants t where It is degenerate on Kt- 

By Proposition 3.1 (see also Remark 3.6), there is only a finite number of (P, 5)- 
focal instants, hence, by Remark 2.7, i is piecewise constant on ]0,1]. Namely, i is 
constant on any interval that does not contain (P. S,)-focal instants. 

Since n_(Cft|^ ) = n-(It\fc ) for t > 0, by the non degeneracy of Co on KQ and 
Remark 2.7, i(t) = n_(Co|^ ) for t > 0 sufficiently small. 

When t passes through a (P, 5)-focal instant to G]0,1[, by Corollary 2.8 and by 
Proposition 3.5 the jump of the function i is equal to the signature sgn(to). 

Finally, applying Proposition 2.5 to a backwards reparameterization of It around 
to — 1 (see Remark 2.7), by Proposition 3.5 for t < 1 sufficiently close to 1 we have 
i(t) — i(l) = n-^ljmj.), which concludes the proof. D 



456 F. GIANNONI, A. MASIELLO, P. PICCIONE, AND D. TAUSK 

We have observed in the proof of Corollary 3.7 that the index function i(t) is 
left-continuous under the positivity assumption for g. We emphasize that, as it was 
clear in the above proof, this property fails when g is non positive. As a consequence 
of this lack of continuity, when comparing with the Riemannian Index Theorem, in 
the right hand side of equality (4.1) we get the extra term n-(g\j^±) which is non 
zero when to = 1 is (P, 5)-focal. 

Another remarkable phenomenon that appears in the case of non positive definite 
metrics is the presence of the term n-(Co\fc ) in the equality (4.1), which is the initial 
value of the index function i(t). As we saw in the proof of Corollary 3.7, for positive 
definite metrics, such initial value is zero. 

We now present a concrete example of the above situation. We will assume 
throughout the rest of this section that n-{g) = 1 and that the differential equa- 
tion (3.1) admits a solution Y : [0,1] H-» BJ1 with the property that g(Y,Y) < 0 on 
[0,1]: 

(4.2) y" = i?y,    and    g{Y, Y) < 0. 

We fix one such solution Y and we consider the following one-parameter family 
of positive definite inner products in IRn: 

(4.3) ft«(w>w)=^,w).2£(!^^M>    we [0,1], ,,«,€*». 

Observe that, for all t G [0,1], g^iv.w) coincides with g(v,w) if either v or w is 
orthogonal to y(*), and ^(r)(y(£),y(£)) = -g(Y{t),Y(t)). The formula that gives g 

in terms of g^    is similar: 

For alH G ]0,1], we consider the following subspace of Tit'- 

(4.5) 1Ct = {v eUt: g{V\Y) -g(VX) = Cy (constant)}. 

We claim that Kt is an admissible family of subspaces for the Morse-Sturm Problem 
(3.1) and (3.2), and we take the rest of this section to prove the claim. 

As in Definition 4.1, for t 6 ]0,1] we set /Q = ^^(/Q); explicitly, we have: 

(4.6) ICt = [V e n : g(Vf(u),Yt(u)) - g{V(u),Y;(u))) = const.}, 

where Yt(u) = Y(t • u) for u € [0,1]. We observe that formula (4.6) makes sense also 
for t — 0, where yo is the constant vector y(0): 

(4.7) /Co = {V e n : g(V'(u):Y(0)) = const.}. 

Let H denote the Hilbert space given by the quotient I/2([0,1],JR)/C, where £ 
denotes the subspace of constant functions. For t G [0,1], ICt is the kernel of the 
bounded linear map Ft : K «->- H given by: 

Ft(V)(u) = 3(V»,yt(u)) - 9(V(u), Yl(u)) + € 

= 9{V'{u), Y{tu)) - t ■ g(V(u), Y'(tu)) + €. 
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LEMMA 4.3.  The map [0,1] 3 t H> Ft € £(H,H) is of class C1. 

Proof. We formally differentiate (4.8), obtaining: 

(4.9) Fl(V)(u) = ug(V'(u),Y'(tu))-g(V(u),Yl(tu))-tug(V(u),Y''(tu)) + €. 

Using the fact that Y is of class C2, it is easily seen that formula (4.9) defines a 
continuous curve in £(?-/,?-/). We now use Lemma 2.3 by considering $ to be the set 
of evaluations at fixed vectors V G H; the conclusion will follow once we prove that 
the map t i-> i'i(V') E H is of class C1 for all V E H, and that its derivative is given 
by (4.9). 

Let C1 ([0,1], ]Rn) be the Banach space of IRn-valued C1-maps on [0,1]; we define 
the following bounded linear operator a : C1([0, l],iRn) >-> Ti by: 

(4.10) a(y)(u) = g(V'(u),y(u)) - g(V(u),y'(u)). 

We observe that the map 11-> Ft(V) is given by the composition of a and the map 

(4.11) t^YieC1^,!],^). 

It remains to show that the map (4.11) is of class C1. This is again an easy consequence 
of Lemma 2.3, where $ is the set of evaluations at fixed instants u E [0,1]. D 

The next step towards our goal is to prove the surjectivity of Ft. We introduce 
the subspaces St CHt and St CH: 

St = {f-Y\l0,t] : / € H*{[0,t],R)},    t €]0,1], 
(4-12) . .   .     .        , ,    J 

St = {f-Yt:fe HZ([0,1],R)},    t e [0,1]. 

Observe that, for t E]0,1], St = ipt(St). We show now that Ft (St) — H: 

LEMMA 4.4. For all t E [0,1], the restriction of Ft to St is surjective. 

Proof For f E ffo ([0,1], M), we compute : 

Ft(j.Yt) = f,.g{YuYt) + <t:. 

Hence, for the proof we need to show that, given h E £2([0,1], JR) there exists c E M 
and / E i^o ([0,1], M) such that the following differential equation is satisfied: 

/f=    h + c 

9(Yt,Yt) 

It suffices to take: 

{ f1      dr     Y1  f1       h        , ,     t. .       fu    h + c     , 
c = —     /    —;—T— /    —-—— dr,    and    f(u) = /    —x—^— dr. 

\Jo   g(Yt,Yt)J     Jo  g(Yt,Yt) Jo   g(Yt,Yt) 

Observe that the above formulas make sense because g(Yt,Yt) < 0. □ 

COROLLARY 4.5. {fCt}te[o,i] ^s a C1-family of closed subspaces ofH. 
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Proof. It follows directly from Lemma 2.9, Lemma 4.3 and Lemma 4.4. D 

COROLLARY 4.6. For t e]0,1], 'Ht=JCt+ St; moreover, T-L = /Co + SQ. 

Proof. By Lemma 4.4, an easy linear algebra argument shows that, for t £ [0,1], 
H = Kt +St. For t G ]0,1] we apply the isomorphism <pt and we get the conclusion. D 

Although we will not need it, we emphasize that the sums in the statement of 
Corollary 4.6 are direct. As a matter of facts, we now prove that the above sums are 
orthogonal with respect to the bilinear forms It and Co, respectively. 

LEMMA 4.7. For all t G]0,1], the spaces Kt and St are orthogonal with respect 
to the bilinear form It; moreover, the spaces KQ and SQ are orthogonal with respect to 
Co. 

Proof. Let V G /Q and / • Y G St be fixed, with /(0) = f(t) = 0. From (3.9), 
(4.2) and (4.5), we compute using integration by parts as follows: 

It(V,fY)= I \S'9{y\Y) + fg(y\Y')+fg{RV,Y)] As 
Jo 

(413) = Jjf'Cv + f'g(V,Y') + fg(V',Y') + fg(RV,Y)} ds 

= f [-fg(V',Y')-fg(V,Y")+f9(V',Y')+f9(V,RY)} ds 
Jo 

= 0. 

Similarly, if V G JCQ and / • Y(0) G SQ are fixed, /(0) = /(I) = 0, since giV', Y(0)) is 
constant, from (3.15) we have: 

Co(VJ.Y(0))= [  f'g(V/,Y(0))du = 0, 
Jo 

which concludes the proof. D 

COROLLARY 4.8. For all t > 0, the kernel of the restriction of It to Kt equals the 
kernel of It in Ht (see formula (3.12)); moreover, Co is non degenerate in KQ. 

Proof. Let t G]0,1] be fixed. From (3.6), (3.12) and (4.5) it follows immediately 
that Ker(It) C Kt, hence Kei(It) C Ker(/t|;ct). 

For the opposite inclusion, observe that, if V G Ker(/t|jcJ, then It(V, W) = 0 for 
all W G Kt, and, by Lemma 4.7, also J*(V, W) = 0 for all W e St. By Corollary 4.6 
it then follows that It(V, W) = 0 for all W G Ht, proving that Ker(/i) D Ker(/t|/cJ. 

Similarly, Ker(Co) — Ker(Co|^o). Since g is non degenerate, from (3.15) it is easy 

to see that Co is non degenerate in Ti, which proves that Co is non degenerate in KQ. 

D 
We now look at the representation of the bilinear forms It and Co as self-adjoint 

operators. We start with the following general observation. 
If B : ^([0,1],Mn) x ^([O,!],^7*) H^ R is a bilinear form obtained by the 

restriction of a continuous bilinear form on Co([0,1], IRn) x Co([0,1], IRn), then, since 
the inclusion H1 i->- C0 is compact, it follows that B is represented by a compact 
operator on i^QO, l],JRn). 

We can now prove the following: 
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PROPOSITION 4.9. For all t > 0, It is represented by a self-adjoint bounded linear 
operator on /Q which is of the form L + K, where L is a positive isomorphism of /Q 
and K is compact. Also, the restriction of CQ to JCQ is represented by a compact 
perturbation of the identity map of /CQ . 

Proof Let t G]0,1] be fixed; from (3.9), (4.4) and (4.5) we write It on /C* as 
follows: 

It(V,W) = f gU(V'(8),W'(8))d8 
Jo 

(       } + 2 Jo 9(Y(s),Y(s)) 

+ / g(R{s)[V(s)],W(8))d3-g{S\y(0)],wm. 
Jo 

Now, the bilinear form on ICt given by the first integral in (4.14) is a Hilbert space 
inner product on JCt, and therefore it is represented by the identity operator on /Q. 

We now observe that the bounded linear operator 

1   /•' 
V^Cv = -      [g(V',Y) - g(V, Y')} ds 

1 Jo 

from ^([0, t], JRn) to M has a continuous extension to Co([0, l],IRn). Namely: 

Cv = \ft [9(V\ Y) - g{VX)] ds = \ \g{V, Y) | J - 2 j* g{V, Y') ds] , 

and the latter expression is clearly continuous with respect to the uniform topology. 
It follows that the bilinear form on /Q given by the second integral of formula (4.14) 
has a continuous extension to Co([0, l],2Rn), and we have observed that this implies 
that it is represented by a compact operator on /C*. The terms in the last line of 
formula (4.14) are also continuous in the C0-topology, and again the corresponding 
bilinear form is represented by a compact operator on /Q, which proves the first part 
of the Proposition. 

As to the bilinear form CQ on /Co, observe that, by definition of /Co (see formula 

(4.7)), if V e /Co then the quantity ^(V^l^O)) = -^(^'^(O)) is constant, and 
thus: 

(4.15) glr)(V',Ym = Z"1 iW.nO)) du = -g{
0
r)(V(0),Y(0)). 

Jo 

Then, for V,W E /Co, it is: 

(4.16) CofrW) = />(*'(«),*'(«)) d«-2^(0)'y(0)^r)(p|r(0)'y(0» 
^r)(y(o),y(o)) 

Again, the integral in the above formula is a Hilbert space inner product in /Co, and 
the last term is continuous in the C0-topology, which proves that Co is represented 
by a compact perturbation of a positive isomorphism of /CQ. □ 

PROPOSITION 4.10.  The index of Co in /Co is equal to the index of the restriction 
of g to the subspace P: 

(4-17) n_(Co|£o)=n_(3|p). 
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Proof. Let P = P+ © P_ be a direct sum decomposition of P, with g\p+ positive 
definite and g\p_ negative definite (recall that g is non degenerate on P). Then, it is 
easy to see that we have a direct sum decomposition /Co = IC+ 0 /C_, where: 

(4.18) /C+ = {t>e/Co:t>(0)eP+}, 

and 

(4.19) JC- = {V : [0,1] H> Mn affine function | V(0) G P-, V(l) = o}. 

Clearly, dim(/C_) = dim(F_) = n-(g\p); to conclude the proof, it suffices to show 
that Co is positive semi-definite on /C+ and negative definite in JC-. 

If V G /C_, V ^ 0, then ^(-u) = ^(^ — 1) for some VQ € P-, VQ j£ 0, and for all 
u G [0,1]; then, from (3.15), we have: 

Co(V,V)= [ p(F,,y,)du-^o^o)<0. 

If V G /C+, then, by (4.16), we have: 

Since V'(l) = 0 ad the function v »->• g^^v^v) is convex in 7Rn, we use the Jensen's 
inequality to prove the following: 

(4.21)      <?<r)(my(0)) = c7(
r)(/  y' Au, [ V' du) < f g^\v'{u),V'(u)) du. 

JQ JO JO 

Finally, from (4.20) and (4.21) we obtain: 

■(r),T>,nw>,ft„ o^r)(y(o),y(o))a 

^r)(y(o),F(o)) 
Co(t>, V) > ^r)(T>(0), 1/(0)) - 2 yo

(r; ;j; ^^  = g(V(0), vm > o, 

which concludes the proof. D 
We summarize the above results in the next theorem: 

THEOREM 4.11. Let g be a nondegenerate symmetric bilinear form on IRn with 
n-(g) = 1, R : [0,1] H-> C(lRn) be a C1-majp of g-symmetric linear operators on IRn, 
P a g-nondegenerate subspace of lRn and S : P H-» P be a g-symmetric linear map 
on P. Suppose that the differential equation V" = RV admits a solution Y satisfying 
g(Y: Y) < 0 on [0,1]. Let JC be the subspace of Hp([Q,i\,lRn) consisting of those V 
such that gCV', Y) — g(V, Yf) is constant on [0,1]; assume that g is non degenerate on 
each S[t]. Then 

(4.22) n_(IiU;) = n_(0|p)+   £   sgn(t) - n-(g\m±), 
t€]0,l[ 

where the objects I\ and §[t\ are defined in (3.9) and (3.4). Q 
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5. On the Nondegeneracy Assumption. The Maslov Index..-In this sec- 
tion we will discuss the nondegeneracy assumption for the restriction of the bilinear 
form g on the spaces §[t] defined in (3.4), and which is essential for the proof of 
Theorem 4.2. 

As we have observed, this assumption guarantees that the set of (P, 5)-focal 
instants is discrete (Proposition 3.1); however, it is important to observe that, even 
when the number of (P, 5)-focal instants is finite, such assumption cannot be removed 
from the statement of Theorem 4.2 (see [16, Section 7]). 

A natural substitute for the term X^elo i\sgn(t) appearing in formula (4.1) in 
the case that g is possibly degenerate on some $[t] is the so called Maslov index of the 
differential problem (3.1) and (3.2), denoted by iM^, P, P, S) (see [12, 16] for details). 
The Maslov index iM(#> P> P, S) is defined whenever £o = 1 is not a (P, S)-focal instant. 
It is an integer number computed as the intersection number of a continuous curve 
with a subvariety of codimension one of the Lagrangian Grassmannian of a symplectic 
space. 

For the reader's convenience, we sketch briefly the formal definition of iM;.the 
proofs and further details on our approach may be found, in [16]. Consider the 
differential problem in lRn given by (3.1) and (3.2). Using the bilinear form #, one 
considers the symplectic form u in lR2n given by: 

V((V1,V2),(W1,W2)) = 9(VUW2) - gfaiWl)- 

It is an easy observation that, if V and W are solutions of (3.1), then the quantity 
uiiyMiV'it)), (W(t), W'fr)) is constant in [a, &]; moreover, if V and W are in Jf, then 
this constant is null (see formula (3.6)). A subspace L of iR2n is said to be isotropic 
with respect to a; if a; is null on L x L; the space 

L = {(^1^2) € M2n : V! G P, v2 +%i] G P"1} 

is a Lagrangian subspace of the symplectic space (.R2n,u;), which is a maximal 
isotropic subspace of lR2n (necessarily n-dimensional). The set A consisting of all 
the Lagrangian subspaces of the symplectic space (]R2n,u)) is a compact, connected, 
analytic embedded submanifold of the Grassmannian Gn(lR2n), called the Lagrangian 
Grassmannian of {]R2n,uo). 

By what has been observed, for all t G [a, 6], the subspace of lR2n given by: 

L{t) = {{V(t),V\t)):Vzi} 

is Lagrangian, hence the differential problem (3.1) and (3.2) defines a continuous curve 
in A. Considering the Lagrangian subspace of IB?71: 

Lo = {0}©iRn, 

it is an easy observation that an instant to G ]a, 6] is P-focal if and only if L(£o) HLQ ^ 
{0}, i.e., if and only if L(£o) and LQ are transversal One then considers the subset 
AQ C A consisting of those Lagrangians that are transversal to LQ; AQ is a dense 
open subset of A which is contractible. The first relative homology group with integer 
coefficients #i(A, Ao;Z) is computed in [16] as: 

ffi(A,Ao;Z)~Z. 
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The continuous curve L(t) in A defined by our differential problem does not define 
a homology class in ii?i(A, Ao;-Z), because its initial point is never in AQ; moreover, 
its final point is in AQ precisely when to = b is not a P-focal point. Let's assume 
that to = b is not a P-focal point; by Proposition 3.1, if we consider the restriction 
L£ of the curve L(t) to an interval of the form [a + £,b], with e > 0 small enough, 
then we have a well defined continuous curve in A with endpoints in AQ. The relative 
homology class of this curve is easily seen not to depend on the choice of the small e. 
The Maslov index iM(g,i?, P, 5) is defined to be the relative homology class of L£ in 
ffi(A,Ao;Z). 

Such index equals the sum X^ejouSg*22^) when the non degeneracy assumption 
for g is satisfied ([16, Theorem 5.1.2]). Moreover, the essential property of iM is that, 
since it is a topological invariant, it is stable by C0-small perturbations of the data 
(<7, i?, P, S) ([16, Theorem 5.2.1]). As an immediate application of the uniform stability 
of iM, we obtain immediately that the result of Theorem 4.11 can be extended to the 
case that R is only continuous, provided that the instant to = 1 is not (P, S)-focal, 
by replacing the term Ylte]o i[ sSn(^) 'm (4.22) with the Maslov index iM(p, i?, P, 5). 

Using a similar perturbation argument, we now want to push the result of The- 
orem 4.11 beyond the assumption of non degeneracy for g. To this aim, we argue as 
follows. 

Let's assume that a set of data (#,P, P, 5) is given in lRn, with n-(g) — 1, and 
suppose that the following assumptions are satisfied: 

(a) g is non degenerate on P; 
(b) the differential equation V"=RV admits a solution Y satisfying g(Y,Y) < 0 

in [0,1]; 
(c) the instant £o = 1 is not (P, S)-focal. 

If g' is a symmetric bilinear form on lRn which is sufficiently close to g and Pf is a 
subspace of lRn sufficiently close to P (in the sense of the Grassmannian of subspaces 
of iRn), then clearly n_(p/) = 1 and g' is non degenerate on P7. So, the assumption 
(a) above is stable by small perturbations. 

Moreover, standard results on the continuous dependence from the data for ordi- 
nary differential equations guarantee that also the assumptions (b) and (c) above are 
stable by uniformly small perturbations of the objects g, P, P and S. 

Finally, to complete the argument, we need to prove that it is possible to produce 
arbitrarily C0-small perturbations of the data (g, P, P, 5) for which the restriction of 
g to the spaces §[t] is non degenerate for all £ E]0,1]. It is easy to prove that such 
perturbations of the Morse-Sturm problem (3.1) and (3.2) exist in the more general 
class of linearized Hamiltonian systems, where some of the results of this paper and 
of [16] still hold in a more general form. In this class, the set of systems for which the 
non degeneracy assumption is C,0-dense. Since both the Morse index and the Maslov 
index are stable by uniformly small perturbations (see [16]), we obtain the following 
extension of Theorem 4.11: 

THEOREM 5.1. Let (g,R, P,S) be a set of data for the Morse-Sturm problem 
(3.1) and (3.2). Suppose that the following assumptions are satisfied: 

• n-(g) = 1; 
• R is continuous; 
• to = 1 is not a (P^S)-focal instant; 
• the equation Vn — RV admits a solution Y satisfying g(Y,Y) < 0 on [0,1]; 

Let JC be the subspace of Hp([0, l],]Rn) consisting of those V 's such that the quantity 
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giV'.Y) -g(V,Y') is constant a.e. on [0,1].  Then 

(5.1) n_(Ji|/c) =n_(#|p) +iM, 

where iM = iM(g,R,P,S) is the Maslov index of the Morse-Sturm problem and Ii is 
the bilinear form on ifp([0, l],iRn) defined in (3.9). □ 

6. The Lorentzian Morse Index Theorem. The main motivation for study- 
ing extensions of the Morse-Sturm theory in the case of non positive metrics g comes 
from the applications to the geodesic problem in semi-Riemannian geometry. In this 
section we discuss the case of Lorentzian manifolds, and in particular we show how 
Theorem 5.1 can be interpreted as a generalization of the classical Morse Index The- 
orem. 

We introduce the following geometrical setup. 
Let's assume that (M,g) is a Lorentzian manifold, n = dim(M), and that 7 : 

[0,1] i-> M is a geodesic, i.e., V^-y = 0, where V is the covariant derivative of the 
Levi-Civita connection of g. We denote by R the curvature tensor of V, chosen with 
the following sign convention: i2(X, Y) = VxVy — VyVx — V[x,y]. 

Let V be a smooth submanifold of X, with 7(0) G V, 7(0) G T^V^, 7(1) = q, 
and assume that g is non degenerate on T^^V; we say that V is non degenerate at 
7(0). The second fundamental form of V at 7(0) in the direction n is the symmetric 
bilinear form Sn : T7(o)P x T^^V *-> IR given by: 

Sn(Vi,V2) = 0(VVlV2,n), 

where V2 is any extension of V2 to a vector field on V. Since g is non degenerate on 
Ty(o)V, then there exists a linear operator, still denoted by 5n, on T7(o)^, such that 
Sn(vi,V2) = g{Sn[vi],V2) for all Vi,V2 G r7(o)P. 

A Jacobi field along 7 is a smooth vector field J along 7 that satisfies the Jacobi 
equation 

(6.1) V|J + ^(7,J)7 = 0; 

a T^-Jacobi field is a Jacobi field J along 7 that satisfies the initial conditions: 

(6.2) J(0) G T7(0)7>,     [V7(o) J + S7(o)[J(0)]] G T^V1-. 

The index form I{7^v} 'ls ^e symmetric bilinear form defined on the vector space 
K{7?'P} consisting of those piecewise smooth vector fields V along 7 such that V(0) G 
Tl{0)V and V(l) = 0, defined by: 

I{^V}(V,W)=   f  \g(ViV,V*fW)+g(R(<y,V)<y,W) 
Jo  L (6.3) 

-^(S7(o)^(0)],T-F(0)). 

dt 

It is easy to see that a vector field V G H^^-py is a P-Jacobi field if and only if it is in 
the kernel of I{lyv}' A point 7(^0) is said to be a TMocal point along 7 if there exists 
a non zero V-Jacobi field along 7 vanishing at to: the multiplicity of a P-focal point 
is the dimension of the vector space of all V-Jacobi fields along 7 vanishing at to. If 
the initial submanifold V reduces to a fixed point of M, in which case the V-Jacobi 
fields along 7 are simply the Jacobi fields vanishing at t = 0, then the focal points 



464 F. GIANNONI, A. MASIELLO, P. PICCIONE, AND D. TAUSK 

are also called conjugate points. If 7 is either timelike or lightlike, in which case V is 
necessarily a spacelike submanifold of M at 7(0), then there are only a finite number 
of 'P-focal points along 7, and their number, with multiplicity, is defined to be the 
geometric index of the geodesic 7 (see [19]). 

The geodesic 7 is a critical point of the action functional: 

1 f1 

2 Jo  9^"] (6.4) f{z)=2j   9(i,*)to, 

defined on the set ^{v^} of paths z : [0,1] *-* M such that 2(0) G V and z{l) = q-, 
the space H^^-py can be seen as the tangent space of ft>{v,q} at 7 and the bilinear 
form /{7,P} is the second variation of / at 7. Hence, the index of /{7,7>} in 7^/7jp\ 
is the Morse index of the functional / at the critical point 7; moreover, 7 is a non 
degenerate critical point of / precisely when the point q is not 7^-focal along 7. 

The Morse index of / at 7 is not finite, due to the indefiniteness of the metric g. 
However, the theory developed in the previous sections indicate that we can determine 
a finite index carrying some geometric information about 7 provided that we restrict 
the bilinear form /{7jp} to a suitable subspace of Ti^^j. 

To describe how the geometrical problem fits into the theory of Morse-Sturm 
systems discussed in the previous sections, we consider a trivialization of the tangent 
bundle TM. along 7 by means of a family {Ei,... , En} of parallel vector fields along 

7- 
The map V = ^2i Xi • Ei H* (AI, ... , An) gives an isomorphism of /H{7?p} with 

the vector space of all piecewise smooth iRn-valued functions on [0,1]. Since each Ei 
is parallel, the covariant derivative of vector fields along 7 correspond to the usual 
differentiation in M71', moreover, the Lorentzian metric g is carried to a constant 
nondegenerate bilinear form on IRn, still denoted by g, with n_(</) = 1. For each 
t G [0,1], the map 

Rn ~ Tl{t)M 3v^ R(^(t),v)j(t) G Tl{t)M ~ lRn 

is given by a ^-symmetric linear operator on IRn, still denoted by R(t). Finally, the 
tangent space T1^V corresponds to a g-nondegenerate subspace P of iRn, and the 
second fundamental form 57(o) gives a ^-symmetric linear map S : P i-)- P. 

The bilinear form /{7,^} is carried into the bilinear form ii, defined in the set 
of piecewise smooth iRn-valued functions on [0,1], given by formula (3.9). Since 
ii has a continuous extension to the Hilbert space ifp([0, l],iRn), an easy density 
argument shows that the index of /{7,p} on H^^-py is equal to the index of Ii on 
i/p([0, l],iRn). The Jacobi equation (6.1) becomes the Morse-Sturm system (3.1), 
the initial conditions (6.2) are read into (3.2), and we have translated our Lorentzian 
geodesic problem into the Morse-Sturm problem (3.1) and (3.2). 

Clearly, the space J defined in (3.3) corresponds to the set J-p of V-Jacobi fields, 
and the (P, 5)-focal instants are precisely the TMocal points along 7. The space 
Jv[t] C T7(t)M is defined to be the set of values at t of the fields in J-p] the signature 
sgn(7(to)) of the ^-focal point 7(^0) is defined to be the signature of the metric g 
on the space Jvlto]1", the TMocal point 7(^0) is said to be positive, null or negative 
according to whether sgn(j(to)) is positive, null or negative.3 

* 3The reader should observe that we are using a terminology slightly different from the one adopted 
in [12], where it is defined a timelike, a null and a spacelike index for each conjugate point. 
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The important observation here is that, if 7 is causal, i.e., timelike or lightlike, 
then the restriction of the metric g to the space 17JPM"

L
 is always positive definite, so 

that the signature of a TMocal point coincides with its multiplicity. This implies in 
particular that the Maslov index of 7 coincides precisely with the geometrical index 
of 7. 

Under the assumption that the point 7(1) is not TMocal along 7, we can therefore 
apply Theorem 5.1 to the geometrical problem, obtaining the following generalization 
of the Morse Index Theorem for Lorentzian geodesies with variable initial endpoint: 

THEOREM 6.1. Let (M^g) be a Lorentzian manifold, V C M a smooth subman- 
ifold, 7 : [0,1] ^ M a geodesic with 7(0) G V and 7(0) G T^^V1-. Assume that the 
following hypotheses are satisfied: 

• there exists a timelike Jacobi field Y along 7; 
• V is non degenerate at 7(0); 
• 7(1) is not V-focal along 7. 

Then, denoting by /C7 the space of (piecewise smooth) vector fields V along 7 satisfying 
V(0) G r7(o)P, V(l) = 0 and giV^V.Y) - giV^V^Y) = Cy (constant), the index of 
/{^-p} on /C7 is finite, and the following equality holds: 

(6.5) n_(J{7jp}|/c7) = n-(g\T^Q)v) + IMM- 

Moreover, if ^ is causal, then IMCT) equals the geometric index 0/7.D 

Observe that the quantity on the right hand side of (6.5) does not depend on the 
choice of the timelike Jacobi field Y, hence the index of I{7,p} on the space /C7 is also 
independent on the choice of Y. We also remark that, if 7 is a timelike geodesic, then 
one can take as a timelike Jacobi field Y the tangent field 7. It is easy to see that, 
in this case, the space /C7 consists precisely of those vector fields along 7 that are 
pointwise orthogonal to 7. Hence, Theorem 6.1 gives a generalization of the Timelike 
Morse Index Theorem of [3, Theorem 10.27]. 

An important class of examples where the assumption on the existence of a time- 
like Jacobi field along any geodesic is satisfied is given by the stationary Lorentzian 
manifolds, i.e., Lorentzian manifolds admitting a timelike Killing vector field. In this 
case, a timelike Jacobi vector field along every geodesic is given by the restriction of 
any timelike Killing field (see [18, Lemma 9.26, p. 252]). 

It is interesting to observe that, for non positive definite metrics, as we can deduce 
from equation (6.5), the Morse index of the action functional at a given geodesic 7 
may be strictly positive even in the case that 7 has no focal points. This happens 
precisely when the initial submanifold V is non spacelike. For a better understanding 
of this fact, one can consider the following simple but instructive example. 

EXAMPLE 6.2. Let (M,g) be the two-dimensional flat Minkowski space, with 
metric dx2 - dy2. Let j{t) = (t, 0), t G [0,1], and let V denote the one-dimensional 
timelike submanifold of M given by the y-axis; we are in the situation described in 
the hypotheses of Theorem 6.1, considering Y = ^- as the timelike Jacobi field along 
7. Clearly, there are no 'P-focal points along 7, and both the curvature tensor R of g 
and the second fundamental form S of V are null. 

We have n-(g\Ti0t0)v) = 1; the space /C7 consists of vector fields of the form 
V = a(t)£ + b(t)^, with a(0) = a(l) = 6(1) = 0 and &'(*) EE Cy constant on [0,1]. 
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For V G /C7, the value of the index form /{^^(V, V) is computed easily as: 

I{^r}(V,V)= f   [at(t)2-b,(t)2]dt= [ a'(t)2dt-C%. 
Jo Jo 

If we consider a = 0, we get a one-dimensional subspace of IC1 on which I{7ir} 'ls 

negative definite; on the other hand, if we consider 6 = 0 and a arbitrary, we get a 
complementary subspace where /{7,P} is positive definite, thus n-(I^^y\}Cf)= 1. 

It is fairly easy to give examples of P-focal points in stationary Lorentzian man- 
ifolds of every causal type. Examples of positive focal or conjugate points are easily 
constructed by considering causal geodesies, or spacelike geodesies admitting a par- 
allel timelike Jacobi field along them (see Example 6.5 below). In the next example 
we construct elementary examples of negative and null focal points in manifolds with 
flat metric. 

EXAMPLE 6.3. Consider the Minkowski plane M2 endowed with the flat metric 
g = dx2 — dy2; let ^(t) = (£, 0) be the (spacelike) geodesic segment on the x-axis, 
and let V denote the parabola through the origin given by the equation y2 -f 2x = 0. 
Then, 7 is orthogonal to V at (0,0) = 7(0); the second fundamental form of V at 
(0,0) is easily computed as 

d\       d 

\dy J      dy' 

so that J(t) = (t — !)•§- is a V-Jacobi field along 7 which vanishes at £ — 1. 
Clearly, 7(1) = (1,0) is a TMocal point of multiplicity one along 7, and 5^12(7(1)) = 
sgn(g\n-j'(i)) = sgn{g\]R,^_) = -1. 

To construct an example of a null TMocal point we now consider the three- 
dimensional flat Minkowski space M — M3 with metric g = dx2 + dy2 — dz2 and 
the spacelike geodesic 7(f) = (t, 0,0), t £ [0,1]. Let V be any smooth surface through 
the origin such that the tangent plane T(0io,o)^ is the ^/z-plane and such that the 
second fundamental form 5^(o) of V at (0,0,0) satisfies4 

d_      d_)_d_      d_ 
dy     dz       dy     dz' 

Arguing as before it is easy to verify that J(t) = (t — 1)(^- + -j^) is a T^-Jacobi field 

along 7, J(l) — 0, J'(X) is the lightlike vector #• + ^, and 7(1) is a null P-focal 
point along 7. 

REMARK 6.4. Theorem 6.1 can be extended to the case of geodesies in semi-Rie- 
mannian manifolds (.M,#), with g of arbitrary index n_(#) = k > 1. In this case, 
given a geodesic 7 in M, one needs to assume the existence of k Jacobi fields Ji,... , </& 
along 7 generating a fc-dimensional timelike distribution along 7, and satisfying the 
relations g(V>yYi, Yj) —g(Yi, V^lj) = 0 for all i, j = 1,... , k. One considers the space 
/C7 of vector fields V along 7 satisfying V(0) 6 TlWP\ V(l) = 0 and g{V<yV,Yi) - 

4of course, such submanifold V exists; see for instance [16, Lemma 2.3.2] for details on how 
to construct a smooth submanifold of a semi-Riemannian manifold when its tangent space and its 
second fundamental form is assigned at one point. 
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g(V, V^Yi) = Cy   (const.) for all i = 1,... , k. Then, if 7(1) is not 7^-focal, the index 
of J{7/p} on /C7 equals iM(7) +n_(^|T7(0)7')- 

Examples of semi-Riemannian manifolds where the theory applies are given by 
those manifolds admitting a family of Killing vector fields Yi,... ,Yk that generate a 
/c-dimensional timelike distribution on M, and satisfying the commutation relations 
[Yi, Y}] = 0 for all ij = 1,... , k. A variational theory for geodesies in this kind of 
manifolds is presented in [11]. All the results presented in this paper can be extended 
to this more general situation. 

We now discuss the case of conjugate points along Lorentzian geodesies satisfying 
the hypotheses of Theorem 6.1, and so we assume that the initial manifold V reduces 
to a single point. This means that the P-Jacobi fields along 7 are simply the Jacobi 
fields vanishing at t = 0. We denote by /7 the index form along 7 relative to the 
choice of a trivial initial manifold. 

The first observation is that, in this situation, if Y is parallel along the geodesic 
7, then the conjugate points along 7 are isolated, and they are all positive. 

EXAMPLE 6.5. Suppose that Y is a parallel timelike Jacobi field along the 
geodesic 7; this means that V^F = 0, and so V^F = #(7, Y) 7 = 0. 

If J is Jacobi, then #(V7 J, Y)— g(J, V7Y) = g{VjJ, Y) is constant on [0,1], hence 
■^g(J,Y) — g(V?J,Y) = 0, and g(J,Y) is an affine function on [0,1]. 

If 7(to) is conjugate to 7(0) along 7, and J is a non trivial Jacobi field along 
7 vanishing at 0 and to, then it must be g{J,Y) = 0, and so g(VjJ,Y) = 0. It 
is Jv[to\1' — {V-yJXto) ' J Jacobi, with J(0) = J{to) = 0}, and it follows that 
Jvito]1' C Y(/y(to))'L- Since Y is timelike, it follows that the restriction of the metric 
g to Jv[to\'L is positive definite, which implies that the conjugate point 7(^0) is isolated 
and that its signature sgii(7(£o)) is equal to its multiplicity. Hence, the Maslov index 
of 7 coincides with its geometric index. In this case, Theorem 6.1 tells us that, if 7(1) 
is not conjugate to 7(0) along 7, the index of J7 on JC1 is equal to the geometric index 
of 7. 

Let's assume now that the geodesic 7 satisfies the assumptions of Theorem 6.1 
and the non degeneracy assumption of Proposition 3.1. It is an easy observation that 
there cannot be too many negative conjugate points along 7. For example, if 7(^0) is 
a negative conjugate point, i.e., sgn(7(£o)) = — 1, then the Maslov index iM(7|[o^0_e]) 
must be strictly positive for e > 0 small enough. This follows immediately from the 
fact that, by Theorem 6.1, if e > 0 is small enough, it must be 

n-(77l/c7o+£) = iM(7l[0,<o+e]) = iM(7l[o,*o-e]) - 1 > 0. 

In particular, the first conjugate point along 7 is never negative. 

If dim(M) = 2, then the metric — g is Lorentzian in M. This simple observation 
allows to get some interesting consequences, like the following: 

PROPOSITION 6.6. Let (M,g) be a two dimensional Lorentzian manifold and let 
7 : [0,1] i-)- M. be a spacelike geodesic in M. Suppose that there exists a timelike 
Jacobi field along 7.  Then, there are no conjugate points along 7. 

Proof. The curve 7 is clearly a timelike geodesic in the opposite Lorentzian 
manifold (M,—g) with the same conjugate points. We know that all the conjugate 
points along a causal geodesic are positive, hence 7 has only negative conjugate points 
in (M^g). Then, there cannot be any conjugate point, because the sum of their 
signatures must be non negative integer. D 
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By the same argument, it is easy to see that if 7 is a spacelike geodesic in a 
two-dimensional Lorentzian manifold M, starting orthogonally to a one-dimensional 
(necessarily timelike) submanifold V of M, then there is at the most one V-iocal point 
along 7, which must be negative (see Example 6.3). It is well known that conjugate 
points cannot occur along lightlike geodesies in two-dimensional Lorentzian manifolds 
(see [3]). However, we remark that spacelike (or timelike) geodesies in two-dimensional 
Lorentzian Lorentzian manifolds may have conjugate points. For instance, in the 
conformally flat metric e* (dx2 — dt2) on M2, the curve 7(7-) = (r, 0) is a spacelike 
geodesic, and the Jacobi equation along 7 is for the vector field J = (v, w) is given by 
the system 

v" = 0,    w" + w = 0. 

Clearly, the point 7(71-) is conjugate to 7(0) along 7. 

We leave unanswered the following questions: 
1. do there exist examples of (spacelike) Lorentzian geodesies satisfying the hy- 

potheses of Theorem 6.1 for which the set of T^-focal (or conjugate) points is 
not discrete? 

2. can a (spacelike) Lorentzian geodesic satisfying the hypotheses of Theorem 6.1 
really have one negative conjugate point? 

3. suppose that 7 is a (spacelike) geodesic satisfying the hypotheses of Theo- 
rem 6.1 and having one or more isolated conjugate point for which the non 
degeneracy assumption of Proposition 3.1 is not satisfied; is it still true that 
the Maslov index of 7 is given by the sum of the signatures of its conjugate 
points? 

If one does not require the assumptions of Theorem 6.1 all the above questions have 
easy answers (see [16]): the first two questions have a positive answer and the third 
one has a negative answer. 

We conclude this section with the remark that a Lorentzian version of the Morse 
Index Theorem for the two variable endpoints (see [13] for the Riemannian case) can 
be easily deduced from Theorem 6.1. When the final endpoint of 7 is allowed to vary 
on a submanifold Q of M., the index of the second variation of the action functional 
at 7 is given by the sum of the right hand side of equation (6.5) and a term that 
measures the relative convexity of Q with respect to V. The details are found in [19, 
Theorem 2.7, Remark 2.10]. 

7. The Global Morse Relations for Geodesies in Stationary Lorentzian 
Manifolds. In this section we want to develop an infinite dimensional Morse theory 
for the geodesies joining two fixed points p and q in a stationary Lorentzian manifold 
(M,g), in the spirit of [17] and using the modern terminology of [5]. The main goal 
of this theory is to give estimates on the number of geodesies having a given index; 
these estimates are given in terms of the topology of the space of (continuous) curves 
joining p and q in M. The basic reference for most of the material discussed in this 
section is [10]; we will make full use of the results proven in that article. 

As customary, if / C M is any interval, we will denote by Hl{I, Mn) the Sobolev 
space of absolutely continuous curves z : 11—> lRn such that the integral Jj \z\2 dt is 
finite, where | • | denotes the Euclidean norm in ]Rn. 

Given any differentiable manifold ]V, the set -ff1([0,1], N) is defined as the set 
of all absolutely continuous curves z : [0,1] 1—> N such that, for every local chart 
(V,(p) on iV, with <p : U 1—> Rn a diffeomorphism, and for every closed subinterval 
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/ C [0,1] such that z(I) C V, it is ip o z G ^(I.M71). For all differentiable manifold 
iV, with dim(7V) = n, the set H1 ([0,1], N) has the structure of an infinite dimensional 
manifold, modeled on the Hilbert space if1([0, l],iRn). We will denote by TiV the 
tangent bundle of iV and by TT : TiV H> N the canonical projection; for p G iV, 
TPN = TT"

1
^) denotes the tangent space of iV at p. A vector field along a curve 

z : [0,1] H> N is a map C : [0,1] •-> TA^ with 7r(CW) = ^(*) for all t. Given any 
z G ^([O, l],iV), the tangent space ^^([O, l],iV) is identified with the set: 

TzH
l([0,llN) = JC e ^([O,!]^^) : C vector field along *}, 

which is an infinite dimensional vector space, with a topology that makes it into a 
Hilbertable space. 

Let's assume that (M,g) is a Lorentzian manifold which admits a timelike Killing 
vector field, denoted by Y. We assume that Y is complete; let p and q be fixed points 
in M. We introduce the following space: 

fip,, = {z e ^([0,1],M) : z(0) = p, z(l) = qr}, 

It is well known that Clpiq has the structure of an infinite dimensional Hilbertian 
submanifold of i^1([0,1],.M); the action functional /, defined in (6.4), is smooth on 
flp)9 and its critical points are precisely the geodesies in M. between p and q. We say 
that p and q are non conjugate in M if they are not conjugate along every geodesic 
in M joining them. 

For all geodesic 7 in M we have a conservation law 0(7, Y) = c7 (constant). Now, 
if we consider the subset flpq of (^ consisting of curves z satisfying g(z, Y) = const., 
then clearly the geodesies in QPiq belong to ^^g- It is proven in [10] that Q^ is a 
smooth submanifold of Op^, and that / has the same critical points in ftp q and in 

By differentiating the expression g{z,Y) = const, with respect to z, using the 
Killing property of Y it is easy to see that the tangent space TzQpiq is given by the 
Hilbert space of if1-vector fields along z satisfying V(0) = V'(l) = 0 and such that 
the quantity g{VzV,Y) — g(V,VzY) is constant a.e. on [0,1]. 

Hence, if 7 is a critical point for / in fi^g, ^e-> a geodesic between p and #, the 
tangent space T7fl^g is a completion of the space /C7 of Theorem 6.1, and the index of 
Ij in /C7 is equal to the Morse index of the functional / at the critical point 7 G O^' 

Such index can therefore be interpreted as the number of essentially different 
directions in which 7 can be deformed, in the class of curves z joining p with q and 
satisfying g(z,Y) — const., in order to obtain a curve with smaller action. 

Let Cpq denote the following space: 

Clq = iz : [0,1] ^M piecewise C1 : 

z(0) =p, z(l) = q, g(z,Y) = cz (constant)j; 

we give the following completeness condition for the sublevels of the restricted action 
functional. 

DEFINITION 7.1. Given c G IR, we say that Cp q is c-precompact if every sequence 
{^njnGiV C Cpq such that f(zn) < c has a uniformly convergent subsequence. 

The c-precompactness property, which is given intrinsically in Definition 7.1, can 
be studied by means of suitable bounds of the metric coefficients with respect to the 
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coordinates of a given atlas on M. A wide class of examples of stationary Lorentzian 
manifolds (M,g) for which the c-precompactness assumption is satisfied by all choices 
of p, q and c is given in [10]. We emphasize that the c-precompactness for stationary 
Lorentzian manifold plays the role of the completeness assumption in Riemannian 
geometry; for this and other analogies with the classical Riemannian theory we refer 
to [10], where it is also discussed the relation between the c-precompactness and the 
property of global hyperbolicity. 

We recall that, given a topological space X, an algebraic field IK and a natural 
number i, the i-th Betti number /3i(X; K) of X relative to IK is the ^-dimension of 
the i-th singular homology vector space Hi(X;]K) of X with coefficients in IK. The 
Poincare polynomial ty\(X; K) of X with coefficients in K is the formal power series 
in A G K given by: 

oo 

(7.1) ^A(X;i^) = ]rA(X;iK)A\ 
i=0 

The global Morse relations provide relations between the set of all the geodesies joining 
p and q in M with the topology of the space of all continuous curves joining p and q 
in M, given in terms of the Betti numbers and the Poincare polynomial of this space. 
A key point for the infinite dimensional Morse theory is the so called Palais-Smale 
condition. We recall that a smooth functional F on a manifold X endowed with a 
Finsler structure is said to satisfy the Palais-Smale condition at the level c £ M if 
every sequence {^nlnew C X such that: 

(a) lim F{xn) = c; 
n—>oo 

(b) lim ||dF(^n)||=0, 
n—>-oo 

has a converging subsequence in X. 
The c-precompactness condition given in Definition 7.1 is the key assumption for 

the proof of the global Morse relations, which are given in the following 

THEOREM 7.2. Let (M,g) be a Lorentzian manifold. Suppose that M admits a 
complete timelike Killing vector field Y, and assume that p and q are two points of 
M such that the following hypotheses are satisfied: 

• p and q are not conjugate in M.; 
• Cpq is c-precompact for all c G M. 

Let fifj a denote the space of all continuous curves z : [0,1] »->> A"/ joining p and q in 
M., endowed with the topology of uniform convergence, and let Qp^q denote the set of 
all geodesies in M. between p and q. Then, for all field JK there exists a formal power 
series QIKW in the variable X, with coefficients in lV(J{+oo} such that the following 
identity between formal power series is satisfied: 

(7.2) J2 AiM(z) = ^("L; ^) + a +A) QKW. 

Proof Let /y denote the restriction of the action functional / to the manifold 
Clp ; as we have observed, Q,^ is a smooth submanifold offing and the critical points 
of fy on Q^   are precisely the geodesies joining p and q in M. 

We endow Q^ with the following Riemannian structure. We consider an auxiliary 

Riemannian metric g^ on M, and for all z E fi^ we define a Hilbert space inner 
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product (•, •> in TzQ^q by: 

(7.3) (V,V)= [ g^HViV^^dt. 
Jo 

Using the c-precompactness assumption, as well as the density of Cpq in f^g, the 
following facts are proven in [10]: 

1. /y is bounded from below, i.e., there exists D G M such that f(z)>D for all 
z G nY ■ 

2. for all c G M, the sublevel fy = {z G fi^ : f(z) < c} is a complete metric 
subspace of fl^ ; 

3. for all c G M, fy satisfies the Palais-Smale condition at the level c when 0%^ 
is endowed with the Finsler structure given by (7.3). 

Finally, the condition that p and q be non conjugate in M implies that fy is a 
Morse functional, i.e., all its critical points in Qpq are non degenerate. Namely, as 
we have already observed, the second variation of fy at any geodesic 7 is given by 
the restriction of the index form /7, and its kernel in T7£^g coincides with the set of 
Jacobi fields along 7 vanishing at the endpoints. If p and q are non conjugate in M, 
then /7 has trivial kernel, and fy is a Morse functional. 

Then, by standard results of Global Analysis on Manifolds (see for instance [15]), 
denoting by m(z,fy) the Morse index of the critical point z of /y, we have the 
following Morse relations. For all field IK there exists a formal power series QIKW in 
the variable A, with coefficients in IN U{+00} Slich that the following identity between 
formal power series is satisfied: 

(7.4) Y,  Xm{ZjY) = VWlr K) + (l + A) QK(\). 
z£GP,q 

By Theorem 6.1, for all z G Gp,q we have m(z,fy) = iM(z)] moreover, since Y 
is complete, it is proven in [10] that the spaces £lp,q and fi^g are homotopically 
equivalent, which implies that *pA(f^;i?f) = ty\(QPjq; IK) for all field IK. Finally, 
also the spaces QPiq and 0^ have the same homotopy type (see [17]), and so the 
Morse relations (7.2) are easily obtained from (7.4). D 
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